
One-way Delay Measurement based on Flow Data:
Quantification and Compensation of Errors by Exporter Profiling

Jochen Kögel
Institute of Communication Networks and Computer Engineering (IKR)

University of Stuttgart
Stuttgart, Germany

Email: jochen.koegel@ikr.uni-stuttgart.de

Abstract—One-way delay (OWD) is an important mea-
surand for network management. It can indicate routing
problems, network congestion, and is useful for tracking
down application problems to network effects. While active
measurements deliver high accuracy, measuring OWD ac-
tively on all paths of large networks results in high effort.
Thus, passive measurements are attractive. Our approach
for measuring OWD is based on flow data, which is often
exported from flow capturing enabled routers (exporters) for
traffic accounting and reporting. Thus, this approach does
not require additional network components and often comes
at almost no additional cost.

It is well-known that flow data is often inaccurate and in-
complete due to record loss. However, only little information
is available on timestamp accuracy of flow data. Therefore,
we investigated timestamp errors and developed a method
for quantifying them in order to improve the accuracy of
flow capturing based OWD measurements.

Our contribution is threefold: First, we analyze clock
resolution effects based on a reference model for flow record
creation. Second, we develop methods for exporter profiling,
i.e., extracting errors introduced by exporters from flow data.
Third, we present results obtained from data collected in a
global enterprise network.

We conclude that precision of flow data based OWD cal-
culation heavily depends on the capturing devices, especially
on timestamp resolution. Standard deviations observed range
from 2.07 ms to 34.02 ms.

Keywords-network monitoring; flow capturing; IPFIX;
NetFlow; one-way delay

I. INTRODUCTION

More and more business-critical services are based
on the Internet or on global enterprise networks. Thus,
network monitoring and early problem detection become
critical tasks. An important characteristic of networks is
the one-way delay (OWD) measured between any two
points in the network, e.g. between endpoints or between
network elements.

OWD is composed of propagation delay on the link (dl),
processing delay (dp), and queuing delay (dq). While dl
and dp stay mostly constant for the same network path, dq
strongly depends on traffic load and queue levels. There-
fore, changes of the OWD indicate effects and problems
on the network layer, such as routing problems or network
congestion.

Our work focuses on OWD measurement in global
enterprise networks that connect a high number of branch
locations via edge routers to a core network. In most cases,
the core network belongs to an MPLS provider and its

structure and properties are unknown. Therefore, taking
into account topology for inferring OWDs is not possible,
but all paths between edge nodes have to be considered for
measurement. OWD in such networks can be measured in
an active or passive manner. Active measurements send
probe packets between different points in the network,
e.g. from edge router to edge router. In contrast, passive
measurements do not inject additional traffic.

An overview of active OWD measurements and espe-
cially clock synchronization issues is given in [1], while a
probe-based measurement architecture is presented in [2].
For getting OWD values between any points of the net-
work with a suitable amount of samples, probe traffic has
to be sent between any two locations in both directions,
which leads to a high effort. Thus, passive measurement
approaches, which rely on performing measurements on
existing traffic, are attractive . A passive approach on
packet level is presented in [3]. Here, timestamps of the
same packet from two different locations are compared,
which requires, however, additional probe equipment for
traffic capturing and packet ID generation.

Our approach does not work on packet level but on flow
data, which is monitoring data exported using protocols
like NetFlow [4] or the IPFIX protocol [5]. The advantage
of this approach is that flow capturing and flow data
export is implemented in most routers. Thus, no additional
monitoring equipment is required. Additionally, in most
well managed networks flow data is already collected
from many routers for reporting, accounting, and anomaly
detection purposes. Flow data based OWD measurement
therefore comes at almost no additional cost.

