
One-Way Delay Measurement based on Flow Data

in Large Enterprise Networks

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Jochen Andreas Kögel

geb. in Waiblingen

Hauptberichter: Prof. em. Dr.-Ing. Dr. h. c. mult. Paul J. Kühn

1. Mitberichter: Prof. Dr.-Ing. Georg Carle, TU München

2. Mitberichter: Prof. Dr.-Ing. Andreas Kirstädter

Tag der Einreichung: 08. Juni 2012

Tag der mündlichen Prüfung: 19. September 2013

Institut für Kommunikationsnetze und Rechnersysteme
der Universität Stuttgart

2013





To Simone.





Abstract

Today, an efficient and powerful enterprise IT infrastructure provides a vital basis for economic
success. As more and more business critical services are network-based, enterprise networks
are the foundation for all business-related activities. Such networks need to be well-managed,
which means they require thorough monitoring, since any service degradation directly impacts
the enterprise’s productivity. At best, problems and resource shortages are detected far before
they impact user experience. However, network management and monitoring have to deal with
limitations, especially employing expensive additional measurement equipment is infeasible
due to limited budgets.

There are different approaches for network monitoring. First, there is component monitoring,
which monitors parameters, such as CPU or link utilization, or error counts. Another class
of monitoring approaches is flow monitoring, which allows for detailed traffic analysis using
aggregated measurement data on traffic flows. Both of these approaches are passive, i.e., they
do not induce additional traffic into the network. Active measurements come into place when
service response times or timing-based network parameters, such as One-Way Delay (OWD),
Round Trip Time (RTT), or jitter are measured. Especially the One-Way Delay is an important
indicator for network load and problems, since OWD has direct impact on service response
time - both as impact on the RTT itself as well as an influencing part to congestion control.
Furthermore, OWD is impacted by queuing delay, which directly relates to network utilization
and congestion in router queues.

The flow-based OWD measurement approach has the advantage that it uses flow data as input,
which is often already available in enterprise network scenarios, or its creation can simply
be enabled by turning on existing router features. Due to these advantages, flow-based OWD
measurement does not require additional measurement equipment or heavy changes to device
configurations in the network. It requires only additional processing of flow data for extracting
the OWD samples. The fundamental question is, however, which accuracy can be gained by flow
data based OWD measurements. Furthermore, efficient processing mechanisms are necessary
in order to deal with the huge amount of data that has to be processed in large networks. These
questions are addressed in this thesis.

Chapter 2 introduces the fundamentals of IP-based networks and delay measurement. A section
on router functionality and architecture shows that depending on the router architecture a dif-
ferent number of forwarding engines and queues are present. This has impact on the positions
where flow capturing can be performed and which queues can contribute queuing delay before
or after a measuring point. Furthermore, network structures are discussed and the differences
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ii Abstract

between the global Internet and global enterprise networks are highlighted. Enterprise networks
typically use MPLS VPNs with several edge routers per branch location for resilience reasons.
These edge routers are typical devices where flow capturing is be performed. A section on me-
trology introduces metrological terms and details the concept of measurement errors and error
propagation. Before existing approaches for delay measurement are discussed, the measurands
and metrics are clarified. It is shown that there are different definitions for network delay, and
a definition for this thesis is specified. The overview of existing delay measurement approaches
distinguishes active and passive measurement approaches. It is highlighted that predominant-
ly active measurement technologies are used in today’s networks, but passive approaches have
certain advantages and are of high interest in research activities. Finally, the problem of clock
errors is addressed by first clarifying related terms and then introducing clock synchronization
mechanisms and algorithms for removing clock skew or drift from measurement data sets.

Chapter 3 deals with flow capturing, an important mechanism for traffic monitoring in enterpri-
se and provider networks. This chapter starts with giving consistent definitions of the general
term flow, more specific flow definitions, and flow capturing related terms. Then, it introduces
and compares several flow capturing mechanisms. Here, the main focus is on NetFlow, which
is the most widely used de-facto standard for flow capturing today. For delay measurement, the
very point at which flow data is captured in routers is important. Thus, flow capturing imple-
mentations in routers and probes are discussed in detail. Related work regarding flow capturing
is addressed in terms of flow capturing application and deployment, as well as in terms of flow
data processing approaches. It is shown that flow capturing is used predominantly for traffic
reporting and accounting while little research towards obtaining QoS-related information has
been performed. Flow data processing is predominantly performed in an offline processing ap-
proach, i.e., data is stored to disk or to a database before being analyzed.

Based on the fundamentals provided by Chapter 2 and Chapter 3, Chapter 4 motivates the flow-
based OWD measurement approach in Section 4.1. This approach is compared to other active
and passive delay measurement approaches and it is found that this approach is advantageous
due to the three criteria one-way measurement, passive measurement and low effort measure-
ment. The following three sections systematically address problems in flow-based OWD mea-
surement that arise from different effects and errors. Section 4.2 starts with considering network
effects, Section 4.3 deals with flow capturing effects and errors, and Section 4.4 details time-
stamp effects and errors in flow capturing devices by introducing a timestamp creation model.
Systematically, each effect is evaluated in terms of its impact on OWD extraction, and for each
measurement error methods for correction or quantification is been given. Throughout these
sections, an OWD extraction model is developed that takes flow records as input and creates
OWD samples as output while handling all effects and errors appropriately. It is shown that
error correction and quantification requires parameters on flow capturing devices that can be
provided by means of an exporter profile.

Chapter 5 details an online processing approach for the efficient implementation of the OWD
extraction model. First, the export effects in flow data are analyzed and, by taking processing
requirements into account, a multi-stage window-based extraction mechanism is proposed. This
mechanism uses a result and a record window that define how long flow records and OWD re-
sults are buffered in memory. Second, the window-based processing approach is detailed by
evaluating the typical flow record export characteristics and deriving from the latter methods
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for window handling and dimensioning. An overview of a design for the window-based proces-
sing approach is given. This design was implemented and has proven its technical feasibility.
The third section presents a profile-based method for window dimensioning that takes record
rates and export jitter distributions into account for giving an estimation on the number of OWD
samples and memory requirements with different window sizes. This method especially consi-
ders the effects in global enterprise networks regarding different record rates at different times
of a day for different locations. The parameters required for dimensioning depend on traffic cha-
racteristics and flow capturing device configuration and could be given in an exporter profile.

The exporter profile approach that has been motivated by the need for measurement error re-
lated and export effect related parameters in Chapter 4 and Chapter 5 is detailed in Chapter 6.
This chapter systematically elaborates the various parameter dependencies and specifies the ex-
porter profile consisting of three parts that contain parameters on the flow capturing device, a
certain observation point, or an observation point pair, i.e, a path between observation points.
Section 6.3 discusses various profile creation approaches based on parameter dependencies. It is
concluded that traffic-dependent parameters can only be obtained by a profile creation approach
based on flow data and that this approach can also be used for obtaining the other parameters.
Consequently, a flow data based profile creation approach is proposed in Section 6.4. This ap-
proach is a seven step iterative offline processing approach that extracts profile parameters from
a reference flow data set. Due to the special properties of flow data, three profiling steps demand
for the design of special algorithms. These algorithms for record rate estimation, obtaining ti-
mestamp resolution, and Observation Point Pair (OPP) inference are presented in detail.

Chapter 7 presents how flow-based OWD measurement with profile support was applied using
flow data from an enterprise network. Furthermore, this chapter evaluates measurement accu-
racy. The evaluation is based on NetFlow v5 data and active RTT reference measurements that
were collected over five days from three different locations. OWD measurements have been
evaluated on a path between two European locations as well as between a European and an
Australian location of the global enterprise network. For each exporter of the scenario, profile
parameters were obtained. A comparison with active measurement shows that measurement ac-
curacy can be considerably improved using the profile-based correction methods. Furthermore,
the flow-based OWD measurement results closely match the active measurement results and
random errors can be correctly quantified based on profile parameters. The effect of exporter-
internal clock skew is evaluated separately and it is been shown that this effect can lead to a
correctable error of up to 10 ms. In terms of profile-based window dimensioning for the online
processing approach, it is shown that the amount of samples as well as memory requirements
can be well estimated.

In summary, this thesis shows the feasibility of flow-based OWD measurement with profile sup-
port. Flow-based OWD measurement with profile support is feasible as addition or replacement
for active OWD measurements that are performed today. Furthermore, the approaches for im-
proving timestamp accuracy can be taken as input for any other flow analysis application that
relies on flow capturing timestamps.
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Kurzfassung

Messung der Einweglaufzeit mittels Flow-Daten
in großen Unternehmensnetzen

In Unternehmen ist eine effiziente und leistungsfähige IT-Infrastruktur die Grundlage für wirt-
schaftlichen Erfolg. Vor allem ein gut funktionierendes Unternehmensnetz ist für geschäftliche
Aktivitäten essenziell, da geschäftskritische Anwendungen zunehmend netzbasiert sind. Der
Betrieb solcher Netze erfordert sorgfältiges Monitoring, da jede Einschränkung der Anwendun-
gen direkt die Produktivität des Unternehmens beeinflusst. Hierbei sollen einerseits Probleme
und Ressourcenengpässe möglichst früh erkannt werden, d. h. bevor die Anwendungsnutzung
davon betroffen ist. Andererseits haben Netzbetrieb und das Netzmonitoring mit finanziellen
Einschränkungen umzugehen, sodass der Einsatz teurer zusätzlicher Messgeräte aus Kosten-
gründen nicht umsetzbar ist. Dies verlangt nach universellen kostengünstigen Messverfahren.

Beim Netzmonitoring werden verschiedene Ansätze verfolgt. Zum einen gibt es Komponenten-
Monitoring, das z.B. die Auslastung von Prozessoren oder Netzverbindungen misst, sowie Feh-
ler erfasst. Zum anderen stellt Flow-Monitoring aggregierte Messdaten zur Verfügung, die de-
taillierte Verkehrsanalysen ermöglichen. Beide der genannten Ansätze gehören zur Klasse der
passiven Messverfahren, d.h. es wird kein zusätzlicher Messverkehr im Netz erzeugt. Letzteres
ist bei aktiven Messverfahren der Fall, die oft eingesetzt werden um zeitbasierte Netzcharak-
teristika zu messen, wie z.B. die Einweglaufzeit OWD (One-Way Delay), die Umlaufzeit RTT
(Round Trip Time) oder Laufzeitschwankungen (Jitter). Die OWD ist ein wichtiger Indikator für
die Netzauslastung und für Netzprobleme. Außerdem wirkt sich die OWD direkt auf Antwort-
zeiten von Anwendungen aus. Dies geschieht einerseits durch die Verzögerung von Anfragen
und andererseits durch den Einfluss der OWD auf die Überlastregelung (Congestion-Control).

Die Messung der OWD mittels Flow-Daten hat den Vorteil, dass Flow-Daten in Unternehmens-
netzen oft schon für andere Zwecke erfasst werden, bzw. deren Erfassung einfach in Routern
aktiviert werden kann. Aufgrund dieser Eigenschaften benötigt Flow-basierte OWD-Messung
keine zusätzlichen Messgeräte oder grundlegende Änderungen an der Konfiguration von Netz-
elementen. Es wird nur eine weitergehende Verarbeitung von Flow-Daten zur Extraktion von
OWD-Messwerten benötigt. Die grundlegende Frage ist, welche Genauigkeit mit der Flow-
basierten OWD-Messung erzielt werden kann. Des Weiteren sind effiziente Verarbeitungsme-
chanismen notwendig, um die immensen Datenmengen aus großen Netzen verarbeiten zu kön-
nen. Diese Punkte werden in der vorliegenden Dissertation behandelt.
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Im Folgenden führt Kapitel 1 in das Thema ein. Kapitel 2 stellt dann die Grundlagen von IP-
basierten Netzen und von Laufzeitmessungen vor. Ein Abschnitt zur Routerfunktionalität und
-architektur zeigt, dass sich Router hinsichtlich der Anzahl von Forwarding-Engines und War-
teschlangen unterscheiden. Dies wirkt sich darauf aus, an welchen Punkten Flow-Daten erzeugt
werden können und welche Warteschlangen mit Verzögerungen vor oder nach dem Messpunkt
zur Gesamtlaufzeit beitragen.f Des Weiteren werden Netzstrukturen behandelt, vor allem die
Unterschiede zwischen der Internet-Topologie und Unternehmensnetzen. Unternehmensnetze
basieren typischerweise auf MPLS VPNs (Multi Protocol Label Switching Virtual Private Net-
works) mit mehreren Edge-Routern pro Niederlassung aus Gründen der Ausfallsicherheit. Diese
Edge-Router sind typischerweise die Geräte, in denen die Flow-Erfassung (Flow-Capturing) er-
folgt. Ein Abschnitt über Metrologie führt metrologische Grundbegriffe ein und behandelt die
Konzepte Messfehler und Fehlerfortpflanzung. Bevor existierende Ansätze für Laufzeitmes-
sungen diskutiert werden, werden Messgrößen und Metriken erläutert. Es wird gezeigt, dass
unterschiedliche Definitionen für die Laufzeit in Netzen existieren und es wird eine Definition
für diese Arbeit herausgearbeitet. Ein Überblick über existierende Messverfahren unterschei-
det zwischen aktiven und passiven Messverfahren. Es wird erläutert, dass heute überwiegend
aktive Messtechniken eingesetzt werden, passive Messtechniken aber bestimmte Vorteile ha-
ben, weshalb diesen im Forschungsumfeld ein großes Interesse gilt. Zum Schluss wird das
Problem der Uhrenfehler behandelt, indem zuerst die verwandten Begriffe und dann die Uhren-
synchronisationsmechanismen, sowie Algorithmen zum Entfernen von Uhrenversatz und -drift
aus Messdatensätzen betrachtet werden.

Kapitel 3 behandelt die Flow-Erfassung (Flow-Capturing), ein wichtiger Mechanismus für das
Monitoring von Verkehrsströmen in Unternehmensnetzen und Netzen öffentlicher Netzbetrei-
ber (Provider). Dieses Kapitel beginnt mit der Darstellung einer konsistenten Definition für
den allgemeinen Flow-Begriff und erarbeitet darauf basierend spezifischere Flow-Begriffe und
andere Begriffe im Zusammenhang mit Flow-Capturing. Dann werden verschiedene Flow-
Capturing-Mechanismen eingeführt und verglichen. Hierbei steht vor allem NetFlow im Fo-
kus, welches der heute am weitesten verbreitete de-facto Standard für Flow-Capturing ist.
Für die Messung von Laufzeiten ist der genaue Punkt, an welchem Flow-Daten im Router
erfasst werden, wichtig. Deshalb werden Flow-Capturing-Implementierungen in Routern und
Mess-Sonden detailliert betrachtet. Verwandte Arbeiten zu Flow-Capturing werden hinsichtlich
der Anwendung von Flow-Capturing und der Positionierung von Flow-Capturing-Geräten im
Netz betrachtet, sowie hinsichtlich der Datenverarbeitungsansätze. Es wird gezeigt, dass Flow-
Capturing vor allem für das Erstellen von Berichten über das Verkehrsverhalten und für Abrech-
nungszwecke eingesetzt wird, während wenig Forschungsarbeiten zur Extraktion zeitbasierter
Netzcharakteristika bekannt sind. Die Verarbeitung von Flow-Daten wird heute hauptsächlich
offline vorgenommen, d.h. Daten werden auf Festplatten oder in Datenbanken gespeichert, be-
vor diese weitergehend analysiert werden.

Basierend auf den Grundlagen von Kapitel 2 und Kapitel 3 stellt Kapitel 4 im ersten Ab-
schnitt den Ansatz der Flow-basierten OWD-Messung vor. Dieser Ansatz wird mit anderen
aktiven und passiven Messverfahren verglichen und es wird begründet, dass dieser Ansatz auf-
grund der Kriterien Einwegmessung, passive Messung und Messung mit geringem Aufwand vor-
teilhaft ist. Die folgenden drei Abschnitte arbeiten systematisch Probleme bei Flow-basierter
OWD-Messung auf, die aufgrund verschiedener Effekte und Fehler entstehen. Abschnitt 4.2
beginnt mit der Betrachtung von Netzeffekten, Abschnitt 4.3 behandelt Effekte und Fehler
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des Flow-Capturings, und Abschnitt 4.4 vertieft Zeitstempeleffekte und -fehler durch die Ein-
führung eines Modells zur Zeitstempelerzeugung. Systematisch wird jeder Effekt bezüglich
des Einflusses auf die OWD-Extraktion bewertet und für die Messfehler werden Verfahren
zur Korrektur oder Quantifizierung angegeben. Über diese Abschnitte hinweg wird ein OWD-
Extraktionsmodell entwickelt, das Flow-Records als Eingangsdaten verwendet und möglichst
korrekte OWD-Messwerte unter Berücksichtigung aller Effekte und Fehler erzeugt. Es wird
gezeigt, dass für die Fehlerkorrektur und -quantifizierung Parameter über die Flow-Capturing-
Geräte (Exporter) benötigt werden, und dass diese in einem Exporter-Profil zur Verfügung ge-
stellt werden können.

Für das zuvor entwickelte OWD-Extraktionsmodell wird in Kapitel 5 ein Online-Verarbeitungs-
ansatz entwickelt, der eine effizienten Implementierung ermöglicht. Zuerst werden Export-
Effekte in Flow-Daten analysiert und durch die Berücksichtigung von Verarbeitungsanforde-
rungen wird ein mehrstufiger fensterbasierter Extraktionsmechanismus vorgeschlagen. Dieser
Mechanismus verwendet ein Ergebnisfenster und ein Record-Fenster, die jeweils festlegen, wie
lange Flow-Records und OWD-Messwerte im Speicher gepuffert werden. Im zweiten Abschnitt
wird der fensterbasierte Verarbeitungsansatz vertieft, indem die typischen Exportcharakteristika
von Flow-Records ausgewertet werden und daraus Methoden für die Handhabung der Fenster
und für die Dimensionierung abgeleitet werden. Um die technische Umsetzbarkeit zu zeigen,
wurde dieser Verarbeitungsansatz prototypisch implementiert. Ein Überblick über diese Imple-
mentierung wird gegeben. Der dritte Abschnitt stellt ein profilbasiertes Verfahren zur Fenster-
dimensionierung vor, das Record-Raten und Export-Jitter-Verteilungen berücksichtigt, um die
Anzahl der OWD-Messwerte und den Speicherbedarf für unterschiedliche Fenstergrößen ab-
zuschätzen. Dieses Verfahren berücksichtigt insbesondere Effekte in globalen Unternehmens-
netzen hinsichtlich unterschiedlicher Record-Raten zu unterschiedlichen Tageszeiten an unter-
schiedlichen Standorten. Die für die Dimensionierung benötigten Parameter hängen von Ver-
kehrscharakteristika und der Konfiguration von Flow-Capturing-Geräten ab und können über
ein Exporter-Profil zur Verfügung gestellt werden.

Der Ansatz des Exporter-Profils wurde durch den Bedarf für Messfehler- und Exporter-Para-
meter, welche spezifische Effekte beschreiben, in Kapitel 4 und Kapitel 5 begründet und wird
nun in Kapitel 6 detailliert dargestellt. Dieses Kapitel arbeitet systematisch die unterschiedli-
chen Parameterabhängigkeiten auf und spezifiziert das Exporter-Profil, welches aus drei Tei-
len besteht: Ein Teil mit Parametern des Flow-Capturing-Gerätes, ein weiterer Teil mit Pa-
rametern für einen bestimmten Beobachtungspunkt und ein Teil mit Parametern für ein Paar
von Beobachtungspunkten, d.h., ein Pfad zwischen Beobachtungspunkten. Abschnitt 6.3 dis-
kutiert unterschiedliche Ansätze zur Profilerzeugung basierend auf Profilabhängigkeiten. Es
wird argumentiert, dass verkehrsabhängige Parameter nur durch einen Profilerzeugungsansatz
gewonnen werden können, der auf Flow-Daten basiert und dass ein solcher Ansatz auch zur
Gewinnung der anderen Parameter verwendet werden kann. Daraus folgt ein Flow-basierter
Ansatz zur Profilerzeugung, der dann in Abschnitt 6.4 erarbeitet wird. Dieser Ansatz ist ein
Offline-Verarbeitungsansatz aus sieben iterativen Schritten, der Exporter-Profil-Parameter aus
einem Referenz-Flow-Datensatz gewinnt. Aufgrund der speziellen Eigenschaften von Flow-
Daten wurden für drei der sieben Profilbildungsschritte spezielle Algorithmen entwickelt. Diese
Algorithmen zur Flow-Raten-Abschätzung, zur Erfassung der Zeitstempelauflösung und für die
Inferenz von Beobachtungspunkt-Paaren werden im Detail behandelt.
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Wie die Flow-basierte OWD-Messung mit Profilunterstützung für Flow-Daten eines globalen
Unternehmensnetzes eingesetzt wurde, zeigt Kapitel 7. Des Weiteren bewertet dieses Kapitel
die Messgenauigkeit. Die Bewertung basiert auf Flow-Daten (NetFlow v5) und den Ergeb-
nissen von aktiven RTT-Messungen als Referenz, die jeweils über fünf Tage für drei unter-
schiedliche Standorte aufgezeichnet wurden. OWD-Messungen wurden auf einem Pfad zwi-
schen zwei europäischen Standorten sowie zwischen einem europäischen Standort und einem
australischen Standort bewertet. Der Vergleich mit aktiven Messungen zeigt, dass die Mess-
genauigkeit durch die profilbasierten Korrekturverfahren beträchtlich verbessert werden kann.
Außerdem ist der Unterschied zwischen den Ergebnissen der Flow-basierten Messung und den
Ergebnissen der aktiven Messung sehr klein. Zufällige Messfehler können aufgrund von Profil-
parametern korrekt quantifiziert werden. Der Effekt des Exporter-internen Uhrenversatzes wird
separat bewertet und es wird gezeigt, dass dieser Effekt zu einem korrigierbaren Messfehler
von bis zu 10 ms führen kann. Hinsichtlich der profilbasierten Fensterdimensionierung für den
Online-Verarbeitungsansatz wird gezeigt, dass die Anzahl extrahierbarer Messwerte sowie der
Speicherbedarf gut abgeschätzt werden können.

Zusammenfassend zeigt diese Arbeit die Machbarkeit Flow-basierter OWD-Messungen mit
Profilunterstützung. Dieses Messverfahren benötigt keine zusätzlichen Komponenten im Netz
und nur geringe Zusatzinformationen zur Konfiguration. Damit stellt es eine einfach zu instal-
lierende, universelle und kostengünstige Möglichkeit zur Messung der Einweglaufzeit dar, die
zusätzlich zu oder als Ersatz für aktive Messungen einsetzbar ist. Die in dieser Arbeit entwi-
ckelten Ansätze zur Verbesserung der Zeitstempelgenauigkeit können zudem auch für andere
zeitbasierte Flow-Analysen verwendet werden.
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1 Introduction

Today, an efficient and powerful enterprise IT infrastructure provides a vital basis for economic
success. As more and more business critical services are network-based, enterprise networks
are the basis for all business-related activities. Such networks need to be well-managed, which
means they require thorough monitoring, since any service degradation directly impacts the en-
terprise’s productivity. At best, problems and resource shortage is detected far before it impacts
user experience. However, network management and monitoring has to deal with limitations,
especially employing expensive additional measurement equipment is infeasible due to limited
budgets.

There are different approaches for network monitoring. First, there is component monitoring,
which monitors parameters, such as CPU or link utilization, or error counts. Another class
of monitoring approaches is flow monitoring, which allows for detailed traffic analysis at yet
coarse grained measurement data. Both of these approaches are passive, i.e., they do not in-
duce additional traffic into the network. Active measurements come into place when service
response times or timing-based network parameters, such as One-Way Delay (OWD), Round
Trip Time (RTT), or jitter are measured. Especially the One-Way delay is an important indi-
cator for network load and problems, since OWD has direct impact on service response time
- both as impact on the RTT itself as well as an influencing part to congestion control. Fur-
thermore, OWD is impacted by queuing delay, which directly relates to network utilization and
congestion in router queues.

This thesis proposes a method for OWD measurement, which is based on flow data. The next
section gives an overview of this measurement approach and the contributions of this thesis.
The second section presents the thesis outline.

1.1 Overview: Flow-based Delay Measurement with Exporter Profiling

While today OWD measurement relies mostly on active measurements, passive measurement
does not inject additional traffic and provides measurements of the traffic that directly relates
to the network services. The approach presented in this thesis solely relies on flow data that is
created by flow capturing mechanisms. This OWD measurement approach has the following
advantages:

- Flow capturing is implemented in many routers. Therefore, the creation of flow data can
be enabled by turning on this router feature.

1



2 Chapter 1. Introduction

- Flow data is often already collected for accounting and reporting purposes. Hence this
delay measurement method may not require any changes to router configuration at all.

- Compared to active measurements, there is no need to select paths on which measure-
ments are performed and to setup measurement probes on these paths. OWD from flow
data can be calculated between any two points from which flow data is available if there
is traffic between these points.

Due to these advantages, flow-based OWD measurement does not require additional measure-
ment equipment or heavy changes to device configurations in the network. It requires only
additional processing of flow data for extracting the OWD samples. The fundamental question,
however, is which accuracy can be gained by flow data based OWD measurements. Further-
more, efficient processing mechanisms are necessary in order to deal with the huge amount of
data that has to be processed in large networks.

This thesis systematically analyzes the problems of the flow-based OWD measurement ap-
proach. It describes the problems that result from network effects, flow capturing effects, as
well as from errors in the flow capturing process. Furthermore, a timestamp creation model is
developed with parameters that describe the resulting timestamp accuracy effects and errors of
a flow capturing device. An efficient processing approach that takes into account network and
flow capturing effects has been developed as well.

In order to provide reliable measurements, errors have to be detected, corrected and/or quanti-
fied. Additionally, properties of the data arrival process have to be known in order to perform
efficient flow data processing. These properties depend on the flow capturing devices (flow
exporters). This work presents an approach for creating an exporter profile that describes these
errors and shows how this profile improves online extraction of OWD from flow data in terms
of accuracy and efficiency. The exporter profile approach is depicted in Figure 1.1. As shown
in the figure, this principle consists of two phases: in phase 1 exporter profiles are created, and
in phase 2 the profile values are used for OWD calculation. Profile creation works in an offline
fashion, i.e., it uses a reference data set of a typical working day that is processed iteratively.
This phase is not time critical, hence exporter profile creation can use large amounts of data
and also perform complex processing tasks. These profiles are then input in phase two where
flow data is directly received from the flow capturing devices and OWD values are computed
immediately in an online processing approach. Profile values are used for dimensioning the
online processing chain as well as for online error detection, compensation, and quantification.
Since the profile values are already available in phase 2, online processing can be very efficient.

The ideas and contributions of this thesis have been published in several papers and presen-
tations. The initial ideas on using NetFlow timestamps for performance measurements have
been published in [1]. Further results and an overview of the OWD measurement approach
have been published at Internet Research Task Force (IRTF)Network Management Research
Group (NMRG) meetings [2, 3, 4] that were organized as expert workshops for flow data anal-
ysis. For processing the flow data at high throughput, a flexible java framework has been de-
veloped. Its design and a performance evaluation have been published in [5]. The exporter
profiling concept for improving OWD measurement has been published as a conference paper
in [6]. In addition to these publications closely related to the thesis, the author was involved in
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Figure 1.1: Overview of the flow-based OWD measurement method with profile support. It
consists of the block for exporter profile creation (left) and delay extraction (right), which makes
use of the previously obtained exporter profiles.

joined research on flow-based tracking of connectivity problems [7, 8]. Several student projects
in the field of flow analysis and processing were guided by the author [7, 9, 10, 11, 12].

1.2 Thesis Outline

In this thesis, a method for flow-based One-Way Delay measurement method is proposed and
evaluated. Chapter 2 and Chapter 3 provide fundamentals on network measurement and on
flow capturing. Chapter 4 presents the OWD extraction mechanism and Chapter 5 an online
processing implementation of it. Chapter 6 details the exporter profile creation and Chapter 7
evaluates the methods based on measurements in an enterprise network.

Chapter 2 first introduces fundamentals of IP-based networks. Besides the Internet protocol
stack it focuses on router functionality and architectures as well as on network structures and
routing, which both are fundamentals required for the understanding of flow capturing and
network measurements. This chapter also introduces fundamental metrological terms, espe-
cially measurement errors. Finally, state of the art in delay measurement is addressed by first
introducing measurands and metrics, second by providing an overview on active and passive
measurement approaches and third, by highlighting the intrinsic problem of clock errors.

Flow capturing that delivers the input data to the proposed method is introduced in Chapter 3.
This chapter first defines the term flow and related terms as well as flow capturing terminol-
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ogy. Furthermore, it gives an overview on flow capturing mechanisms and protocols. Different
possibilities of flow capturing implementations are also highlighted, since this impacts the prop-
erties of the flow data obtained. Additionally, an overview of applications that use flow data and
typical deployments of flow capturing in networks is given. Finally, approaches for flow data
processing are discussed.

Chapter 4 starts with giving a rationale for flow-based delay measurement based on the fun-
damentals of the previous chapters. It then derives step by step an OWD extraction model by
analyzing characteristics and errors of flow capturing. Where applicable, measures for dealing
with effects and errors are developed. As a first step, this chapter considers network effects, i.e.,
it considers perfect flow data. Second, flow capturing effects and errors are discussed. Third,
timestamp errors are considered and a timestamp creation model is presented.

Chapter 5 takes the OWD extraction model of the previous chapter as input and develops an
online processing approach for OWD extraction. First, the problem statement and requirements
are presented that lead to a multi-stage extraction mechanism, which buffers data in memory
based on a window-based mechanism. Then, window handling is discussed in detail based on
flow data export characteristics. An overview of the implementation of the integrated window-
based delay extraction is given. The last section of this chapter proposes a profile-based window
dimensioning method, which estimates the memory consumption and OWD sample count that
results from different window sizes.

While Chapter 4 and Chapter 5 highlight the need for certain profile parameters, Chapter 6
details the overall exporter profile approach and profile creation. It analyzes parameter de-
pendencies and gives a specification of the profile. Furthermore, it systematically elaborates
different approaches for profile creation and motivates the flow-based profile creation approach
that has been selected. A seven step iterative profile creation process is presented and algorithms
specifically designed for certain profiling steps are detailed.

Chapter 7 shows the applicability and evaluation of the flow-based OWD measurement ap-
proach based on data collected in a global enterprise network. It describes first the evaluation
scenario consisting of three locations in Germany, France and Australia. Second, the accuracy
of flow-based OWD measurement is addressed by evaluating the profile-based error compensa-
tion and quantification methods. This includes the creation of error related profile parameters
and the comparison of flow-based OWD measurements with active reference measurements.
Furthermore, methods for profile-based confidence interval calculation are evaluated. The third
part of this chapter evaluates the profile-based window dimensioning method for the estimation
of memory requirements and the number of OWD samples.

Chapter 8 concludes this thesis and gives an outlook to future work.



2 Delay Measurement in IP-based
Networks

The first section of this chapter introduces the fundamentals of IP-based network protocols,
routers, and network structures. The second section presents metrological basics on measure-
ment errors and their propagation, which will be input for error considerations throughout the
following chapters. The third section presents delay measurement approaches for IP-based net-
works.

2.1 IP-based Networks

This section introduces the fundamentals of Internet protocols, router architectures, and network
structures. More detailed information is available in computer network literature [13, 14].

2.1.1 Internet Protocol Stack

The Internet protocol stack allows running applications with different requirements and behav-
ior over different network technologies. It consists of the Internet Protocol (IP) layer, the trans-
port layer and the application layer. As the well-known hourglass model highlights, IP is the
convergence layer between different sub-IP layer network technologies and different transport
layer protocols. Internet protocols are specified by the Internet Engineering Task Force (IETF)
and published in Request for Comments (RFC) documents.

The IP layer itself provides a connectionless packet-based communication service. In terms
of addressing, IP addresses define a network endpoint, which is a host interface. Packets are
forwarded in a hop-by-hop fashion by routers, which determine routes through meshed net-
works using routing protocols. Components that provide functionality beyond forwarding (e.g.,
changing addresses, processing higher layer protocols) are called middleboxes [RFC 3234]. IP
packets are of variable length. The maximum possible amount of data the sub-IP layer can
handle in one packet, the Maximum Transmission Unit (MTU), limits the maximum IP packet
size. This can lead to the effect that packets have to be fragmented, when the MTU on a link be-
comes smaller on the path. In such cases IP packets are reassembled at the destination. Several
mechanisms for providing certain levels of Quality of Service (QoS) are defined in the IP layer.
The QoS mechanism Differentiated Services (DiffServ) [RFC 2474], where traffic is assigned
to different traffic classes, is most widely used.

5
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Figure 2.1: IPv4 header format

In order to understand network monitoring and especially flow capturing mechanisms, details
about IP are introduced. Figure 2.1 shows the Internet Protocol version 4 (IPv4) packet header
[RFC 791] with each row representing a 32-bit word. The first word contains the IP version
number, the IP Header Length (IHL), the Type of Service (ToS) byte, and the total length of the
IP packet. The ToS byte initially indicated the QoS parameters that apply to the packet. While
this field is still referred to as ToS byte, its definition has been changed: Six bits are defined
as Differentiated Services Code Point (DSCP) [RFC 2474], which indicates the DiffServ class,
and two bits are defined as Explicit Congestion Notification (ECN) [RFC 3168] flags. ECN
is a mechanism that allows routers to mark packets in case of network congestion. Fields of
the second word of the header are dedicated to fragmentation: an identification that is used
for reassembly at the destination, flags defining whether or not to fragment a packet, and the
fragment offset. The third word of the header starts with the Time to Live (TTL) value, which
is decremented at each router. If its value reaches zero, routers have to drop the packet in order
to prevent routing loops. The protocol field defines the protocol type that is carried by the IPv4
packet. The header checksum allows for IP header integrity checks. Finally, the fourth and fifth
words give the source and destination address. In addition to the format shown, options can be
appended by adding further 32-bit words. However, in most cases no options and the minimum
IP header of 20 bytes length are used.

