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Abstract Flow Accounting is a passive monitoring mechanism imple-
mented in routers that gives insight into tra�c behavior and network
characteristics. However, processing of Flow Accounting data is a chal-
lenging task, especially in large networks where the rate of Flow Records
received at the collector can be very high. We developed a framework
for processing of Flow Accounting data in Java. It provides processing
blocks for aggregation, sorting, statistics, correlation, and other tasks.
Besides reading data from �les for o�ine analysis, it can also directly
process data received from the network. In terms of multithreading and
data handling, the framework is highly con�gurable, which allows perfor-
mance tuning depending on the given task. For setting these parameters
there are several trade-o�s concerning memory consumption and pro-
cessing overhead. In this paper, we present the framework design, study
these trade-o�s based on a reference scenario and examine characteristics
caused by garbage collection.

1 Introduction

Monitoring network characteristics and tra�c is vital for every network oper-
ator. This monitoring information serves as input for adjusting con�gurations,
upgrade planning as well as for detecting and analyzing problems.

Besides active measurements and passive capturing of packet traces, Flow
Accounting is attractive because it is a passive monitoring approach, where in-
formation on �ows is created in routers and exported as Flow Records using
a protocol like Cisco NetFlow [1] or IPFIX [2]. Due to monitoring on the �ow
level, Flow Accounting provides a good trade-o� between the information mon-
itored and the amount of data to store and process. Flow Accounting is mainly
used for reporting and accounting tasks, but can also provide input for anomaly
detection or extraction of network characteristics [3].

Processing of Flow Accounting data is challenging, since in large networks
routers export several hundred million Flow Records per hour. Three common
approaches can be distinguished to handle and process this data. First, Flow
Records can be stored in a central or distributed database to create reports and



o�ine analysis at a later point in time. Here, the attributes of Flow Records
are often reduced in order to save memory and processing e�ort. Second, Flow
Records can be dumped directly into �les for o�ine analysis without a database.
Third, Flow Records can be analyzed online directly in memory without storing
them.

We developed a �ow processing framework in Java that can read Flow Records
from �les as well as from the network. Thus, it is suitable for o�ine and online
analysis. The framework processes Flow Records in a streaming fashion, i.e. data
�ows through a chain of processing blocks. Each block can keep data as long as
required for its task (typically using a sliding window) before it forwards the
processing results. For tasks like joining and sorting Flow Records, the window
size parameter for achieving good processing results depends on characteristics
of the Flow Accounting data, which in turn depends on router con�guration and
tra�c characteristics. Hence, these factors in�uence how long data is kept in
memory and thus the overall memory consumption. However, the latter cannot
be evaluated as independent metric in Java: more memory consumption results
in more garbage collector overhead and thus eventually in reduced throughput.

This paper studies these dependencies. Besides, the processing blocks can be
assigned to threads in di�erent schemes, allowing to exploit modern multicore
computers. The investigation of these threading schemes is also part of this work.

This paper is structured as follows: Section 2 introduces Flow Accounting,
Section 3 presents the design of the �ow processing framework, Section 4 shows
the result of the performance evaluation, and Section 5 concludes the document.

2 Flow Accounting

2.1 Mechanism and Protocols

Flow Accounting is a mechanism present in most professional routers that keeps
counters on per-�ow basis. The router exports this information as Flow Records
and sends them a collector, where the information is processed further. Flows
are identi�ed by a key, which is typically the �ve tuple consisting of source and
destination address, source and destination port, as well as transport protocol
number. Routers keep a table (�ow cache) where data on each �ow is stored.
The router updates the �ow information (e.g. byte and packet count) either for
each packet (unsampled) or for a fraction of packets (sampled). Among other
information, Flow Records contain the �ve tuple, the counters as well as start
and end time in milliseconds.

Several data formats for sending multiple Flow Records in a packet to the col-
lector exist. Mostly Cisco system's NetFlow format is used. The current NetFlow
version 9 [1] and its successor IPFIX [2] are �exible formats based on templates,
while the �xed format of version 5 dominates current deployments. Since the
data is sent via UDP, packets transporting Flow Records might be lost.