Obviously, in order to know which accuracy can be
achieved by flow data based OWD measurement, knowing
errors of flow data timestamps is essential. Flow data
export protocols specify timestamps for flow start and end
times with millisecond or even higher resolution. How-
ever, it has not been investigated so far which timestamp
accuracy the flow capturing devices eventually provide.
There is related work on achievable accuracy for flow
data based packet loss [6] and also the idea of trajectory
sampling [7] can provide input data for flow-based OWD
measurements. [8] describes effects of timeout mecha-
nisms, however timestamp accuracy is not considered.
Passive OWD measurement on packet level using the
IPFIX protocol is described in [9] and [10]. However, this
approach is not based on flow capturing, but the IPFIX



Figure 1. Terminology

protocol is used to transfer packet IDs.
Our work is not only the first that investigates timestamp

errors of flow data, but it also provides a systematic
and universal approach to determine the accuracy of flow
capturing devices deployed in a global network. Our goal
is to use as little additional knowledge and measurements
as possible, i.e. we do not take knowledge on router
models, configuration or topology into account. The main
idea is to generate exporter profiles offline based on flow
data from periods when the network is lightly loaded,
i.e., dq is negligible. These profiles specify accuracy
parameters in terms of systematic and random errors. A
system that extracts OWD samples from flow data shortly
after it is exported (online) can then use these profiles
for compensating the systematic errors. Additionally, with
profile support the impact on accuracy from random errors
can be quantified, e.g. for determining confidence bounds
when averaging over several samples.

This paper is structured as follows. Sec. II introduces
flow capturing terminology and traffic observation points
in an enterprise network scenario, while Sec. III focuses
on timestamp effects and their impact. Sec. IV presents the
exporter profile creation. Sec. V shows results in terms of
errors for OWD measurement between routers and Sec. VI
concludes the paper.

II. FLOW CAPTURING IN GLOBAL NETWORKS

A. Terminology

We use a concise flow definition, which is sufficient for
timing effects of our studies. This definition is close to
NetFlow v5 [4] and not as general as IPFIX terminology
[11]. In our definition, a flow is a unidirectional unicast
data transmission between a source endpoint A and a
destination endpoint B on the transport layer (see Fig. 1).
A and B are defined by their IP addresses, their port
numbers and the transport protocol of both, i.e. this five
tuple defines endpoints and direction. The flow timestamps
t∗s and t∗e denote the flow’s start and end at an observation
point OP. A flow f can consist of multiple subflows
fs, which share the same A and B, but which can be
distinguished further, e.g. by the Type-of-Service (ToS)
byte.

We consider flow data that is captured at OPs of a
flow capturing enabled router (exporter E). Therefore, we
define an OP as the tuple formed by exporter E and input
interface I. A flow record R is a data record that describes
a subflow fs as seen by the flow capturing device at an OP.

Figure 2. Flow capturing in a global enterprise scenario

ts and te are the record timestamps. Further attributes that
are relevant to us are the byte and packet counter b and
p along with the previously mentioned flow attributes, i.e.
R := (f,OP, ts, te, p, b, ToS). R can describe a complete
flow or only a fraction of a flow measured in a certain
time interval. The latter happens, e.g. if for a flow there
are no packets observed for a certain time and timeout
mechanisms trigger record export. If there is only one
record for a flow, we call it a one-record-flow for. In
this case (t∗s = ts) ∧ (t∗e = te) holds. Often, there
is bidirectional communication (e.g. TCP connections)
where a reverse flow frv to a forward flow ffw exists.
The endpoint tuple is switched (Arv = Bfw ∧Brv = Afw)
and the timing must be accordingly: ts,fw < ts,rv.

If the flow traverses an Observation Point Pair (OPP)
of two OPs OP1 and OP2 as in Fig. 1, we can calculate
the packet and byte differences with ∆b = bOP2 − bOP1 ,
∆p = pOP2 − pOP1 . Accordingly, the start and end time
differences are ∆ts = ts,OP2

−ts,OP1
and ∆te = te,OP2

−
te,OP1

. If there is no packet loss and clocks are correct,
∆ts and ∆te of an for are OWD samples of the OPP.

B. Scenario and observation points

Fig. 2 shows a typical deployment of flow capturing
in a global enterprise scenario. Data centers and branch
locations are connected via a global core network (MPLS
VPN). The core network belongs to a carrier, which
also operates the customer edge (CE) routers. Enterprise
administrators have read-only (ro) access on CE routers.
The CE routers as well as the routers operated by the
enterprise (e.g. in data centers) send flow data to a flow
data collector, from where data is taken for processing.
There are two important facts in this scenario: First, flows
typically cross more than one exporter. Second, there
are different domains involved, which can also lead to
different unsynchronized time domains.