Since the address space of the currently widely deployed IPv4 is almost exhausted, the successor
Internet Protocol version 6 (IPv6) [RFC 2460] is increasingly used. While one of the main
advantages of IPv6 over IPv4 is the extension of the address length from 32 bit to 128 bit, also
the header format and other specifications changed. Figure 2.2 shows the format of the IPv6
header. It contains fewer fields than the IPv4 header since some fields became optional and have
been moved to IPv6 extension headers. The first 32-bit word of the header contains the version
number and the traffic class, which corresponds to the IPv4 ToS byte. The remaining 20 bits
are defined as flow label in order to tag packets that belong to a flow independently of transport
protocol port numbers (see Section 3.1.1 for details). The second word gives the payload length,
next header, and hop limit. The next header indicates the type of the first extension header, if
any, otherwise the payload type. The hop limit corresponds to the IPv4 TTL. The remaining
words contain source and destination address. Without extension headers the IPv6 header has a
size of 40 bytes.

There are different transport protocols, which can run on top of IP, that are implemented in
the operating system of end systems. The most important transport protocols are the User
Datagram Protocol (UDP) [RFC 768], the Transmission Control Protocol (TCP) [RFC 793],
and the Stream Control Transmission Protocol (SCTP) [RFC 4960]. UDP defines an unreliable
datagram service and is typically used for real-time applications, for which packet retransmis-
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sion is infeasible, and signaling applications where only few messages are exchanged (e.g., the
Domain Name System (DNS) [RFC 1035]). In contrast, TCP provides a reliable stream trans-
mission service with flow control, congestion control, and guaranteed in-order delivery (e.g.,
for the Hypertext Transfer Protocol (HTTP) [RFC 2616]). TCP is connection oriented and
performs a three-way handshake at connection setup. TCP is the most widely used transport
protocol today employed for interactive applications as well as for bulk data transfers. SCTP
provides a datagram service and has several options such that the degree of in-order delivery
and reliability [RFC 3758] can be tuned to fit the application’s needs. Additionally, it provides
multihoming support. SCTP is hardly deployed today, but due to its features it might become
an important protocol for flow data transport in future. All transport protocols add 16-bit source
and destination port numbers as addressing layer in addition to the IP address for being able to
distinguish different applications running on the same host. Transport protocol specifications,
especially port numbers, are not affected by the transition from IPv4 to IPv6.

IP packets can also carry protocol messages of the Internet Control Message Protocol (ICMP)
[RFC 792] or Internet Control Message Protocol, version 6 (ICMPv6) [RFC 4443]. These com-
panion protocols serve signaling purposes and belong to the IP layer itself, not to the transport
layer. Routing and fragmentation problems as well as echo requests and responses (ping) are
signaled by ICMP and ICMPv6, respectively.

2.1.2 Router Functionality and Architectures

Routers are network nodes that operate in the IP layer and forward packets mainly based on
their destination address to a next hop router or to local networks. It is a property of the Internet
architecture to keep forwarding as simple as possible in order to allow high throughput with
limited effort. When more packets have to be sent on a link than bandwidth is available, routers
buffer packets in queues in order to deal with temporary congestion.

[RFC 1812] defines the tasks a router has to perform. These can be separated in forwarding tasks
that have to be performed for every packet, and control tasks that deal with route calculation,
management, and monitoring [RFC 3654]. Figure 2.3 highlights these different task classes.
The chain of forwarding tasks starts with receiving packets from the ingress interfaces in the
Receive (RX) stage and delivering them to the Forwarding Engine (FE) that performs actions
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on the packets. These actions take the routing and classification table into account and result in
an association of a packet with a certain Forwarding Equivalence Class (FEC), which defines
the egress interface and the priority of the packet. The FE puts all packets of the same FEC
into the same queue1. A scheduler takes the packets from the queues according to their priority
by applying a defined scheduling algorithm and sends them to the Transmit (TX) stage, which
sends the packets on the egress interface.

Basic router functionality means performing forwarding decisions based on a routing table.
However, in most scenarios much more information is taken into account for packet classifica-
tion, such as policies defined in an Access Control List (ACL), or QoS classes. The forward-
ing engine might even change fields in the packet headers (e.g., for Network Address Transla-
tion (NAT)). In general, all actions of the forwarding engine are based on rules stored in the
routing and classification table, which is managed by control functions, such as routing proto-
cols and configuration from network management. Another interface between control tasks and
forwarding tasks is the packet path between the two, which is indicated by the blue arrows in
Figure 2.3. This path is necessary for network communication of the control tasks themselves or
packets that cannot be classified or handled by the forwarding engine. From an implementation
perspective, certain router tasks are implemented in a very efficient way by using specialized
components with limited functionality (fast path), while other tasks are implemented on general
purpose components (slow path). In most cases forwarding tasks are realized in the fast path
and control tasks in the slow path.

There is a wide variety of routers in IP-based networks, ranging from small Customer Premises
Equipment (CPE) routers dealing with some Mbit/s up to large core routers handling multi-
ple Tbit/s. Obviously, this results in different performance and scalability requirements, which
leads to different architectures. Small to medium size routers are implemented based on a
monolithic architecture (Figure 2.4 a), where all control and forwarding functionality is imple-
mented on a Central Card (CC). The latter consists of a single CPU or multiple processors and
specialized hardware for performing the tasks. Each Line Card (LC) performs only basic func-

1This is the ideal case if a router implements enough queues. There might be limitations.
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tionality and is connected to the CC by a switching network (e.g., from a simple bus in CPE up
to backplanes with multi-stage switching networks in medium size routers).

Large high performance routers are realized based on distributed architectures: forwarding is
not performed on the CC, but directly on each LC (Figure 2.4 b). Each LC has a separate
ingress and egress path each containing FE, queues, and scheduler. In high performance routers
the forwarding engine is based on Application Specific Integrated Circuit (ASIC) components
or on network processors, which are specialized processors that allow for feature extensibility
by software updates [15]. In order to provide high switching capacity, the switch fabric is
realized as multi stage switching network2. In distributed architectures, control functions are
performed on the CC, which writes classification table updates and other configuration data
to the LC. An overview of queuing strategies and architectures is presented in [17]. Details on
implementation of a high performance router can be found in [18] and [19]. The monolithic and
distributed architecture are corner cases and any partially distributed architecture is possible as
well.

The considerations of router architectures have shown that there are different paths a packet can
take on its way through a router. Depending on the classification result, it is put in different
queues, which might be subject to different queuing disciplines and scheduling priorities. For
network measurement, which relies on information generated in a router, it is important to take
into account the position of the measurement function, especially in distributed architectures.
Section 3.3 details where flow capturing functions can be located and how this can impact delay
measurement.

2There are even routers with extensible switching networks [16].
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2.1.3 Network Structures and Routing

The Internet consists of independent networks. Each of them is called an Autonomous Sys-
tem (AS). Connectivity between those networks is achieved by interconnections at peering
points. Since an Internet Service Provider (ISP) can only establish direct peerings with a few
AS, it peers with global carriers (Tier 1 carriers) that provide transit service to remote networks
(see Figure 2.5). A router at a peering point is called Border Router (BR) and communicates
with other BRs using the Border Gateway Protocol (BGP) [RFC 4271] for exchanging routing
information. Figure 2.5 shows that ISPs typically connect to several transit carriers for re-
dundancy and path optimization purposes. The path taken by the outgoing packets to a remote
network can be different from the path taken by the incoming packets from this remote network.
Such asymmetric routing [8] is caused by the fact that the source AS decides which carrier to
use. In contrast to a BR, a Core Router (CR) is located in the ISP’s core network that connects
the different access networks among each other as well as the border routers.

Although enterprise networks are also IP-based and provide global connectivity between enter-
prise branch locations, they are not part of the Internet, but form a closed network. Figure 2.6
shows an exemplary enterprise network topology that connects branch locations to a Data Cen-
ter (DC). Since network-based applications in enterprises are often business critical, ensuring
proper network connectivity and performance is essential. The depicted network provides full
router and link redundancy, i.e., if a single router or link fails, there will still be full connectivity
in the enterprise network.
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The enterprise network depicted in Figure 2.6 uses a Multi Protocol Label Switching (MPLS)
Virtual Private Network (VPN) for connecting the lower branch location to the data center.
MPLS [RFC 3031] is a sub-IP layer protocol that provides connection-oriented transport be-
tween edge routers. As shown in Figure 2.6, the provider sets up MPLS paths for the enterprise
network in its Wide Area Network (WAN) up to the network edge where the Provider Edge (PE)
routers reside. These are connected via the local loop to the Customer Edge (CE) routers, which
provide the interconnection point for the enterprise to its Local Area Network (LAN). From the
enterprise perspective there is direct connectivity between CE routers and the enterprise routers
do not have to care about the underlying MPLS network. CE routers are often owned and man-
aged by the MPLS provider, but enterprise staff can still obtain monitoring data from them.
Another possibility to connect branch locations is using direct lines, as depicted for the upper
location in Figure 2.6. The quality of the transport service the provider offers to the enterprise
is specified in a Service Level Agreement (SLA) that defines the maximum throughput, avail-
ability, delay and packet loss. SLAs can also be specified between enterprise departments that
offer services to each other (e.g., End-to-End network performance or server response time).

Data centers of large enterprises are actually realized using at least two locations in some dis-
tance to provide geographical redundancy in case of disasters. A data center core network with
high bandwidth connections enables the servers of each location to keep their data synchronized
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with each other. This is a requirement for failover (hot standby). In order to reach the Internet,
an enterprise network has several connections to ISPs, secured with firewalls.

If there is no failure in the network, there are at least two disjoint paths for reaching remote
sites. In order to use the available bandwidth efficiently, routers can be configured to use mul-
tiple routes (multipath routing) instead of only one for load balancing. A simple scheme that
performs load balancing on per packet basis is called Equal-Cost Multi-Path (ECMP) routing,
which has several issues [RFC 2991] (e.g., regarding packet reordering) and is therefore con-
sidered as deprecated. Alternatives are flow-based load balancing, which e.g., performs path
decision based on hash values obtained from header fields [RFC 2992]. More information on
enterprise network design can be found in [20] and [21].

2.2 Metrology

Measurements are important for correctly quantifying the amount and/or the quality of goods or
services for both, manufacturing as well as trading. Thus, measurements have been for centuries
of great economic importance. Metrology is the “science of measurement and its application”
[22] that covers definitions and basic principles of measurement. In the following, the first
subsection details the fundamental terms of measurement. The second subsection details the
principle of error propagation and confidence in measurements.

2.2.1 Fundamental Terms

In order to define worldwide consistent terms and concepts, several standardization bodies are
concerned with metrology. An important standardization organization in this field is the Bureau
international des poids et mesures (BIPM) [23] that was created in 1875 in the Convention of
the Metre treaty. The task of the BIPM is “to ensure world-wide uniformity of measurements
and their traceability to the International System of Units (SI)” [23]. This well-known system is
based on the International System of Quantities (ISQ), which itself is defined in standards of the
International Organization for Standardization (ISO) [24] and the International Electrotechni-
cal Commission (IEC)[25].

The SI standards and the ISQ, however, do not define metrological terms itself, but the relation
between quantities and their units. Therefore, the aforementioned bodies as well as additional
organizations compose the Joined Committee for Guides in Metrology (JCGM) [26]. This com-
mittee has according to its charter [27] two main work items that also form its two working
groups:

- The International Vocabulary of Metrology
(Vocabulaire International de Métrologie (VIM)) [22, 28]

- The Guide to the Expression of Uncertainty in Measurement (GUM) [29]

The following definitions and citations of selected metrological terms are taken from the VIM
[22, 28].
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Measurement is the “process of experimentally obtaining one or more quantity values that can
reasonably be attributed to a quantity”[28]. So measurement is about quantities and values. A
quantity is a “property of a phenomenon, body or substance where the property has a magnitude
that can be expressed as a number and a reference” and the “quantity intended to be measured” is
called measurand[28]. This thesis considers mainly measurands like time, delay, and loss ratio
where the reference is a measurement unit (and not reference material or something else). The
measurement unit is “a real scalar quantity, defined and adopted by convention” (e.g., second).

Measurement obtains the measured value, which is “the quantity value representing a measure-
ment result”[28], denoted by x. In general, repeated measurements of the same quantity even
under the same conditions result in different measured values. For interpreting and handling
these effects, there are two fundamentally different approaches, which are according to the
VIM the error approach and the uncertainty approach. With the error approach, the true value
is in general unknown and the measured result is a random variable. Systematic and random
error can be distinguished. Contrary, in the uncertainty approach the quantity is considered as a
random variable whose values are represented by a Probability Density Function (PDF) derived
from available knowledge whereas the measured values are considered facts [30, 31]. Users
of the error approach are called Frequentists and users of the uncertainty approach are called
Bayesians. The approaches mainly differ in terminology, but this also led to confusion since
the first versions of the GUM did not clearly state this difference, which demanded for correct
interpretation based on the Frequentists’ and Bayesians’ view [32].

Since this thesis focuses on quantities measured in networks based on digital devices, which
often allow for clear separation of random and systematic errors, the “traditional” error approach
has been chosen. According to this terminology, there is a true quantity value (or briefly true
value), which is the “quantity value consistent with the definition of a quantity”[28]. This true
value xt can never be known or measured due to the measurement error ex (2.1).

ex = x− xt (2.1)

A higher error leads to a lower accuracy, which is the “closeness of agreement between a
measured quantity value and a true quantity value of a measurand”[28]. Measurement errors,
however, do not include mistakes or blunder [33], which are illegitimate errors that must be
avoided and/or detected in the measurement process. Figure 2.7 depicts the relations between
quantity values and errors. As shown in Figure 2.7 the measurement error ex can be separated
into systematic error es,x and random error er,x:

ex = es,x + er,x (2.2)

The random error is the component that in “replicate measurements varies in an unpredictable
manner”[28]. The random error therefore follows a PDF, as depicted in the example of Fig-
ure 2.7 for a normal distribution. As shown the random error has zero mean and adds a certain
measurement uncertainty.

In contrast to the random error, the systematic error “remains constant or varies in a predictable
manner”[28]. Due to knowledge about the measurement, one part of the systematic error, the
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bias βx, can be known and potentially corrected. However, there will be always an unknown
part (es,u) of the systematic error es,x:

es,x = βx + es,u (2.3)

The known or estimated systematic error βx can be compensated using a correction cx= -βx .
This results in the corrected value xc:

xc = x+ cx (2.4)

With more and more measurement samples, the mean value of the samples will approach the
expectation of the random error PDF due to the law of large numbers. Thus, the random er-
ror can be eliminated by collecting a large number of samples under the same conditions. A
low random error means high precision, which is defined as the “closeness of agreement be-
tween . . . measured quantity values obtained by replicate measurements on the same or similar
objects. . . ”[28]. However, precision must not be confused with accuracy, since measurements
with high precision might still be inaccurate due to systematic error. Precision is often reduced
by limited resolution, which is defined as “smallest change in a quantity being measured that
causes a perceptible change in the corresponding indication“[28].
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2.2.2 Error Propagation and Confidence

Measurands are often not obtained from single measurements, but a quantity is derived from
several other measured quantities. This general model is illustrated in Figure 2.8 a), where an
output quantity Y is obtained from several input quantities X1..Xn. The relation between input
and output quantities is defined by a measurement model, which can be described by a general
measurement function Y = fM(X1, ...,Xn). Measurement errors in obtaining the input quantities
affect the output quantity depending on the measurement function according to the laws of error
propagation.

If the measurement function performs addition or subtraction of input quantity values, the re-
sulting distribution of the random error corresponds to the convolution of the PDFs of the input
quantities [34]. This only holds if the errors of the input quantity are independent. Figure 2.8
illustrates this in the sections b) and c) for two examples using uniform distributions for random
errors, which are common in digital systems. The example in Figure 2.8 b) shows that in the
case of two input quantities the convolution of two uniform distributions results in a trapezoidal
distribution. This distribution has a range τ , which is the sum of the ranges of the input quantity
distributions.

The more input quantities, the closer the resulting distributions gets to the normal distribution,
as illustrated in the example of Figure 2.8 c). The central limit theorem describes this effect.
Such a distribution cannot be as easily calculated as the trapezoidal one and requires methods
such as the Laplace-Stieltjes Transform [35].
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A lot of measurements exhibit random errors that can be modelled using the normal distribution.
This is an unbounded distribution, i.e., an absolute error cannot be determined. The standard
deviation σ of the distribution is given as standard error (or standard uncertainty). Due to the
convolution of PDFs, the variances of the distributions are added if the measurement functions
consist of summation or subtraction only. This allows for calculating the standard deviation of
an output quantity σY easily from the standard deviations of the input quantities σXi .

σY =

√
n

∑
i=1

σ2
Xi

(2.5)

If there are systematic errors in input quantities, these errors propagate according to the mea-
surement function. For example, if the measurement function is a summation, the systematic
errors sum up to an overall systematic error of the output quantity. For measurement functions
other than summations or differences, the input quantity values itself impact the resulting dis-
tribution. This requires taking the partial derivatives of the measurement function into account,
which is described by a general law of error distribution. More information on such cases can
be found in [33] and [34].

Often several measurement samples are obtained for a quantity in a measurement series in order
to obtain the best estimate of the true value as mean value from all measurement samples. If
the distribution of the random error is known, an interval can be given in which the true value
can be found with a certain confidence level γ . Such an interval is called confidence interval
of the mean value and typically a confidence level of 95% is chosen. The significance level α

(γ = 1−α) is the probability that the true value is not within the calculated inverval.

In general, there is an infinite number of possibilities to specify a confidence interval for an
expectation given a mean value from a measurement series. Most commonly, a symmetric
confidence interval is calculated with the mean value in the middle. Another possibility is to
calculate the shortest confidence interval, which differs from the symmetric one in the case of
skewed distributions.

A well-known formula for a symmetric confidence interval uses Student’s T-distribution (or
simply T-distribution) [36]. This is suitable for cases where the random error follows a normal
distribution with unknown standard deviation σ . The interval calculation (Equation 2.6) takes
the number of samples n into account, more precisely the 1−α/2 quantile of the t-distribution
with n−1 degrees of freedom (t1−α/2(n−1)) is part of the formula. Furthermore, the t-based
confidence interval formula contains the mean value of the n collected samples X and the em-
pirical standard deviation s .

[
X± t1−α/2(n−1)

s√
n

]
. (2.6)

If the standard deviation σ is known, another formula based on the normal distribution applies
(Equation 2.7). Instead of the t-distribution quantiles it contains the α/2 quantile of the nor-
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mal distribution (z1−α/2). Furthermore, the known standard deviation σ replaces the empirical
standard deviation s compared to the previous formula.

[
X± z1−α/2

σ√
n

]
(2.7)

For an unknown distribution Equation (2.7) gives an approximate confidence interval, if more
than 30 samples are obtained [36] and σ is known.

In case of non-normal distributions and few samples, analytical approximations, e.g., according
to the uncertainty guidelines of the GUM [29], can be used. Alternatively, [30] introduces a
Monte-Carlo method to obtain confidence bounds for arbitrary distributions.

2.3 Delay Measurement

This section details delay measurement approaches by first introducing measurands and metrics
used in literature and measurement systems. The second and third subsection present active and
passive measurement approaches deployed in networks and current research in this area. The
last subsection highlights clock synchronization, which is an important point in delay measure-
ment. Extensive information on network measurement in general can be found for example in
[37] and [38].

2.3.1 Measurands and Metrics

One-Way Delay (OWD) on a network path is composed of several contributing delays, as shown
in Figure 2.9 (see also [39, 40, 41]). First, there is the path delay consisting of the transmission
delay lT for sending/receiving the packet and the propagation delay lL on the link. Second, there
is the router delay, which is the sum of processing delay lP and queuing delay lQ. lP is the time
that is spent for processing packets in the Forwarding Engine (FE), which is mainly independent
of network load. lQ is the time that packets spend in queues, which depends on queue levels and
therefore on network load. In modular routers with distributed architectures (see Section 2.1.2),
there are several FEs and queues that contribute to the overall lP and lQ. Delays in end systems
can be considered in a similar way. There, the IP stack in the operating system corresponds to
the FE that causes lP and the interface queues cause lQ. Inside routers or operating systems there
is no notion of transmission time since packet arrival and departure times are discrete events.
Further information on OWD components and typical values for routers can be found in [42].

Figure 2.9 highlights that a definition for measuring OWD is required that clearly defines be-
tween which points of network elements or end systems OWD is measured in order to know
which delay components contribute to the OWD. There exist several standards for network
measurement, especially delay measurement, from the IETF and ITU-T.

In the IETF, the IP Performance Metrics (IPPM) working group [43] has released several RFCs
on metrics, their aggregation, and associated protocols. The most important IPPM standards in
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Figure 2.9: One-way delay definitions

the context of this thesis are the One-way Delay Metric [RFC 2679] and the Round-trip Delay
Metric [RFC 2681] that are all based on a common framework document [RFC 2330]. All these
metrics take into account that measurements depend on the characteristics of the packets used
for measurement. This is generally denoted as that a metric is consistent within the same type
of packets (”Type-P“). Therefore, the definition reflects the fact that different packets might be
treated differently in routers on a network path (e.g., different ToS values, different TCP port
numbers).

[RFC 2679] defines how to measure single samples of a “Type-P-One-way-Delay” across In-
ternet paths. Additionally, it specifies a metric consisting of several samples from Poisson
sampling and statistics for such measurements. Delay values are assumed to be calculated be-
tween two hosts Src and Dst, i.e., for an end-to-end path. [RFC 2679] defines One-way Delay as
follows: “For a real number dT, »the Type-P-One-way-Delay from Src to Dst at T is dT« means
that Src sent the first bit of a Type-P packet to Dst at wire-time T and that Dst received the last
bit of that packet at wire-time T+dT.” Wire-time refers to the time at which the bits appear at the
network interface. Figure 2.9 illustrates this definition for OWD13, which is the OWD between
router 1 and router 3. This figure also shows that a precise interpretation of the IPPM definition
leads to the fact that timestamps of IP packet bits and not of the larger sub-IP encapsulation
frames have to be obtained. It is practically impossible to measure such a timestamp accurately
directly at the interface. The Round Trip Time (RTT) (in IPPM called “Round-trip Delay Met-
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ric”) is defined analogously in [RFC 2681], while it additionally specifies the requirement, that
the destination immediately sends back a response Type-P packet.

The ITU-T defines OWD (called IP Packet Transfer Delay (IPTD)) as time between two packet
transfer events [Y.1540]. The latter corresponds to packet observations at measurement points.
This is a similar metric definition compared to IPPM, however, the timestamps are not defined
on a per-bit basis at the interface, but from an IP stack point of view (but allows for approxi-
mations using timestamps from physical interfaces). However, [Y.1540] does not define exactly
if the measurement point is before/after the FE/queues3. Figure 2.9 shows the ITU-T defini-
tion for OWD13 and indicates that the exact location for obtaining the timestamps is not clearly
specified by showing the Y.1540 timestamps taken at some point in the FE. From Figure 2.9 it
becomes clear that the IETF and ITU-T OWD definitions differ.

In the context of this thesis, OWD is defined based on timestamps that are taken when the packet
enters the ingress FE of a router: ”The OWD from SRC to DST for a packet at T is dT“ means
that the packet enters the ingress forwarding engine of SRC at T and enters the forwarding
engine at DST at time T+dT. This definition takes flow capturing properties into account: Since
flow capturing is performed in the FE and is a router implemented feature, this definition avoids
any ambiguities when considering different router architectures.

2.3.2 Active Measurement

Active measurement approaches actively generate packets that are sent through the network
and collect send and receive timestamps for calculating OWD or RTT. While the IPPM RFCs
[RFC 2679, RFC 2681] define related metrics, these standards do not define the measurement
methods and devices themselves.

Besides the rudimentary well-known ”ping“ program that is based on ICMP echo requests/replies,
there are a lot of sophisticated active delay measurement tools used for network monitoring
today. One example is Cisco IOS IP Service Level Agreements (IPSLA) [44, 37], which is im-
plemented in router software. It can perform various active network layer measurements (e.g.,
OWD, RTT, jitter), and even application layer measurements (e.g., DNS and HTTP). With IP-
SLA, a router configured as IPSLA probe sends test packets to a router configured as IPSLA
responder. The responder takes timestamps directly after receiving the packet and includes
them in a response packet. If both routers’ clocks are properly synchronized, this mechanism
allows for accurate OWD measurements on the forward and return path between probe and re-
sponder. IPSLA measurement results are retrieved via SNMP by network monitoring systems
for compiling network performance reports and alerts. In large deployments, probes are realized
on shadow routers, which are dedicated to IPSLA measurements only. This allows for setups
where an IPSLA probe located in a data center can perform measurements to several thousand
responders at branch locations (star topology).

In addition to proprietary active measurement systems, the IETF IPPM WG defined a One-Way
Active Measurement Protocol (OWAMP) in [RFC 4656]. This standard defines an OWAMP

3[Y.1540] notes that “The exact location of the IP service MP [means: Measurement Point] within the IP
protocol stack is for further study“
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test protocol for performing one-way measurements between a sender and a receiver as well
as an OWAMP control protocol for setting up such measurements and fetching the results.
The OWAMP control protocol allows defining measurement schedules and provides different
security features, which allows for reliable measurements even in untrusted environments (e.g.,
interdomain scenarios).

OWAMP is defined to perform measurements in one direction, which also enables to perform
measurement in both ways of a path by setting up two OWAMP measurements. In order to
allow for measurements of two-way metrics in case the clocks are not synchronized, the Two-
Way Active Measurement Protocol (TWAMP) [RFC 5357] has been defined. TWAMP is based
on OWAMP, but defines the functionality of a reflector that receives and returns test packets.

With active delay measurements, delay samples can be obtained between defined measurement
points at scheduled time instants with known traffic. Thus, a complete and deterministic delay
analysis of network paths can be obtained. However, active measurements have considerable
drawbacks. First, they require that additional traffic is injected into the network, which requires
some effort at probing devices and increases network load especially on low bandwidth links.
It might therefore impact the network behavior itself. Second, the production traffic itself is
not monitored, but only the artificially created probe traffic. Thus, active measurement results
might not be directly related to network problems that production traffic experiences. Espe-
cially, measurement and production traffic can take different routes, might experience network
characteristics at different times, or might be handled differently in routers. The latter is often
countered by performing measurements using different probe traffic (ICMP, UDP and TCP as
well as different QoS classes). However, this increases the effort even more and still does not
provide the view on traffic as passive measurements do.

2.3.3 Passive Measurement

In contrast to active measurement, passive measurement approaches do not inject additional
probe traffic into the network, but perform measurements based on the traffic that uses the
network for productive purposes. For performing passive OWD measurement, timestamps of
the same packet at different network locations have to be gathered, which is a challenging task
due to packet similarities. Performing passive OWD measurement for all transmitted packets
is impossible due to the high effort. Hence, only a fraction of packets is selected (sampled) for
measurement.

RTT measurement based on observations at one location require that timestamps of packets
are compared that have been immediately send back by the receiver. Typically, passive RTT
measurement selects only packets for which this requirement holds (e.g., packets from the TCP
handshake carrying SYN or SYN-ACK flags).

There are several commercial products for passive measurement that are typically attached to
central switches and operate on the complete traffic for extracting performance metrics. Such
sniffers (e.g., [45]) calculate network delays based on RTT obtained from the TCP handshake
as well as other information on application performance from the request-response timings in
the packet trace. However, such analysis cannot measure OWD and requires processing of
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the complete packet trace, which leads to a high processing effort. Thus, they are often too
expensive for being deployed at every location for comprehensive network monitoring.

In the last years, a lot of work has been conducted in packet sampling based measurement of
OWD. The idea is to sample the same packets at two different locations in the network and to
deliver packet descriptions and receive timestamps to a central location for OWD calculation.
A use case for packet sampling is described in [RFC 5472] as ”coordinated packet selection“.
[46] describes the design and implementation of a system for OWD calculation based on packet
sampling. [47] presents a similar system, which uses the IPFIX protocol for transferring packet
IDs and timestamps. Kompella et al. [48] propose a special processing scheme for calculating
OWD with microsecond granularity from packet samples, which is focused on being imple-
mentable in hardware.

As presented, current approaches for passive delay measurement either can determine only the
RTT from a packet trace or require changes to router hardware for coordinated sampling. This
is a problem from the deployment point of view, especially in network scenarios with many
locations for which OWD measurement is required, such as, e.g., in enterprise networks.

2.3.4 Clock Errors and Compensation

Clocks in digital devices are mostly realized using a Real-Time Clock (RTC) component that is
based on a quartz oscillator. These clocks are inherently imprecise and without synchronization
mechanisms their timing information neither corresponds to a global reference time (such as
Coordinated Universal Time (UTC)), nor their frequency is synchronized. This leads to offset,
skew, and drift that are defined as follows (aligned with [RFC 2330]).

Let t be the true time and c(t) be the time of the clock considered. Then the offset ωc(t) of the
clock at a particular point in time is defined as

ωc(t) = c(t)− t. (2.8)

A clock is accurate at a particular moment, if ωc(t) is zero. As mentioned above, there is often
a frequency difference, which can be quantified by the skew being the first derivative of ωc with
respect to t:

ϕc(t) = ωc(t)′. (2.9)

If the skew is constant, the offset ωc(t) is a linear function. This can be modeled by the constant
ϕ0 and the offset ω0 = ω(0) at t = 0. If skew is not constant, but varies, this effect is termed
drift, which is defined as the second derivative of ωc(t) with respect to t. A major source of
drift is change of hardware temperature [49], which is unlikely to happen in well managed data
centers. Thus, drift is negligible.

Several possibilities exist for synchronizing device clocks to global reference time. Besides
the expensive solution of using atomic clocks, one of the most accurate methods is attaching
a Global Positioning System (GPS) receiver that synchronizes to the atomic clocks of GPS
satellites. Such receivers provide timing information directly to the device, e.g., via a Pulse Per
Second (PPS) signal [RFC 1589, RFC 2783] over a serial interface.
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Using GPS receivers requires that there is reception of signals from several GPS satellites,
which is often not the case inside buildings. Additionally, this requires extra wiring to every
device that should be synchronized. In order to reduce the effort, time servers are deployed that
synchronize to GPS receivers and distribute timing information to other devices within a data
center or network domain using time synchronization protocols over the existing IP-based net-
work. Such protocols are the Precision Time Protocol (PTP) defined in the standard IEEE 1588
[50] intended for LANs and the Network Time Protocol (NTP) Network Time Protocol (NTP)
version 3 [RFC 1305] or version 4 [RFC 5905] for LAN and WAN usage.

Time synchronization protocols and clients implementing these protocols do not only compen-
sate the offset every time they get a reference time. They also try to synchronize frequencies by
calculating skew and applying corrections gradually [51]. Further information on these three
approaches including considerations for OWD measurements has been compiled by De Vito et
al. in a survey paper [41]. This paper also summarizes the expected synchronization accuracy,
which is 1µs for directly attached GPS, less than 1µs for IEEE 1588, 1 ms for NTP in LANs
and 10-20 ms for NTP in WANs.

Hong et al. [52] recently evaluated the accuracy of public NTP servers on the Internet in more
detail by comparing timestamps obtained by NTP with GPS timestamps. They found that the
NTP median error is 2-5 ms. However, there is a long tail due to the stratum 1 time servers that
actually should be well synchronized to external clocks (e.g., GPS) are badly synchronized and
due to asymmetric delays that NTP assumes to be symmetric. Compared to the public Internet,
there are less such effects in well managed enterprise networks and carrier networks. Therefore,
an error of 2-5 ms without major deviations for NTP synchronized devices can be expected.

Despite the existence of several clock synchronization mechanisms, unsynchronized clocks in
network measurement are still a problem. Especially if measurement relies on exact time-
stamps from two independent devices, as it is the case for OWD measurement. The following
paragraphs highlight algorithms that compensate clock skew in data obtained for OWD mea-
surement. The fundamental problem is that clock offset in principle can be calculated by taking
delay measurements in both directions of two measurement points into account, however, the
delay varies.

Paxson [53] addresses the problem of active OWD measurements with unsynchronized clocks.
In the studied data sets clock skew was mostly linear, i.e., drift was negligible. The aim of
this work was determining the skew for OWD measurements only without caring about the
relative offsets. It is argued that relative offset is of less importance since the aim is capturing
network dynamic, i.e., delay variations over time. Paxson’s algorithm determines minimum
values for a certain amount of time intervals, determines the median slope of all possible slopes
between minimum values and does a statistical test for checking whether the skew determined
from the median slope is plausible. Furthermore, detection of clock adjustment events has been
considered.

Moon et al. [54] developed a linear-programming based algorithm for skew estimation. This
algorithm is compared to three algorithms: Paxson’s algorithm, a linear regression algorithm,
and a piecewise minimum algorithm. Evaluations show that the linear-programming based al-
gorithm and Paxson’s algorithm perform best in estimating the skew. The linear-programming
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based algorithm effort is assumed to have less variance than Paxson’s algorithm based on sim-
ulation results.

Zhang et al. [55] propose a convex hull algorithm that is more complicated, but can deal with
clock resets and gradual frequency adjustments, as performed by NTP. Khlifi and Grégoire [49]
compare this algorithm with a simpler algorithms that can deal with clock resets. Additionally,
they developed an algorithm that works online and can directly remove skew from data. Khlifi
and Grégoire also argue that Paxson’s algorithm would perform poorly with highly variable data
according to Moon et al. [54], which is, however, not a result of the work of Moon et al..

Gurewitz et al. [56] present optimization algorithms to solve the problem if there are no syn-
chronized clocks at all and path characteristics are asymmetric. The aim is to estimate the OWD
values (not only the skew) between all nodes. The proposed algorithm is evaluated based on
simulation. However, it is questionable if such scenarios and measurement setups with com-
pletely unsynchronized nodes are feasible for network monitoring. While the paper gives an
example for implementation using features of routers from Cisco Systems, it also states that the
focus is on overlay networks.

As a conclusion from the presented work, it can be stated that despite many ideas to improve
Paxson’s algorithm [53], Paxson’s algorithm or the other simple algorithms developed by Khlifi
and Grégoire [49] are sufficient for skew estimation in most scenarios. Additionally, measure-
ment data presented in the publications shows that drift is in general negligible.

2.4 Summary

This chapter presented the fundamentals of IP-based networks, metrology, and delay measure-
ment. Due to the characteristics of packet based networks, network delays depend on network
load, and packet handling in routers. In both network scenarios that have been highlighted
(ISP and enterprise), service delivery depends on the transport services offered by different
network providers. Therefore, measuring network performance, especially delay, is vital for
performance diagnostics.

The metrology section showed how errors can be compensated and/or quantified, which are
fundamental concepts for delay measurement. OWD can be measured by active approaches that
inject additional probe traffic into the network or passive measurement approaches that make
use of extracting characteristics from production traffic. While there are commercial products
available that implement certain active or passive delay measurement mechanisms, there is
current research that addresses the two main challenges: obtaining better results and reducing
the effort. Furthermore, clock synchronization is still an issue despite the high accuracy that can
be provided by GPS clocks today and several methods for compensating skew are available.