For determining the export time tx of a Flow Record, there are several criteria
in Cisco routers. Inactive timeout : if for a �ow there is no more packet seen for



Figure 1. Flow export: timers of di�erent strategies and resulting record order

∆tinact, the �ow is exported. Active timeout : if a �ow has been active for a time
period greater than ∆tact, the �ow is exported. Fast timeout : if after ∆tf a �ow
contains less than nfast packets, the �ow is exported. Cache clearing : if the cache
runs full, the router exports �ows earlier than de�ned by the timeouts.

Some routers determine �ow ends also by tracking TCP connection state.
The timeouts are illustrated in Fig. 1 for two �ows. We can see that information
on �ows can be distributed across di�erent records with long breaks in between
and that records arrive at the collector neither sorted by start nor by end time.
These properties have to be considered for processing algorithms that work on
a limited window of Flow Accounting data.

2.2 Existing processing tools

In large networks several hundred million Flow Records arrive at the collector
per hour. Processing or storing this amount of data is challenging. There are
several commercial tools that collect and analyze Flow Accounting data, such
as IsarFlow, Arbor Peak�ow, Lancope StealthWatch or Cisco Multi NetFlow
Collector. These tools follow the common approach of using a database (DB)
for o�ine analysis. In order to cope with the data rate, load balancers distribute
the tra�c across several collectors that form a distributed DB. These tools often
aggregate data as soon as possible (e.g. on time intervals) to reduce storage
requirements. Thus, evaluations that need �ne grained timing information are
not possible. There are also free tools for collection and basic processing of Flow
Accounting data, such as �owtools and nfdump. Free reporting and query tools
are nfsen and SiLK.

Evaluation algorithms that rely on �ne grained information are typically
processing and memory intensive, thus stream-based approaches have advantages
over DB based tools. Processing network monitoring data in a streaming fashion
is close to the domain of data stream management systems (DSMS) or complex
event processing. Related tools are Gigascope [4] for packet trace processing,
the TelgraphCQ DSMS [5] or the network monitoring speci�c CoMo project [6].
Other tools focus on the dispatching of received NetFlow data [7] or on Flow
Query Languages [8]. The presented tools are often limited to a certain domain



and not suitable for extracting and correlating network characteristics or data
from di�erent data sources. A data processing pipeline in Java is presented in
[9]. Its focus is on processing large objects (e.g. images), thus it is unsuitable for
Flow Accounting data.

3 Data Processing Framework

3.1 Architecture

We developed a framework for processing of Flow Accounting data, especially
for �ne grained analysis of Flow Records e.g. for extraction and correlation of
network metrics. This includes tasks like matching records from di�erent sources,
calculation of derived metrics, correlation and statistics. In order to handle the
huge amount of data, we use a stream-based approach that capitalizes on mod-
ern multicore architectures. We decided to take Java as programming language
due to the garbage collection feature of the Java Virtual Machine (JVM), which
simpli�es modular design, and its built-in utility classes for concurrent program-
ming.

Our framework is based on interconnected processing blocks that form a data
processing chain. Processing blocks exchange messages containing references to
objects (Fig. 2). Each block has at least to implement a data source or a data sink
interface, while combinations with several interfaces are also possible (e.g. several
inputs/outputs). A processing block is derived from a generic block according to
its role. Fig. 2 shows an exemplary chain with two SourceBlocks reading NetFlow
data from �les or the network and forwarding the data to SinkSourceBlocks that
perform data aggregation to JoinedFlows. The two pipelines are merged in a
CorrelationBlock, which creates correlation result objects that are statistically
evaluated in two SinkBlocks.

Processing chains are constrained to a directed acyclic graph. While cycles
could make sense e.g. for feedback loops to compensate time o�sets in the data,
this is currently not supported. We designed the framework in a way that threads
can be assigned to one or several processing blocks. If two processing blocks run

Figure 2. Exemplary processing chain showing basic types of processing blocks



as di�erent threads, they are connected via blocking FIFO queues, as shown in
Fig. 2 for the con�guration with the maximum number of threads.