Depending on the routing scheme employed and
router/network configuration, several special properties
have to be considered. First, load balancing schemes
(ECMP) or asymmetric routing can happen, which leads to
situations where a flow takes different paths or the reverse
flow does not cross the same exporter as the forward
flow. Furthermore, there are also different implementations
of flow capturing mechanisms that often exist in parallel
on the same exporter. Here, we can distinguish between
software and hardware based implementations that can
reside on line cards or on central units. Thus, it is possible



that there are several OP of different kind within the
same router. In most scenarios it depends on the ingress
interface and routing at which OP flows are captured.
Since characteristics of the implementations can differ, we
have to build profiles for every OP and OPP separately.

In most cases flow capturing happens in processing
stages where also forwarding decisions are taken. This is
close to the ingress interface, i.e., only after passing the
OP packets enter queues, where they can be subject to
contention and experience dq . If flow capturing is enabled
on the egress path, the respective OP can be located
after some queues. However, this egress capturing can be
detected based on a direction field in the records.

III. TIMESTAMP EFFECTS

A. Timestamps in flow data

Fig. 3 shows our reference model for flow capturing
with the blocks metering and exporting. The metering
block takes the packets and updates flow entries in the
flow cache based on the key (in NetFlow v5 the five tuple,
ToS and input interface). Based on timer configurations,
flow cache entries expire at tr and are forwarded to the
exporting block, where several flow records are put into a
UDP packet and exported at tx to a collector.

As our focus is on timestamps, their creation is illus-
trated in more detail in Fig. 3. There is a system clock
s(t) that counts the system uptime in milliseconds and a
real time clock (RTC) u(t) that holds the UNIX time in
two 32 bit values for seconds and nanoseconds. The two
clocks are used to create the raw timestamps (rx) that are
sent in flow data packets and from which ts and te are
calculated. The metering process uses the uptime counter
only and writes rfirst on record creation and updates rlast

for every packet. When the records are finally exported,
the values rsu , rsec and rnsec are written into the packet
header. The record timestamps are calculated based on the
boot time tb, as illustrated on the bottom of Fig. 3:
tb = rsec ·1000+ rnsec

1e6 −rsu; ts = tb+rfirst; te = tb+rlast.
s(t) and u(t) are typically not synchronized (d(t) in
Fig. 3), which can lead to errors of more than one
millisecond for records with long durations. Due to space
limitations, this effect is not detailed further.

B. Raw timestamp resolution

In Fig. 3 asterisks indicate points where a limited
timestamp resolution (i.e. limited granularity of values)
can be caused, e.g. if lower bits of a 32-bit value are
dropped and/or internal timestamp values are converted in
certain ways. This leads to a limited resolutions ρx of raw
timestamps rx and record timestamps tx.

Characteristic values for raw timestamp resolutions are
shown in Tab. I a) for three exemplary exporter types. For
all exporter types, ρsecs has a resolution of one. ρnsecs is
15,258 on most exporters. We assume this is the resolution
RTC, since clock components often divide a second into
216 ticks (15,258 is 1e9

216 ). However, this resolution is below
milliseconds and thus does not impact ρs or ρe.

Figure 3. Reference model for record timestamp creation

Table I
EXEMPLARY TIMESTAMP RESOLUTIONS

a) Observed raw timestamp (rx) resolutions (ρx)
OP type ρsecs ρnsecs ρsu ρfirst ρlast

1 1 15,258 4 4 4
2 1 15,258 2 1 1
3 1 15,258 1 1 1

b) Observed record timestamp (tx) resolutions (ρx)
OP type ρs ρs,IAT ρe ρe,IAT ρd

1 4 4 4 4 4
2 1 64 1 64 64
3 1 1 1 1 1

On exporters of type 1, ρsu, ρfirst, and ρlast are four
(lower two bits always zero), while for type 2 only ρsu

has a limited resolution. Exporters of type 1 are e.g.
Cisco 7200 series and type 2 are e.g. Cisco 6500 series
performing hardware-based (MLS) NetFlow. Exporters of
type 3 do not have a limited resolutions, except in ρnsecs.