In the following chapters the fundamentals of this chapter will be applied to develop and study
a flow capturing based approach for passive delay measurement. Especially the topics router
architecture, network topology, metrology concepts, and delay measurement concepts are im-
portant. Moreover, it is crucial to consider the characteristics of flow capturing itself, which are
highlighted in the next chapter.
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3 Flow Capturing

This chapter deals with flow capturing, which is an approach to retrieve information about traffic
flows for monitoring purposes. The first section introduces the basic terminology used within
this thesis. Afterwards, the second section presents different flow capturing approaches cur-
rently in use and/or in standardization as well as current research directions. The third section
details implementation of flow capturing in routers and probes, while the fourth section presents
flow capturing applications and deployment. In the fifth section the processing of flow data is
addressed. The last section provides a summary of the chapter.

3.1 Terminology

There are several definitions of the term flow. Therefore, a consistent definition of a flow and
related terms will be introduced. A general flow definition serves as starting point from which
more specialized flow definitions, which are relevant in the context of this thesis, will be defined
in the first subsection. The second subsection compares flow terminologies in literature and the
last subsection introduces the terminology of flow capturing mechanisms.

3.1.1 Flow Definitions

First, the general flow will be introduced. A flow F describes a set of packets which are observed
in a certain time interval [ts, te]. All packets belonging to a flow share a common key K, which
is generated from the packet properties U. Consequently, there are two degrees of freedom
for a flow: the length of the time interval and the creation of the key from the flow properties.
Hence, a flow is defined as F = (K, ts, te). This definition is similar to the terminology defined
by the IETF IP Flow Information Export (IPFIX) Working Group [RFC 3917].

Flow Key

Figure 3.1 shows from top to bottom the general and three more specific flow definitions, which
are most often used when dealing with flows. The top case in the figure shows all possible
properties that can be taken into account for U. U contains packet data, i.e., all header fields, and
payload properties. The latter holds in cases where flow classification is based on Deep Packet
Inspection (DPI), i.e., classifications beyond protocol headers. Furthermore, the U contains
network metadata, e.g., the interface number at which the packet was received at a router,
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or information from routing. In order to obtain a specific flow definition, certain properties
from U are selected and transformed by the function fK in order to obtain the flow key K.
The combination of these two operations (selection and transformation) allows the creation of
specific flow definitions for different applications. Often properties are directly put into the
flow key without transformation by fK. However, applying transformations in fK is useful
for considering aggregated traffic flows, i.e., calculating subnet prefixes from IP addresses or
aggregating on interface groups.

Derived from the general flow, a useful and often used flow definition is the endpoint defined
flow, which is shown in Figure 3.1 in the second box from top. Here, only source and des-
tination addresses are taken into the flow key (K = f (A,B)). The selection of the layer from
which the addresses are taken depends on the scenario and the technology used (Ethernet, IP,
...). An endpoint defined flow describes a unidirectional data transmission from source A to
destination B. Source and destination can describe subnets or device groups, such that this flow
definition is also valid for considering multicast groups or traffic between subnets.

Starting from the abstract endpoint defined flow, source and destination can be defined more
specifically. This leads to flow definitions on different protocol layers (Layer-2-Ethernet-Flow,
IP-Flow, UDP-Flow) and different aggregation levels (subnet flows, multicast flows, port range
flows). In IP networks it is useful to define source and destination as transport layer endpoints,
leading to an IP Transport Layer Flow (IPTL Flow). Since the Internet architecture does not use
separate transport layer and network layer addresses (ports), the flow key must contain source
and destination addresses from the IP and transport layers as well as the transport protocol
number (Figure 3.1). Therefore, this five tuple defines the IPTL flow key directly without any
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transformation: K = (sIP,dIP,sPort,dPort, prot). In literature, the term flow often implies an
IPTL flow (see Section 3.1.2 ).

Due to the fact that queues in network elements and flow capturing mechanisms distinguish
flows by more properties than the five tuple, the IPTL subflow Fs is introduced. For an IPTL sub-
flow the IPTL flow key is extended by other fields, such as the ToS value (K = (sIP,dIP,sPort,
dPort,ToS, ...) ). An IPTL flow can therefore consist of several subflows, altogether belonging
to the same data transmission between two transport layer endpoints.

Flow Duration

As introduced above, the flow definition not only covers the flow key, but also the time interval
during which packets are associated with a flow. The IPFIX definition [RFC 3917] does not
cover this and allows for an arbitrary time interval.

In this thesis the term flow duration is defined for endpoint defined flows as being the duration of
the data transmission. This is illustrated in Figure 3.2 for a flow from endpoint A to endpoint B,
where flow start and end times correspond to the times when the first, respectively last packet
of a data transmission are observed. Due to network delays, these timestamps depend on the
Observation Point (OP) and therefore are only valid in an OP context.

The actual data transmission, i.e., the flow, lasts from the first bit of the first packet to the last
bit of the last packet. In most systems, however, packet start and end times are not available
separately, but only a single timestamp value per packet is given (e.g., “packet reception time”,
“packet switching time”). In order to be consistent with this implementation characteristic and
in order to simplify the notation in figures, this thesis defines the flow start time t∗s as the time
when the first bit of the first packet is observed and the flow end time t∗e as the time when the
first bit of the last packet is observed (see also Figure 3.2). d∗ is the flow duration measured
between t∗s and t∗e .

Using the definition of a flow that is related to the duration of the data transmission leads to
the problem that in the general case flow end times (and even flow start times) cannot be de-
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termined without additional knowledge. Especially with connectionless communication, there
is no possibility to detect this by just looking at packets. How flow capturing mechanisms deal
with this problem is covered in Section 3.2.

Bidirectional Flows: Forward and Reverse Flow

While not inherently necessary, packet based communication is predominantly bidirectional. In
case of connection oriented transport protocols, this results already from handshakes at connec-
tion setup. However, even with connectionless transport protocols, there is often bidirectional
communication due to the request-response principle used in applications.

With bidirectional communication, there is the possibility to create bidirectional flows from
two endpoint defined flows. The two flows of a bidirectional flow are called forward flow Ffw
and reverse flow Frv. The forward flow initiates communication. Thus, the reverse flow has
switched endpoint addresses and starts after the forward flow: (Arv = Bfw)∧ (Brv = Afw)∧
(ts,fw < ts,rv). This definition corresponds to the IPFIX definition “Direction by Initiator” of the
RFC on bidirectional flows [RFC 5103].

3.1.2 Flow Terminology in Literature

One of the first flow terms was defined in 1986 by Jain et al. [57] in their model of “packet
trains”. This model calls a bidirectional flow a “packet train”, which itself consists of unidi-
rectional flows (“tandem trailers”). All packets transmitted on a “railroad track” between two
network nodes are aggregated into a packet train. Hence, this definition is a bidirectional flow,
defined by endpoints (network nodes). The flow (train) duration is determined by the parameter
“maximum allowed intercar gap” and is therefore independent of the duration of the complete
data transmission.

IETF documents mention specific flow definitions for the first time in the context of QoS mech-
anisms in the 1990s. The Integrated Services (IntServ) Architecture [RFC 1633] mentions a
flow as “stream of related datagrams that results from a single user activity and requires the
same QoS”. Formally, the term flow is defined along with the IntServ Resource Reservation
Protocol (RSVP) [RFC 2205]. There, a flow is described as RSVP session and an associated
“filter spec”. This corresponds in terms of UDP and TCP to the definition of a unidirectional
flow, defined by the five tuple. IntServ assigns QoS-Parameters (called “flow specification”
[RFC 1363]) to such a flow. Flow duration is tied to an RSVP session.

Claffy et al. [58] examined methods for obtaining flow-based information from Internet traffic
in 1995. They used unidirectional endpoint defined flows and compared different aggregation
concepts for endpoints (transport layer addresses, network layer addresses, address ranges). In
addition to a flow defined by two endpoints, they also used “single endpoint flows”, which
aggregate all traffic originating from or sent towards an endpoint into one flow. Furthermore,
the study evaluated the impact of different timer mechanisms on the amount of flow data caused.

At the end of the 1990s the IETF working group Real Time Flow Measurement (RTFM) speci-
fied an architecture for the measurement of flow characteristics [RFC 2721, RFC 2722]. Here,
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a flow is defined as a “portion of traffic” that is defined by start and end timestamp and belongs
to a “traffic group”. The latter corresponds to the flow key, which can be created from interface
numbers, sub-IP-layer addresses, IP addresses, or transport layer addresses. Since this defini-
tion covers network metadata (interface numbers), it goes beyond the endpoint defined flow, but
does not cover the general flow definition. Flow duration is called “lifetime” and corresponds
to the duration of the data transmission as it is measured from the first to the last packet at the
observation point.

In IPv6 the header format was redesigned and a flow label of 20 bit size was added [RFC 3697].
The standard defines a flow as “a sequence of packets sent from a particular source to a particular
unicast, anycast, or multicast destination that the source desires to label as a flow.” Thus, a flow
is defined by the triple of source address, destination address and flow label. A correspondence
of such a flow to an IPTL flow is suggested, but not demanded. In contrast to a five tuple
defined flow, the flow label allows flow-based classification in routers even if the five tuple is
not available due to missing port numbers in case of fragmentation or encryption. However, the
flow label is currently hardly used and subject to discussion on changes in the standard [59].

The most general flow definition is given in the already mentioned IPFIX RFC [RFC 3917].
Here, a flow is defined as “set of IP packets passing an observation point in the network during
a certain time interval”. The packets of a flow “have a set of common properties”, which are
defined by “applying a function” to values obtained from packet headers, packet characteristics
or from “packet treatment”. This flow definition is clearly limited to IP packets. Meanwhile,
however, this was noticed as unfeasible by the IPFIX WG and there are discussions on whether
to use the more general term “packets” only [60]. The flow definition of IPFIX is also used
by other standardization organizations. E.g., an ITU-T recommendation from 2007 [Y.1543] is
referencing the IPFIX requirements RFC [RFC 3917].

After having a look at the different flow definitions, it can be seen that flow terminologies
evolved and are still subject to change. The general flow definition used in this thesis is close to
the currently discussed changes to IPFIX. However, it covers network metadata in general and is
not limited to data from ‘packet treatment”. Furthermore, almost all definitions in literature use
endpoint defined flows or even an IPTL flow definition, since this contains the details required
for most applications that are based on flow data.

3.1.3 Terminology of Flow Capturing Mechanisms

Flow capturing describes the complete process of the retrieval of flow information (metering),
collection of this information, and delivery of flow information to applications, which analyze
the data to get information for different purposes. Consequently, the architecture is divided into
three components: flow meter, flow data collector and application, as shown in Figure 3.3.

The meter observes traffic at an Observation Point (OP) and creates information about traffic
flows. Meters can be realized as standalone devices (probes) or integrated into other network
elements, such as routers. Flow data is then transferred from the meter to the collector, which
stores flow data and forwards it to the applications. Typically, several meters are deployed at
remote sites in networks and report to a single collector. These general terms are adopted from
[RFC 5470] and [RFC 1272].
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In terms of implementation of this general flow capturing architecture, there are several degrees
of freedom. Most importantly, these are the reporting mode, flow state keeping, and sampling.
The reporting mode defines which entity is the active part for transferring flow data between me-
ter and collector. Here, push mode and pull mode can be distinguished, as shown in Figure 3.4.
In push mode, the meter component is called flow data exporter and contains a metering process
and an exporting process. The latter is the active part that pushes flow data to the collector. In
pull mode, the collector component is called flow data reader and contains a reading process
that requests flow data from the meter.

Considering flow state keeping, the meter can either keep flow state or not. As shown in Fig-
ure 3.5 a meter that keeps flow state (stateful metering) uses a flow cache that contains all
currently observed flows. The meter aggregates certain flow attributes (e.g., packet count) by
updating counters per flow key K based on packets observed. These aggregated flow attributes
are denoted as V. In general, it can contain every attribute of the packet property set U and does
typically not contain attributes that are taken into account for the flow key.

If the reader does not keep flow state (stateless metering), it does not need to have a flow cache
and creates flow data that is directly sent to the exporter. Since sending flow data for every
packet to the collector results in a high amount of monitoring data, only a fraction of packets
is selected for monitoring by a sampling process as shown in Figure 3.5. Therefore, stateless
flow capturing is also called packet sampling. Sampling can also be used with stateful metering
for reducing the flow data rate and is typically used if meter, exporter, or collector performance
does not allow for unsampled stateful flow capturing.
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Flow data created by meters consists of flow records that contain information about a flow of
a certain time interval. For stateful metering, information on the flow is aggregated in the flow
cache before it is transferred in a flow record. Thus, flow records can cover large time intervals
of the flow lifetime. If sampling is applied, flow records contain only information on a fraction
of packets of the flow. In case of stateless metering the time interval of flow records covers only
a single packet of the flow.

Figure 3.6 shows the terminology of flow records used in this thesis. For the flow F1 there
are two flow records R11 and R12 created by flow data meters. The flow records contain the
aggregated attributes V that describe properties of the flow for the time interval considered,
such as the packet count p and the byte count b. Timestamps of flow start and flow end are
defined to correspond to packet start times, i.e., the time at which the first bit of a packet is seen.
Flow start and end times are denoted by t∗s 1 and t∗e 1, while the records start times are ts11 and
ts12, and the record end times te11 and te12, respectively. Flow and record duration are defined
as the time interval between start and end, denoted as d∗ and d, respectively. The time when
the flow records are exported from the flow capturing device (either pushed or pulled) is termed
export time, indicated by an X-symbol in figures (see Figure 3.6 ) and denoted by tx. Since
records are typically exported some time after te, this results in an export delay. The export
delay measured from record start is denoted as δs and the export delay measured from record
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end as δe. Shortly after export, the flow data packets arrive at the collector. The network delay
on this path is negligible compared to the export delay.

As shown flow metering and transferring flow records are in principle different concerns. How-
ever, requirements for the protocol used for transferring flow records strongly depend on the
flow metering and vice versa. Thus, the protocols that have been developed are linked directly
to the capturing mechanisms they are intended for, as it will be shown in the next section.

3.2 Flow Capturing Mechanisms and Protocols

There are several standards for flow capturing today and there is high activity in product de-
velopment and research. In order to understand the differences of and dependencies between
different flow capturing approaches, first the history of the most important flow capturing de-
velopments will be presented. Afterwards, each of the approaches will be introduced and an
overview on current research in this area will be given. At the end, a comparison of the differ-
ent approaches shows their differences.

3.2.1 Historical Development

The historical time line is illustrated in Figure 3.7. The first research on flow capturing was
done in 1986 by Jain et al. [57], who introduced the “packet train” model. The first IETF
activity in this field was the IETF Accounting (IETF ACCT) Working Group (WG) [61], which
was established in 1990. This WG released one RFC on “Internet Accounting: Background”
[RFC 1272], which defines meter services and usage reporting. The meter service “records
aggregate counts of packets belonging to FLOWs between communication entities”, i.e., it is
a flow capturing device. An Internet Draft describing an architecture was published in 1992,
however, no further RFCs were released and the WG was concluded in 1993.

The concepts of the ACCT WG have been realized in a flow capturing tool called NeTraMet
(Network Traffic Meter) that was released in 1993 and documented in [RFC 2123]. This
tool and the ideas of the ACCT WG were the basis for the IETF Real Time Flow Measure-
ment (RTFM) WG [62] that started in 1996 and concluded in 2000. This WG released a series
of RFCs in 1999 that specify the architecture and its components. RTFM specifies a stateful
flow capturing approach where flow data is pulled from the reader using the Simple Network
Management Protocol (SNMP)[RFC 3410]. Details on RTFM are given in Section 3.2.2.

Stateless flow capturing was introduced in 1993 by Hewlett-Packard as Extended RMON (XR-
MON)1. The company InMon developed the sFlow standard that contains a protocol for trans-
ferring flow records from packet sampling [RFC 3176]. sFlow was used by an increasing num-
ber of switch manufacturers who joined the sFlow forum [63]. The sFlow forum extended the
sFlow protocol and published sFlow version 5 in 2004 [64]. sFlow is described in Section 3.2.3.

1Remote Network Monitoring (RMON) [RFC 2819] is a network monitoring protocol mainly for traffic moni-
toring based on SNMP.
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Figure 3.7: Historical development of Flow Capturing

Cisco Systems introduced a rudimentary flow capturing mechanism in its routers with the oper-
ating system release IOS version 10.3 [65] around 1995. The flow cache itself was introduced
for performance improvements when handling a high number of routes and forwarding rules.
This technology was called “NetFlow Switching”. By exporting the flow cache content, the
flow capturing mechanism “NetFlow Export” was established, later only called “NetFlow”. Af-
ter some early versions, the currently still widely used NetFlow version 5 was developed. This
version underwent further changes throughout IOS releases until 1998 [66]. In 1999 Cisco
Systems published the white paper “NetFlow Services and Applications”[67], which gives an
overview of NetFlow versions and implementations. This white paper is a major reference cited
in the scientific community when it comes to NetFlow. The next major step was the develop-
ment of NetFlow version 9 with a flexible flow record format. This is the most recent version
available in components currently deployed. More details on NetFlow will be presented in
Section 3.2.3.

In 2001 also other ideas on flow capturing mechanisms emerged in addition to the three ap-
proaches presented here. The IETF realized that this situation makes development of general-
ized analysis applications difficult. Therefore, the IP Flow Information Export (IPFIX) working
group started in 2001 in order to specify a common terminology and protocol. After defining the
requirements and comparing existing protocols, the working group decided to take NetFlow v9
as input and to develop an IPFIX protocol based on it. The IPFIX WG is very active and has
produced a high number of RFCs. IPFIX and its current stage are presented in Section 3.2.5.
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3.2.2 Real Time Flow Measurement (RTFM)

The IETF RTFM WG specified an architecture [RFC 2722] (see Figure 3.8) consisting of meter,
meter reader, manager, and application. The meter creates flow records by keeping flow state
in a flow table. For each packet it observes, its packet matching engine creates a flow key and
determines attributes that are measured based on a rule set. This means that the flow definitions
depend on the rules and are flexible so that depending on the network scenario the metered
traffic groups can be chosen.

One or more meter readers pull flow records from the meter in regular intervals. Which flow
records and which attributes are read is described in the request that is done via SNMP with
a specified Meter Management Information Base (MIB) [RFC 2720]. A meter reader can read
data from several meters and a meter can be read from several meter readers. The meter reader
forwards flow records to the traffic analysis application.

The problem of determining the flow lifetime is solved by applying an inactive timeout in the
meter (see diagram in Figure 3.8). If no more packets are observed for a certain flow for a
certain time, the meter can remove the flow record from the flow cache, but it additionally
checks that all meter readers read the final flow record before it is removed. The flow attributes
that are counted or aggregated are not reset when the data is read, but the counters for a flow
record are always increasing.

Meters and meter readers are configured by the manager. The manager loads rules, the time-
out value, and possibly sampling parameters into the meter. Additionally, the manager also
configures the meter reader with information on which meter to read at which frequency.

RTFM meters typically capture bidirectional flows. If a rule on a packet does not match in the
first run, the endpoint addresses are switched and the rule is applied again. Based on whether
a match occurred in the first or second run, forward and reverse flow can be distinguished.
[RFC 2723] specifies a Simple Ruleset Language (SRL) for defining rules that can then be
compiled into the format that a manager loads into the meter.
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The RTFM architecture was implemented in the NeTraMet tool, which can run on UNIX or
DOS computers. Other implementations are not known, especially there is no implementation
suitable for high-speed routers that run at several Gigabit/s.

3.2.3 InMon Corporation’s sFlow

sFlow is a flow capturing mechanism that works stateless based on packet sampling. It is ex-
plicitly designed as low cost mechanism that can be implemented with low effort in hardware
(e.g., in Ethernet switches). The sFlow specifications [RFC 3176, 64] provide a definition of the
sampling mechanism (including an SNMP MIB for management) and the protocol for transfer-
ring the data via sFlow datagrams in push mode to the collector. As additional feature that is
not related to flow capturing, values of interface counters are piggybacked on sFlow datagrams.

Figure 3.9 shows the components of the sFlow architecture. A network device (switch or router)
runs an sFlow agent that is configured from the collector and sends captured data using sFlow
datagrams to it. Interfaces in the network device are associated with sFlow instances that sample
the traffic passing by. Depending on implementation and configuration sFlow instances observe
ingress or egress traffic at an interface, or both directions. Each sFlow instance keeps a sample
counter that is initialized with a number corresponding to the sample rate and decremented for
each packet observed. If the counter reaches zero, the packet information is put into a flow
sample and the counter is reset to the initial value. Additional counters of an sFlow instance
count the whole number of packets observed and the number of packets sampled.

When a flow sample is created in an sFlow instance, the information in the packet header to-
gether with the number of packets sampled, the number of total packets, and the sampling rate
are added to the flow sample and sent to the sFlow agent. Figure 3.9 shows that the sFlow agent
compiles an sFlow datagram containing several flow samples. sFlow does not only report flow
data, but the agent also adds counter samples from interface counters to the sFlow datagram.
These counter values can be added to the flow data in order to fill the datagram if there is space
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available. The sFlow specification defines how often counter values should be read and which
degree of freedom the agent has to add them to the datagram. The sFlow agent can wait for
several samples to fill a datagram but must not delay samples by more than one second.

Due to the counter-based sampling approach, no flow state has to be kept by sFlow enabled
devices. The flow sample includes addresses of the IP-Layer, the transport layer and/or the
sub-IP layer, depending on the sFlow format used. Since there is no flow cache, there is no
definition of a flow or flow key. It is therefore up to the collector to handle these samples and
aggregate them to the required flow definitions.

sFlow is often deployed in data centers and at peering points like the AMS-IX [68] and DE-CIX
Internet exchange. In such scenarios mainly Ethernet switches are deployed, which typically do
not have a flow cache and thus cannot implement stateful flow capturing.

3.2.4 Cisco Systems NetFlow

The NetFlow services export feature and protocol were introduced to export the content of the
flow cache, which has been used in some routers of Cisco Systems for flow-based switching.
NetFlow is a highly efficient and implementation friendly protocol where the flow capturing
mechanisms and the protocol are closely related. It transfers flow records from an exporter to
a collector in push-mode. This section presents the details of NetFlow version 5 (NetFlow v5),
which is the version most widely in use today, and NetFlow version 9 (NetFlow v9). Versions
2 to 4 and 6 were never published, while Version 7 and 8 mainly add aggregation features and
are not be covered here. These NetFlow versions are described in [67]. Although NetFlow is
Cisco proprietary, it became a de facto standard for flow capturing due to its wide deployment.
However, due to Cisco’s rights on NetFlow, other vendors call it differently (e.g. cflow, jflow).

In the following, the timer-based flow cache management and the NetFlow protocol are intro-
duced. Since the OWD measurement approach proposed in this thesis is based on NetFlow,
details and symbols are presented, which are used throughout the following chapters.

NetFlow keeps flow state in the flow cache and updates flow records for the packets observed for
these flows. The metering process decides when records expire and removes them from the flow
cache at cache removal time tr for sending them to the collector at tx.There are several expiration
criteria that determine tr. For each criterion, different tr formulas based on timeout parameters
and flow record start/end timestamps ts/te apply. The criteria are given in the following list and
depicted in Figure 3.10.

- Inactive Timeout ϑinact
If no packet is seen for the considered flow record for a certain time (i.e., the flow is
considered inactive), the record is expired: tr,inact = te +ϑinact

- Active Timeout ϑact
If the flow record contains flow data about more than a given interval (i.e., the flow is
considered active for more than a given time), the record is expired: tr,act = ts+ϑact. This
ensures that data about flows with long duration is exported early, i.e., flow data is not
only available when the flow terminates.
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- Fast Timeout ϑfast and pfast
If only a small number of packets p is observed for a flow record in a given time inter-
val, the flow is expired: tr,fast = te +ϑfast if p < pfast. The purpose of this mechanism
is to free the cache from flow records that only contain a single packet (e.g., DNS re-
quests/responses or failed TCP connection setups).

- TCP connection termination
Some NetFlow meters observe TCP flags and expire flow records when a FIN or RST flag
is observed in a flow. In this case the flow is expired when it ends: tr,tcpterm = te.

- Cache Full Events
If the flow cache runs full, NetFlow expires flow records earlier than given by the other
criteria at tr,cache.

Which criteria can be applied depends on device capabilities and configuration. The criterion
that matches first will expire the flow record, i.e.,

tr = min(tr,inact, tr,act, tr,fast, tr,tcpterm, tr,cache). (3.1)

Figure 3.10 shows an example with the three timeout mechanisms. For both flows the packets,
the resulting records, and the cache removal time tr at which the records are removed from the
cache are shown. The latter is indicated by a plus-sign in the figure in contrast to the X-sign
that indicates record export, which has been used in Figure 3.6. Flow F1 has several breaks
that are longer than the inactive timeout, which results in the three records R11, R12, and R13
expired by this criterion. Then, F1 contains two bursts of two packets each with sufficient time
in between, such that the fast timeout criteria matches and the flow records R14 and R15 result.
In F2 packets are transferred without large breaks in between, such that the first two records,
R21 and R22, expire due to the active timeout. Then the flow terminates leading to a last record
R23 that expires due to inactive timeout.

The timeouts are configurable in a certain range2, as given in Table 3.1. This table also gives
the default values as well as typical values from a network operator’s router configuration [9].

2taken from [69], the values vary between implementations.
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parameter min. value max. value default value typical value
ϑinact 10 s 600 s 15 s 10 s
ϑact 1 min 60 min 30 min 5 min
ϑfast 1 s 128 s 32 s 4 s
pfast 1 128 100 2

Table 3.1: Ranges and default values for NetFlow timeout parameters
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NetFlow v5 compiles packets from several expired records and sends them to the configured
collectors. Exporters send NetFlow v5 packets via UDP and there is no application layer mech-
anism for compensating packet loss.

Officially, there is no port number assigned to NetFlow and it is configurable. Typically, UDP
port numbers in the range between 9991 and 9999 are used, with port 9995 being most com-
monly used. This collides with the official port number assignments [70], but is not a problem
in practice.
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The NetFlow v5 packet format3 is depicted in Figure 3.11. NetFlow v5 packets have a fixed for-
mat and consist of a header and up to 30 NetFlow records. The header starts with the NetFlow
version number and the amount of records contained in the packet. Then, several timestamps
follow that can be used to calculate the system uptime and the time when the packet left the ex-
porter. The record sequence number contains the overall amount of flow records that have been
expired from the flow cache, i.e., it can be used at the collector to calculate how many records
have been lost due to lost NetFlow packets. The last part of the header contains information
about which type of NetFlow engine is used and how sampling is configured.

Fields of the flow records can be distinguished, as shown in Figure 3.11, into fields of the flow
key, timestamp fields, flow attributes, and network metadata taken from routing information.
NetFlow v5 uses the IPTL five tuple, the ToS byte, and the ingress interface number as flow
key. Since the five tuple and ToS byte are contained, every IPTL subflow can be identified. Fur-
thermore, a unique identifier for the observation point can be created from the ingress interface
number and the exporter’s IP address (obtained from the IP source address in the UDP packet).
Flow attributes in NetFlow v5 are the amount of packets, the amount of bytes, and a bitmask
containing a cumulative OR of the TCP flags observed for the time interval of the flow record.
Furthermore, there are fields for the network masks of the source and destination network, as
well as for AS numbers. ts and te of the record are contained in millisecond granularity (fields
first, last) relative to the system uptime given in the NetFlow header.

How the timestamps are efficiently created using this packet format is shown in Figure 3.12.
This figure depicts a model of the NetFlow implementation, which has been reverse engineered
based on the NetFlow v5 protocol and system knowledge by the author. The model consists of

3The format specified in Cisco’s document [71] is partly wrong and inconsistent. The format presented here has
been validated with NetFlow packets exported from a router. It is consistent with the format specified on another
website [72].
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the metering block, the flow cache, and the exporting block. The metering block creates flow
keys for packets and updates the flow cache accordingly. The flow cache handles the timers,
removes flow records at tr, and forwards them to the exporting block on the right hand side of
Figure 3.12. The exporting block compiles NetFlow packets and sends them to collectors.

The metering part checks for each packet whether there is already a flow record in the flow table.
If not, it creates a new flow record and puts the current value of the system uptime counter into
the NetFlow fields first and last. Additionally, it updates the counters of the flow attributes
for this record. For every subsequent packet of this flow, the metering part finds the flow record
and updates the last field with the current system uptime and updates the counters as well.
Once a criterion for record expiration matches, the record is removed from the cache without
changing any of the values. The exporter process puts several flow records into a NetFlow
packet and adds the values of the system counters to the field in the packet header at export
time tx before it sends the packet to the collectors. In the following the sysUptime value in
the header is denoted as rsu , while the UNIX time values are denoted as rsec and rnsec. For the
record values first and last the symbols rfirst and rlast are used.

Timestamps for ts and te are created based on three 32-bit system values that hold the system
uptime in milliseconds, the UNIX time in seconds and the nanosecond fraction of the UNIX
time. Since ts and te are given relative to the router’s uptime, they have to be calculated by
taking the timestamp values in the NetFlow header into account, as shown in Figure 3.13. From
the UNIX time values that describe tx, rsu is subtracted, which yields the boot time tb. Adding
rfirst and rlast to the boot time yields ts and te. The advantage of this implementation is that
the flow cache does not have to store the complete record timestamps in milliseconds of UNIX
time, but only a 32-bit value. However, care has to be taken at the collector when the 32-bit
counters overflow.

All NetFlow versions up to version 8 have a static record format, i.e., the record field types and
their length cannot be changed for exporting more or different information. NetFlow version 9
[RFC 3954] is a complete redesign that provides a flexible format, which can export arbitrary
data elements and is extensible towards new data types with different lengths. A well-known
approach in protocol design for flexible formats is Type Length Value (TLV) encoding where for
each protocol field a type number, the field length, and the value is encoded. By specifying a ta-
ble in the protocol standard that describes the field semantics, new protocol fields can be added
by extending this table. Since the length of each field is also encoded, the field’s length can be
adapted to the scenario’s needs (e.g., typical values to expect in counters) and implementations
that do not know certain field types can simply jump to the next type. In case of NetFlow, a clas-



3.2 Flow Capturing Mechanisms and Protocols 41

0 31168 24
version number of records contained ("count")

system uptime in ms
UNIX seconds

packet sequence number

header

NetFlow v9
packet

template
FlowSet

0 31168 24

source IPv4 address (IPV4_SRC_ADDR)

byte count (IN_BYTES)
destination IPv4 address (IPV4_DST_ADDR)

system uptime in ms at start of the flow record (FIRST_SWITCHED)
system uptime in ms when the last packet was observed (LAST_SWITCHED)

timestamps

T
LV

 encoding: 

data
FlowSet

FlowSet ID = x (template ID) length

packet count (IN_PKTS)

0 31168 24
FlowSet ID = 0 length
template ID = x field count

field length: 4IPV4_SRC_ADDR
IPV4_DST_ADDR field length: 4

IN_PKTS
IN_BYTES

FIRST_SWITCHED
LAST_SWITCHED

field length: 2
field length: 2

field length: 4
field length: 4

re
co

rd
 1

re
co

rd
 2

source IP address (IPV4_SRC_ADDR)
destination IP address (IPV4_DST_ADDR)

Type +
 Length

V
alue(s) flow key

flow
attributes

template IDs

template

template IDy field count

...

link between template and FlowSet  by template ID
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sical TLV encoding would add tremendous amount of redundant type and length information
to each record, which is infeasible due to the typically high record rates. NetFlow v9 therefore
separates the type and length information from the value by putting the field definitions into
templates and the values into data FlowSets (see Figure 3.14). Additionally, each template con-
tains an ID that links it to the corresponding data FlowSet. When the collector receives a data
FlowSet, it can look-up previously received template information for decoding. In the exam-
ple given in Figure 3.14, the template with ID “x” defines six fields together with their length,
which allows the proper decoding of the following data FlowSet with the same ID.

One advantage of the template mechanism is that the collector caches the template and there-
fore template information has to be sent infrequently only. Additionally, an exporter can send
different types of flow records using different template IDs. Furthermore, on reconfiguration
of flow capturing for exporting additional fields, new templates containing additional fields are
created. This possibility is a precondition for flow capturing implementations that provide a
flexible way of defining flow keys and flow attributes (e.g., flexible NetFlow [73]).

Record timestamps in NetFlow v9 are encoded similarly to NetFlow v5: record timestamps
are relative to the export timestamps given in the header, i.e., the same calculation rules apply.
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However, while NetFlow v5 contains UNIX seconds and nanoseconds in the header, there is
no nanoseconds value in the NetFlow v9 header. Hence, the export timestamp is given only
with a resolution of one second. Due to the relations of timestamp values shown in Figure 3.13,
the flow record timestamps can also only be calculated with a resolution of one second in Net-
Flow v9. Omitting the nanosecond field is most likely a mistake in the protocol design, since
NetFlow v9 implementations seem to obtain the timestamps also as shown in Figure 3.12 while
simply dropping the nanosecond value. However, it is possible to compensate this error either in
the exporter (adding the millisecond part of missing nanosecond value to rsu) or by applying the
compensation method described in [74] at the collector. This method is based on the fact that
the rsu values are monotonically increasing in time and provide millisecond resolution. Some
devices also export absolute millisecond timestamps per record.

3.2.5 IP Flow Information Export (IPFIX)

IPFIX is an IETF WG that defines standards for flow capturing. While its main work ini-
tially targeted towards the export protocol, it meanwhile covers also flow data processing, flow
capturing configuration, and sampling. This development is shown in Figure 3.15, which high-
lights the documents published. After selecting NetFlow v9 as starting point for IPFIX in 2004
[RFC 3955], the base protocol was released in 2008. Then, several extensions and implemen-
tation related documents have been released. Additionally, an overview over of the architecture
was published in [RFC 5470], which indicates the extension of IPFIX work into the domain
of flow data processing. This focus is currently subject to further work in terms of the IPFIX
mediation framework [RFC 5982] (see more details in Section 3.5). Besides the work on con-
figuration of flow capturing, IPFIX also works on packet and flow sampling. The latter started
independently in the Packet Sampling (PSAMP) working group, which was concluded in June
2009 and continues its work in the IPFIX WG.