At each source interface, an arbitrary number of processing blocks can con-
nect, such that all of them will get references to the objects passed on and can
process them independently of each other. We avoid race conditions possibly
caused due to concurrent access by not modifying objects after they left the
block where they have been created. Due to garbage collection provided by the
JVM, no mechanisms to manage the references to objects and freeing memory in
case of dropped objects is necessary. This enables a clean design of independent
processing blocks.

At startup, the chain is set up by a central component that also performs
thread management. Con�guration is based on an XML �le that describes the
chain structure and processing block parameters. For this, we build on the de-
pendency injection mechanisms provided by the Spring Framework [10]. After
all objects are created and wired as de�ned, threads are started and the Source-
Blocks starts delivering data to the chain. Shutdown is initiated by a shutdown
message in downstream direction, e.g. if readers run out of data. If the chain
contains parallel paths that are merged in a correlator, this mechanism is not
su�cient for proper shutdown of upstream blocks that still have data. In such
cases, upstream shutdown noti�cation is performed by deregistering connections
from upstream blocks, which will then shut down.

3.2 Processing blocks

In terms of processing tasks there are two basic classes of processing blocks:
window-based blocks that keep data over a sliding window, and window-less

blocks that perform processing on data objects immediately.

Examples for window-less blocks

Reader: read data from disk or network, create objects and send them on. Two
versions of the �le reader exist: A parallel one that internally uses up to nine
threads to create message objects and a single-threaded one.

Statistic: calculates mean values or distribution statistics for time intervals.
Dumper: writes object attributes to disk, e.g. as CSV �le.

Examples for window-based blocks

Sorter: sorts data according to start or end time. The window moves according
to the timestamps of received data. Stored data with timestamps smaller
than the lower window edge is forwarded. Data received with timestamps
smaller than the lower window edge is dropped.

Joiner: combines records of the same �ow that have been exported separately
due to timeouts. A window speci�es the maxDuration, i.e. how long the
block should wait for another record before expiring and forwarding the
JoinedFlow. maxWaitingTime speci�es the maximum length of the created
JoinedFlows. Without the second parameter JoinedFlows of �ows lasting for
a very long time would be forwarded to downstream blocks very late.



Correlator: with more than one input these blocks correlate di�erent data
streams, e.g. based on timestamps. Typically, timestamps of the data com-
pared are not exactly equal or have an o�set resulting from measurement.
Thus windows are necessary.

While processing times of records in window-less blocks are rather �x, this
time is highly variable for window-based blocks. In a window-based block, a
data object can either be dropped or kept (added to internal data structures).
Additionally, it can lead to window movement and thus to the expiration of
several objects. This leads to a high jitter in processing time and makes bu�ering
between window-based blocks and other threads necessary. Without any or with
only small queues, window-based blocks are likely to stall the chain.

3.3 Thread and message con�guration parameters

Our framework allows us to con�gure whether a processing block runs as an
independent thread or not. A block that does not run as a single thread belongs
to the thread of the upstream block and gets the control �ow when it receives
data. Obviously, this results in the constraint that readers must always run as a
thread since they are the data sources. In correlator blocks it depends on the data
from which input the next object is read. Thus they always run as a thread, since
using the control �ow from upstream block would drastically increase complexity.
Using more threads helps exploiting modern multicore architectures, but also
comes at the cost of higher memory consumption due to objects present in
queues that are used to connect blocks running on di�erent threads. The concept
of thread pools is not applicable, since its purpose is to reuse a limited number
of existing threads instead of creating them for each arriving task.

We realized that the high number of objects �owing through the blocks leads
to a high context switch rate and high CPU time in the operating system (OS).
Since Java maps threads directly to kernel threads, the OS is involved in locking
and context switch operations. Thus, each object added or removed to queues
possibly involves a switch from user mode to kernel mode and back. To mit-
igate these e�ects, we introduced burst messages, where several data objects
are sent in one message. Due to performance reasons, burst messages are only
applied for message exchange between threads. The number of included objects
is called burst size. Queue operations happen less often and it is more likely
that threads can run for a longer time without being blocked. However, this also
comes at the cost of additional memory consumption. The size of burst messages
is con�gurable. We study its impact in the next section.