C. Record timestamp resolution

A first approach for calculating the resolutions of
start/end timestamp (ρs, ρe), and record duration (ρd)
would be: ρs = max(ρsu, ρfirst, ρtx),
ρe = max(ρsu, ρlast, ρtx), and ρd = max(ρs, ρe), with
ρtx = max(ρuS · 1000, ρuN1e6 ).

Tab. I b) shows observed resolution values of record
timestamps. Here, we distinguish between resolution val-
ues we calculated by checking each record timestamp
value separately and by checking the time between two
values. The latter can be seen as the record IAT, thus it is
denoted with this suffix.

Exporters of type 1 and type 3 allow calculating the
resolution values as given by the previous equations. For
Type 2 exporters, however, the equations cannot explain
ρd. Additionally, ρs and ρe differ from ρs,IAT and ρe,IAT.
This lead us to the assumption that type 2 exporters have
an internal resolution of 64 ms, but the the lower 6 bits of
first and last are simply not set to zero at point *6
of Fig. 3. Indeed, we found that the lower 6 bits of type 2
exporters plotted against the export time roughly describe
a saw tooth that seems to depend on d(t), while the value
of these bits with other exporter types are randomly dis-



tributed. Thus, profiling OP timestamp resolution cannot
stop at evaluating raw timestamp resolution, but we have
to calculate ρs, ρe, and especially ρs,IAT, and ρe,IAT.

D. Impact on OWD calculation and compensation

Limited timestamp resolution leads to timestamp errors
with certain bias and thus impacts the OWD calculated.
The error from limited timestamp resolution is a uniform
PDF s(x) of width ρ that has the standard deviation

σ =
√

ρ2

12 . From timestamp creation, it is obvious that the
timestamp resolution is limited in a way that the last bits
are dropped. This additionally results in a bias since the
reported timestamp will always be equal to or less than the
real time. Thus, the bias will be β = −ρ2 , while in general
β could be in [−ρ2 ; ρ2 ] if timestamp values are created
differently. In general, the PDF of resolution-caused errors
is

s(x) =

{
1
ρ −ρ/2− β < x < ρ/2− β

0 otherwise
(1)

If we calculate ∆ts or ∆te between two OPs with
resolutions ρ1 and ρ2, we get a PDF of the total error
as convolution of two uniform PDFs:

sOPP (x) = sOP1(x) ∗ sOP2(x) (2)

If both OPs have the same ρ, a triangular distribution
of width 2 · ρ results. With different ρ, we will get
a trapezoidal distribution with the width ρ1 + ρ2. The
standard deviation is calculated by adding the variances
of sOP1 and sOP2:

σOPP (x) =

√
ρ2

1 + ρ2
2

12
. (3)

∆ts will be impacted on average by the bias as

∆ts = tOP2 − tOP1 + (βOP2 − βOP1) (4)

This means we have to compensate the bias in order to
get correct OWD mean values.

IV. EXPORTER PROFILING

A. Profiling Overview

For measuring OWD based on flow data, we determine
accuracy profiles of exporters that describe systematic and
random errors concerning timestamps. There are several
possibilities for obtaining the exporter profile, e.g. knowl-
edge about router implementations and configuration, lab
measurements or comparing flow data with active mea-
surements. However, relying on such knowledge requires
reliable updates when changes happen (e.g. router software
updates) and it is hard to design automated methods. Thus,
we focus on automated methods for obtaining the exporter
profile with as little additional knowledge as necessary, i.e.
relying on flow data only.