The IPFIX protocol [RFC 5101] is a major enhancement of NetFlow v9 and is developed as an
open standard. IPFIX features the template mechanism of NetFlow v9. However, the data types
used in templates are no longer kept in a proprietary table, but the information elements are
initially defined in [RFC 5102] and future extensions are to be handled by the Internet Assigned
Numbers Authority (IANA). In order to allow for custom extensions, IPFIX also defines enter-
prise specific information elements, which allow for adding protocol extensions in a simple way
since they are only valid in a limited scope (enterprise domain).

In terms of transport, IPFIX is specified to work over UDP, TCP and SCTP with partial re-
liability extensions (PR-SCTP, [RFC 3758]). Compared to UDP, which is used for NetFlow,
TCP, and SCTP add reliability and congestion control, while the partial reliability extensions
can limit the sender buffer size required for handling retransmissions. The IPFIX protocol uses
port number 4739, which has been officially assigned [70].

Regarding the record timestamp encoding, IPFIX provides several formats, which all differ
from NetFlow v9. Most importantly, the IPFIX header contains the export timestamp seconds
only and no export nanoseconds or system uptime values. Different information elements allow
encoding flow record timestamps either as absolute value, relative to the export time, or relative
to system uptime. For encoding start/end timestamps as an absolute value there are information
elements defined for providing millisecond, microsecond or nanosecond resolution, each using
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64-bit data types. In order to encode the record timestamps relative to the export time, there
are the flowStartDeltaMicroseconds and flowEndDeltaMicroseconds infor-
mation elements, each of 32 bits length. Compared to using absolute timestamps, the latter
reduce the amount of data that has to be sent. Encoding timestamps relative to system uptime
works by using the flowStartSysUpTime and flowStartEndSysUpTime information
elements. Since the system uptime is not part of the header in IPFIX, it has to be added using
the record field systemInitTimeMilliseconds. In this way, timestamp encoding as it
is performed in NetFlow v9 is possible.

In addition to flow data export, IPFIX also defines templates for exporting reliability statistics
on the flow capturing process itself. Furthermore, the PSAMP WG defined information ele-
ments for reporting error statistics [RFC 5477] in terms of absolute and relative error as well
as confidence limits for a certain confidence level. How such accuracy information related to
IPFIX metering processes can be reported is subject to ongoing standardization activities [75].

3.2.6 Summary

Flow capturing has more than 20 years of history. First approaches followed a stateful metering
with pull-based reporting mode. Such approaches, like RTFM, have been feasible for monito-
ring large links, however, they required separate probes. When NetFlow became available as a
router feature with more and more hardware support, it became the de facto standard for flow
capturing in enterprise and carrier networks. Currently, NetFlow v5 is the most commonly used
format. However, due to the transition to IPv6 the more flexible NetFlow v9 is increasingly
used. That NetFlow has been optimized for hardware support becomes evident in the time-
stamp encoding. Due to protocol design issues, however, the timestamp precision suffers from
protocol design issues in NetFlow v9. Since NetFlow is often implemented in hardware, it is
possible to perform unsampled flow capturing for all traffic in enterprise networks or small ISP
networks. However, in large carrier networks sampling is used in order to keep the amount of
collected flow data low and limit the processing effort in routers.

In contrast to NetFlow, packet sampling such as sFlow is a mechanism commonly used in
switches operating in sub-IP layers, which typically do not have as much hardware and pro-
cessing capacity as routers. Thus, it is mainly used for data center traffic monitoring and at
Internet exchanges (AMS-IX, DECIX) , which provide switching facilities to which routers of
ISPs and global carriers connect, but do not operate the routers. Since this thesis is targeted
towards measuring One-way Delays in WANs, sFlow and packet sampling are not considered
further.

IETF standardization efforts in PSAMP and IPFIX have lead to generic and well designed pro-
tocols for packet sampling and flow capturing. IPFIX is even suitable as general protocol for
streaming monitoring information and will most likely replace SNMP or Syslog [RFC 5424] in
some applications. Current standardization activities and the involvement of equipment manu-
facturers show that flow capturing and flow data processing stays a hot topic.
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Figure 3.16: Flow capturing: building blocks and points for implementations in routers

3.3 Implementation in Routers and Probes

In order to understand the different characteristics of flow capturing implementations, it is im-
portant to know how and where flow capturing is implemented. This section gives an overview
of different implementations in terms of placement of flow capturing functionalities in routers.
The focus is on stateful flow capturing as it is implemented today with Cisco NetFlow or similar
mechanisms.

Stateful flow capturing consists of the processes for packet selection, metering, and export-
ing (see Figure 3.16, left). These terms are aligned with IPFIX architecture terminology from
[RFC 5470]. The selection process decides which packets are taken into account, i.e., it per-
forms filtering or sampling [RFC 5475]. From the selected packets, the metering process creates
flow records by means of the flow cache. The exporting process eventually encodes and sends
records as NetFlow or IPFIX packets to the collector.

There is a large number of possibilities for implementing the selection, metering, and exporting
processes in an exporting device. While flow capturing often is implemented as a router feature,
there are also several implementations of standalone probes. Such probes receive packets that
are mirrored from, e.g., a switch port and do selection, metering, and exporting, most often
completely in software on general purpose hardware [76]. Some probes perform advanced
features, such as defragmentation [77], or provide hardware support [78] for achieving higher
performance.
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Today, most flow capturing is performed in routers. Flow capturing as a router feature does
not require additional equipment and can be implemented as part of the packet forwarding
functionality. However, there are different implementation possibilities that differ in the location
of the selection, metering, and exporting within the router. This affects which traffic and at
which point in the router the traffic is metered. Figure 3.16 shows on the right four characteristic
implementations. The first implementation (top left) shows a small router that performs all
packet forwarding and also all flow capturing tasks close to the Forwarding Engine (FE) on a
Central Card (CC). Flow records are selected and metered before queuing inside the forwarding
process. Depending on the hardware capabilities of the Line Card (LC) or CC, some routers
require additional hardware for performing flow capturing efficiently. Such hardware can be
added as a dedicated Service Card (SC) (implementation top right), which performs metering
and exporting. Selection or sampling can be performed on the LC before the packets are sent
across the switch fabric to the SC. With such implementations, timestamps are created on the
SC from packets mirrored before queuing. In large high performance routers, packet forwarding
and also flow capturing is completely performed on the LCs (implementation bottom left). Flow
records are sent to the CC, where they are put into packets and sent by the exporting process
residing on the CC. Most commonly, flow capturing is performed on the ingress path of a LC.
However, a router might also allow for enabling egress flow capturing (shown on the bottom
LC). This is useful to monitor the traffic that finally leaves the router through a certain interface
after address translations or tunneling features have been applied. In this case, timestamps
are taken after major queuing stages (virtual output queues on ingress LCs). Whether records
result from ingress or egress capturing can be indicated by the flowDirection fields in
NetFlow v9 or IPFIX. Many router models allow flexible hardware configurations where FEs
on LCs are optional and also the CC contains hardware and software based forwarding. Such
an implementation is shown on the bottom right. Depending on the input interface, a packet
might be captured on the LC with a hardware based FE, on the FE of the CC, or by software
running on the central CPU. Since all flow capturing implementations in such a heterogeneous
setup might behave differently, this has to be considered in terms of possible effects and errors.
Typically, using the input port and flow direction fields of flow records as key is sufficient to
distinguish different flow capturing implementations on the same router.

Flow capturing mechanisms in routers and probes are subject to continuous development. Re-
search focuses on new flow metering concepts for software based probes [77] or metering that
captures packet timing characteristics as part of the flow record. High effort has also been spent
in the domain of flow sampling in order to increase the metering effort while still capturing valu-
able information. Estan et al. [79] propose automatic sampling rate control to handle Denial of
Service (DoS) traffic. An interesting sampling method that tries to sample the same packets at
different points in the network has been proposed by Duffield and Grossglauer [80]: trajectory
sampling. It creates packet labels from invariant packet fields using hash functions, which al-
lows correlating information associated with the same label obtained at different routers in order
to get information about the path of a packet through the network. These research contributions
show that flow capturing will extend towards new features that allow new monitoring applica-
tions. This thesis, however, is focused on data that is available from routers that are deployed
today and thus does not consider such extensions in detail.
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3.4 Fields of Application and Deployment

The previous sections detailed flow capturing mechanisms as well as their implementation. As
already introduced in Figure 3.3, flow capturing data is used for various applications, which are
the focus of this section. Depending on the application, flow data from different points in the
network is required. Thus, the application impacts flow capturing deployment, i.e, where and
how flow capturing is enabled in routers and/or probes.

In the following, typical applications and deployment as well as current research topics for flow
capturing in ISP networks and enterprise networks are presented. The flow capturing applica-
tions are classified into four categories, each handled in a separate subsection. The categories
are Accounting and Reporting, Network Security, Traffic Behavior Analysis, and QoS Monito-
ring. This is a rough classification, since due to the different approaches and methods in this
domain the classification borders are blurring.

Accounting and Reporting

One of the first and the still dominating application of flow capturing is traffic accounting and
reporting. This covers coarse-grained network utilization statistics and traffic matrices for ca-
pacity planning, fine-grained utilization statistics such as traffic per application protocol, and
per-host traffic analysis. To which extent flow data is captured and analyzed depends on the
network size and effort spent: In large carrier and ISP networks flow capturing is often per-
formed in core and border routers. Especially in the core, sampling is applied in order to limit
the effort at high data rates. This is sufficient to obtain traffic core matrices and peering statistics
about how traffic flows from and to other autonomous systems. In enterprise networks often a
large number of edge routers capture unsampled flow data, which allows for detailed accounting
on branch location or department level.

A typical flow capturing deployment for an enterprise scenario is depicted in Figure 3.17. The
core network belongs to a carrier, which also operates the CE routers. Enterprise staff has read-
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only (ro) access on CE routers, but can obtain flow data from them. Additionally the routers
operated by the enterprise (e.g., in data centers) send flow data to a collector, where the data is
processed in analysis applications.

One of the first documented systems that provides accounting and reporting functionality is
Fluxoscope [81], developed for traffic accounting and reporting in the Swiss research and ed-
ucation network. Today, there are several commercial solutions available for accounting and
reporting, such as Plixer Scrutinizer [82], Arbor Peakflow [83], Lancope Stealthwatch ([84]),
NetQos [85] (acquired by CA in 2010), and IsarFlow [86]. For systems that provide accounting
and reporting functionality, it is sufficient to operate at time scales of minutes, i.e., they can
perform temporal aggregation of flow data.

Network Security

Since flow capturing does not provide a view on the packet content, it cannot provide as detailed
information on possible attacks as an Intrusion Detection System (IDS) does, which scans the
packet content for attack signatures. However, in contrast to an IDS, flow capturing can provide
a network wide view on traffic and is therefore suitable for detecting suspicious traffic patterns
of malicious activities. It is also useful for tracking down attacks or infected systems (possibly
in combination with IDS or DPI information) [87].

ISPs often perform security analysis using flow data obtained from border routers. Obviously,
such security analysis requires complete (unsampled) flow data. While several commercial
systems already support security analysis, there is ongoing research in this area. In order to
support the interactive analysis of security events, Mansmann [88] studied several visualization
approaches and concluded that such approaches provide more insight than automated methods
do. Classifier-based approaches for anomaly detection and cause identification have been stud-
ied by Münz [89]. Münz concluded that due to the unforeseeable nature of non-malicious traffic,
there is a high probability for false alarms. However, certain frequent anomaly patterns (scans,
password guessing) could be identified in order to automate alarm handling. While for security
applications that analyze flow rates and communication relations of end systems a timestamp
resolution in the minute range is sufficient, identifying anomaly patterns can demand for higher
timestamp resolution, depending on the pattern definition and detection algorithm.

Traffic Behavior Analysis

While flow-based security analysis partly covers traffic behavior analysis, this field is much
more general and has various applications. The goal is to identify traffic behavior based on
flow data that is typical for certain applications, application usage, or network events. Results
obtained in this way serve as input for traffic engineering, cause detection, and network design.

Wallerich et al. [90] developed a flow capturing based methodology for studying the persistency
of flows, i.e., whether flows that are large in terms occupied bandwidth (“elephants”) will stay
elephants for their lifetime. As a first result, they conclude that even with the high temporal
aggregation that NetFlow typically provides due to active timers, NetFlow data is sufficient to
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answer these questions. Second, they found that especially large flows are very likely to be
persistent.

In addition to work that generally characterizes traffic behavior, there are several studies on
how to extract certain effects from NetFlow data that indicate network or protocol problems.
Limmer and Dressler focused on flow-based TCP connection analysis [91] and studied whether
and how it is possible to infer whether TCP connections have been successful or whether there
was a failure. They compared results obtained from packet traces and unsampled flow data,
studied optimal timeout settings, and proposed additions to flow capturing mechanisms.

Dhamdere et al. [92] developed the “FlowRoute” concept for inferring router forwarding table
updates. They used routing protocol messages and sampled flow data from backbone routers of
a tier-1 ISP as input. The study shows that delayed forwarding table updates, as well as routing
loops and other routing problems can be found using this approach.

Another approach that leverages traffic behavior analysis for identifying routing and other con-
nectivity problems is the Flow-based Approach for Connectivity Tracking (FACT) [8]. The idea
is to use unsampled NetFlow data obtained from an ISP’s border routers for checking whether
traffic is bidirectional to remote networks or whether there is unidirectional traffic only, iden-
tifying a connectivity issue. It was shown that this approach can detect issues that result from
BGP problems. Furthermore, it was studied how the large amount of unidirectional traffic from
network scans, for example, can be handled that is not caused by connectivity problems.

Besides extracting network effects from flow data, there is also work on identifying applications
based on their flow-level characteristics. Schatzmann et al. showed in [93] that it is possible to
identify webmail sessions in HTTPS traffic using unsampled NetFlow data. The classification
approach is based on three types of features: the usage of other mail protocols in the server’s
vicinity, the typical timing patterns of such sessions, and periodic requests from clients.

Rossi and Valenti [94] focus on identifying P2P file sharing and P2P streaming sessions with
flow data. They compare results from a packet trace by DPI with results obtained from unsam-
pled NetFlow data generated from these traces. Depending on the P2P application and NetFlow
timer settings, between 80% and 99% classification accuracy could be achieved.

QoS Monitoring

Besides analyzing traffic and network utilization, flow capturing can also be used for monitoring
network characteristics that impact QoS. The work of this thesis lies in this domain, where only
few studies have been conducted so far.

One important QoS metric in networks is packet loss, which has been studied by Gu et al. [95].
In their experiments, sampled flow data from two points in the network was used to estimate
packet loss on a certain path. Packet traces from different networks served as input. From these
packet traces, sampled flow data was created and different loss rates have been applied to the
trace in order to evaluate the method. Results show that a packet loss of 0.5 % can be discerned
at a 2 Gbit/s link with a sampling rate of 1/500. This approach requires that the same flows
are observed at two points in the network, and that only flows that pass both points are taken
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into consideration for calculating the packet loss on the path. Especially with sampling, where
it is very improbable that flows of the same five tuple are observed at both points, this requires
additional knowledge on topology, routing, or addressing, in order to fulfill this requirement.

In addition to packet loss, high network delays also impact QoS. An approach for OWD mea-
surement based on special sampling techniques applied to flow capturing is presented by Lee
et al. in [96]. In order to measure OWD between two observation points, timestamps of the
same packets have to be available. Lee et al. propose a hash-based sampling technique that
selects all packets of the same flows at two estimation points, such that the timestamps of the
first and last packet can be used for OWD calculation. This approach is compared to hash-based
packet sampling and trajectory sampling. Furthermore, different methods for OWD calculation
are studied. The evaluations in these studies are not based on real NetFlow traces, but packet
traces and a simulation environment are employed for obtaining the results. Thus, timestamp
issues of the flow capturing devices themselves are not considered.

There is also a certain class of systems that use the IPFIX protocol as general data stream-
ing protocol, but are not based on flow capturing mechanisms. [47] presents, for example, a
monitoring system where IPFIX is used for reporting timestamps of packets for OWD measure-
ment. They use a special packet sampling approach and no typical flow capturing. This packet
sampling use case for OWD measurement using IPFIX is also mentioned in [RFC 5472].

Summary

The different classes of applications for flow capturing show that there are classical applications
like accounting and reporting that do not require accurate timestamps and can also take sampled
flow data as input. As soon as security analysis is considered, a complete (unsampled) view on
traffic as well as timing characteristics become important, which holds even more for traffic
behavior analysis.

In terms of QoS monitoring, precise flow record timestamps are vital, but have not been consid-
ered so far. Additionally, studies show that a high effort has to be spent if such QoS monitoring
is performed with sampled flow capturing. Some approaches tune sampling mechanisms to
fulfill QoS monitoring requirements.

The different studies show that today unsampled flow capturing is often available from several
points in the network, at least in enterprise scenarios or networks of medium sized ISPs. This
is a prerequisite for the flow-based OWD measurement approach presented in this thesis. Even
if flow-based OWD measurement is not possible with sampled flow capturing today, current re-
search on sophisticated sampling methods for QoS monitoring show that this might be possible
in future.

3.5 Flow Data Processing

After having introduced the applications that use flow data, this subsection focuses on how flow
data can be processed efficiently. There are two fundamental different approaches: offline and
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online processing. Offline processing means that data is stored on a disk or in a database before
it is analyzed and results are available. In contrast, online processing does not store the data, but
processes data in memory right after it arrived at the collector. Depending on the application,
it might be necessary to buffer data for some time in online processing. However, the overall
processing speed has to keep up with the record arrival rate, thus buffering for coping with
performance bottlenecks is only possible to a small extent. Online processing is also called
stream processing, since the the data streams through the processing system.

In the following, flow data processing concepts used today are discussed. This covers selected
commercial flow data collectors and analyzers, open source tools, frameworks currently in stan-
dardization, and current research in this area. Not every flow processing approach is addressed
in detail, but important exemplary points are highlighted. A comprehensive overview on flow
capturing and flow processing is provided on a website maintained by Simon Leinen [97].

Commercial flow processing systems, such as Arbor PeakFlow [83], CA NetQoS ReporterAn-
alyzer [85], or IsarFlow [86, 98] store flow data to a database or files before performing further
analysis on it. This is an offline processing approach. In large deployments several collectors are
necessary in order to cope with the high record rate. By deploying them close to the locations
where high record rates occur, flow record traffic on the global network can be reduced. Fur-
thermore, each collector can run analysis applications and hence the overall processing power
of the monitoring system scales with the number of collectors deployed.

In addition to commercial software, also several open source tools have been developed in the
last years. Flow-Tools [99] is a tool suite that provides a collector that stores flow records to
files. It uses a Flow-Tools specific file format that keeps NetFlow timestamps as reported in the
packet. Additionally, Flow-Tools contains several programs for performing analysis (filtering,
tagging, statistics) on these files. SiLK [100] is similar to Flow-Tools in terms that it provides a
collector that writes binary files and provides several tools for analyzing them. SiLK is explicitly
targeted towards security analysis and provides more sophisticated analysis utilities than Flow-
Tools. Another similar tool suite is nfDump [101], for which there is a database-based analysis
frontend available, which is called nfSen [102]. nfSen provides a web-based GUI for creating
reports, setting alarms and navigating through flow data. In summary, these open source tool
suites also perform offline analysis similar to commercial software, since collectors always store
flow data to files first.

An approach for online processing currently in standardization in the IETF is the IPFIX Media-
tion Framework. IPFIX Mediation is described in [RFC 5982] as “the manipulation and conver-
sion of a record stream for subsequent export using the IPFIX protocol.”. The RFC highlights
that there is a need for such general mediation functionality for three main reasons: growth
of traffic volumes demands for distributed processing, multi-purpose traffic measurements ex-
tracts different metrics from the same original IPFIX data, and heterogeneous environments
that demand processing different kinds of monitoring data while delivering results in a common
format.

The mediation framework [103] defines mediators that consist of collecting process, intermedi-
ate process and exporting process. As shown in the example in Figure 3.18, a mediator receives
data from IPFIX exporters or other data sources through collecting processes, performs differ-



52 Chapter 3. Flow Capturing

IPFIX mediator

IPFIX original
exporter 1

IPFIX
collecting
process

intermediate
selection
process 1

other
collecting
process

intermediate
selection
process 2

intermediate
anonymization

process

intermediate
correlation

process

intermediate
aggregation

process

IPFIX
exporting
process 1

IPFIX
exporting
process 2

IPFIX
exporting
process 3

IPFIX original
exporter 2

intermediate
selection
process 3

IPFIX 
collector 1

IPFIX 
collector 2

IPFIX 
collector 3

collecting exportingintermediate processing

Figure 3.18: IPFIX Mediation Framework overview (based on [103])

ent intermediate processing steps on the data, and sends the data to IPFIX collectors through
exporting processes. Currently, the following intermediate processes are described:

- Intermediate Conversion Process
Converts non-IPFIX to IPFIX records

- Intermediate Selection Process
Performs packet selection such as filtering or sampling, as defined by PSAMP [RFC 5475].

- Intermediate Aggregation Process
Aggregates records by “Temporal Composition” or “Spatial Composition”. Additionally,
it might create statistics on aggregates, for which suitable IPFIX extensions [104] are in
standardization.

- Intermediate Anonymization Process
Deletes or anonymizes values of certain fields.

- Intermediate Correlation Process
Correlates records for creating new metrics, such as OWD from packet reports, inter-
arrival times or Jitter. Furthermore, records can be correlated to produce records de-
scribing bidirectional flows or records can be correlated with other metadata, e.g., from
routing.

Inside a mediator the intermediate processing stage might chain several intermediate processes,
as shown in the example in Figure 3.18. In this example, the mediator performs anonymization
for selected records that are sent to collector 1. Furthermore, it performs some correlation on
selected data from two sources and sends it to collector 2. On the third path it aggregates se-
lected records from several sources and exports them to collector 3. More complex applications
might even demand cascading of mediators. Additionally, it is possible to take IPFIX data from
files instead of from the network as well as storing IPFIX data to files instead of exporting it. In
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order to correctly deal with identifiers and timestamps in IPFIX mediation, protocol extensions
are currently in standardization [105].

The IPFIX Mediation Framework is designed as an online processing approach that processes
IPFIX records without storing them. By replacing IPFIX collecting processes with file read-
ers and IPFIX exporting processes with file writers, it can also be used for offline processing.
Some intermediate processes need to buffer flow records for a certain time, e.g., for aggregating
records or correlating them. The framework document [103] describes several conditions for
removing such buffered records from the cache: timeout based, if there are resource constraints,
or based on an expiration policy. Furthermore, it is stated that for correlation processes such
as correlating packet reports for OWD calculation, reports might be discarded if no matching
report is found after a certain period. [103] describes a mechanism that defines a time-based
sliding window of valid or active records that are in the cache and removed as soon as they leave
the window. This is a similar approach as taken in this thesis for processing flow data.

In summary, the IPFIX Mediation Framework provides a flexible and powerful approach for
online and offline processing of flow data. Concerning applications, Anderson et al. consider the
IPFIX Mediation framework in their proposal for a distributed SIP monitoring scheme (SIPFIX)
[106]. However, this is so far only a conceptual proposal and no implementation. Further related
work on the framework or implementations is currently not known.

In addition to the current developments in IPFIX and commercial tools, approaches for flow data
processing have also been in the focus of recent research work. Hofstede, Sperotto, Fioreze,
and Pras compare in [107] the commonly applied approach of using databases with or without
indexes to stream-based processing using nfDump. They conclude that unlike other results
presented in earlier publications, using a Data Base Management System (DBMS) is not the
best solution for flow data processing and that a DBMS is outperformed by nfDump for large
data sets in terms of response time.

A framework for online processing of flow data for attack detection and backbone monitoring
is presented in [108] by Dübendorfer, Wagner, and Plattner. The framework called UPFrame
tackles the problem of online processing at the packet layer and efficiently distributes NetFlow-
UDP packets to different plug-ins that perform processing within one computer or across the
network. However, the framework does not provide further functionality, like chaining of plug-
ins and handling non-NetFlow data, for example.

Another online processing approach, mainly for security applications is presented by Marinov
and Schönwälder [109], who propose a “Stream-Based IP Flow Record Query Language”. In
this language, queries are defined by filter, grouper, merger, and ungrouper statements that are
mapped to a processing chain consisting of blocks that perform corresponding operations. The
language also contains statements for specifying temporal constraints and uses a temporary
storage for flow records during the processing. How such a buffering of records could be or-
ganized is not specified and an implementation of the system is not available so far. However,
a buffering mechanism as described for IPFIX intermediate correlation processes or window-
based mechanisms are applicable in this case.

In the database domain, online processing has been considered in a general way, not necessarily
focused on processing of flow data or network monitoring information. There are two different,
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however closely related, approaches: data stream processing [110] or Data Stream Management
Systems (DSMS), and Complex Event Processing (CEP) [111]. In contrast to a DBMS that
keeps a large set of predominantly static data on which changing queries are executed, a DSMS
keeps the queries static and the data streams through it for creating the results. CEP, however, is
not focused on streaming data, but on events where higher layer events are described by complex
patterns of lower layer events. In CEP flowing data will thus trigger certain events that are
reported to the interested parties according to the publish/subscribe paradigm. A comprehensive
overview on these approaches and classification of existing implementations is given in a survey
article of Margara and Cugola [112].

One of the problems considered in this thesis is matching flow data records from different data
sources, in the simple case two record streams from different routers. Since the records are
typically not available at the same time, online processing has to keep records in a window
until both records are available and can be matched. In DSMS terminology, this corresponds
to a window based operation on two data streams, more precisely a window join operation.
Figure 3.19 shows this operation on two data streams and the resulting data stream. As shown
in the figure, the amount of data tuples stored in memory depends on the window size L and
the data rate λ . Choosing and adapting window sizes for dealing with memory constraints has
therefore been considered in DSMS research.

Fundamental work on whether queries can be computed with bounded memory is presented in
[114]. If this is not possible, the window size can either be explicitly specified or determined
dynamically. The Continuous Query Language (CQL) [115], for example, specifies different
window parameters in its stream-to-relation operations to explicitly define the amount of data
to be buffered from the streams. In case of fixed window sizes, however, there have to be
mechanisms that protect the system from problems due to memory limitations. Srivastava and
Widom present an approach in [116] for memory-limited execution of windowed stream joins
that tries to get good approximate results if only certain tuples can be taken into account due
to memory limitations. Wu, Tan, and Zhou [117] present a method to dynamically adapt the
window size based on characteristics of the input streams. Their approach considers intra-
and inter-stream delay for calculating buffer sizes for worst-case scenarios. Flow data streams
typically also exhibit unordered streams and certain delays resulting from timeout-mechanisms.
However, flow records have several timestamps and traffic-dependent export characteristics,
which complicate the problem and do not allow the application of the approach of Wu et al..
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The concepts of the database domain have been taken into account for designing network mo-
nitoring systems, such as the Gigascope [118] system that can process high volumes of network
monitoring data. It features its own query language and can work on different input data, such as
packet traces, BGP updates, or NetFlow records. Join, merge, or aggregation operations specify
a window that describes a certain amount of data on which the query is executed. Windows are
defined on ordered attributes, not necessarily timestamps, and a heartbeat mechanism ensures
that windows do not stall in the absence of new data. Gigascope has been developed by AT&T
and is not publicly available. After the publication of the concepts in 2003 [118], no further
work on it was published. Using DSMS for network monitoring has also been considered by
Plagemann et al. [119], who studied how the general purpose DSMS TelegraphCQ [120] can
be used for traffic analysis. They concluded that TelegaphCQ could be used. However, it is not
suitable for being used as general traffic analysis tool due to certain restrictions. Apiletti et al.
present the NetMine framework for traffic characterization in [121], which performs offline and
online analysis. The online analysis is based on a DSMS and continuous queries for creating
flow data from packet stream and filtering. Further refinement analysis, however, is performed
offline.

In summary, the predominant approach used today by commercial as well as open source flow
data processing tools is offline processing. Online processing is gaining interest, as the IPFIX
Mediation framework that is currently standardized shows. Interestingly, concepts of the data
base domain, such as DSMS or CEP have not been used for flow data applications to a large
extent. This is most likely due to performance limitations and the need for more sophisticated
processing steps that are better directly implemented in program code than specified using a
query language. As shown even new query languages have been defined for flow processing
independently from DSMS concepts mainly due to performance reasons and query language
restrictions. While online processing is often used in research for flow data processing, no
implementations or frameworks are available that support window-based processing, as it is
required for, e.g., general correlation or aggregation functions. Furthermore, window handling
and impact of window sizes on flow record correlation and aggregation have not been addressed
so far.

3.6 Summary

This chapter detailed flow capturing terminology, mechanisms and applications, which is a
prerequisite for flow-based delay measurement. While there have been several flow capturing
approaches, NetFlow is a de facto standard and the activities related to its successor IPFIX show
that flow capturing gains more and more importance. Since flow capturing is most often a router
feature, flow data is often available from networks and serves as input for different applications.
Despite the large amount of applications for flow capturing, flow-based OWD measurement has
not been studied so far.

Due to distributed architectures, systems that collect and process flow data can analyze large
amounts of data in an offline fashion. Online processing for analyzing flow data is hardly per-
formed today despite the current efforts in the streaming database domain. This thesis proposes
and studies an online processing approach for processing flow data for OWD measurement in
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Chapter 5. However, the first step will be the development of the measurement approach itself
in the next chapter.



4 Delay Extraction: Impact of Flow
Capturing Properties and Errors

The previous chapters introduced the fundamentals of network measurement and flow captur-
ing. These topics are input to this chapter that addresses how OWD can be extracted from flow
data and which properties and errors have to be considered for obtaining proper measurement
results.

The first section of this chapter motivates the approach of flow-based OWD measurement pro-
posed in this thesis. Afterwards, the second section gives an overview of the basic OWD extrac-
tion approach using perfect flow data, i.e., with considering network effects only. Based on this,
the third section presents the impact of flow capturing effects and measurement errors. Since
timestamp errors have high impact on OWD calculation, these are handled separately in section
four. The last section sums up the results.

An efficient processing approach for OWD extraction that can handle the effects and errors
is presented in Chapter 5. From the effects detailed in Section 4.3 and Section 4.4 follows
that an exporter profile is required to describe, compensate, and quantify effects and errors in
flow capturing for obtaining reliable flow-based OWD measurements. Chapter 6 elaborates the
concept of the exporter profile in more detail.

4.1 Rationale for Flow-based Delay Measurement

As introduced in Section 2.3 there are several delay measurement approaches currently de-
ployed in networks. Flow-based OWD measurement exhibits special properties that make it
attractive compared to other measurement approaches. This section first highlights properties
of existing delay measurement approaches and then uses these properties for comparing current
approaches to flow-based OWD measurement.

Continuous systematic delay measurements are predominantly performed in enterprise net-
works. While there are Internet-scale delay measurements across different network domains
(e.g., the RIPE atlas project [122]), they serve only for observing phenomenons and do not have
direct impact on network management. This has several reasons:

- Network-based services in an enterprise are business critical and hence network perfor-
mance impacts application response time, which directly impacts the enterprise’s produc-
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tivity. A good service quality can only be assured by continuous measurements since
relying on user complaints is inappropriate. If users complain there is already severe
service degradation and productivity is affected.

- The network and service management staff can react on bad measurement results imme-
diately. Routing schemes or QoS parameters can be adjusted to address problems.

- All parts of the network are well managed and there are SLAs for the parts of the network
that are not owned by the enterprise (e.g., MPLS VPN). Continuous measurements allow
for checking whether SLAs are obeyed. This is a prerequisite to inform the provider about
problems and potentially get financial compensation for service degradation.

In the Internet there are currently no inter-domain SLAs and as there are multiple transit providers
involved (see Section 2.1.3), the facts that motivate delay measurement in enterprise networks
are not valid in the Internet.

For comparing delay measurement approaches, there are three important criteria to consider
that will be elaborated in the following.

- One-Way (OW) or Two-Way (TW) measurement

- End-to-End (E2E) or Node-to-Node (N2N) measurement

- Active or passive measurement

The criteria are elaborated in the following based on the enterprise network scenario depicted
in Figure 4.1. In this figure the clients A and B at an enterprise branch location access a service
at the data center across the WAN.
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The figure shows on the top examples for OW and TW measurements. OW measurements
require two observation points and therefore provide information on unidirectional path char-
acteristics. In contrast, TW measurements use only one observation point and perform mea-
surements by taking request-response patterns into account. Hence, TW measurements always
provide combined information on the forward and reverse path. Furthermore, the characteristics
of the responding entity influence TW measurements.

TW measurements can observe the same path characteristics as clients that use the same paths
and are thus suitable for, e.g., monitor network impact on applications. However, TW mea-
surements are definitely not suitable for tracking down network problems that occur on a single
path. This is due to the fact that path characteristics are not symmetric, especially when prob-
lems arise. For example the forward and reverse path could take different routes as for the
request and response of client A in Figure 4.1 and therefore experience different propagation
delays. Or the load on the paths is different and therefore they are affected by different queuing
delays. Hence, only OW measurements are suited for tracking down delay problems.

Figure 4.1 shows on the bottom that measurements can be performed between different points
in the network. Each measurement point can either be an end system or a network node (e.g.,
router, switch, probe at a mirror port). E2E measurements are conducted between end systems
and thus take the complete path into account. Measurements between nodes are called N2N
measurements in this thesis and consider a certain network path only. Measurements between
nodes and end systems (N2E or E2N) are also possible. As Figure 4.1 shows, N2N measure-
ments between edge routers of an enterprise network are suitable in order to measure the WAN
characteristics. Considering the overall delay, the WAN contributes the largest fraction of the
propagation delay due to the long distance links. Since the WAN bandwidth is typically con-
siderable lower than enterprise LAN bandwidth, the WAN also contributes the largest fraction
of queuing delay. Hence, N2N measurements in enterprise networks provide information on
the paths on which delay effects occur predominantly. Furthermore, N2N measurements are
independent of end systems and are thus easier to deploy and manage from a network operation
point of view.

The third criterion for comparison is whether a measurement approach performs active or pas-
sive measurements. While active measurements can be conducted in regular intervals and thus
provide measurement results continuously, there is no direct relation to production traffic. As
Figure 4.1 shows the traffic can take different paths and thus it is important to know, which ap-
plication transactions actually experienced high delay on which path and to which traffic class
they belong. Only with passive measurements such information is available from the measure-
ment data itself. Additionally, active measurements produce artificial traffic and consume CPU
resources in routers with N2N measurements. Both effects must not be neglected, especially on
low bandwidth links and routers or switches with limited CPU resources.