4 Performance Evaluation

4.1 Measurement Scenario

For performance evaluation we selected a reference processing chain (Fig. 3). The
chain reads Flow Records from two routers from �les, aggregates Flow Records of



the same �ow in a joiner and correlates these JoinedFlows. Statistics evaluate the
time, byte and packet di�erence of JoinedFlows. This allows to extract packet
loss rates, byte count inaccuracies and network delay ([3]). Where processing
blocks require sorted data, sorters are employed. Due to the high number of
window-based processing blocks, this chain requires a considerable amount of
memory and is thus suitable to study memory e�ects.

Our performance evaluation centers on the throughput. We try to identify
in�uencing factors by studying system time, user time and the time the garbage
collector needs.

For measurement the depicted chain processed two uncompressed �les with
65 million Flow Records in total. Each �le contained records from only one ex-
porter. The queues between threads had a size of 100 messages. According to the
characteristics of our data we set the windows of the blocks as follows: Sorter
1,2: 20 s; Joiner 1,2 maxWaitingTime: 5 min; JoinedFlowSorter 1,2: 5 s; last
Sorter: 3 s. The measurements were performed on an Intel Xeon X3360 quad
core 2.83 GHz processor with a total amount of 8 GB memory. The software
con�guration included Sun JVM version 1.6 update 15 on Ubuntu 9.10 64 bit
with kernel version 2.6.31. The standard garbage collector was used. Measure-
ments with di�erent garbage collector settings showed similar results. The only
con�guration done with the JVM, was to set the initial and maximum heap size
to the same value. Each measurement was done �ve times. In charts we show the
mean values of the results with error bars showing the minimum and maximum
absolute value. We measured the real time r, the system time s and the user
time u with the /usr/bin/time program. The time the garbage collector needs
was obtained with the GarbageCollectorMXBean class provided by the JVM.
This time is included in u.

Several parameters likely in�uence the throughput behavior. The throughput
can be increased by using faster CPUs with a larger main memory. We also did
measurements on a machine with two quad core Opteron CPUs and 48 GB main
memory, where we observed a speedup of up to factor two. We also examined
other processing chains and we found proved that other processing chains show
a similar behavior. In this work we will focus on the thread assignment and the
size of burst messages.

Reader1

Reader2

Sorter1

Sorter2

Joiner1

Joiner2

JoinedFlowSorter1

JoinedFlowSorter2

JoinedFlowComparison Sorter

StartDiffStat

RecordDiffStat

PacketDiffStat

ByteDiffStat

Figure 3. Joined Flow comparison chain



thread assignment independent threads

A1 Reader1 (single), Reader2 (single), JoinedFlowComparison

A2 Reader1 (parallel), Reader2 (parallel), JoinedFlowComparison

B Reader1 (parallel), Reader2 (parallel), JoinedFlowComparison,
Sorter

C Reader1 (parallel), Joiner1, Reader2 (parallel), Joiner2, Joined-
FlowComparison, Sorter

D Reader1 (parallel), Sorter1, JFSorter1, Reader2 (parallel), Sorter2,
JFSorter2, JoinedFlowComparison

E Reader1 (parallel), Sorter1, JFSorter1, Reader2 (parallel), Sorter2,
JFSorter2, JoinedFlowComparison, Sorter

F each block is a thread (parallel readers), 14 threads

Table 1. Thread Assignment Patterns

4.2 Bene�t of multithreading

In the following we show which assignment of threads to processing blocks makes
sense and how the framework bene�ts from multithreading. The decision to
combine processing blocks needs to be based on their characteristics like the
needed processing time, IO intensity or the number of exchanged messages. In
general, it is a good solution to combine several processing blocks if their tasks
are simple.