We perform the accuracy profiling on data sets from
time intervals when the network is lightly loaded (e.g.
at night, on weekends). Profiling itself is not time critical
and can be done offline and iteratively. Here, also resource
consuming algorithms are feasible. In contrast, the OWD

Table II
EXPORTER PROFILE

field content
clk_offset clock offset to ωref in ms
clk_skew skew in ms/h
ref_exp OPref for this exporter

Per OP of this exporter
ρs resolution of start timestamp
ρe resolution of end timestamp
βs bias of start timestamp
βe bias of end timestamp

Per OPP where an OP of this exporter is involved
sdistr accuracy: distribution of ∆ts error
edistr accuracy: distribution of ∆te error

calculation that uses the profiles should deliver the OWD
samples from the network as quickly as possible for timely
performance and failure management and thus has to
process the flow data online.

The exporter profile format is given in Table II. The first
part covers clock offset and clock skew detected compared
to a reference exporter. This is necessary in order to
compensate for clock inaccuracies, since the exporters
might be configured to different time domains or not be
synchronized at all. The second part of the profile deals
with the limited time resolution. This part exists for every
observation point OP of this exporter. In the third part
of the profile, the accuracy for every OPP, in which this
exporter is involved, given as distribution of the ∆ts and
∆te error. The latter is important for validating the bias
calculated, capturing errors not caused from resolution
effects, and for detecting non-plausible error distributions.

Our approach is detailed in the next subsection and is
currently limited to creating exporter profiles of networks
where no flow independent load balancing is employed,
only unsampled flow capturing is performed and with
predominantly symmetric routing.

B. Profiling Steps

The exporter profile described in the previous section is
created using a multi step process illustrated in Fig 4. All
steps take the same flow data set as input and determine
certain fields of the exporter profiles, which they write
into the exporter profile data base. Each step is performed
after the previous step is finished, as steps partly rely on
information in the exporter profile written by previous
steps. Some steps require preprocessing steps that are
indicated in the left part of Fig. 4.

The first step is the simplest one. It identifies every
exporter and OP in the flow data and instantiates the
required exporter profiles. In the second step, the time-
stamp resolution for each OP is detected in terms of the
ρx presented before. The third step infers all OPPs where
an OP of the considered exporter is involved. The fourth
and fifth steps require mainly the same preprocessing
blocks, since they consider differences of timestamps and
packet/byte counters of the OPP. While the fourth step
takes ∆ts between the exporter considered and a reference



Figure 4. Profiling steps

exporter OPref to determine clock offset and skew, the
fifth step takes ∆ts of values where clock offset and skew
are already compensated. Both steps check for packet loss
(∆p = 0) before considering the corresponding ∆ts and
∆te values. If there is packet loss detected, we cannot use
the flow records for OWD calculation, since ∆ts or ∆te
could be affected if the first or last packet is lost. Checking
for byte consistency (∆b = 0) could improve reliability
further. However, we found that there are systematic byte
count differences between exporters: some exporters report
the Ethernet payload length, while others report the IP
packet size. This leads to byte count errors with an OPP for
every packet smaller than 46 Bytes. Therefore, checking
for ∆b = 0 is not feasible on OPPs where OPs handle
the byte count differently. Hence, we tolerate a certain
deviation of ∆b in such cases. As indicated, steps four and
five require ∆ts and ∆p, which are both calculated in the
preprocessing block ∆ calc. This block keeps flow records
for a certain time window in memory and matches records
from different OPs based on the five tuple. In order for
this block to work reliably, only one record flows (for) can
be considered. Also the five-tuple based matching does
not work for subflows fs, which might even have different
packet count between two OP due to ToS Byte change
from DiffServ Policing or ECN. To get around these two
problems, we employ a preprocessing block that merges
records of several fs into a single R and allows only for.

For OWD calculation and clock offset detection, it is
important to know the pairs of OPs between two exporters.
Especially, it is important to know the OP ordering, i.e. in
which order they are traversed by packets. Else negative
OWD values for an OPP result and clock offsets cannot be
determined. For determining which OP of an OPP is first
and which is second, we observe the timing of forward
and reverse flows between two exporters exploiting the
nature of request-response protocols and TCP handshakes.
Therefore, our algorithm works if at least for some flows
there is symmetric routing (forward flow ffw and reverse
flow frv both seen on the same Exporter).