Regarding the three criteria, it becomes obvious that a passive OW measurement approach suits
best the requirements for enterprise delay measurements. Furthermore, passive OW measure-
ment works on an N2N basis, which is also suitable in the considered scenario.

Table 4.1 shows different delay measurement approaches that have been introduced in Sec-
tion 2.3. Ping probes are used for basic measurements only. Application probes, distributed
network probes, or trace analysis are common approaches used in enterprise networks today.
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Table 4.1: Comparison of delay measurement approaches

approach scope OW/TW active typical effort comment
/passive measurands

ping probes any TW active delay, loss low basic tool
application
probes

E2E TW active delay, server
response time

medium requires dedicated
measurement
machines and
application
knowledge

distributed
network
probes

N2N OW active delay, loss,
jitter

medium available as router
feature. Per-path
setup required. CPU
and bandwidth
impact.

trace
analysis

N2E TW passive delay, server
response time

medium medium effort to
configure. Often
dedicated equipment
required. High
packet processing
effort.

coordinated
packet
sampling

N2N OW passive delay high additional packet
processing
equipment required.
No large scale
deployment/product
known.

flow-based N2N OW/TW passive delay, loss low flow capturing is a
router feature, often
already enabled.
Flow data
processing effort see
Chapter 5
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However, they are either active approaches, or passive TW approaches. Only coordinated packet
sampling is a passive OW approach and thus provides the ideal combination of properties. How-
ever, this mechanism is hard to deploy since it requires a special packet sampling mechanism.

The last row in Table 4.1 shows the flow-based OWD measurement approach. It provides the
ideal combination of properties. Furthermore, it requires almost no additional effort, since flow
capturing is often already performed in routers and the feature can just be enabled if this is
not the case. There is an effort for processing the flow data for extracting OWD samples, but
Chapter 5 will introduce an efficient processing approach for this task. In summary, flow-based
OWD measurement is very attractive.

4.2 Extracting Characteristics Assuming Perfect Flow Data

This section introduces the approach for extracting network characteristics from flow data, with-
out considering properties and effects of the flow capturing mechanisms in detail. The main
measurand of interest for extraction is OWD. As shown in the following also other quantities,
such as packet loss, have to be taken into account for proper OWD measurement. At this stage,
no measurement errors or flow capturing effects are considered. This means that perfect flow
data from a stateful flow capturing mechanism is assumed, where each flow record describes a
complete flow and has accurate timestamps. The following sections first introduce the terminol-
ogy and general requirements associated with the OWD extraction. Then, the network effects
are considered together with their impact on measurement.

4.2.1 Extraction Approach and Terminology

Extracting OWD from flow data works if there are at least two Observation Points (OP) (see
Section 3.1.3) that create flow records for a flow. Figure 4.2 depicts such a scenario that also
illustrates the terminology used throughout this thesis: A flow of packets traverses the network
from source A to destination B and two devices on this path capture flow data. In typical
scenarios flow capturing happens in routers (see Section 3.3). Therefore, a router symbol is
used in figures.

The OPs where packets are metered to create flow data determine the points in the network
between which OWD can be measured. Regarding routers it is important to consider that an OP
is not the router itself, but a point inside the router. This is essential since router-internal delays
(e.g., queuing delays) contribute to OWD (see OWD definition in Section 2.3.1). Additionally,
there could even be several OPs for the same flow in one router (see flow capturing implemen-
tations in Section 3.3). Figure 4.2 shows the typical ingress flow capturing where the OP is in
the ingress forwarding engine and hence in front of the queues.

Two OPs form an Observation Point Pair (OPP), as shown in Figure 4.2 for the two OPs OP1
and OP2. Packets of a flow first pass the first OP of an OPP (OP1 in Figure 4.2) and the second
OP (OP2 in Figure 4.2) thereafter. The flow data generated from the flows passing these OPs
is input for calculating characteristics of the network path in between, called OPP path. OWD
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measured based on flow data will therefore always be an N2N measurement related to path
segments and not an E2E metric as, e.g., defined in [RFC 2679].

Section 3.1.1 highlights that flow capturing obtains record timestamps from packet traversal
times, i.e., there is only one timestamp associated with a packet. In the following calculations
and illustrations, flow record timestamps are defined to correspond to the time of the first bit of
the packet that a flow timestamp is related to.

OWD extraction requires the calculation of flow record attribute differences between the two
observation points of an OPP. As the following sections show, calculating time stamp differ-
ences is not sufficient, but packet and byte count differences have to be calculated as well due
to network effects. An attribute difference for an OPP is defined as the attribute value at the
second OP minus the attribute value at the first OP. Figure 4.2 illustrates this for a packet loss in
the flow that results in a negative byte difference ∆b = bOP2−bOP1 and a negative packet differ-
ence ∆p. The OWD on the OPP path results in the start time difference ∆ts = ts,OP2− ts,OP1 and
end time difference ∆te = te,OP2 − te,OP1 . In the basic example presented here, these timestamp
differences equal the OWD samples. However, the following sections show that this does not
hold in the general case.

The right hand side of Figure 4.2 depicts the application that extracts the characteristics from
flow records taken from the collector. Figure 4.3 shows a general model of this application.
This extraction model shows the basic processing steps and will be extended throughout the
next sections with steps necessary for handling network effects, flow capturing effects, and
flow data errors. Chapter 5 takes this abstract model as input and develops an efficient online
processing approach.

As shown in Figure 4.3, records from several exporters arrive at the collector, among them the
records R1 and R2, which we consider in the following. For simplification, the records are
illustrated by three fields only: the Observation Point OP, the flow keys K and the attributes V.

The processing for extracting path characteristics, such as OWD, can be divided into three
fundamental steps:
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1. OPP determination based on OP fields

2. Flow matching based on K

3. Attribute difference calculation based on V

The first processing step filters on records of the OPP of interest. Additionally, the first step
orders the records according the OPP definition. This is required in order to perform proper
difference calculation. Relying on flow timestamps for OP ordering is not sufficient due to
timestamp errors as Section 4.4 will show.

The second processing step checks if both flow records describe the same flow F across the
network based on the flow key K. In the example of Figure 4.3, the records R1 and R2 are
identified after this step. In the third step, the ordering of records in terms of OPP is known as
well as that the records belong to the same flow. This allows for the correct calculation of the
attribute differences ∆ts, ∆te, ∆p, and ∆b.

While there is not much choice for the flow attributes taken from the attributes V, there are
several degrees of freedom concerning the properties that identify the OP and the flow. The
requirement for OP determination is that the values contained in the OP field must uniquely
identify a point in the network, such as a router interface. An identifier consisting of the router
address and an interface identifier fulfills this requirement.

Key values for flow identification must ensure that the mapping between packets and flows is
consistent across all OPs, i.e. the values used must be path invariant. Thus, path variant fields,
such as, e.g., IPv4 TTL, must not be used as key values. This is the same requirement as for
OWD extraction based on coordinated packet sampling (see Section 2.3.3) with coordinated
sampling [123]. The latter is obvious, since flow-based OWD measurement corresponds basi-
cally to coordinated packet sampling based OWD measurement without temporal and spatial
aggregation of packets to flows.

The amount of OWD samples that can be obtained from flow data depends on the flow key
definition that itself has not been considered so far. An upper bound for samples is obviously
taking every path invariant fields into the flow key. However, the flow key chosen in reality is
often a subset of path invariant fields, since, e.g., packet size and TCP sequence numbers are
path invariant, but it does not make sense to include them in a flow key. The lower bound is
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defining a flow as all packets passing an OP, i.e., a highly aggregated notion of a flow. This
would allow for creating two OWD samples only: one at the activation of an interface/router
and the other at shutdown. A sensible definition of a flow key, if OWD should be calculated
from flow data, is therefore using endpoint defined flows (e.g., using IP addresses only). Using
the five tuple (i.e., transport layer endpoints) is straightforward since it is common for flow
capturing deployments today (e.g., NetFlow v5) and represents a good trade-off between effort
of flow capturing and amount of OWD samples that can be calculated.

4.2.2 Impact of Network Effects

The previous section introduced the principle of network characteristic extraction and the re-
lated terminology. This section focuses on network effects that interfere with reliable deter-
mination of these characteristics, while still assuming that perfect flow data is available. As
introduced above, flow-based OWD calculation corresponds to passive packet based OWD cal-
culation with using timestamps of the first and last packet of a flow only. Consequently, OWD
extraction from flow data is only possible if the flow start timestamps at both OPs correspond
to packet traversal times of the same packet and the flow end timestamp at both OPs corre-
spond to packet traversal times of the same packet.1 This property is defined as Start-End-
Correspondence (SEC). If SEC holds, the flow record timestamp differences (∆ts, ∆te) can be
taken as OWD samples.

The following subsections elaborate three categories of network effects that impact SEC. Fi-
nally, the extraction model presented above will be extended to handle these cases. The three
categories are packet count change, identifier change, and partly disjoint paths.

Packet count change

If the packet count in flow records changes on an OPP path, this is caused by effects on path
segments or within devices. Three important cases are illustrated in Figure 4.4 and detailed in
the following. For all cases, an OPP path is considered with routers and middleboxes between
the two OPs that do not export flow data, thus details of the traffic there are not visible. Such
scenarios are often found in enterprise networks (see Section 2.1.3).

The first case is packet loss on the OPP path, which may happen due to buffer overflow in
routers or transmission errors on links. As illustrated in Figure 4.4 on the left, three different
loss positions within a flow can be distinguished that have different impact on flow record
timestamps. First, the first packet of the flow can get lost, which leads to the problem that
∆ts does not reflect the OWD, but the time difference between the first packet on OP1 and the
second packet on OP2 (no SEC). Second, a packet loss can affect the last packet of the flow,
leading to the same problem, however, with ∆te. Third, a packet in the middle of the flow can
get lost, in which case SEC holds and thus ∆ts and ∆te are OWD samples.

1In general, it is sufficient to know the correspondence of the first packet’s timestamps in order to take ∆ts as
OWD sample and the correspondence of the last packet’s timestamp in order to take ∆te as OWD sample. However,
if there is no correspondence on either start or end, it is practically impossible to judge whether it is on start or end.
Thus, SEC is defined using the conjunction.
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Figure 4.4: Packet count change scenarios

Packet loss in one of the three positions always leads to ∆p < 0 and ∆b < 0. However, without
additional knowledge, it is impossible to distinguish the harmless third case from the cases that
affect SEC. Consequently, OWD sample creation from all cases where ∆p < 0 and ∆b < 0 must
be denied. A special case is a flow with one packet, which gets lost on the OPP path. This will
lead to a flow record at OP1, but none at OP2. Thus, the extraction mechanism has to take care
for such cases where it does not find a matching record.

The second scenario in Figure 4.4 illustrates packet fragmentation. This effect affects flow
records if transport protocol fields (e.g., port numbers) are part of the flow key, since transport
protocol headers are not present in fragments. Thus, fragments cannot be associated with the
same flow as packets that contain transport protocol headers. This problem exists in most flow
capturing scenarios where flow capturing devices do not reassemble fragments and transport
protocol fields are in the flow key, such as with NetFlow.

With fragmentation, the same number of packets will be present in the flow records at OP1 and
OP2 (∆p = 0). However, the record from OP2 contains less bytes than the records from OP1.
Thus, such cases can be detected by ∆b < 0. As a conclusion, even if start and end timestamp
might not correspond to exactly the same packet in this case, OWD calculation will be correct
and it is defined that SEC holds in case of fragmentation. Even if today fragmentation is often
disabled in routers, OWD extraction has in principle to be aware for such cases, since fragments
can often be found (see Section A.1).

There could be middleboxes on the path that cause packet count change. One important de-
vice class are WAN optimizers that improve application performance on long distance links by
compression, caching, and shortcuts for protocol handshakes. In most cases, there is a pair of
WAN optimizers at the edges of the long distance link, where the ingress WAN optimizer, e.g.,
performs compression and the egress optimizer handles decompression. This scenario for an
ingress WAN optimizer is depicted on the right of Figure 4.4. While flows for which the device
does not perform optimizations will pass the device unchanged, other flows will completely
change in terms of byte and packet count as well as in timing. Due to optimization and com-
pression, there will be ∆p≤ 0 and ∆b≤ 0, which is the same as for packet loss. On the egress
WAN optimizer, there will be accordingly ∆p≥ 0 and ∆b≥ 0. Obviously, OWD samples must
not be created from such flow records and both SEC-violating cases can be detected. From a
deployment point of view, a solution to this problem could be to enable flow capturing on the
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interfaces of the middleboxes, therefore turning them into OPs. This would split the previously
considered OPP path into two OPP paths, on which no WAN optimizer effects happen and
OWD can be reliably calculated for these path segments. The delay introduced by the WAN op-
timizer itself, however, can still be measured only for cases where it leaves packets unchanged
and SEC holds.

In addition to the previously mentioned scenarios, there might also be special routing schemes
or (transient) routing loops, in which case packets traverse an OP more than once. In these cases
the amount of packet traversals for the OPs of an OPP differs, thus SEC does not hold. Such
cases lead to ∆p 6= 0 and ∆b 6= 0 and are hence detectable.

Key value change

One important step before calculating attribute differences is flow matching, which requires to
find the same flow on both OPs. However, flows are identified by key values that might change
on the OPP path in certain scenarios, i.e., network effects can lead to cases where the properties
are not fully path invariant. Figure 4.5 depicts the two fundamental categories of complete
change and partial change.

In the case of a complete change, key values change for all packets at a certain point in the
network, for example at a network address translator (NAT) or with tunneling mechanisms.
According to the flow definition, this splits the data transmission into two flows, as shown in
Figure 4.5. There is still SEC in this case and OWD could be calculated. However, flow match-
ing will not work unless the translation table of the device is known, which is typically not the
case. Depending on the NAT type, only some key values change (e.g., source addresses change,
destination addresses do not change). This would allow applying matching heuristics, which
is not considered further in this thesis. As with WAN optimizers, turning on flow capturing
at the interfaces of the key changing device would allow to extract characteristics of the path
segments.

Partial change only affects key values of a fraction of packets. As Figure 4.5 shows this leads
to a new flow from the point of key value change, while the original flow continues with fewer
packets. Since for the original flow there is ∆p< 0 and ∆b< 0, this cannot be distinguished from
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packet loss and no OWD samples must be generated from the original flow alone, despite SEC
could hold as for the illustrated case. Since typically not all key values change, e.g., the endpoint
addresses will be untouched, there will just be an additional subflow. Based on the remaining
unchanged keys the original and the subflow can be merged. Subflow merging demands for the
consideration of flow capturing properties and is thus detailed in Section 4.3.1.2.

Partly disjoint paths

The primary goal of routers is to forward packets towards the destination. If there are several
paths with similar characteristics leading to the destination, routers may perform load balancing
(see Section 2.1.3), which leads to partly disjoint paths.

Figure 4.6 shows a scenario where a flow passes OP1 after which load balancing (LB) is applied
and packets are sent on the path to OP2 as well as to the path to OP3. On the left, per flow
load balancing is applied, i.e., all packets of a flow are sent on the same path. In this case,
flow records from the two OPPs can be matched and SEC holds, thus OWD samples can be
calculated.

In the case of per packet load balancing on the right, the first flow is split up. Here, SEC does
not hold for both OPPs and this case can be detected by ∆p > 0 and ∆b > 0. However, also in
the case of per packet load balancing SEC can hold, if by chance all packets of a flow take the
same path.

Load balancing is effectively equivalent to rerouting. Thus, typical rerouting events lead to
similar effects, however, only sporadically. If a flow becomes rerouted, the effects are similar
to the first flow on the right hand side of Figure 4.6, i.e., SEC does not hold.

Consequences

All network effects of the categories packet count change, identifier change, and partly disjoint
paths need special attention in order to validate that SEC holds and correct OWD samples can
be created. As shown, SEC cannot be evaluated by ∆p alone, but ∆b has to be taken into account
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as well. In addition to this, no additional knowledge on devices or effects on the path is required
in order to detect whether SEC is potentially violated.

These considerations lead to an extension of the extraction model shown in Figure 4.7. After
the characteristics extraction block, a SEC check block checks whether ∆p = 0 and ∆b = 0 hold
before forwarding ∆ts and ∆te as OWD samples.

4.3 Impact of Flow Capturing Effects and Errors

The previous section introduced how OWD can be extracted from flow data and how network
effects impact the extraction principle. This was under the assumption of perfect flow data and
independent of the capturing mechanism, i.e., flow records precisely described complete flows.

This section deals with effects from the flow capturing principle itself in the first subsection and
with errors present in flow capturing mechanisms in the second subsection. The considerations
in this section apply to stateful unsampled flow capturing mechanisms, such as NetFlow (see
Section 3.2.4).

Timestamp errors are considered separately in Section 4.4.

4.3.1 Effects resulting from Flow Capturing

Due to stateful flow capturing, temporal aggregation of packets into flows impacts OWD ex-
traction. Furthermore, flow keys containing path variant fields lead to certain problems. This
subsection addresses both problems, which are flow capturing effects, not errors.

4.3.1.1 Temporal Aggregation

Stateful flow capturing performs temporal aggregation of packets into flow records. Flow cap-
turing approaches like NetFlow create flow records based on timeouts, as introduced in Sec-
tion 3.2.4. Timeout handling between two OPs is not synchronized and thus even with the same
timeout settings configured, each OP might aggregate a different number of packets of a flow
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into a flow record. The created records hence differ in terms of the collected attributes and are
not directly comparable. Even with absolutely precise timeout handling, network effects can
lead to different packet interarrival times on each OP (jitter), potentially triggering a timeout on
one OP and not on the other.

Different temporal aggregation on OPs impacts the number of records that each OP creates.
Furthermore, different temporal aggregation leads to different alignment of records. Records
are aligned if SEC holds. If more than two records are created for a flow at an OPP, there are
different alignment scenarios. Figure 4.8 illustrates the following five exemplary cases.

1. One-record-flow
Both OPs export exactly one record. This is the simplest case that has been considered
for OWD calculation so far.

2. Partial multi-record-flow
One OP exports several records for a flow while the other OP exports one record only.
Here, the start and end times are aligned as depicted and OWD can be calculated accord-
ingly.

3. Aligned multi-record-flow
At each OP the same number of records is exported and the records are aligned. Thus,
SEC holds for each record pair and an OWD sample can be created.

4. Unaligned multi-record-flow
At each OP the same number of records is exported, but the records are unaligned. In
terms of number of OWD samples, this can be compared to case 2.)

5. Mixed multi-record-flow
This case is a mix of cases 2.), 3.) and 4.), where for each aligned record OWD samples
can be created, but not for unaligned records.

Depending on traffic characteristics, there are more aligned or unaligned multi-record-flows. If,
e.g., the traffic is bursty with long breaks in between, it is very likely that two OPs with the same
timeout configurations run into an inactive timeout and produce aligned records. Contrary, if
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there are long flows, which are cut into records by active timeouts, it is very unlikely that the
resulting records are aligned.

In addition to the alignment, of course, ∆p and ∆b have to be considered. The simplest method
is joining the records of a flow on each OP for ∆p and ∆b calculation and if there is a difference,
none of the records is used for OWD calculation. There are more sophisticated approaches dis-
cussed in Section 5.2.3 that check for alignment first and join records only in required cases. In
any case, a block for temporal record joining has to be added to the extraction model. This block
joins records before they enter the characteristics extraction block, as illustrated in Figure 4.9.

4.3.1.2 Path Variant Fields in the Flow Key

This subsection revisits the problem of key value change (introduced in Section 4.2.2). It con-
siders this problem in more detail and in combination with temporal aggregation as well as
other effects from flow capturing. This problem especially arises with NetFlow flow definitions
that include the ToS byte as path variant field in the flow key (e.g., the static flow definition
of NetFlow v5). The ToS byte contains the DSCP and ECN flags (see Section 2.1.1), which
both might change on a path due to DiffServ policing, remapping of DiffServ classes, or con-
gestion in ECN enabled routers. Hence there are several subflows (see Section 3.1.1) for an IP
transport layer (IPTL) flow that can change on the path. With other capturing mechanisms than
NetFlow v5 the ToS byte could be removed from the flow key by configuration. However, it is
unlikely that such configurations will be used often since the ToS byte is of interest especially
in enterprise networks where analyzing traffic based on traffic classes is a major use case for
flow capturing. Therefore, it is very likely that path variant fields are part of the flow key and
the problems highlighted in the following exist.

There are two corner cases concerning flows on an OPP path and a path variant field: either
the field is changed in every packet (complete change) or the field is not changed in any packet
(no change). If there is no change (Figure 4.10 on the left), all subflows will be unchanged.
The extraction mechanism can detect this case by checking for ∆p = 0 and ∆b = 0. Then, the
mechanism can directly match records based on the flow key and perform OWD calculation
on a subflow basis. Contrary, with complete change the extraction mechanism can match flow
records based on the path-invariant properties only (e.g., IP five tuple). Unambiguous subflow
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matching is possible as long as there is only one subflow at OP1 or the subflows differ in byte
or packet count (Figure 4.10 middle).

As soon as there is more than one subflow for a flow and record byte count is the same2 unam-
bigous subflow matching is impossible. The extraction mechanism is unable to match a subflow
record seen on OP1 to one of the subflow records of OP2 without taking additional knowledge
into account (Figure 4.10 right). It cannot be inferred how the path variant fields changed on
the path. E.g., in the presented example Fs1 could map to Fs3 or Fs4.

Cases of subflow change that are between the two corner cases are cases with partial change,
i.e., the path variant field is changed for a fraction of the packets of a flow only. Figure 4.11
shows on the left a simple case with one subflow where for some packets a path variant field
changes (subflow split). In conjunction with temporal aggregation effects from flow capturing,
this either leads to an overlapping case or an non-overlapping case. In the overlapping case, the
original subflow is exported in two records that are overlapped in time by a record of the new
subflow. In this example there are aligned subflow records, but this knowledge is not available
for OWD calculation. Hence, the subflow records of OP2 have to be merged in terms of the
path variant field as well as to be joined in time for OWD calculation with the records from
OP1. In the non-overlapping case of subflow split, subflow records at OP2 have to be merged
in any case.

2for example if each packet of Figure 4.10 has a length of 100 bytes
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Figure 4.12: Extraction model extended with block for subflow merging

In the example on the right hand side of Figure 4.11, a flow consists of two subflows from
the beginning. On the OPP path, there are two positions where the path variant field changes
for a fraction of packets. This example illustrates that even if the packet and byte count for a
single subflow is consistent across the OPP, SEC can be violated if the record and byte count
for the other subflow records is inconsistent. The green subflow record in the right example of
Figure 4.11 can have the same attribute properties on both OPs, however, SEC does not hold.
This is due to the fact that it is impossible to decide whether Fs3 consists out of the two packets
that are now missing in Fs1 or whether some packets moved from Fs1 to Fs2 and other packets
from Fs2 to Fs3. Consequently, a check for ∆p = 0 and ∆b = 0 for each subflow is required,
before calculating OWD on a per-subflow basis. This holds only under the assumption that path
variant fields change monotonically, e.g., that policers change traffic classes only in the way
that they get less priority. It can be assumed that this is typically the case.

As illustrated by the examples above, including path variant fields demands for attention with
flow-based OWD calculation. Extraction of OWD on a subflow-basis is only reliable if there
is no complete change or if packet and byte count consistency holds for every subflow. If this
does not hold, subflow records have to be merged. As a conclusion, the extraction model has to
be extended by a subflow merging block (see Figure 4.12) that considers the various cases and
performs subflow merging if necessary . This can range from simple algorithms that always
merge subflows and check for one-record-flows to more sophisticated algorithms that perform
OWD extraction on a per-subflow basis.

4.3.2 Errors in Flow Capturing

The previous subsections dealt with effects from flow capturing while assuming correct flow
data, i.e., no errors in the flow capturing process itself. However, there are several effects that
lead to measurement errors and data loss, which have to be considered in record matching and
OWD calculation. The following sections detail errors in the flow data itself (record fields) and
errors in the data export (record loss).
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4.3.2.1 Errors in Record Fields

This section considers errors in record fields, excluding timestamp fields. Such errors impact
matching of records, especially if the OPs of an OPP have different error characteristics. In
general, every field of a flow record could be subject to errors during metering and exporting.
However, only certain error cases arise in reality and are presented here. These errors are
packet count errors and byte count errors. Nevertheless, other errors and implausibilities might
arise depending on other/new flow capturing equipment. Flow processing and OWD extraction
mechanisms have to be robust against them and report such cases.

Packet count errors are errors where a packet of a flow passes an OP, but the counters in the flow
record do not reflect this packet. This can happen, e.g., if the flow cache (see Section 3.1.3) is
full and no flow entry can be created for the first packets of a flow, but for every other packet
thereafter. Such an accounting loss is also reflected in other record values, i.e., the start time
and packet count will also not reflect these packets.

In terms of byte count, some exporters report the Ethernet payload size, while other exporters
report the IP packet size3. Which size to report as byte count is not exactly specified, even the
NetFlow v9 RFC [RFC 3954] specifies the field IN_BYTES only as “Incoming counter with
number of bytes associated with an IP Flow”. This ambiguity results in errors if two exporters
of an OPP handle the byte count differently. This is especially a problem for all packets smaller
than 46 bytes, for which one exporter reports the IP packet size and the other the minimum
Ethernet payload size (46 bytes). In the following we will use the term byte count sensitivity
threshold for such a minimum reportable payload size, which will be denoted by k. Exporters
reporting the Ethernet payload size have a byte count sensitivity threshold of k = 46 and will
always report byte counts ≥ 46. This problem is called byte count limitation and the resulting
error on an affected OPP byte count error. In the following the bounds of this error for the case
where one OP has a byte count sensitivity threshold of k > 0 and the other OP has k = 0 are
derived. k = 0 means that an OP reports the IP packet size. Depending on the packet size, the
maximum byte count error per record is

er,b = p · (k−bp,min), (4.1)

with bp,min being the smallest IP packet size. According to its definition, the error is always pos-
itive and adds to or subtracts from |∆b| depending on whether OP1 or OP2 has the byte count
limitation. The smallest theoretically possible IP packet size is 20 bytes (no payload), thus
the highest possible error per packet is 26 bytes. Evaluations of packet sizes in real networks
(Section A.1) show that there are no such packets, but packets with 21 bytes can be found. Con-
sidering cases relevant for OWD calculation (UDP and TCP packets) there is still a considerable
amount of packets with size below 46 bytes. Thus, the byte count error is severe and has to be
considered in OWD calculation. This is especially important since ∆b is an important indicator
for effects that compromise SEC, but cannot be detected by evaluation of ∆p alone.

3This error was discovered by the author and a master student [12]. Several NetFlow experts have not been
aware of this problem.
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Whether there can be an error for a certain record at an OPP and the value of this error depend
on distribution of the bytes among packets contained in a record. Since this distribution cannot
be known from evaluating a flow record containing more than one packet, the real error cannot
be calculated. Only lower bound and upper bounds can be given for two corner cases (see
Figure 4.13). The lowest error in Figure 4.13 left results if the bytes are equally distributed
among packets, i.e., the difference between the byte count of a packet and k is as small as
possible and approaches zero if p · k bytes are present:

er,bmin = max(p · k−b,0) (4.2)

for b being the byte count from the IP packet sizes (of the OP that reports the lowest value).

The upper error bound results from the case where all bytes are packed in as few packets as
possible (Figure 4.13 right). Then, every remaining packet will contribute the largest possible
error. Obviously, this means that the maximum and minimum packet size (bp,max(MTU) and
bp,min ) have to be taken into consideration.

A first step for calculating the upper bound is considering how many completely filled packets
can be present. This is the amount of MTU-size packets that can be filled with the amount of
bytes not taken by the headers (b− p ·bp,min). The number of these packets is

nfull =

⌊
b− p ·bp,min

bp,max−bp,min

⌋
(4.3)

If nfull = p all packets are full and there will be no error. Furthermore, the highest error occurs
if the maximum amount of packets contains the minimum number of bytes only. However,
packets may exist that have more than the minimum bytes but less than the MTU (packet in the
middle of Figure 4.13, right). The error contribution of this middle packet is

er,bhalffull = max(k−bp,min− [(b− p ·bp,min)−nfull · (bp,max−bp,min)],0). (4.4)

The remaining packets contain only headers and contribute with the maximum amount of error,
i.e., the error of these empty packets is

er,bempty = (p−nfull−1) · (k−bp,min) (4.5)
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Thus, the upper bound for the error is

er,bmax =

0 nfull = p

er,bhalffull + er,bempty otherwise
(4.6)

Using these calculations for upper and lower bounds, it is possible to determine whether ∆b
values for two records from an OPP path with the 46-bytes-error are reasonable or whether
there was an effect that potentially breaks SEC and an OWD sample must not be created. As
input parameter bp,min can be chosen according to the transport protocol and the MTU (bp,max)
has to be provided as input. In the extraction model (Figure 4.12), this has to be considered in
the SEC-check stage.

As a side note, it is worth to mention that 46-byte-problem’s impact vanishes for IPv6, where
the IP header has already a size of 40 bytes and packets of UDP over IPv6 have at leas a length
of 48 bytes.

4.3.2.2 Record Loss

For several reasons flow capturing mechanisms cannot guarantee that flow records for every
flow are in the end available to the analysis application. First, the exporter itself might be under
high load, such that it cannot send every flow record created in a packet due to overflow of
internal queues. Second, flow records are sent using unreliable transport protocols (NetFlow
uses UDP) and there is no application layer mechanism for compensating packet loss. Third,
the collector itself might lose records due to overflow of packet queues in the receiving stage or
due to other overload effects.

Collectors can quantify loss due to sequence numbers in flow data packets. For NetFlow v5,
loss can be quantified on a per-record basis while NetFlow v9 only allows the quantification of
lost NetFlow packets (see Section 3.2.4). Flow record loss rates can approach 2 % or even more
in reality, thus this effect has high impact and must be considered in every flow data processing
application.
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While it is possible to quantify the loss per exporter, it is not possible to know which records
have been actually lost. For extraction of network characteristics, especially packet loss and
OWD, record loss has several impacts, as illustrated in Figure 4.14. In the case of simple
loss, there is one record on OP1, but the only record from OP2 is lost. This means that no
characteristics can be extracted at all. If there are several records per flow and one is lost,
this cannot be distinguished from packet loss, especially if those records have short durations
(second case in Figure 4.14). A similar case where only records from OP1 are lost, however,
would correspond to negative packet loss by evaluating ∆b, which is obviously an error (not
shown in the figure). If records with the same number of packets from both OPs are lost, this is
a packet count neutral loss. This case highlights again that for OWD extraction it is essential to
take ∆b into account in order to limit the possibility that SEC does not hold. However, SEC still
cannot be guaranteed even if ∆b = 0, since the byte count of the lost record and the lost packet
can be the same.

In terms of subflows, a subflow record loss equal to packet loss can occur, as the fourth case of
Figure 4.14 illustrates. Again, there is an ambiguity between packet loss and record loss. It is
even possible, if not very probable, that packet loss is concealed by a lost subflow in conjunction
with a subflow merge (e.g., DSCP reclassification) on the path (fifth case in Figure 4.14).

As a consequence from record loss, completely exact packet loss determination from NetFlow
data is not possible. Also record loss makes checking ∆b for OWD extraction even more im-
portant, even if there is some possibility that some cases where SEC does not hold cannot be
detected. This will lead to a small number of wrong OWD samples. In terms of the extraction
model (Figure 4.12), no further stages are necessary to detect record loss, since this is handled
by the SEC-check stage. However, all mechanisms have to be designed in a way that they are
robust against record loss and do not wait for flow records that might never arrive.

4.3.3 Summary of Effects and their Impact

The previous sections presented several effects and errors in flow capturing. For each of the
effects, the impact on OWD calculation, i.e., whether Start-End-Correspondence (SEC) can
be assured, has been considered and actions for detecting and handling effects have been given.
This section gives a summary on these effects and draws conclusions for OWD extraction mech-
anisms that have to deal with these effects and errors.

Table 4.2 shows a summary of effects in the order they have been presented. For each effect, the
impact on ∆p and ∆b for an OPP path where this error occurs is given. Additionally, the table
shows which effect has impact on SEC or on the amount of OWD samples that can be extracted.
The last column gives the action to take for detecting and/or handling or compensating the
effect.

For each single effect listed in the table there is an appropriate action, such that it can be detected
and SEC can be assured. However, this is not the case if effects are combined, which leads
to ambiguities and a certain probability that the effects compensate for each other. In such
cases the effects cannot be detected, however, SEC might be violated nevertheless and an OWD
sample created from ∆ts or ∆te is possibly wrong.
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Table 4.2: Network effects and flow capturing effects summary

effect impact on action
number of

∆p ∆b SEC OWD samples
packet loss < 0 < 0 x x discard if ∆p 6= 0
fragmentation 0 < 0 - - none
WAN opt., ingress < 0 < 0 x x discard if

∆p 6= 0∨∆b 6= 0
WAN opt., egress > 0 > 0 x x discard if

∆p 6= 0∨∆b 6= 0
load balancing before
OP1, paths combined
on OP2

> 0 > 0 x x discard affected records
(∆p 6= 0∨∆b 6= 0)

load balancing on OPP
path

< 0 < 0 x x discard affected records
(∆p 6= 0∨∆b 6= 0)

temporal aggregation 0 0 - x temporal joining of
records

path variant fields in
flow key

0 0 x x subflow merging,
per-subflow OWD
calculation possible if
∆p 6= 0∨∆b 6= 0 holds
for the flow

packet not captured on
OP1

> 0 > 0 x x discard if ∆p 6= 0

packet not captured on
OP2

< 0 < 0 x x discard if ∆p 6= 0

byte count error 0 6= 0 - - check for ∆b = 0
affected

record lost from OP1 > 0 > 0 x x discard if ∆p 6= 0
record lost from OP2 < 0 < 0 x x discard if ∆p 6= 0
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There are several effects that depend on the network or its configuration. Taking such knowl-
edge into account could give advantage to OWD extraction algorithms. However, additional
knowledge can never remove all ambiguities, as there will always be, e.g., packet loss, record
loss, and packet capturing loss, even with a very low probability.

Since there always can be a combination of effects, this leads to two conclusions

1. Not all cases where SEC is violated can be detected. There is always a certain probability
of OWD measurement errors from these effects.

2. All attributes present for improving the matching and SEC detection should be taken into
account in order to reduce the possibility of errors.

The second point means that especially byte count should be taken into account. However, byte
count itself is subject to errors and thus the extraction mechanism has to be adapted to each
OPP’s characteristic, i.e., it has to check for ∆b within the error bounds of this OPP.