We study the seven assignment patterns listed in Tab. 1. All processing blocks
that are not listed run in the same thread as their predecessor. We used con-
�gurations with the minimum number of threads (assignment A1) up to the
maximum number (assignment F). The patterns B to E try to split the long
chains into shorter sub-chains. The parallel reader is the reader with several
internal threads, the single reader is the single-threaded version.

Fig. 4 shows the throughput in Flow Records per second and the CPU uti-
lization ρ = u+s

r related to di�erent thread assignment patterns. As we can see,
throughput as well as utilization are nearly independent of the thread assign-
ment.

The di�erence between A1 and A2 appears mainly in the utilization. But opti-
mizing the utilization is not our goal, since we want to achieve a high throughput.
On the basis of the results we could see, that u as well as r is in both cases almost
the same. Only s is in A1 greater, because of blocking since the single-threaded
reader cannot create message objects fast enough so that the following threads
can work continuously.

In pattern C a lot of data must be processed in the �rst thread containing
the reader and the �rst sorter. From the result we can see, that blocks processing
a high data rate should run as an independent thread.

The performance decreases in F, because the memory consumption increases,
especially with higher burst sizes. The reason is that more data must be kept in
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Figure 4. Bene�t of multithreading with di�erent thread assignments

the queues between the threads. Also the garbage collector must run more often
to free memory.

One reason for the small overall utilization is the garbage collector, which
stops the execution of the program to perform major collections. Because the
standard collector is used, these collections are only done by one CPU core. The
collection can be observed when running with low heap size: after several seconds
of high utilization (about 3.8), during collections the utilization drops down to
1 for a few seconds. From these measurements we conclude that the burst size
has a high in�uence on the throughput. Therefore, we study the impact of the
burst size more detailed in the next section.

4.3 Impact of burst messages

Adding and removing messages to and from queues is expensive since locking
operations and calls to the OS are required. This leads to high context switch
rates and high s if the message rate is high. Atomic operations for locking and
switches to the OS and back as well as switches between threads can be reduced
by employing burst messages.

The more messages are aggregated into one burst message, the lower s be-
comes and so the context switch rate. On the other hand, using burst messages
with bigger sizes results in a higher memory consumption. Thus a trade-o� be-
tween the context switch rate and the memory consumption must be found.
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Fig. 5 shows the throughput related to the burst size for thread assignment
F. As expected, the throughput increases with increasing burst size. Interesting
is the fact, that the normalized user time is more or less constant regardless of
the con�gured burst size while the throughput increases. The reason is that the
time axis is normalized to the real time. Thus it shows a kind of utilization. As
we see from the results, the burst size should be greater than 100, otherwise
the throughput is decreased by up to 25%. Much larger bursts do not lead to
better performance, but eventually to performance degradation by up to 50%
due to the high memory consumption of larger burst messages. As another e�ect
the increasing garbage collection time can be seen. The reason is the above
mentioned higher memory consumption of greater burst messages, so that the
garbage collector has to free more memory.

With increasing burst size there is a decrease of s from 1.3% to under 0.5% of
the real time. Considering the amount of lock operations required on the FIFO
queues, we expected a direct relation of s to the burst size. This cannot be
observed. One reason might be the Linux mechanism of fast user space mutual
exclusion (futex) [11], which we have found out by using strace. So not every
access to a FIFO queue results in a context switch, because the mechanism
tries to do synchronization in most cases in user space without switching into
kernel mode. While this mechanism is cheaper than kernel space semaphores, it
is still costly due to atomic operations. Thus, the high locking frequency with low



burst sizes has still impact on throughput and contributes to the performance
degradation shown in Fig. 5.

5 Conclusion

We presented a framework for processing of Flow Accounting data in Java.
The performance evaluation showed that on multicore architectures, using more
threads than cores is bene�cial despite the additional memory required. Ad-
ditionally, the usage of burst messages further speeds up processing since less
operating system interactions are required. We investigated the impact of the
burst size and showed that from a certain size the memory consumption and
therefore the overhead introduced by garbage collection reduces throughput.
The framework seems to be suitable for online processing of Flow Accounting
data received directly from the network.
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