In order to determine the OP ordering, we search for
reverse flows for a given flow. Then we calculate the
RTT for every exporter where forward and reverse flow
are seen. The exporters closest to the initiator see the
largest RTT, while the exporters closest to the responder
see the lowest RTT. Due to limited timestamp resolution, a
single RTT difference sample does not always indicate the

Table III
PERCENTILES AND STANDARD DEVIATION OF DISTRIBUTIONS [ms]

case ρa ρb 2.5% 50 % 97.5% σ s
a 64 4 55 87 120 18.51 22.82
b 4 64 -10 24 57 18.51 22.99
c 64 64 51 105 158 26.13 34.02
d 4 4 -3 1 5 1.63 2.07

correct ordering. Thus, we collect for each OPP several
RTT difference samples and decide at the end of the
profiling step, which order the OPs of this OPP have.

Finally, the last profiling step determines the error
distributions and thus the precision of OWD measurement
for each OPP. This step takes ∆ts and ∆te where ∆p = 0,
∆b is tolerable and calculates histograms of for each OPPs
by using 601 buckets for ∆ts and ∆te values between -
300 and +300 ms. The resulting sample counters for each
bucket as well as overflow and underflow counters are
stored as part of the exporter profile.

Based on the distribution obtained, the system can
validate the bias calculated and eventually determine the
precision of OWD measurement for an OPP. Additionally,
non-plausible distributions can be detected that cannot be
handled using the exporter profile.

V. EVALUATION

A. Processing framework and scenario

We implemented the exporter profiling based on a Java
framework of modular processing blocks [12]. This allows
us to chain processing blocks for each profiling step
as needed. Exporter profiles are stored at the end of a
processing step and loaded before the next step.

Input for our evaluations is data that was collected in an
enterprise network where several hundred routers export
NetFlow v5. We collected the flow data and wrote them
to files using the flow-capture daemon of the flowtools
package. Our prototype creates exporter profiles for sev-
eral hundred exporters from flow data of one day (33 GB)
within less than two hours. Currently, we do not use data
from exporters where we detected clock offset or skew
during exporter profiling.

B. Results

Fig. 5 shows the distribution of ∆ts values for four
different OPPs. We selected four typical OPPs with dif-
ferent ρs in order to show the distributions of errors. Bias
compensation has not yet been performed for these charts.
Table III gives the percentiles that are also indicated by
red and green lines in the charts of Fig. 5. Additionally,
the table presents the standard deviations (σ) calculated
from ρ as well as the standard deviation calculated from
the distribution (s).

First, we can see that the distributions follow a trapezoid
or triangle shape, which is a result from convolution of
two uniform distributions of the resolution-based error
(c.f. Sec. III-D). Additionally, there is some random error,
since the slopes are not sharp and s > σ. We can also
observe that the error distribution is almost symmetric and



0 50 100 150 200
0

5000

10000

15000

∆ t
s
 in ms

fr
e
q
u
e
n
c
y

exp1 (ρ
OP1

=64ms) −> exp2 (ρ
OP2

=4ms)

−100 −50 0 50 100
0

1

2

3

4

5

6
x 10

4

∆ t
s
 in ms

fr
e
q
u
e
n
c
y

exp2 (ρ
OP3

=4ms) −> exp1 (ρ
OP4

=64ms)

0 50 100 150 200
0

0.5

1

1.5

2
x 10

4

∆ t
s
 in ms

fr
e
q
u
e
n
c
y

exp3 (ρ
OP5

=64ms) −> exp4 (ρ
OP6

=64ms)

−10 −5 0 5 10 15
0

1

2

3

4

5

6
x 10

4

∆ t
s
 in ms

fr
e
q
u
e
n
c
y

exp5 (ρ
OP7

=4ms) −> exp6 (ρ
OP8

=4ms)

a) b) c) d)

Figure 5. Distribution of ∆ts values (OPP precision) for different cases of ρ combinations

the distributions could be approximated as convolutions
of resolution-caused errors and a normal distribution. The
symmetric shape also indicates that we did the profiling
in a lightly loaded network. Else, dq would deform the
distribution towards higher ∆ts.