Flow capturing mechanisms that perform packet sampling (e.g., sFlow, sampled NetFlow, IP-
FIX PSAMP) have not been considered. In these cases there is a very low probability that
records that describe the same packets at both OPs can be found (i.e., SEC holds), which is a
requirement for OWD extraction. Coordinated sampling approaches for stateful flow capturing,
such as trajectory sampling (see Section 3.3) approaches can solve this problem.

4.4 Timestamp Errors

After effects from flow capturing mechanisms that impact OWD calculation from flow records
have been considered in the previous section, this section focuses on an essential fact: the
accuracy of flow record timestamps. Based on a general model that covers all effects observed
in flow data, these effects are systematically addressed in this section and consequences for
system design are drawn in the last subsection.

As a general principle the highest priority is on quantification and compensation of systematic
errors. The second highest priority is on quantifying the impact of random errors on accuracy.
If both is not possible for certain errors (i.e., the error behavior cannot be captured by statistical
means), flow record data is considered as blunder and must be removed (third highest priority),
i.e., respective samples have to be detected and discarded.

4.4.1 Model of Timestamp Creation

The basic model of timestamp creation with NetFlow was introduced in Section 3.2.4. In the
following, this basic model initially introduced in Figure 3.12 will be extended by properties of
flow capturing devices that affect the accuracy of timestamps. Figure 4.15 shows this extended
model highlighting the points where effects can affect the timestamp accuracy.
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Figure 4.15: Timestamp creation model highlighting accuracy impacting points

This model is based on observations and measurements of NetFlow v5 data from a very large
number of exporters. Thus, it reflects properties of lots of different flow capturing devices.
Additionally, this model is kept general and covers all paths of timestamp values within a flow
capturing device. Although it is unlikely that there are flow capturing devices for which this
model does not fit, extensions and modifications for such flow capturing devices would be
straightforward.

Figure 4.15 introduces symbols for clocks and timestamps that will be used in the following
sections. There are two internal clocks, the system clock y(t) and the RTC u(t), which are
used for creating timestamp values. The RTC is typically synchronized to a global reference
time t, but in general always differs slightly from t. u(t) models the difference from t. The
system clock y(t) is often a free running hardware clock based on a quartz oscillator. The
values of these clocks are taken for creating the raw timestamps of the packet header for system
uptime rsu, UNIX time seconds rsec, and UNIX time nanoseconds rnsec. Raw timestamps for
flow start and end time are rfirst and rlast. These raw timestamps are input for calculating the
record timestamps export time (tx), boot time (tb), flow start time (ts), and flow end time (te), as
introduced in Section 3.2.4 and shown at the bottom of Figure 4.15.

The symbols highlighting accuracy impacting points are classified into four categories, each
represented by a different symbol and different color in Figure 4.15:
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- The Skew ωy(t) between exporter-internal clocks describes the effect that internal
clocks are unsynchronized among each other. Section 4.4.2.2 discusses these effects.

- Limited resolutions ρ of raw timestamps lower the resolution of record timestamp val-
ues reported although the protocol specifies 32 bit width for all timestamp fields. The
limited resolution can result from low resolution of employed clocks as well as from cut-
ting off bits from clock values. The latter could be motivated by memory requirements for
saving memory in the flow cache. Errors resulting from limited resolutions are discussed
in Section 4.4.3.

- Internal conversions Cx of timestamp values lead to effects that trailing unused bits of
timestamp values are not cut off (zero), but changed to other values. This might not affect
accuracy itself, but lead to effects that have to be considered in error distributions and is
therefore also covered in Section 4.4.3.

- Delays Dx in timestamp processing cause inconsistencies in timestamp values like dif-
ferent timestamps for the same event. Section 4.4.4 will address these effects.

Whether and to which degree errors and effects are present depends on the implementation of
the flow capturing device and its hardware components. If several metering processes or several
exporting processes are present in a device, each may have its own characteristics. Conse-
quently, the errors present in flow data depend not only on the device, but also on the observa-
tion point where packets are metered. Additionally, every timestamp value is obviously subject
to overflows. This is not an error, but a property of the flow capturing mechanism itself.

4.4.2 Clock Synchronization

As introduced previously, there are two clocks for creating flow data possibly not synchronized
to each other or to a global reference time. The first part of this section discusses issues of RTC
synchronization and possibilities for removing systematic errors introduced by unsynchronized
clocks. The second part considers the system clock and effects resulting from the skew between
the system clock and the RTC as well as possibilities for correction of errors.

4.4.2.1 Real-time Clock Synchronization

The timestamps provided by the RTC u(t) in flow data packets are input for calculating the abso-
lute flow record timestamps. These timestamps are created from the value of the RTC at export
time, i.e., u(tx). Thus, an offset of ωu(t) = u(t)− t impacts all absolute timestamps calculated
from tx with the offset ωu(tx). As for OWD measurement flow timestamps from different flow
capturing devices are considered, taking into account the accuracy of these timestamps and
their synchronization is essential. The total impact of RTC offsets on OWD calculated from
timestamps of an OPP is ωu,OP2(tx,OP2)−ωu,OP1(tx,OP1).

With hundreds of routers in large networks, keeping track of every router’s clock and its config-
uration with respect to time synchronization is a challenging task. Thus, it is always likely that
some clocks run unsynchronized for certain time and that this is not noticed by administrators
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or network management tools. Multi-domain networks complicate the problem of synchronized
clocks, as every domain might rely on its own synchronization mechanism. Especially in en-
terprise networks, flow data is also exported from routers that do not belong to the enterprise,
but to the a carrier, as it is, e.g., the case for CE routers of an MPLS VPN (see Section 2.1.3).
Administrators of the enterprise networks often do not have permissions to change configura-
tions on CE routers, thus keeping the clocks of these routers synchronized is up to the carrier.
Flow data collected from a global enterprise network showed that unsynchronized clocks of CE
routers are a severe problem. Several router clocks’ offset was in the range of several minutes.
Evaluations in [3] also show that RTC skew differs between exporters and that there is almost
no drift .

Due to the possibility of unsynchronized clocks, it is important to check whether clocks are
synchronized before starting OWD extraction. This means that it has to be checked whether
u(t) reported by each exporter is consistent with reference time or whether it shows offset,
skew, or drift. Possible actions if such effects are detected are either dropping all data exported
from a respective exporter or compensating for such effects. In Section 2.3.4 related work for
skew and offset estimation has been presented. Based on these, offset and skew can be estimated
as ωu(t) = ω0,u +ϕ0,u · t. After checking that drift is negligible, clock synchronization errors
can be compensated before extracting the OWD.

4.4.2.2 Skew of Internal Clocks

The model of Figure 4.15 shows that there are two independent clocks in an exporter: the RTC
that is possibly synchronized to UTC and the system clock. Evaluations of NetFlow data show
that these two clocks are often not synchronized to each other and that the system clock is most
likely a free running quartz oscillator. This leads to a time-dependent offset, i.e., a skew called
system clock skew denoted by ωy(t). This effect was found by the author and published in [6].
Trammell et al. also reported this effect in [74]. This system clock skew adds an export delay
dependent error to flow record timestamps.

The system clock skew ωy(t) is a characteristic value, modeled as the skew between the system
clock y(t) and the RTC u(t). It is not modeled as skew to t, and can therefore be calculated
directly from NetFlow raw timestamp fields that report y(t) and u(t). Evaluations from NetFlow
data show that the system clock skew mean is constant, i.e., there is no drift, but only little
noise. The system clock skew is therefore denoted by the constant ϕ0,y. The overall system
clock offset is hence

ωy(t) = y(t)−u(t) = ω0,y+ϕ0,y ·u(t). (4.7)

If there are several flow capturing processes in an exporter (see Section 3.3), each might have its
own system clock and hence different values for the system clock skew. Thus, the system clock
skew has to be considered as a characteristic per Observation Point. The system clock skew
puts an error on timestamps, especially it impacts the boot time tb calculated from the RTC and
system time. This leads to continuous boot time shift, i.e., the reported tb changes over time:

tb(t) = u(t)− y(t) =−ωy(t) (4.8)
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Figure 4.16: Impact of system time skew on record start and end timestamps

As ts and te are calculated from tb (see Figure 4.15), ωy(t) also impacts these timestamps. The
impact on these timestamps depends on the export delay, i.e. time interval between ts, te and tx,
which have been defined in Section 3.1.3 as δs and δe.

Figure 4.16 shows the relations between the true timestamps (tb,t, ts,t, te,t) and the timestamps
reported in flow records due to system clock skew (tb, ts, te). tx is not affected by this effect,
thus tx = tx,t holds. In order to simplify illustrations, u(t) is assumed to be synchronized to
the true time t and the following considerations are based on tb(t). The x-axis in Figure 4.16
indicates the true timestamps for the exemplary flow record depicted below. From the depicted
y(t) (green line) the raw timestamps are created (orange symbols on the lefthand side). In this
example, there is a negative system clock skew, i.e., ϕ0,y < 0 and thus a positive boot time shift
tb(t). The orange line indicates y∗(t), which is y(t) shifted up in a way that it intersects with u(t)
at tx:

y∗(t) = y(t)+ tb(tx) (4.9)

The line of y∗(t) in Figure 4.16 allows to read the reported erroneous timestamps directly: they
are the y-values of y∗(t) at the points where the x-values are the real timestamps.

The corresponding raw timestamps are illustrated as well on the left in Figure 4.16. The reported
timestamps result in a reported flow record (left hand side) that is distorted compared to the true
flow record. This is indicated by the error of the start timestamp es = ts− ts,t and end timestamp
ee = te− te,t.

The error of the start timestamp can be calculated by taking the export delay δs into account and
the impact of the offset accumulated in this interval:

es = (tx,t− ts,t) · (−ϕ0,y) = δs · (−ϕ0,y) (4.10)
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Considering this error as difference between y∗(t) and u(t), we can derive another equation:

es = y∗(ts,t)−u(ts,t) = y∗(ts,t)− ts,t (4.11)

Using equations (4.8), (4.9), (4.10), and (4.11), we can derive the equation for export delay
dependency error correction:

ts,t = tx +
rfirst− rsu

ϕ0,y+1
. (4.12)

Accordingly for the end timestamp, we get

te,t = tx +
rlast− rsu

ϕ0,y+1
. (4.13)

Considering OWD measurements, the error depends on the system clock skew of the observa-
tion points. More specifically, it depends on the system clock skew difference between OP1 and
OP2 of the OPP: ∆ϕ0,yOPP

= ϕ0,yOP1
−ϕ0,yOP2

. The error introduced by ∆ϕ0,yOPP
depends

on the export delay, and thus eventually on the export timers. If an exemplary inactive time-
out of 10 s is considered, the end timestamp of a record will experience an error of 1 ms for
∆ϕ0,yOPP

= 1·10−4. As the evaluations in Section 7.2.4 show, such ∆ϕ0,y values are common
in NetFlow data. The accuracy of standard quartz oscillators is in this range of +/- 100 ppm
(+/- 1·10−4). For long records that have, e.g., been exported due to active timeout of 60 s, an
error of 1 ms will already exist for ∆ϕ0,yOPP

= 16.7·10−6.

These considerations show that system clock skew can cause errors in OWD measurement of
several milliseconds. However, this error can be compensated if ϕ0,y is known. This error is
independent of other synchronization errors. If u(t) is not synchronized to t, this is simply an
additive error as discussed previously.

4.4.3 Timestamp Resolution and Effects

The timestamp creation model presented in Section 4.4.1 contains parameters describing limited
resolutions of raw timestamps. These resolution parameters, as well as how resolution limitation
causes systematic and random errors is evaluated in this section. First, the typical resolution
characteristics, i.e., typical parameters for flow data exporters, are considered. In the second
part, systematic errors caused by resolution characteristics of single OPs as well as their impact
on OPPs with exporters that have different resolution characteristics are detailed. The third part
deals with random errors and their distributions.

4.4.3.1 Typical Resolution Characteristics

There are several effects concerning timestamp resolution in flow data, i.e., the real resolution
of timestamps is lower than the resolution that could be reported by the flow capturing protocol.
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Figure 4.17: Resolution terminology

E.g., the raw timestamp rfirst field can report a millisecond value in NetFlow v5. However, it has
a resolution of 4 ms on some exporters only. These effects are represented by the ρ-parameters
associated with each raw timestamp in the timestamp creation model. In the following, this
model is detailed based on resolution effects that can be found in flow data. After the defi-
nition of basic terms, the impact of the resolution on record timestamps is derived. First, the
basic case without taking internal timestamp conversion into account is considered. Second,
unaligned resolutions resulting from conversion are presented. The parameters of the model
and the examples presented apply to NetFlow v5. However, it can also be adapted and applied
to timestamp values of other flow capturing protocols and mechanisms.

The ρ-parameters describe the resolution of timestamp values and are denoted using the same
index as the timestamp value as well as the same units. The ρ-notation is used for raw time-
stamps as well as for record timestamps (e.g., ρfirst denotes the resolution in milliseconds of
the timestamp rfirst, ρs denotes the resolution of ts accordingly). Two resolution classes are
distinguished: aligned resolution ρa and unaligned resolution ρu. If neither the index a nor u is
given, alignment is not specified. The aligned resolution of a timestamp x is defined to be the
largest value for which after division by ρa the remainder is zero for the majority of timestamps.
This means that timestamp values are truncated due to limited resolution by the trunc function,
defined as:

trunc(x,ρa) = x− xmodρa (4.14)

From this definition it results that timestamps are aligned to the resolutions ρ , thus called
aligned resolution, illustrated on the left in Figure 4.17. Especially for resolution parameters to
be expected from limitations in digital devices, this means that the last bits are zero (cut off).
Effects resulting from limited resolution are modeled as truncation of the real timestamp value
(truncation assumption). This results straightforwardly from typical implementations in digital
devices, where cutting off bits is plausible, but rounding up to the next aligned number is not.
Resolution is defined based on the majority of timestamps, since there are sometimes effects or
errors that lead to situations where a small number of samples has apparently a higher resolution
than the resolution of the device (resolution outliers, see Figure 4.17 on the left).



4.4 Timestamp Errors 85

u(t)

y(t)

u(t)

R1

tb tx,1ts,1 te,1

ρfirst,a ρ
last,a

ρsu,a

ρsecs,aρnsecs,a
rsu

rsec
rnsec

rfirst rlast

raw timestamp
resolutions

resulting record 
timestamp resolutions

0 2 4

1

2 4

ρs,a ρe,a

R2

ts, 2 te, 2

6 8 record timestamps

0 1
t

4 6 82 true timestamps10

6 8

10

ts,1,t=5.6 te,1,t=9.2
ts,2,t=7.1 te,2,t= 11.1

0

0

export times aligned with 
system time (ESA)

tx,2

tx,1,t = 12
tx,2,t = 14

Figure 4.18: Illustration of timestamp resolutions (aligned timestamps)

In flow capturing devices timestamps are not always aligned due to different internal clocks
and conversion of measurement values. For modeling such effects, it is important to consider
unaligned resolution, where the resolution is shifted by a resolution alignment offset κ , as
depicted on the right of Figure 4.17. In this case, the remainder of x

ρu
is not zero, but the

remainder of x−κ
ρu

is zero, i.e., after applying the trunc-function, κ is added to the value by the
metering process. If there is such an offset, unaligned resolution is present.

In general, all ρ-parameters impact the record timestamps reported by an exporter. This is
illustrated in the example of Figure 4.18 that shows the true time t as well as the exporter internal
clocks. For better understanding, we consider the effects based on exemplary values. All values
are given in milliseconds and it is assumed that y(t) and u(t) are not subject to clock skew, neither
against each other, nor to t. Furthermore, in this section, we assume that record export times
are aligned with the system clock, i.e., ρsu does not have impact on the reported export time,
but system uptime reported equals the system uptime at export time. This property is called
Export-Systime-Alignment (ESA) and its impact is detailed in the next section. In the example
the offset between y(t) and u(t) is tb = 2 ms. We consider two flow records: R1 describes
a flow from ts,1,t = 5.6 ms to te,1,t = 9.2 ms, and R2 from ts,2,t = 7.1 ms to te,2,t = 11.1 ms
(true timestamps). Furthermore, we assume for this example ρfirst = 2 ms, ρlast = 2 ms, and
ρsu = 2 ms as well as ρsec = 1 s and ρnsec = 1·106 ns.

The resolution values and resulting timestamps for R1 are depicted in Figure 4.18. Due to the
limited resolution of start and end timestamp, rfirst = 2 ms and rlast = 6 ms result. Concerning the
export timestamp, rsu = 10 ms results due to ESA. Furthermore, u(tx) is reported as rsec = 0 s
and rnsec = 12·106 ns. This results in the record timestamps reported to be ts,1 = 4 ms and
te,1 = 8 ms. For R2 we get ts,2 = 6 ms and te,2 = 10 ms (raw timestamps not shown in detail).
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From the start and end timestamps of the two records, we can see that the record timestamp
resolution is ρs = 2 ms and ρe = 2 ms. In this case the timestamps are aligned.

Note that in this simple case record timestamp resolutions could have been directly calculated
from ρfirst and ρlast. However, this is a result from the values of ρsu, ρsec, and ρsec that have
been chosen in a way to keep the example simple.

The next example (Figure 4.19) shows how internal timestamp conversion leads to unaligned
timestamp resolution. This example uses the same exemplary records and resolution parameters
as the previous example. In contrast to the previous example, there is now an internal clock in
the metering block, which has an offset against y(t). Its timestamps are converted to y(t) values
before being written into flow records. Thus, timestamp values of this internal clock are not
visible to the outside, but hidden. In the example, the internal clock has an offset of 1 ms to y(t).
The timestamp values are therefore not aligned to y(t) according to the resolution ρs, but there
is an unaligned resolution of start and end timestamps. Record timestamps reported of R1 are
ts,1 = 5 ms and te,1 = 9 ms, as well as, ts,2 = 7 ms and te,2 = 11 ms for R2. As shown by these
values, record timestamps exhibit resolution shift, i.e., ρs,a = 1 ms, but ρs,u = 2 ms.

In NetFlow data of production networks, several exporters that perform such conversion as
previously mentioned can be found. Furthermore, there is even a small skew of internal clocks,
which leads to the effect that the resolution alignment offset κ is time dependent, i.e., κ(t). As
a result, xmodρ is not constant but describes a sawtooth.
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Table 4.3 lists exemplary resolution values extracted from flow data for different OP types.
The resolution values are given per OP type, since flow capturing characteristics can differ for
different OPs of the same exporter, i.e., a single exporter can have OPs of different OP type.
Since OWD calculation in this work considers ingress flow capturing only (see Section 3.3), it
is sufficient to distinguish the flow capturing characteristics per OP (using the definition of OP
that contains the input interface identifier). For all OP types, ρsec has a resolution of one second,
and ρnsec is 15,258 ns on all exporters. It can be assumed that the latter is the raw resolution of
the RTC, since clock components often divide one second into 216 ticks (1 s

216 = 15,258 ns).

On OPs of type 1, ρsu, ρs, and ρe are four (aligned), while for type 2 only ρsu has a limited
aligned resolution. OPs of type 3 do not have a limited resolutions, except in ρnsec. For type 2
OPs, ρs,a and ρe,a differ from ρs,u and ρe,u. This is an OP that shows the time-dependent
resolution shift behavior (saw tooth in lower six bits of rfirst and rlast). The last column of
Table 4.3 shows the resolution ρd of the record duration d, which is ρd = 4 ms for type 1 and
ρd = 64 ms for type 2, both unaligned. The latter shows that the hidden clock has exactly a
resolution of 64 ms and its start and end timestamps are converted in the model at one time
instant (C1) into rfirst, and rlast. OPs of type 1 are, e.g., Cisco 7200 series and type 2 are, e.g.,
Cisco 6500 series performing hardware-based (MLS) NetFlow.

4.4.3.2 Systematic Errors from Limited Timestamp Resolution

OWD is calculated from record timestamps of different OPs, and the record timestamps itself
are calculated from raw timestamp values. Hence, the limited resolution in raw timestamps
leads to errors in record timestamps, which lead to errors in OWD calculation. Every raw time-
stamp represents an input quantity that is used to calculate the output quantity (OWD) according
to the measurement function. This means that the errors caused by resolution limitations prop-
agate according to the laws of error propagation, as introduced in Section 2.2.2. In this section,
the systematic errors and their propagation is considered. The next section deals with random
errors.

Figure 4.20 shows the measurement functions for obtaining the record timestamps and finally
the OWD samples from raw timestamps. As introduced in Section 4.4.1, there are five raw
timestamps for each flow record, which are the input quantities. The first step is calculating tb,
which is then an input quantity for calculating ts and te. Finally, ∆ts and ∆te are calculated as
potential OWD samples. It is important to note in terms of systematic errors that at two points
of the model values are subtracted from each other, while at other points, values are added.

Table 4.3: Typical timestamp resolutions

Raw timestamp resolutions Record timestamp resolutions
OP type ρsec,a ρnsec,a ρsu,a ρfirst,a ρlast,a ρs,a ρs,u ρe,a ρe,u ρd

1 1 s 15,258 ns 4 ms 4 ms 4 ms 4 ms 4 ms 4 ms 4 ms 4 ms
2 1 s 15,258 ns 4 ms 1 ms 1 ms 1 ms 64 ms 1 ms 64 ms 64 ms
3 1 s 15,258 ns 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms
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Figure 4.20: Measurement functions for OWD calculation
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Figure 4.21 illustrates how limited resolution leads to errors in raw and record timestamps.
For this example, resolution values for OPs of type 1 (see Table 4.3) have been chosen. As
in the previous examples y(t) and u(t) are aligned (no skew) and an exporter without internal
conversion is considered. We will consider one record with ts,t = 6.8 ms, te,t = 17.8 ms that is
exported at tx,t = 20.8 ms.

Due to the limited resolutions ρfirst and ρlast, rfirst and rlast report smaller values than the true
values and errors of efirst = −0.8 ms and elast = −2.8 ms result from this effect. The system
uptime at export time can also be subject to resolution effects. Concerning the system uptime,
it depends on whether record export times are aligned with system uptime. If this property
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(Export-Systime-Alignment (ESA), introduced in the previous section) holds, records are always
exported at times y(tx) that are whole multiples of ρsu. Thus, here will be no error caused by
ρsu (esu = 0). If ESA does not hold, ρsu causes a systematic error, as shown in the example of
Figure 4.21. Due to the absence of ESA, esu =−2.8 ms results for the exemplary values.

The raw export timestamp tx are represented by two values, rsec, which is 0 s in our example
and rnsec. The rnsec value has special characteristics since it is reported in nanoseconds and
therefore in much higher granularity than the other values. However, its resolution is typically
15,258 ns, which is still higher than the resolution of the other timestamp, but 1 ms is no whole
multiple of this value (least common multiple is 7.629 s). Thus, it is rare that its value is aligned
with rsu. Software that processes NetFlow data (e.g., nfDump [101] or flow-tools [99]) always
truncates the rnsec values to milliseconds during processing (see Note 2 in Figure 4.21), i.e., this
corresponds to ρnsec = 1ms.

From the measurement function, it results that eb = ensec− esu. In the example this is a positive
value: eb = 2 ms. The errors for start and end time eventually contain the errors for the boot
timestamp as well as the errors of rfirst and rlast: es = ensec−esu +efirst (adds up to 1.2 ms in the
example) and ee = ensec− esu + elast (-0.8 ms in the example).

As shown in the example, the raw timestamps always underestimate the real value due to the
truncation assumption. We consider any of the raw timestamp values ra and use the index a for
this purpose. If we switch from errors ea of single value ra to the general estimated systematic
error (bias) βa, we can define βa =−

ρ a
2 .

The bias of the export timestamp value is determined by the resolution of the nanoseconds-part
of the unix timestamp reported rnsec. This is due to the fact that rsec = 1s in all observed cases,
which has to be double-checked for each exporter, of course. Taking the calculation of record
timestamps into account, the overall bias values of start and end timestamps are

βs = βnsec−βsu +βfirst (4.15)

and
βe = βnsec−βsu +βlast. (4.16)

If ESA holds, ρsu does not cause a systematic error, hence, βsu = 0 in this case. The bias impacts
timestamp differences between two exporters according to the measurement functions:

β∆ts = βs,OP2−βs,OP1 (4.17)

β∆te = βe,OP2−βe,OP1 (4.18)

Since this systematic error adds up according to the measurement functions, it can also happen
that resolution effects compensate each other in terms of systematic errors. This is for example
the case if ρfirst = ρsu and ESA does not hold, as it is the case for the example in Figure 4.21. If
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the bias at both OPs is identical, the systematic errors of timestamp differences will also com-
pensate each other. Details on effects from systematic errors and a study on ESA is presented
in Section B.2 based on lab measurements.

For all considerations on systematic errors it does not matter whether resolutions are aligned
or unaligned, since each resolution limitation truncates timestamps and thus leads to a bias. If
knowledge on timestamp resolutions of OPs is available, the impact of systematic errors on
OWD samples can be quantified and compensated.

4.4.3.3 Random Errors from Limited Resolution

In addition to systematic errors, limited timestamp resolution also causes random errors, which
propagate according to the measurement functions, as introduced in Section 2.2.2. The random
error caused by limited resolution ρ of an input quantity results in a uniform PDF of width ρ .
We consider the random error only, i.e., assume that the systematic error has been removed.
The distribution is uniform

fx(t) =

 1
ρx

−ρx
2 < x < ρx

2

0 otherwise
(4.19)

with zero mean and the standard deviation

σx =

√
ρ2

x
12

. (4.20)

Due to error propagation, the output quantities are affected accordingly. If the random errors
of the input quantities are independent of each other, the resulting PDF of the output quantity
(OWD) random error is the convolution of the input quantities’ random error PDF, as introduced
in Section 2.2.2.

In case of convolution of PDFs, the ranges of the distributions are added as well as the variances
sum up and therefore standard deviation of the OWD samples will be

σ =

√
∑

n
i=1 ρ2

i
12

. (4.21)

Given the resolution parameters introduced before, the standard deviation of the random errors
are

σ∆ts =

√
ρnsec2 +ρsu2 +ρfirst

2

12
(4.22)

and

σ∆te =

√
ρnsec2 +ρsu2 +ρlast

2

12
. (4.23)
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Figure 4.22: Impact of OWD on error distribution

If ESA holds, ρsu will not cause any random error and has to be omitted.

As mentioned above, convolution of PDFs for achieving the overall random error is only possi-
ble, if the input quantities are independent. While the packet arrival times of packet multiplex
streams are in general independent of each other, flow-based OWD calculation input quantities
might be, however, not independent. If the clocks of the two OPs are well synchronized and
OWD is constant, effects occur that lead to a discretized PDF for random error. This effect also
occurs if the OWD varies in a small range only. In the extreme case where two OPs of an OPP
with the same resolution reside in the same device, this effect leads always to a bimodal PDF,
as the laboratory measurements in Section B.2 show. The effect that leads to discretized PDFs
is illustrated in the following.

First, the case of constant delay and completely synchronized clocks of metering and exporting
processes is considered. The resulting distributions and how they result from timestamp values
for three different OWD values are shown in Figure 4.22. This example assumes a scenario
with ρfirst = 4 ms, ω0,y = 0, ϕ0,y = 0. We consider record start times only and show only the
RTC, not the system internal clock for sake of simplicity. In order to average out random errors,
we consider four samples distributed equally across an interval corresponding to the timestamp
resolution. The record timestamps obtained and ∆ts values from each OP are illustrated in
a table below and illustrated in a histogram. In this example it can be clearly seen how the
bimodal distribution results from the limited timestamp resolution and that for OWD values
being a whole multiple of the resolution, there is an exact alignment and a single peak results.
This effect has also been validated using a laboratory measurement setup where a flow passes a
router twice (Section B.2).

In general there is an offset ∆ω0,y between system clocks of two routers, since the system clock
was started at different router boot times. Thus, the resolutions are not aligned, as illustrated
in Figure 4.23 for different ∆ω0,y values. The three examples illustrated show how the distri-
butions depend on this offset (same OWD in each case). From this and the previous examples
we see that the error distribution cannot be known in advance, since it depends on the mea-
surand itself as well as on the offset of system clocks. Moreover, the offset of system clock
offset is never constant due to system clock skew. Therefore, even with constant delay, error
distributions will continuously change and after a certain time the system clock skew leads to
a complete cycle of possible distributions. For the case illustrated in Figure 4.23 this is the
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Figure 4.23: Impact of resolution offset due to system clock skew on error distribution

case when the combined system clock skew lead to an offset change of 4 ms. Depending on
the system clock skew values, this can already happen within one minute. The resulting error
distribution of such an interval will be the combination of all bimodal distributions and thus be
a discretized triangular distribution.

The examples considered so far addressed the case when both OPs have the same limited resolu-
tion, i.e., the error distribution was a discretized triangular distribution. If the OPs have different
resolutions, a discretized trapezoidal PDF with a higher number of peaks (see Section B.1) re-
sults. These effects are not detailed further in this thesis, since it is sufficient to be aware of the
problematic cases with a very low number of peaks.

As indicated in Section 2.2.2, general confidence interval formulas are based on the assumption
that random errors follow a normal distribution. Nevertheless, the confidence interval formulas
based on the Student-T distribution (Equation (2.6)) and the formula based on known standard
deviation (Equation (2.7)) can be used as rough approximation if there is no normal distribution.
For distributions that result from OPPs where OPs have different timestamp resolutions, the
PDF has a higher number of peaks and a good approximation can be achieved using the Student-
T based formula. However, Student-T based confidence interval calculation with distributions
that have few peaks only are highly problematic: If there are two OPs with the same timestamp
resolution values, we will see distributions as indicated in Figure 4.23. If only few samples are
observed in such cases, there might be a single peak only (Figure 4.23 right). Thus, the standard
deviation is zero and hence a Student-T based confidence interval according to Equation (2.6)
has zero width as well. There is a high probability that such a confidence interval is highly
inaccurate: the next sample could be on the other peak. Hence, the mean value lies in between
two peaks. The coarser the resolution of the two OPs, the more severe this problem becomes.
Section 7.2.3 will show this problem based on OWD samples obtained from an OPP where each
OP has a resolution of 64 ms.

The problem indicated using the Student-T based confidence interval calculation can be avoided
by using the normal distribution based confidence interval formula with known standard devi-
ation. Here, the standard deviation of the distribution resulting from convolution of the two
resolution based continuous uniform distribution is taken as input (Equation (4.21)). Due to the
discretized distributions, the standard deviations might differ from this value depending on the
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position of the peaks. Nevertheless, the evaluations in Section 7.2.3 show that a fair approxi-
mation can be achieved.

This section has shown which random error distributions can be expected from resolution ef-
fects. In general, those distributions adhere to the shape that follows from convolution of rect-
angular distributions caused by resolution effects. However, the input quantities are not inde-
pendent due to resolution effects and thus discretized versions of these distributions result out
of it. This has an impact on the calculation of confidence intervals.

4.4.4 Exporter-internal Delays

After dealing with limited timestamp resolution and resulting effects, we now have a look at
the exporter-internal delays on timestamp values. The timestamp creation model introduced at
the beginning of this section (Figure 4.15) shows three points where delay in setting timestamp
values can occur. At each of the points indicated, more than one raw timestamp value is created
at one defined time instant. These defined time instants and the created raw values are

- Record start time ts , i.e., the time at which the first packet of a flow arrives. At this time
instant the raw timestamps rfirst and rlast are written into the flow cache.

- Record export time tx, i.e., the time when records are exported in a packet. At this time
instant rsu, rsec, and rnsec are written into the packet header.

Depending on the exporter model and implementation, the raw timestamp values are not all
written at the same time instant, but there can be a (sporadic) delay leading to timestamp errors.
These potential delays are modeled by delay parameters Dx, which can be positive or negative.
There are three such parameters in the timestamp creation model (Figure 4.15) and the errors
caused by them will be called D1-Error, D2-Error, and D3-Error.

The D1-Error is caused by the delay between setting the raw record timestamp values rfirst and
rlast for the first packets of a flow (D1). It leads to the effect that for flow records of one-packet-
flows sporadically a duration larger than 0 ms is reported, i.e., a duration equal to the timestamp
resolution (e.g., 4 ms). Such duration values are obviously wrong, but they indicate that the
two raw timestamp values are not written at the same time instant. Most likely there are two
consecutive operations that read the system clock’s value and write it to memory. If the system
clock just advances by one tick between the two operations, this results in the error described.
In order to get rid of this blunder, record timestamps have always to be checked for the same
value in case of one-packet-flows. If the two timestamps differ, they should be set to the same
value, while it does not matter whether both values are set to ts or te, as long as it is done in the
same way for all records. The systematic error introduced by taking the one or the other is very
small: it is the time between the two memory write operations to the flow cache. However, if
the difference between the two timestamps is larger than the timestamp resolution, the record is
subject to a large error (blunder) and must be dropped.

The D2-Error results from the effect that at export time tx, three timestamp values are written:
the system clock’s current value (rsu) and the RTC value in rsec and rnsec. On some exporter
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Figure 4.24: Error introduced by exporter-internal delay in the exporting process

models there is a delay D2 between writing the system clock’s and the RTC value, which leads
to effects that record timestamps are sporadically considerably too low4. This problem is illus-
trated in Figure 4.24. As pointed out by Trammell et al. [74], RTC and system clock timestamps
might not be applied at the same time to the flow data packet, but there might be a delay in high
load situations, e.g., due to rate limiting. This leads to the effect that there is no single tx from
which both values result, but due to the delay the boot time tb calculated from raw timestamps
is too early, i.e., D2 is negative in this case. The diagram on the bottom left of Figure 4.24
illustrates this error between the true boot time value tb,t and the reported boot time tb. Since
record start and end times are calculated based on tb, these values of all records sent with the
packets are affected by the error.

The error caused by D2 happens sporadically only. Hence, it can neither be quantified as random
or systematic error nor can it be compensated or averaged out. As a consequence, flow data
processing mechanisms should try to detect records where this effect occurs and handle those
records as blunder, i.e., drop them. Detection is possible: as shown in Figure 4.24 there is a
discontinuity in tb for these NetFlow packets compared to unaffected packets. As presented
earlier in Section 4.4.2.2, tb is not constant due to system time skew. Therefore, it is necessary
to know whether tb(t) is ascending or descending when comparing tb for blunder detection. As
soon as tb values are not monotonically increasing or decreasing, the D2-Error is present. It
is therefore named boot time discontinuity blunder. In principle knowledge of tb(t) could also
help to compensate this error, since the rsu value of a certain RTC timestamp can be estimated
based on this. A method that could be used for such compensation is proposed by Trammell et
al. [74] for compensating the missing millisecond value in NetFlow v9 packets. This method is
not considered further in this work.