Fig. 5 a) and Fig. 5 b) show the error distribution of
two OPPs of a symmetric path between two exporters with
different ρs. Here we can clearly see the impact of the
bias denoted in Equation 4. In this case, we can conclude
that the bias calculation of +/- 30 ms for this OPP is
correct. This does not perfectly match the differences of
the percentiles for this OPP, but is very close. A reason for
this deviation might also be the high number of outliers
of one OPP, which can be observed in Fig. 5 a) above
130 ms and in Fig. 5 b) below -20 ms.

For an OPP where ρa = ρb = 64 ms we get the
expected triangular distribution of Fig. 5 c). Such an
OPP has a high error, but it can still be used for OWD
calculation if a sufficient number of samples is collected.
In contrast, the distribution of Fig. 5 d) shows that there
are also OPPs with a very low error (standard deviation
of 2.07 ms). This is a very good accuracy for OWD
measurements in global networks, where OWDs dl of
more than 100 ms and dq in the order of some 10 ms
may occur.

VI. CONCLUSION

We presented a method to quantify the systematic and
random errors for flow data based OWD calculation. This
exporter profiling approach uses flow data as single source
of information and generates exporter profiles offline using
data from periods when the network is lightly loaded.
Based on profile contents, such as clock resolution, off-
set, skew, bias, and error distribution, we are able to
compensate systematic errors and quantify random errors
introduced in timestamp creation. These compensation and
accuracy quantification steps can then be performed with
low large effort in a system that calculates OWD from
flow data online.

The evaluation showed that timestamp errors in flow
data are dominated by errors resulting from limited time-
stamp resolution. We conclude that using flow data for
OWD measurement is feasible, if average OWD values of
a certain time interval are considered, where a high amount
of samples can compensate the measurement errors. Nev-
ertheless, on one path we observed error distributions with
a standard deviation of 2.07 ms, which makes flow based

OWD measurements feasible for determining OWD on a
per-sample basis.

REFERENCES

[1] L. De Vito, S. Rapuano, and L. Tomaciello, “One-way
delay measurement: State of the art,” Instrumentation and
Measurement, IEEE Transactions on, vol. 57, 2008.

[2] J. Corral, G. Texier, and L. Toutain, “End-to-end active
measurement architecture in IP networks (SATURNE),” in
Proceedings of passive and active measurement network
PAM’03, La Jolla, CA, 2003.

[3] S. Niccolini, M. Molina, F. Raspall, and S. Tartarelli,
“Design and implementation of a one way delay passive
measurement system,” in Network Operations and Man-
agement Symposium, 2004. NOMS 2004. IEEE/IFIP, vol. 1,
2004.

[4] “Netflow services and applications,” White Paper, Cisco
Systems, 1999.

[5] B. Claise, “Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow
Information,” RFC 5101 (Proposed Standard), Internet En-
gineering Task Force, Jan. 2008.

[6] Y. Gu, L. Breslau, N. Duffield, and S. Sen, “On passive
one-way loss measurements using sampled flow statistics,”
2009.

[7] N. G. Duffield and M. Grossglauser, “Trajectory sampling
for direct traffic observation,” IEEE/ACM Trans. Netw.,
vol. 9, 2001.

[8] I. Cunha, F. Silveira, R. Oliveira, R. Teixeira, and C. Diot,
“Uncovering artifacts of flow measurement tools,” in PAM
’09: Proceedings of the 10th International Conference on
Passive and Active Network Measurement, 2009.

[9] T. Zseby, E. Boschi, N. Brownlee, and B. Claise, “IP Flow
Information Export (IPFIX) Applicability,” RFC 5472 (In-
formational), Internet Engineering Task Force, Mar. 2009.

[10] F. Fatemipour and M. Yaghmaee, “Design and implemen-
tation of a monitoring system based on IPFIX protocol,”
2007.

[11] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Require-
ments for IP Flow Information Export (IPFIX),” RFC
3917 (Informational), Internet Engineering Task Force, Oct.
2004.

[12] J. Kögel and S. Scholz, “Processing of Flow Accounting
Data in Java: Framework Design and Performance Evalu-
ation,” in Proceedings of the 16th EUNICE/IFIP WG 6.6
Workshop, 2010.