Finally, the D3-Error describes the effect that the nanoseconds-part and the seconds-part are not
written into the packet header at the same time instant. It is likely that such problems sometimes

4The effect of timestamps being considerably too low was discovered by the author. The effect has indepen-
dently also been reported by Trammell et al. [74], who also point out that the reason for this effect is exporter-
internal delay.
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occur, as this is the same problem of several write operations to memory as it was observed for
the raw timestamp on flow start (D1). However, it is impossible to quantify this delay value from
flow data, since there is no reference to the time instant when the packet was really exported.
Additionally, the resolution of rnsec is typically very small. Hence, the impact of this error on
flow start and end timestamps by comparison to reference start and end timestamp cannot be
studied.

In contrast to other parameters of the timestamp creation model, the exporter-internal delay
causes sporadic errors that cannot be modeled as systematic or random errors. However, the
problems arising from D2 and D1 can always be detected. Thus, affected samples can be com-
pensated (D1-Error) or dropped (D2-Error). Hence, the D parameters need not to be quantified,
but are only symbols indicating the presence of a possible error at this point of the model. In
principle, a quantification of how often the errors occur is possible in order to obtain knowl-
edge on how many records and how many OWD samples are affected. However, this is no
requirement for the OWD calculation itself.

4.4.5 Summary and Consequences for System Design

All timestamp errors and effects presented in the previous sections require appropriate handling
in order to reduce the impact of these errors on OWD measurement. Depending on the error,
it is possible to compensate the effects including knowledge on the effect’s presence and its
parameters or quantify the error in terms of uncertainty. If both is not possible and errors are
detected, samples must be discarded.

A summary of the effects and errors is given in Table 4.4. For each effect, the impact on OWD
measurement is given as well as whether the effect is sporadic or always present and whether the
extent of the effect depends on the OP or Exporter. Additionally, the fifth column of the table
indicates how an error can be detected and possibly compensated. The last two columns show
whether the raw timestamps of flow records and/or which parameters quantifying the effect are
required.

From Table 4.4 it can be concluded that almost all effects demand for knowledge on exporter or
OP parameters for proper detection/compensation. These parameters describe the RTC offset
ω0,u and skew ϕ0,u, the system time skew ϕ0,y, and the raw timestamp resolutions ρx. Addi-
tionally, there are certain effects that do not cause an error themselves, but which impact the
characteristic of other errors. One such effect is ESA, which impacts systematic and random
error. Another effect is resolution shift, which impacts the distribution of random error. As a
conclusion, a system for OWD measurement has to know about these effects and the parameters
in order to quantify and compensate the errors for enhancing OWD samples accuracy. Failing
to take these effects into account can lead to large errors, e.g., 30 ms systematic error from
different OP resolution in the case of 4 ms and 64 ms resolutions on an OPP. Chapter 6 presents
the exporter profile that specifies the required parameters and also methods for obtaining them.
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Table 4.4: Timestamp errors summary
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D1-Error: d > 0
and p = 1

x (x)3 comp.: consistent
setting if d ≤ ρd

- -

1 Without raw timestamps, RTC compensation accuracy depends on internal clock skew since the export delay
dependent error cannot be compensated and adds to RTC error.

2 On some exporters in high load situations
3 Exporter specific, but general compensation method available

Another point to consider in system design is that there is a dependency between timestamp
compensation steps and that the compensation steps therefore have to be performed in the cor-
rect order. This is especially critical for steps that compensate RTC or system clock skew, since
the system clock skew is defined as skew between system clock and RTC (and not UTC). Thus,
performing RTC compensation before performing compensation steps that are based on system
clock skew parameters would lead to wrong results.

The various steps as well as how they are performed in sequence and which parameters are
taken into account in each step are depicted in Figure 4.25. The steps can be grouped into
three stages: blunder filtering, timestamp correction, and uncertainty quantification. The two
blocks of the blunder filtering stage check for errors resulting from exporter-internal delay and
discard records with implausible timestamps as blunder. In the timestamp correction stage, the
fist step compensates the export delay dependent error caused by system clock skew. Then, the
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RTC offset/skew is compensated, for which it is mandatory to happen after tb error detection
only, not before. The last step of the timestamp correction stage compensates systematic errors
depending on resolution parameters and whether there is ESA or not. The same parameters are
also input to the last stage, which offers two possibilities for random error quantification. While
it is possible to quantify the random error or give confidence bounds per timestamp of an OPP,
a preferred way for OWD calculation is calculating the confidence intervals per OWD sample.
Thus, OWD is calculated first then confidence intervals are obtained.

The timestamp compensation steps have to be added to the extraction model that has been de-
veloped in the previous section for considering different network and flow capturing effects and
errors (Figure 4.12). Figure 4.26 shows the model extended by the three blocks for blunder fil-
tering, timestamp correction, and random error quantification. It is essential to perform filtering
and correction steps before any other processing steps like merging or joining, since the latter
also do processing based on timestamps.

In summary, this section introduced a model for timestamp creation and highlighted typical ef-
fects and their parameters as they can be found in flow data. The model was created based on
characteristics found in a data set from a global enterprise network containing flow data from
several hundred routers. Additionally, some properties of the model have been validated by
experimental setups. The model is general and by the use of the parameters it can be adapted to
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different exporter characteristics as well as to other protocols (IPFIX, NetFlow v9). Despite the
general approach of the model there might still be existing or upcoming exporters with charac-
teristics that cannot be mapped on this model and certain timestamp effects might not have been
quantified. Therefore, it is important to check whether results of timestamp compensations or
error quantifications are reasonable. In addition to that, strict rules for plausibility checks should
be applied.

4.5 Summary

This section dealt with effects and errors from flow capturing that impact OWD extraction from
flow data. Step by step an extraction model has been developed that deals with these effects.
It is important to note that even with perfect flow data OWD calculation requires evaluation of
packet and byte counts due to network effects. Otherwise, it is not possible to judge whether
the first and last packet of a flow correspond to flow record start and end times, a property
that is called Start-End-Correspondence (SEC). Taking flow capturing effects into account, a
flow can lead to a different amount of flow records on OPs with different alignment. This
makes temporal record joining and subflow merging necessary for checking SEC. Furthermore,
it has been shown that in certain network configurations (e.g., per-packet-load balancing, WAN-
optimizers, sampled NetFlow), OWD extraction is possible for very few samples only or nearly
impossible.

Errors in flow capturing are the well-known problem of record loss, as well as other errors like
byte count errors and errors in timestamp values. Record loss leads to the effect that there are
ambiguous cases in flow record matching and not all ambiguities can be resolved by record
joining or subflow merging. Byte count errors complicate the problem of flow matching, but it
is possible to calculate byte count error bounds. Limitations in timestamp resolutions and other
errors impact record timestamp and therefore OWD samples. Resulting systematic timestamp
errors can have large impact, but can be compensated if the resolution characteristics are known.
Furthermore, limited resolutions lead to random errors with discretized distributions, which
impact confidence interval calculation. Effects from exporter-internal clock skew can lead to
errors of several milliseconds, but generally can be corrected. Exporter-internal processing
delays lead to blunder, which cannot be corrected, but must be detected and samples have to be
discarded. In summary, with knowledge on the export device, the errors can be modeled and
addressed in a way that leads to considerable improvement in OWD measurement.

As shown, OWD extraction from NetFlow data is challenging in terms of data processing due
to the different joining and merging actions to perform at high records rates. Furthermore,
knowledge on the flow capturing devices is required in order to compensate and quantify errors
that impact OWD as good as possible. The next chapter deals with processing of flow data
for OWD extraction while Chapter 6 will introduce the exporter profile concept for gaining
knowledge on flow capturing device properties.



5 Online Extraction of Delay Samples

Based on the delay extraction model described in the previous chapter, this chapter presents
design considerations for an efficient online processing implementation of this model as well as
dimensioning guidelines.

The first section introduces flow export effects and resulting problems for flow data process-
ing. Furthermore, the first section states four fundamental requirements on flow processing for
OWD extraction. Based on the problem statement and the requirements an online processing
approach is developed that is based on a sliding window mechanism. In the second section de-
sign questions on the sliding window approach are considered and an integrated window based
processing mechanism that implements all joining, merging, and extraction steps using one
window is presented. The third section introduces a window dimensioning method that allows
estimating the amount of OWD samples created as well as the memory consumption based on
profile parameters that describe flow record arrival.

The online processing approach presented in this chapter has been implemented based on a
processing framework that was developed in the context of this thesis [5]. This processing ap-
proach was used to obtain the results from flow data of an enterprise network that are presented
in Chapter 7.

5.1 Rationale for Window-based Online Processing

This section highlights the export effects that lead to the problem that an OWD extraction block
has to wait a certain amount of time for records. Furthermore, it presents requirements for OWD
extraction and an approach of a multi-stage window-based extraction mechanism that addresses
the problem under the given requirements.

5.1.1 Export Effects and Problem Statement

Due to the timeout-based flow record creation mechanisms implemented in flow capturing ap-
proaches like NetFlow, there are not only different temporal aggregations of packets into flow
records (Section 4.3.1.1), but also the time at which flow data is available for processing and
OWD extraction is affected. This means that in the simple case of a one-record-flow F OWD
extraction can only start if a record from each OP is available at the collector, i.e., OWD ex-
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Figure 5.1: Impact of multi-record-flows and subflows on delay extraction time

traction can only start after max(txF,OP1, txF,OP2). As before, we assume that the delay between
record export time tx and receiving time at the collector is negligible.

If a flow is exported by means of several records, OWD extraction has to wait a longer time until
all records are available as shown in the two examples of Figure 5.1. In the left example, flow
information is exported by three records per OP as an unaligned multi-record-flow. In the right
example different records result from different subflows (effects introduced in Section 4.3.1).
In both cases, OWD values can only be extracted after all records are available since record
joining (left case), record merging (right case), or both, are necessary for performing the check
for Start-End-Correspondence (SEC) (Section 4.3.1).

In the case of a multi-record-flow (Figure 5.1 left) at some point the decision has to be taken
whether further records are to be received for a flow or whether the last record has been received
already. In general, this cannot be known from flow data alone. The decision could be based on
heuristics that take the exporter characteristics into account. E. g., if the timeout settings and
their accuracy is known, the extraction stages can assume after a certain time that all records for
a part or the complete flow have been received. If the pauses where no packets are sent in the
flow are long, this will lead to aligned multi-record-flows and SEC check could be performed
for each part of the flow independently.

Waiting until all records of a flow are available can take a very long time in cases where flows
with durations of hours or days are present. In such cases where packets are sent continuously,
flow records are triggered by active timeouts and are available for the complete flow duration.
This will typically result in an unaligned multi-record-flow and waiting for all records is neces-
sary to check SEC while only two OWD samples (flow start, flow end) can be obtained. While
∆ts is available after the first records, it cannot be used as OWD sample because ∆b and ∆p can
be calculated only at the end in order to validate whether SEC holds.

In terms of a flow where records are created for several subflows (Figure 5.1 right), the arrival
time of the last subflow record determines the time at which characteristics can be calculated.
Even if at any time before complete data of subflows is available, OWD calculation on a per-
subflow basis could lead to wrong results, due to effects like multi-inter-subflow change detailed
in Section 4.3.1.2. Joining multi-record-flows in time and merging of subflows demands for
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Figure 5.2: Extended extraction model indicating stages that have to consider data of a certain
time interval

waiting until the last record of this flow arrived, or if the pause without receiving further records
has been long enough, as highlighted above.

Both previously described problems illustrate that several stages of the OWD extraction model
introduced in Section 4.4.5 require to take records of a certain time interval into account, i.e.,
they have to wait until the required data is available. Figure 5.2 shows the extended extraction
model where the stages that consider data of a certain time frame are marked by a T. These
stages are subflow merging, temporal record joining, and characteristics extraction. If the stages
cannot wait until the required records of a flow have arrived, SEC check will fail and no OWD
samples can be created for these flows. Section 5.1.3 addresses this problem based on the
requirements that are introduced in the next section.

5.1.2 Requirements on Processing

This subsection states four fundamental requirements on flow data processing for OWD mea-
surement that have to be considered in designing the online extraction mechanism. For these
requirements the properties of the input data (flow data collected from several exporters) as well
as the requirements of downstream applications that make further use of OWD calculations are
taken into account.

Requirement 1: Timeliness

The measurement results should be delivered as early as possible to the application. OWD
samples are typically used to detect network performance problems like throughput limi-
tations or routing problems. Especially if business critical services are provided over the
considered network, fast alarming and response is required else performance degradation
can lead to financial loss. Systems that monitor higher layer services take OWD mea-
surements into account in order to find problems for overall performance degradation by
correlating monitoring data from several sources. For such systems it is essential that data
is available timely in order to deliver analysis results early, such that helpdesk and support
teams can fight problems by taking appropriate actions and respond to user complaints
appropriately.



102 Chapter 5. Online Extraction of Delay Samples

Requirement 2: Ordering
The measurement samples should be provided ordered by the timestamps they report
the OWD value for. This means that if a measurement sample with a certain timestamp
has already been delivered to the application, no measurement sample with an earlier
timestamp must be delivered to the application thereafter. Such measurement samples are
typically of no use, since an alarm has already been risen or OWD samples of that time
interval have already been processed.

Requirement 3: Sample count and correctness
Flow data based OWD measurement should provide as many OWD samples as possible,
for which it can, after checking with all available information, be assumed that the sam-
ples are correct. The high amount of samples is important in order to obtain OWD in the
highest granularity possible, i.e., not only per subnet or host, but also per transaction or
service class. Additionally, a high amount of samples allows to create mean values of a
certain time interval taking a higher number of samples into account, thus reducing the
impact of random errors and increasing confidence.

Requirement 4: Reliability
Processing of flow data for obtaining OWD samples has to take into account that resources
like processing power, memory and I/O are limited. Flow processing must be operable
and correct even under the highest load. This means that designs must consider ressource
consumption in peak load scenarios, i.e., the highest record rate that is expected, which
depends on traffic and flow capturing devices.

As the next section will show, the requirements contradict each other to a certain extent, e.g., if
the fastest possible delivery of measurement results is chosen, the highest sample count cannot
be achieved. The following sections will provide a suitable processing approach with con-
figurable window parameters that allow to adjust the system behavior for finding a suitable
trade-off between the requirements.

5.1.3 Approach of a Multi-stage Window-based Extraction Mechanism

There are several degrees of freedom for implementing the OWD extraction model. This section
discusses five implementation considerations based on the requirements introduced previously.

Implementation Consideration 1: Offline vs. Online Processing

Section 3.5 introduced offline and online processing approaches. With offline OWD calculation,
flow data collected from the network is written into files where each file contains flow data of
a certain time interval or a certain amount of flow records. While such a solution typically
fulfills Requirement 4, it does not fulfill Requirement 1, since it takes at least the time to write
the file before the measurement results are available. Consequently, such an offline processing
approach is not suitable, but the flow records have to be processed right after they are collected
in an online fashion. Thus, all stages of the extraction model have to be implemented in an
online processing approach.
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Implementation Consideration 2: Exploiting Multiprocessor Architectures

In order to fulfill Requirement 4, CPU resources have to be considered in order to cope with
the flow record rate that is expected in typical network scenarios. Thus, efficient processing
mechanisms have to be used, as well as the processing itself should be parallelized as far as
possible by splitting the online processing in several threads that can exploit modern multicore
architectures. Since the extraction model consists of several independent stages, each stage can
be implemented as separate processing block running as a different thread. The record receiving
stage as well as all filtering and correction stages have been implemented this way based on the
flow processing framework designed in the context of this work [5]. Some processing blocks
even internally make use of several threads.

Implementation Consideration 3: Local vs. Distributed Processing

If processing power or memory on a single computer is not sufficient, processing could also be
distributed across several computers. This includes several computers within a LAN (compute
cluster) or computers that also collect flow records in a distributed way and are hence have to
communicate via a WAN among each other (see Section 3.5). Distributed processing could be
achieved by splitting record streams in a way that each computer can compute OWD samples
independently from other computers, i.e., OWD samples for each OPP could be extracted sep-
arately. Splitting record streams accordingly can only be performed if it is known which OPPs
are traversed by flows from certain source addresses and to certain destination addresses. This
requires knowledge on routing, which could be gained by corresponding profile parameters.
Using such extensions, parallel flow data processing for OWD extraction is feasible.

Distributed processing, however, has not been considered further in this thesis since the pro-
cessing framework was already able to handle more than 100,000 flow records per second in
an online processing scheme for scenarios with high memory requirements [5]. This perfor-
mance is enough to handle the flow record rate of large enterprise networks. Additionally, this
implementation is still prototypical and there is room for performance optimizations.

Implementation Consideration 4: Record Expiration

In addition to CPU resources, memory consumption has also to be considered for Require-
ment 4. From online processing, it results that flow records are buffered in memory until they
can be further processed with respect to subflow merging, record joining, or characteristics ex-
traction. In the characteristics extraction block at least two matching records from an OPP have
to be available for creating an OWD sample. However, due to record loss and other effects it
can happen that no matching records are found and unmatched records stay in memory. In order
to solve this problem an expiration strategy is necessary that removes unmatched records from
memory.

In general there are two possible expiration strategies: using a periodic cleanup task or a sliding
window. A periodic cleanup task removes all records of a certain age at periodic intervals, while
a sliding window is updated for every arriving record and removes expired records immediately.
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Since every record removal requires changes in index data structures, it is more efficient to per-
form such operations in regular intervals. The expiration mechanisms implemented for OWD
extraction is a sliding window consisting of several buckets. The window has a preconfigured
length and moves bucket by bucket on record arrival, if required. Cleanups are performed at
bucket boundaries, i.e., if the window moves by one bucket. The cleanup frequency can be
adjusted: A higher number of buckets leads to a higher cleanup frequency. A bucket-based
window allow for finding records with a certain timestamp more easily. They can be found by
addressing a certain bucket and no linear search is necessary.

The sliding window for record removal is called record window and shown in Figure 5.3 on
top. The record window with the size L defines how long records stay in memory. Its upper
edge corresponds to the current time tcurr, in online processing typically taken from input data,
i.e., the timestamp when the last record arrived at the processing stage. The lower edge of the
window texpire defines when records are removed. Flow records can arrive unsorted wrt. their
timestamps and they are inserted into the window as shown in Figure 5.3.

The window size L is an important dimensioning parameter, since the number of records kept
in memory determines the maximum memory consumption. Furthermore, a larger window will
lead to a larger number of OWD samples that can be obtained: the more records in memory,
the higher the probability that matching records can be found, especially for longer flows where
joining of records is necessary. This clearly shows the contradiction of Requirement 3 and Re-
quirement 4, which will be addressed in the window dimensioning method that will be presented
in Section 5.3.

Implementation Consideration 5: Window for Result Sorting

Due to different flow and record durations, OWD samples calculated from records are typically
unsorted wrt. the timestamp that they are related to. E.g., two records of a flow that has a
duration similar to the record window will produce two OWD samples: one close to tcurr from
flow end and the other close to texpire from flow start. For a short flow, however, both OWD
sample timestamp are close to tcurr. Depending on which record timestamp is taken to move the
record window, OWD sample timestamps can even be outside of the record window.

In order to fulfill the Requirement 2, the OWD samples have to be sorted before they are for-
warded. In order to achieve this, another sliding window for result sorting is used that is called
result window. This window is depicted in Figure 5.3 below the record window and in gen-
eral has to be larger than the record window. The result window is moved according to record
timestamps aligned with the record window and reports results at tresult. In terms of memory
requirements (Requirement 4) the result window is less critical than the record window since
results are much smaller in size than flow records. A smaller result window leads to earlier
delivery of measurement results (Requirement 1). If it is chosen too small, however, the prob-
ability that results arrive after tresult and are discarded becomes higher. The latter affects the
number of OWD samples (Requirement 3), which shows that there is a contradiction of Re-
quirement 1 and Requirement 3 in terms of result window settings that demands for finding a
suitable trade-off.
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Summary

The implementation considerations show that a multi-window-based online processing scheme
realized using multiple processing blocks that can run as different threads is most suitable for
OWD extraction. Furthermore, distributed processing is possible, but not a hard requirement at
the current stage.

As shown the requirements contradict each other to a certain extent and suitable trade-offs
between timeliness (Requirement 1), sample count (Requirement 3), and memory consumption
(Requirement 4) are required. The ordering requirement (Requirement 2) demands for window-
based result sorting. More details on the window mechanism itself will be considered in the next
section while methods for addressing the most important window dimensioning trade-off will
be presented in Section 5.3.

5.2 Window-based Flow Data Processing

The previous section derived a multi-window-based online processing scheme for the imple-
mentation of OWD extraction based on general requirements. In the following, the OWD ex-
traction block and its window handling mechanisms are detailed. The main focus is on record
window handling based on an implementation that uses one record window for joining, merg-
ing, and OWD extraction. In the first section, record export characteristics are studied and the
term export jitter is defined. The second section highlights the impact of these characteristics
on window handling and window dimensioning. The last section finally presents the design of
an integrated window-based delay extraction processing block.
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5.2.1 Export Characteristics in Detail

As introduced in Section 3.2.4, NetFlow removes records from the flow cache based on five
different criteria: fast timeout (ϑfast), inactive timeout (ϑinact), active timeout (ϑact), cache full
events, or closing TCP connections. Other stateful flow capturing approaches are similar. This
leads to different minimal export delays (δe,min) and minimal/maximal record durations (dmin,
dmax) that depend on which timeout mechanism triggered the expiration or whether it was trig-
gered by another mechanism (cache full events, TCP connections closed). Corresponding val-
ues for ideal timer handling and immediate record export are given in Table 5.1 for the assump-
tion ϑfast < ϑinact < ϑact, which holds for typical implementations and configurations.

The active timeout triggers expiration of records for active flows. Thus, the maximum duration
of such records is as large as the timeout value itself. The minimum value results from flows
where no more packet is seen after ϑact−ϑinact, and the active timeout is triggered right before
the inactive timeout would occur. The minimal export delay occurs if a record times out and is
sent just after the last packet was captured (record of length ϑact).

If the record is removed after expiration of the inactive timeout, a record might describe few
packets only and can thus be of minimal duration zero. The maximum duration is limited by the
case where the inactive timeout triggers just before the active timeout would (ϑact−ϑinact). With
inactive timeout, the minimal export delay is ϑinact. Fast timeouts create records of duration zero
to ϑfast that are in the latter case exported right after the last packet is seen (δe=0). All other
expiration triggers create records with durations from 0 to the maximum (limited by ϑact) that
are exported immediately. In summary, the record duration varies from 0 to ϑact and the minimal
export delay varies between 0 and ϑinact.

Table 5.1: Impact of triggers for record expiration on record duration and export delay

trigger dmin dmax δe,min

Active timeout ϑact−ϑinact ϑact 0
Inactive timeout 0 ϑact−ϑinact ϑinact

Fast timeout 0 ϑfast 0
TCP closed/cache full 0 ϑact 0

The values given in the table can serve as input for basic understanding and window considera-
tions. Real values differ from these values due to several effects that lead to export jitter, which
is defined as the difference between the minimum possible export delay δe,min and the actual
export delay δe for a record:

j = δe−δe,min (5.1)

There are several effects that lead to export jitter: first, record timestamps result from packet
timestamps, which might be different from the time at which a timer expires. Second, exact
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timer handling is processing intensive, thus timers are handled at coarse grained intervals typ-
ically. Third, the export delay is not only caused by record expiration, but also by compiling
several records into a packet. Consequently, real export delay values are often higher than val-
ues given in the table, while lower values are typically not found. In most cases there is a fixed
upper bound for the export jitter.

If we consider distributions of export delay values, we get a Cumulative Distribution Func-
tion (CDF) as depicted in Figure 5.4, which is in detail traffic dependent. Section C.1 presents
two examples of such a CDF taken from exporters of an enterprise network. This figure shows
the typical distribution of the export delays δe (tx− te, blue line) and δs (tx− ts, green line).
These two values differ per record by the record duration d.

The CDF shows that in this example approximately 30 % of records have a an export delay δe
below 5 seconds. Expiration of these records is triggered by fast timeouts, active timeouts, or
non-timeout effects (as listed in Table 5.1). All other records are expired by the inactive timeout
and thus show an export delay from end δe that is between ϑinact and ϑinact plus the maximum
export jitter.

The distribution of δs shows that there are few short records exported by fast timeouts and many
short records expired by the inactive timeout. Furthermore, the maximum value for δs is larger
than the active timeout, which indicates that there are records longer than the active timeout due
to export jitter of the active timeout.

5.2.2 Sliding Window Handling and Dimensioning

Online processing for OWD calculation requires a window that defines which records should be
kept in memory for processing and which records can be removed. While the abstract window-
based processing approach has been discussed in Section 5.1.3, this section covers important
window handling details. We start by basic considerations taking only one-record-flows into
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account, develop design decisions based on the previously considered export characteristics,
and finally consider multi-record-flows. The following four basic design questions will be ad-
dressed:

1. Window movement: timestamp to use

2. Record matching: on insertion or removal

3. Size of record window

4. Size of result window

Regarding record window movement, there are three possible timestamps of arriving records on
which the window can base: ts, te and tx. In the following, we consider window management
properties and required window sizes for each of these possibilities. In contrast to previous
considerations, we no longer consider export characteristic of a single OP, but both OPs of the
OPP for which OWD is calculated have to be considered.

Using record start time ts for window management it has to be considered that start time stamps
of arriving records differ by ϑact+max( j), since the smallest export delay δs is 0 and the largest
is ϑact +max( j). Hence, a window size of ϑact +max( j) is necessary. With smaller values
records expired by active timeout could not be matched, since they are always dropped from
memory when short records exported by fast timeout arrive (δs = 0) and move the window.
ϑact +max( j) has to be taken from the OP of the OPPs where this sum has the larger value.

In contrast to record start time, the variation of record end times is much smaller for a record
stream, since it is only up to ϑinact +max( j). Thus, a much smaller window would suffice
compared to using record start time. ϑinact +max( j) has to be taken from the OP of the OPPs
where this sum has the larger value.

In the two cases discussed previously, the upper window edge (tuwe ) will be often equal to the
export time tx, since there are some records arriving where δs = 0 or δe = 0. If the export time
is taken directly for window handling, this will always be the case and the window will not
“jump” depending on export delays of arriving records as it will be the case when taking ts or
te for window handling. Furthermore, the window handling is based almost on the current time
and thus also result creation and reporting are aligned. Thus, the system will provide results
at known timestamps and not in a bursty way depending on export characteristics. If there are
situations where no flow records arrive due missing production traffic, heartbeat messages that
move the window can be send through the processing blocks. Consequently, using the export
timestamp is the best solution and has been chosen for this work.

After considering the timestamp for the window movement, we now address the second design
question: the record matching strategies. Figure 5.5 shows an export-timestamp-based record
window and indicates which OWD samples are calculated from the records in the window. For
creating an OWD sample for an OPP, the two flow records from each OP have to be matched.
This can happen on insertion into the window, i.e., each time a record arrives, it is checked
whether a matching record is already contained in the window. If the latter holds, both records
are removed from the window and result samples are created. Another possibility is to match
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records on removal, i.e., all records are simply added to the window when they arrive. Only
when records expire, matching records are searched and result samples are created.

Matching on insertion saves memory, since records can be removed as soon as matching records
arrive. However, if multiple matches are possible, matching and removal on insertion means a
higher effort in terms of processing since always the possibility of further matches have to be
evaluated. Multiple matches are possible as soon as multiple non-disjoint OPPs are considered:
E.g., let there be three OPs OPA, OPB, and OPC. If we assume that for the two OPPs OPA,OPB
and OPB,OPC OWD samples should be extracted, a record from OPB must not be removed as
soon as a matching record from OPA arrives, since there might still arrive a matching record
from OPC. Such additional information and checks are not necessary in case of matching on
removal, since either all three records are in the window or not. Furthermore, if we consider
multi-record-flows, we can only decide with high confidence whether SEC holds if all records
have been arrived (i.e., are still in memory when matching). This also advocates matching on
removal since a high accuracy is more important than memory savings. Hence, matching on
removal has been chosen since it reduces processing complexity and also reduces the risk of
matching errors.

The third design question is the size of the record window. For basic window dimensioning
with export timestamps, the per-OPP export jitter has to be considered:

J = tx,OP2− tx,OP1 (5.2)

The per-OPP export jitter depends on the timeout settings and export jitters of either OP. J can
have large positive or negative values for the worst case scenario where a record is expired by
the active timeout on one OP and by the inactive timeout on the other OP. By using the definition
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of δe, the tx symbols in Equation (5.2) can be replaced and the minimum per-OPP export jitter
can be derived as

Jmin = te,OP2− te,OP1 +min(δe,OP2)−max(δe,OP1). (5.3)

We neglect the OWD te,OP2− te,OP1 in this formula since it is small compared to the export
delays. Furthermore, we replace the minimum and maximum export delay by using values
from Table 5.1 plus the per-OP export jitter j for the maximum export delay of OP1:

Jmin = 0− (ϑinact,OP1 + jOP1,max). (5.4)

Jmax is derived accordingly as a positive value containing OP2 parameters.

In order to be able to match all one-record-flows in the window, the record window size must
be

Lmax = max(−Jmin,Jmax). (5.5)

Using equations from above we can derive the maximum window size required for matching
one-record-flows as

Lmax = max(ϑinact,OP1 + jOP1,max,ϑinact,OP2 + jOP2,max). (5.6)

This shows that export-time-based window management requires only a window size according
to the per-OPP export jitter. Furthermore, decreasing inactive timeout settings also leads to a
smaller window and thus less memory requirements. More advanced window dimensioning and
asymmetric windows will be discussed in Section 5.3.

In terms of the last design question, the result window size, it has to be considered which result
timestamps are to be expected from flow records inside the record window. If the result window
is too short, this leads to sample drops, as illustrated in Figure 5.5. The latest result timestamp
to expect is calculated from a record with the export time equal to the lower window edge of
the record window that has the maximum difference between export timestamp and record start
timestamp. This maximum time interval is max(δs) = ϑact+ jmax, hence the result window size
that assures that no results are dropped is L+ϑact + jmax, with ϑact + jmax taken from the OP
where this sum has the highest value.

The previous considerations hold only for one-record-flows. As soon as there are several sub-
flows that must be compared or merged and temporal record joining is necessary, a window size
of Lmax is not sufficient. This is illustrated in Figure 5.6 for an example with two subflows Fs1
and Fs2 for which records at OP1 and OP2 are created. OP1 creates two records for the sub-
flow Fs1. In this case, a shorter window will not allow calculating any samples. With a shorter
window, the record for Fs1 from OP2 is not available for matching and due to subflow changes
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ing

on the path no samples for Fs2 without subflow merging can be generated. Consequently, only
an infinite window size can always guarantee that all records of a flow are available for OWD
calculation. Thus, the size of the record window will always be a trade-off and the amount of
samples lost depends on traffic characteristic. If the number and characteristics of multi-record-
flows are known, such a trade-off could be quantified. This can be achieved by extending the
exporter profile towards such parameters, but is not considered in this thesis.

5.2.3 Integrated Window-based Delay Extraction

Based on the previously discussed considerations a delay extraction block that integrates record
merging and joining has been implemented as proof of concept. It has been realized in Java
based on the flow processing framework developed in the context of this thesis [5]. The frame-
work allows using this processing block in a processing chain where other processing blocks
perform flow data receiving, systematic error compensation, random error quantification, and
other tasks. This section highlights the architecture of this delay extraction block and introduces
its most important functional blocks.

The window-based delay extraction block is illustrated in Figure 5.7. It receives NetFlow record
objects and sends OWD sample objects to downstream processing blocks. This figure shows
several data structures (blue color), three functional blocks (red color), and an example with
two flows that will be used to illustrate the overall block functionality at the end of the section.

The record window and the result window are realized as export time based window consisting
of several buckets that are moved bucket by bucket. Window and bucket sizes are configurable.
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Figure 5.7: Integrated window-based delay extraction processing block
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Each bucket can contain several references to record or result objects. At each movement,
different tasks in the functional blocks are triggered. The window is bucket based since from
an implementation perspective this is more efficient and easier to handle compared to a sliding
window due to the following reasons:

- Inserting records into the window (based on timestamps) is more efficient if the bucket
can be directly addressed. Since the window primarily is an expiration mechanism and
timestamp based element access is not necessary, no sorting of records/results within the
bucket is required.

- Deleting records does not need a timestamp based search in data structures since always
all objects contained in a bucket are expired/handled.

- With a sliding window, each record arrival could trigger expiration/handling of data. A
bucket-based window will trigger such actions less frequently. However, each expiration
handling affects a higher number of records at once and, hence, is more efficient.

In addition to the window data structures, there are two look-up data structures shown at the
bottom of Figure 5.7. The first data structure contains a list of the OPPs for which OWD cal-
culation should be performed. This specifies the order of OPs for correct difference calculation
and allows for dropping records that do not belong to an OP contained in this list. The second
data structure is the Key-OP-structure that contains records that have been added to the record
window. This structure is optimized for accessing records efficiently based on their key and OP.
It consists of a flow-key based hashmap that links to a treemap, which contains for each OP a
list of records.

As shown earlier in Section 4.3.1, records might have to be joined or subflows might have to
be merged due to network and flow capturing effects. Due to the window-based mechanisms
this processing block is not able to join records of long flows, where not all records fit into the
record window, but will expire before the last record of the flow arrives. Therefore, this block
always joins the records for a flow key and if the SEC check holds, it calculates OWD samples.
Subflows are only merged if SEC does not hold on a per-subflow basis.

When a record enters the processing block, it arrives in the record insertion block on the right
side of Figure 5.7. This block checks if the record belongs to a configured OPP and whether
the record is too late to fit in the record window. If the export timestamp is larger than the
timestamp of the upper window edge (tuwe), the window handling block is called to advance the
window. Afterwards, the record is added to the window and the Key-OP-structure.

In case of window movement, window handling functions will call the record removal functions
(block on the left of Figure 5.7) for the last bucket and forward the results of the last bucket of
the result window. Only after these steps have been performed, both windows are advanced by
one bucket.

Only if records for both OPs of the configured OPPs are available, subflow consistency is
checked and records are joined and merged if necessary. If the SEC check that takes into
account byte count errors from profile values (see Section 4.3.2.1) succeeds, OWD samples are
calculated and placed into the result window. It might happen that records are removed for
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which the data in the Key-OP-structure has already been removed. In such cases, the records
have already been processed and will be dropped.

After all blocks have been introduced, we now follow the mechanisms for the exemplary flow
records shown in Figure 5.7. There are two flows that traverse the OPs of the OPP and create one
flow record each, for which SEC holds. The figure shows the time instant before R22 arrives.
Values that are added after the arrival of R22 are depicted in brackets. Records of F1 and R21 of
F2 are already in the record window according to their export timestamp. However, results for
these records have not been calculated. When R22 arrives, its export timestamp is larger than the
upper window edge (tuwe), thus it will trigger window handling. This will cause the calculation
of OWD samples for F2, which are then placed into the result window. Afterwards the windows
are moved by one bucket, and R22 is placed into the record window and the Key-OP-structure.
Due to the moving windows, ∆ts,1 will leave the processing block as OWD sample.

The design of this processing block has been implemented based on modular window handling
functionality and has proven to work reliably for a high amount of records. The results presented
in Chapter 7 have been obtained based on this processing block.

5.3 Profile-based Window Dimensioning

According to the requirements presented in Section 5.1.2, the system must operate reliably
while providing as many correct measurement samples as possible. An important point for
reliable operation is limiting the maximum memory consumption, which means that the window
sizes have to be set in a way that the data buffered in windows never exceeds a certain limit. In
order to estimate this limit, the record arrival behavior has to be known, which is specific for the
network and flow capturing devices considered. In the following a profile based dimensioning
approach is presented, that takes parameters for record arrival into account that can be obtained
a priori from flow data (for profile creation see Chapter 6). These profile parameters allow
estimating the memory consumption as well as the obtainable OWD samples based on the
window size settings. These estimations can be used as input for resource dimensioning in order
to find the desired trade-off between memory consumption and sample count (i.e., whether a
memory upgrade would be worthwhile) or for applying optimization methods that take the
desired sample count on OPPs as input and provide corresponding window parameters.

First, we address the number of OWD samples that can be gained depending on the window size.
This value depends on the per-OPP export jitter, as already mentioned in previous subsections
where this dependency was illustrated in Figure 5.5 and expressed in Equation (5.6).

The two OPs of an OPP in general handle timeouts for the same flow differently due to imple-
mentation or configuration differences as well as due to different load. This results in the effect
that certain per-OPP export jitter values are more likely to occur more than others, which can be
expressed in an export jitter PDF fR(J) that describes the probability that two matching records
have a certain export jitter value J. Figure 5.8 illustrates an asymmetric export jitter PDF as it
often occurs. In the example of Figure 5.8, a large part of records is first exported by OP2 and
then by OP1. Hence, on average for the record export time tx the condition tx,OP2 < tx,OP1 holds
for the same record of a one-record-flow. Due to such effects, per-OP window dimensioning
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can be advantageous, i.e., using a different window size for each OP that suits its export char-
acteristics in order to save memory. Figure 5.8 shows the window sizes LOP1,max and LOP2,max
that guarantee that all records can be matched. Window sizes are defined to be always positive.

Based on these export jitter considerations, we now quantify the number of OWD samples
that can be obtained using a certain window size. Here, it is not sufficient to take the amount
of records that can be matched into account, since from two records that are matched either
two samples or one sample (in case of one-packet-record) can be calculated. As one-packet-
records exhibit a different export behavior than longer records, this distinction is necessary and
a sample distribution fS(J) that considers this effect is required. This PDF has the same bounds
as fR(J), but shows differences especially in regions where multi-packet-flows are exported (see
histograms in Figure 7.10 in Chapter 7).

For calculating the sample count S we take the maximum number of samples Smax that can
be calculated using the maximum window size Lmax from Equation (5.5) as input. Based on
this value and the sample-based PDF fS(J), the amount of samples can be calculated for other
per-OP (asymmetric) window settings as:

S = Smax ·
LOP1∫
−LOP2

fS(J)dJ (5.7)

If using a single record window (symmetric case), L has to be used as integral limits in Equa-
tion (5.7). The discretized versions (histograms) of fR(J) and fS(J) are denoted as hR(Ji) and
hS(Ji). They will be usd in the exporter profile and for evaluations based on measurements.

Next, we address the memory consumption for a given window size. First, dimensioning rules
considering the overall record rates are derived, thereafter, more sophisticated approaches for
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Figure 5.8: PDF of export jitter per record and resulting window sizes
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per-OP windows are considered. For a window that is based on export timestamps, the amount
of records in the record window |RL| depends on the record rate λR and record window size L:

|RL|= λR ·L (5.8)

For dimensioning purposes the maximum number of records in the window is relevant in order
to guarantee that the system can always deal with the memory available. This is a worst case
assumption since records for which a matching record for OWD sample calculation have been
found can be removed from memory and will not stay for the complete window length in mem-
ory. Due to the typical implementations of record expiration and export, the arrival rate is not
constant, but exhibits certain burstiness. This is an important point to consider for the maxi-
mum amount of records in a window, especially for small windows: the smaller the window,
the lower the effect that bursts will average out. This can be illustrated with an example where
we consider two bursts with 100 records that each arrive in a 10 seconds interval, i.e., the mean
rate is 20 records per second. A large window of size 10 seconds will contain at maximum 200
records. However, a window of size 1 second will not contain at maximum 20, but 100 or even
200 records if the bursts arrive within the same second. In order to care for such burst effects,
the maximum expected record rate computed based on the time interval that corresponds to the
window size (λR,max(L)) has to be taken into account. Therefore, we get:

|RL,max|= λR,max(L) ·L (5.9)

The bursty nature of record arrivals can lead to effects where a reduction of the record window
size below a certain limit does not further reduce maximum memory consumption, but the
maximum memory consumption stays high even for smaller windows. With the knowledge on
the overall maximum record rates λR,max(L), Equation (5.9) can be used to quantify the memory
necessary for symmetric window settings for system dimensioning purposes.

When it comes to asymmetric windows, the record rate of each OP has to be considered. Here,
Equation (5.9) has to be extended in order to reflect the impact of different window sizes in
the calculation of the maximum amount of records in the record window. In this case it is no
longer sufficient to consider the overall maximum record rate, but the record rate of each OP
has to be taken into account. A simple solution would be taking the maximum rate of each OP.
However, the maximum rates do not occur on all OPs at the same time, thus the simple solution
could heavily overestimate the required memory. Especially in global networks, the maximum
record rate will occur at very different times at different OPs due to the different working hours.
This fact is exemplarily illustrated in Figure 5.9 that shows the record rate over a working
day for different OPs of a global enterprise network with most traffic created by European
locations. OP1, OP2, and OP3 export records from routers of different continents. The record
rate consequently is higher during working hours and low during the night. For locations where
data centers are connected to the global network (OP4), the behavior is different and a wider
peak results since data center services are often accessed from global locations.

In enterprise networks, such characteristics do typically not change a lot, but similar record
rate patterns occur on each working day, while only weekend characteristics differ. Record-rate
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Figure 5.9: Typical record rate per OP over a working day

impacting events present in the Internet like large-scale port scans, attack traffic, or flash crowd
effects are typically not present in enterprise networks. Of course, there might be irregular
bulk data transfers in enterprise networks. However, they only affect the network utilization
pattern, but do not change the record rate significantly since such transfers causes only few
additional flows. Consequently, a record rate pattern recorded for one working day can be taken
as input for window dimensioning and will require only updates when major configuration or
organizational changes occur.

In order to take this daily traffic pattern into account, the record rate for different time intervals
Tj has to be considered, i.e., λR,max(L,Tj). A coarse grained consideration is sufficient, thus each
interval can, e.g., represent one hour ( j = 1..24). The worst case maximum amount of records
in the window can therefore be derived from the maximum record count that can occur in each
of the time intervals, which is the sum of maximum records kept from each of the n OPi:

|RL,max|= max
j

(
n

∑
i=1

λR,OPi,max(LOPi,Tj) ·LOPi

)
(5.10)

Both dimensioning formulas (Equation (5.7) and Equation (5.10)) require knowledge on the
export behavior as input. The approach in this work is to provide these parameters as parts
of the exporter profile. Profile parameters required for the dimensioning guidelines introduced
previously are the sample distribution fS(J) per OPP and the record rates λR,OPi,max(LOPi,Tj).
The latter is required for each Observation Point on an hourly basis for a typical working day
and different window sizes L in order to take the burstiness of record arrival into account.

5.4 Summary

This chapter detailed how the delay extraction model is efficiently implemented and it also
considered design as well as dimensioning trade-offs. Starting from the problem of export



118 Chapter 5. Online Extraction of Delay Samples

characteristics, the requirements for processing records of a certain time interval was high-
lighted. Based on four fundamental requirements five implementation considerations have been
addressed that underline why a multi-window-based online processing scheme which is realized
by using multiple multithreaded processing blocks is most suitable for OWD extraction.

The second section discussed four design questions on sliding window implementations based
on a model for per-OP and per-OPP export characteristics including the definition and applica-
tion of export jitter. An architectural and functional overview of the integrated window-based
delay extraction block has shown how all previously introduced concepts could be realized in a
processing block that is sufficient for processing the data from a large enterprise network.

In the third section a profile-based window dimensioning approach has been presented that es-
timates the sample count to be achieved and memory consumption to be expected for different
window settings. The dimensioning approach is based on two exporter profile parameters that
reflect per-OPP export jitter and per-OP record rates for different times of day during a work-
ing day. This shows that exporter profiles are not only necessary for error compensation and
quantification, but are also input for optimizing OWD extraction processing block.



6 Exporter Profile Creation

Flow data exhibits several properties with respect to attributes and timestamps that can lead
to errors in OWD calculation, as discussed in Chapter 4. If such properties are known before
matching records, calculating timestamps, and creating OWD samples, errors in OWD samples
can be compensated, quantified, or avoided. Furthermore, knowledge on record rate and sample
distribution allows for dimensioning of online processing for better resource utilization (see
Chapter 5). Using exporter profiles that quantify these properties consequently improves the
accuracy and performance of OWD measurements. This chapter details the exporter profile
concept and a method for obtaining profile parameters. The first section introduces the profile
approach as well as fundamental properties and dependency classes. In the second section the
parameters of the profile are defined, while in the third section approaches for profile creation
are discussed. The fourth section details a method for obtaining profile parameters directly from
flow data.

6.1 Profile Approach

Several properties of flow data depend on export devices as well as on network configuration
and network properties. These properties lead to errors and effects that have to be taken into
account in flow data processing, especially in OWD measurements. The approach chosen in
this work is using exporter profiles. Exporter profiles contain metadata on flow data captured
by exporters in a certain network.

In general a static and a dynamic profile approach can be distinguished: Either profile values
can be predefined (static) by configuration/from reference measurements, or they could be dy-
namically adjusted by taking current flow data, traffic, and exporter properties into account.
With dynamic profile creation, the profile parameters are created from current properties, i.e.,
by using a limited history in which data is evaluated. While in general this has the advantage
that no predefined profiles are required, it could also lead to brittle system behavior, e.g., if
special traffic or load situations arise and the dynamically created parameters become impre-
cise. Additionally, profile creation may require high processing effort, which is not available
in flow data processing applications for dynamically creating profiles in parallel to flow data
processing. Due to these reasons, static profiles are used in the following, which are created
and checked offline.

As briefly mentioned before, the exporter profile approach does not only focus on component
parameters, but also takes network and traffic properties into account. This means that profile
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parameters are influenced by different dependencies. The following list introduces the funda-
mental parameter dependency classes that have to be taken into account in profile design and
creation. A parameter may also have more than one dependency.

- design/implementation-dependent parameters
These parameters result from design and implementation of the flow capturing device
hardware and software. Hence, these parameters apply to a certain device model or soft-
ware release.

- component-dependent parameters
Within the same device model, electronic components may exhibit different behavior
(e.g., skew/drift of quartz oscillators). Thus, such parameters differ from flow capturing
device to flow capturing device, even within the same device model.

- configuration-dependent parameters
These parameters are network or device configuration specific and therefore change if the
configuration is changed.

- traffic-dependent parameters
These parameters depend on the traffic characteristic like arrival rate or flow length.

In current standards, there are some flow data properties specified focusing on accuracy prop-
erties. However, they do not allow for such extensive error compensation and quantification
for OWD calculation as presented in this thesis. The Internet Draft on an IPFIX configura-
tion model [75] defines a template that can be used by an IPFIX device to report accuracy
information. The information elements of this accuracy information are defined in the PSAMP-
RFC “Information Model for Packet Sampling Exports” [RFC 5477], which has been originally
mainly defined for exporting data from packet sampling using the IPFIX protocol [RFC 5476].
Information elements on accuracy are relative error, absolute error, confidence bounds, as well
as confidence level. This information is sufficient for quantifying random errors1 of timestamps
or other flow attributes, but further parameters required in the context of this thesis are not con-
sidered. Additionally, the aim of these information elements is to report errors of which a device
is aware of and not to create profiles on device properties. The idea of an extensive exporter
profile that describes several effects and that also provides parameters useful for flow data pro-
cessing was presented by the author at the IRTF NMRG meeting in July 2010 [3]. The detailed
concept was published in [6]. Trammell et al. also argue in [74] to provide “implementation-
specific metadata alongside flow data”, but an extensive profile is not considered further.

6.2 Profile Content

The exporter profile contains a defined list of parameters. Its format is given in Table 6.12

and will be detailed throughout this section. As a general design principle, the profile always
1[RFC 5476] highlights that an absolute error of 2 ms means +/- 2 ms, i.e., a random error. Systematic errors

are not explicitly considered, i.e., it is assumed that known systematic errors are already corrected.
2This exporter profile is an extended version compared to the initial one presented in [6]
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contains parameters describing device properties and not derived parameters wherever possible.
E.g., it does not contain a systematic error parameter, but it contains the resolution values that
are input to systematic error calculation. Furthermore, the profile is kept general and captures
all flow data errors and effects discussed previously. Only a small part of the profile is Net-
Flow v5 specific. With slight changes in the timestamp resolution part, it can be applied also to
NetFlow v9 or IPFIX.

The parameters of the exporter profile are associated with different profile components, as
shown in Table 6.1. This table gives for each parameter the parameter dependency class (see
Section 6.1) and the data type for completeness and better understanding. The three profile
components are introduced in the next paragraph before each component and its parameters are
explained in detail. An exporter profile describing flow data effects in a network consists of
multiple instances of each component.

Table 6.1: The exporter profile

parameter
dependency class

profile comp. symbol content im
pl

.

co
m

p.

co
nfi

g.

tr
af

fic

data type

Exporter
Component
(EC)

nodeID ID of the node this exporter
belongs to

- - x - ID

ω0,u RTC offset to UTC at t=0 - x x - float
ϕ0,u RTC skew - x x - float
ρsec resolution of rsec x - - - int
ρnsec resolution of rnsec x - - - int
ρsu resolution of rsu x - - - int
ESA Export-Systime-Alignment x - - - bool

Observation
Point
Component
(OPC)

expID ID of the exporter this OP
reports to

- - x - ID

bp,max largest packet size at OP x - x - int
bp,min smallest packet size at OP x - x - int
ϕ0,y system clock skew x x x - float

ρfirst resolution of rfirst x - - - int
ρlast resolution of rlast x - - - int
λR,max(L,Tj) max. record rate per window

size and time of day
- - x x 2D array

OPP
component
(OPPC)

opID1 ID of first OP of this OPP - - x - ID
opID2 ID of second OP of this OPP - - x - ID
hS(Ji) Export jitter histogram per

OWD sample
- - x x array
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The Exporter Component (EC) of the profile exists once per exporting process, i.e., typically
once per NetFlow-enabled router and contains exporting process-specific parameters. It carries
a node ID in order to uniquely identify the component and for mapping it to the network node,
e.g., to the router. Since in a router several different metering processes can exist at different ob-
servation points, each with possibly different characteristics (see Section 3.3), the Observation
Point Component (OPC) of the profile is defined independently of the EC. In order to reflect
the 1:n relation between OPC and EC, each OPC contains an expID that reflects which exporter
process exports the metering data obtained at this OP. Several parameters are obtained per path
between two OPs. These characteristics are part of the third component: the Observation Point
Path Component (OPPC). The direction of this path is reflected by two parameters that indicate
its first and second OP based on the respective IDs.

After an overview of the profile components has been given, the component parameters are now
described in detail. The parameters and symbols used have been introduced in Chapter 4 and
Chapter 5. The EC contains two parameters describing the RTC offset (ω0,u) and skew (ϕ0,u). If
the exporter is properly synchronized, both parameters are close to zero. Thus, these parameters
are configuration-dependent, i.e., they depend on whether time synchronization mechanisms are
properly configured and running. On the contrary, in case of a non-synchronized RTC, these
parameters reflect the skew of the RTC, which depends on characteristics of the electronic com-
ponents, e.g., quartz oscillators, and differs between exporters. The following three parameters
of the EC specify the resolution of the RTC and system uptime raw timestamps (ρsec, ρnsec, and
ρsu), which are implementation-dependent. The implementation-dependent property whether
export times are aligned with system clock resolution or not (ESA) is specified by the Boolean
ESA parameter.

The OPC contains the minimum (bp,min) and maximum (bp,max) packet size observed on this
OP. These values are important for detecting byte count errors (see Section 4.3.2.1). They are
implementation-dependent, since they reflect errors in byte count values, as well as configura-
tion dependent, since the maximum and minimum packet size depends on the network tech-
nology of the interfaces. Furthermore, the OPC contains all clock related parameters that can
depend on the metering process, such as the system clock skew ϕ0,y. This parameter depends
on implementation, i.e., whether there is a separate system clock for raw timestamps at all, or
whether timestamp values are always taken directly from the RTC. If there is a separate system
clock, its skew against the RTC depends on electronic components. The OPC parameters ρfirst
and ρlast specify the resolution of the corresponding raw record timestamps. These resolution
parameters depend on the implementation of the metering process. The last OPC parameter
λR,max(L,Tj) gives the maximum record rate per window size and time of day, which depends
on configuration (timeout settings), and on traffic.

The third component of the Exporter Profile, the OPPC, first specifies the OPP by giving the
opIDs of its two OPs in correct order. These two parameters therefore describe the path between
two OPs from which flow data can be matched for OWD calculation. Since the OPP depends on
network topology, these two parameters are configuration-dependent. The last parameter hS(Ji)
is a discretized version of the per-OPP export jitter PDF for OWD samples. It depends on the
timeout settings (configuration) of both OPs as well as on the traffic characteristic.

This section gave an overview of exporter profile parameters and the structure of the exporter
profile. How these parameters can be obtained is discussed in the following sections.
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6.3 Approaches for Profile Creation

Up to now the exporter profile concept and its parameters have been introduced. How these
parameters can be obtained is considered in this section. The following list details and compares
five different profile creation approaches to obtain profile parameters.

- Profile parameters provided by device manufacturers

The manufacturers of flow capturing devices could provide detailed descriptions of de-
vice properties, e.g., in machine readable standardized formats. This could include design
and implementation specific properties that are valid for a certain device model or certain
hardware/software revisions of a device. Additionally, the manufacturer could also pro-
vide parameters that are not consistent across models or revisions in a per-device fashion
(e.g., stored in each device or provided in lists based on device serial numbers).

While there are first approaches of standardized formats for accuracy description (e.g., in
[RFC 5477]), such information is not available for today’s devices and datasheets also do
not specify such parameters. Even if in future such information will be available, there
will still be old devices in place where such information cannot be obtained for and other
approaches have to be used. With respect to parameter dependency classes, information
from device manufacturers may contain implementation and component-dependent parts.
However, configuration- and traffic-dependent parameters still have to be obtained from
other sources.

- Profile parameters from laboratory measurements

By setting up laboratory measurements, each flow capturing device’s parameters could be
obtained by systematic measurements in a defined environment. With software updates,
however, parameters might change. Especially, since updates of device software might
also include new microcode images for Network Processors or images for configurable
hardware components, such as Field Programmable Gate Array (FPGA) components.
Hence, each software update could change low-level functionality like timestamp creation
and therefore demand new measurements.

Implementation-dependent profile parameters could be obtained easily with high accu-
racy using such lab measurements. In terms of component-dependent parameters, mea-
surements per device are necessary, i.e., each device would have to be taken to a mea-
surement lab. In large networks on a global scale, this would be a huge effort since each
device might have to be transported to a laboratory first and at least cannot be used dur-
ing the measurement in the production network. Furthermore, new lab measurements
are necessary after each software update. Configuration and traffic dependent parameters
cannot be obtained using solely this approach.

- Profile parameters from configuration databases or provided by network adminis-
trators

In large networks device configurations are often stored in a central configuration database.
Using such a database would allow for obtaining configuration-dependent parameters.
However, care has to be taken that this information is always consistent and no manual
effort has to be spent in case of missing information.
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Table 6.2: Suitable profile creation approaches for different parameter dependencies

parameter dependency class
implementation component configuration traffic

pr
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le
cr

ea
tio

n
ap

pr
oa

ch

manufacturer X X
lab measurement X X1

config DB/admin X
active measurements X X X
flow data X X X X

1 high effort: each device has to be taken to lab

Since this approach can only deliver configuration-dependent parameters, it has to be
combined with other approaches in order to obtain the parameters of other dependency
classes.

- Profile parameters from active measurements as reference

An approach similar to the laboratory measurements, but with lower effort, is to perform
active measurements in the network, which have a high accuracy and compare these mea-
surements with results obtained from flow data. This requires active measurements from
the same paths where flow based measurements will be performed.

Compared to the laboratory measurement approach, this approach allows each device
to stay in operation in the network. Additionally, such measurements could be simply
repeated in case of software updates in order to validate parameters. Using reference
measurements in the network allows for obtaining configuration-dependent parameters
in addition to the implementation- and component-dependent parameters. For obtaining
traffic-dependent parameters, flow data has to be evaluated separately.

One problem of this approach is that for each OPP a comparable active measurement is
required. While setting up measurements between exporters is feasible, the results from
currently available active measurement technology are often not directly comparable to
flow-based measurements. This is due to the fact that flow capturing and active measure-
ment traffic are often handled at different positions in routers and hence no flow records
from measurement traffic are available or there can be additional queuing delay between
the positions.

- Profile parameters from flow data

Using this approach, flow data is used for extracting the required parameters using suit-
able algorithms. It is a completely passive approach and can be applied to flow data that
is captured for normal monitoring purposes of production traffic.

This approach cannot provide as high accuracy as lab measurements or active measure-
ments, but does not require extra measurements and results therefore in less effort. De-
termining parameters might require the processing of large amounts of flow data in order
to obtain a certain degree of confidence. While flow data has to be used for obtaining
traffic-dependent parameters, it is also possible to obtain parameters of the other parame-
ter dependency classes.
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As indicated in the descriptions of the profile creation approaches, some approaches have con-
siderable drawbacks when it comes to implementation in production networks. The approaches
relying on the configuration DB, active measurements, and flow data are the most promising
ones. As a next step, the five profile creation approaches and the parameter dependency classes
they can address are considered. The summary given in Table 6.2 shows that some approaches
can obtain only parts of the exporter profile parameters and an approach based on flow data is
always necessary in order to obtain the traffic-dependent parameters. Furthermore, flow data
based creation can also be used to obtain other parameters, thus the profile parameters could
be completely obtained by this approach without relying on other information. This makes this
approach very attractive since it reduces the risk of errors that typically arise when combining
information from several sources. In the following only the flow data approach is considered
and the next sections focus on methods for flow data based profile creation and indicate limita-
tions of this approach.

6.4 Profile Creation from Flow Data

This section introduces the approach to systematically create exporter profile parameters from
flow data only, i.e., with as little as possible additional knowledge. The first subsection high-
lights the overall concepts by describing the iterative profiling steps and the methods applied
for obtaining profile parameters. Profiling steps that require more detailed consideration of
mechanisms and algorithms are detailed further in separate subsections.

6.4.1 Profiling Concept: Steps and Dependencies

The exporter profiling method uses reference flow data sets to obtain profile parameters in an
offline fashion. Reference data sets consist of flow data from one day and provide enough
data for reliable detection of profile parameters and daily behavior. Offline profile creation
allows for using processing intensive algorithms that are not feasible for online processing while
performing OWD extraction or dynamic profile creation. Since the profile parameters are used
to support OWD measurement at a later point in time, the reference data set should be chosen
in a way that it contains flow data collected from the same network topology and flow capturing
components for which OWD measurement will be performed. If the topology or components
change, a new reference data set can be chosen to obtain updated parameter sets.

Exporter profiling is a seven step iterative process, where steps partly depend on parameters
obtained in previous steps. Figure 6.1 gives an overview of the seven profiling steps and the
profile parameters obtained. Symbols used in this figure refer to profile parameters that have
been defined in Table 6.1. The figure shows on the left pre-processing blocks that perform
filtering and compensation actions before the flow data is fed into the profiling blocks (thick
blue arrows). Resulting profile parameters are stored in the exporter profile database, shown on
the right side. During the process, some of the parameters obtained in early steps are required
for pre-processing as well as in the profiling blocks, as indicated by the thin orange arrows in
the figure. Profiling steps are not always dedicated to a certain profile component, but similar
parameters of different profile components might be obtained in the same step (e.g., resolution
parameters of the EC and OPC are determined in the same step).
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Figure 6.1: Profiling steps for exporter profile creation

In order to save memory or allow for parallel or iterative processing, some steps are further
subdivided into sub-steps. Furthermore, for the same reasons processing steps can be performed
on only parts of the data, e.g., for certain OPs/OPPs only. This requires pre-filtering of the
respective data parts in the pre-processing block, which is not shown in the figure.

The reference data set is the complete flow data from one weekday of the considered enterprise
network. Some processing steps can provide better results if data from times where the net-
work is lightly loaded only is taken. A weekend data set can be used in such cases, which is
highlighted for the respective profiling steps in the following.

In the following the seven profiling steps are detailed.

Profiling Step 1: Identification and packet size estimation

The first step identifies all exporters and OPs from the reference data set and sets up
the respective EC and OPC data structures of the profile. Along with this identifcation,
estimates of the minimum and maximum packet sizes are obtained for determining the
upper and lower bounds of byte count error (Section 4.3.2.1).

The largest and the smallest packet size can be directly obtained from records that report
one packet only. However, due to traffic characteristics and timeout mechanisms, such
records may not exist, especially not for maximum sized packets that are very unlikely
to occur as single packet of a flow. Therefore, the packet sizes are estimated for each
OP based on all records ROP observed at this OP. For each OP the minimum packet
size bp,min,OP and maximum packet size bp,max,OP are calculated based on the overall
minimum/maximum packet size estimate of each record:

bp,min,OP = min
r∈ROP

⌊
br

pr

⌋
(6.1)
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bp,max,OP = max
r∈ROP

⌈
br

pr

⌉
(6.2)

Using the second estimate, the largest packet size is only correct if there are flow records
that report flows with almost only maximum-sized packets. Evaluations based on enter-
prise network flow data of a complete day showed that the maximum packet size can be
properly estimated in this way.

This step also performs more general statistics on records, packets and bytes reported
from OPs. These statistics are not part of the profile itself, but are used for determining
how much data is available for each exporter and OP in the reference data set. If the
amount of data is too low or there are only very few time intervals in the reference data
set where data is available, these OPs and exporters are dropped and not considered in the
following steps, since reliable determination of parameters is not possible in such cases.

The output parameters of this step are the generated IDs nodeID and expID for the EC
and OPC as well as the parameters bp,max and bp,min that are contained in the OPC. Step 1
is the only step that does not need any parameters of the exporter profile as input. The
blunder filter in flow data processing is configured with static plausibility check rules
only and cannot detect boot time discontinuity blunder (see Section 4.4.4), which has no
impact on this basic step.

Profiling Step 2: System clock skew calculation
This step calculates the skew between the system clock and the RTC for each OP, based
on the list of OPs for which profile components have been previously instantiated. The
system clock skew can be calculated without applying any preprocessing blocks for error
compensation. This is due to the fact that the system clock skew is defined as skew against
the RTC of the exporter and not as skew against UTC. Additionally, the system clock
skew can be calculated for each OP independently of other OPs, since the calculation is
possible based on flow data from a single source. Thus, no cross-OP considerations or
flow matching is necessary. System clock skew is calculated by linear interpolation of
the boot time values from records in the reference data set. The output parameter of this
block is ϕ0,y for each OPC. The system clock offset ω0,y could also be calculated, but
this parameter is not required for the exporter profile.

Profiling Step 3: Record rate determination
The record rate serves as input for window size dimensioning and is determined per OP
in this step. This step takes only records into account that passed the blunder filter after
boot time discontinuity check and other checks. In this way exactly the record rate that
also would be used for OWD extraction in online processing can be obtained. Since this
profiling step can use timestamps of record arrival at the collector, RTC offset or skew
detection and compensation is not necessary as input data. Record rate determination is
further detailed in Section 6.4.2.

Profiling Step 4: Resolution profiling
In this step the resolutions of the raw timestamps and record timestamps are determined,
as well as whether ESA holds or not. These parameters are important for quantifying
systematic errors and are thus the basis for pre-processing steps that compensate such
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errors in following profiling steps. The impact of system clock skew on timestamp values
is not compensated prior to resolution profiling, since this would destroy the original
timestamp values and could hamper resolution detection. Thus, the only flow data pre-
processing for this step is the blunder filter. The algorithms used in this step are presented
in Section 6.4.3.

Profiling Step 5: OPP inference
Up to now, only parameters per exporter (EC) or per OP (OPC) have been considered.
In order to determine path characteristics, the paths (OPPs) have to be determined first,
which is done in this step. Similarly to step 1, only OPPs are considered for which a cer-
tain amount of data is available. Section 6.4.4 describes the algorithms used for this step
in more detail. The parameters created by this step are opID1 and opID2 that describe the
OPP. Since the OPP inference is timing based, it is important that all systematic errors
on timestamp have been compensated in pre-processing steps. Due to the algorithm’s
properties, RTC offset or skew does not impact the results. Thus, RTC offset/skew com-
pensation is no prerequisite.

Profiling Step 6: RTC offset/skew calculation
This step checks whether RTC timestamps of exporters exhibit skew or whether they are
properly synchronized to UTC. In case of non-synchronized clocks, it tries to quantify
offset and skew. This enables skew compensation in pre-processing blocks.

Skew and offset determination requires a reference clock, which is synchronized to UTC.
Determining offset and skew solely based on flow data means that a properly synchro-
nized reference exporter is required, from which offset and skew to other exporters can
be calculated. Such an exporter can be, e.g., a router which resides in a data center where
it is directly attached to GPS-based clock synchronization mechanisms. The ExpID of
this exporter has to be given as input to the profiling step. Regarding the overall profiling
approach, this profiling step is the only one that requires external information.

RTC skew detection is based on Paxson’s algorithm that has been introduced in Sec-
tion 2.3.4. For clock skew calculation the difference between reported export timestamp
and reception time at the collector is taken. Clock offset is calculated from OWD samples
obtained from the OPPs between the profiled and the reference exporter. Reliable RTC
offset calculation requires symmetric routing for these OPPs. This step benefits from
using a weekend data set where due to the low traffic queuing delays are small.

If an RTC skew ϕ0,u of less than 10−6 (1 ppm) and an offset ω0,u of less than 5 ms results,
it is assumed that exporter clocks are properly synchronized. Experience with flow data
from an enterprise network [3] shows that offset values are several orders of magnitude
higher in case of unsynchronized clocks. This is due to the fact that typically clocks run
unsynchronized for a longer time and hence such larger offsets results. If an exporter
just lost clock synchronization, this can hardly be detected by the profiling step and if it
happens after profiling, it cannot be detected at all. This is a limitation of this approach
and can be addressed by adding corresponding mechanisms (see Section 2.3.4) to the
online OWD calculation mechanisms.

Profiling Step 7: Sample count distribution
The last step obtains hS(Ji), which gives the amount of samples for different per-OPP
export jitter values. Since this requires the extraction of OWD samples, this step requires



6.4 Profile Creation from Flow Data 129

all filtering and compensation parameters for the respective pre-processing steps shown
in Figure 6.1. This step uses the integrated delay extraction processing block presented
in Section 5.2.3 extended by functionality that adds the per-OPP export jitter value J to
each extracted OWD sample. Based on this data a histogram is calculated and stored in
an array. The sample count distribution is input for window dimensioning.

As highlighted, the exporter profiling process requires several different processing blocks. Some
pre-processing blocks are necessary in several processing steps. In order to allow for reusability
and flexibility, the profiling process has been implemented based on the flexible flow processing
framework developed in the context of this thesis [5].

6.4.2 Record Rate Determination

The record rates that are determined in the third profile creation step are input for the profile-
based window dimensioning method (Section 5.3) of the online processing approach. In order
to find a suitable window size, the record rate for different record window sizes L is required.
Furthermore, this record rate is obtained for different time intervals of a working day Tj, thus
the record rate is a two-dimensional array that contains a record rate value for each window
sizes and working day time interval: λR,max(L,Tj).

For obtaining the record rate, records are filtered for the considered OP and forwarded to rate
calculation processing. Depending on memory and processing power the rates can be calculated
for each OP sequentially or in parallel if several rate calculation functional blocks are used.

Rate calculation is based on record arrival times at the collector and is, thus, independent of
timestamp errors or compensation. A straightforward rate processing approach is using a sliding
window for each window size L that is considered and get the maximum amount of records that
arrive within the window in the considered time interval. However, using a sliding window is
processing intensive and so it was impossible to use this approach with typical data set despite
this task is not time critical in offline processing.

An alternative to a sliding window is a jumping window, i.e., there is one window after the other
for which records are counted. However, packet bursts that arrive at window boundaries will
not be captured by this mechanism. A solution to this problem is using windows of length L

2
as illustrated in Figure 6.2. By summing up the number of records that arrive in two adjacent
windows, the record arrivals within a window of size L are calculated. Hence, overlapping
windows result and by taking the maximum within the considered time interval the maximum
arrival rate can be estimated. This approach is only an estimation compared to the sliding
window method, but the accuracy proved to be sufficient. Furthermore, the estimation accuracy
can be improved by using a higher number of test windows, e.g., of length L

4 .

Record rate determination is performed for different window sizes, such as for L = 1..20 s.
Using test windows of Lmin

2 allows calculating the rate of higher window lengths by summing
up the arrivals of the respective amount of test windows. This is another advantage compared
to the sliding window approach that requires one sliding window of each window size that is
considered.
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Figure 6.2: Record rate determination

6.4.3 Obtaining Timestamp Resolutions

Timestamp resolutions play an important role in the exporter profile for quantification of sys-
tematic and random errors. The exporter profile contains resolution parameters for several raw
timestamps that need to be properly detected. Timestamp values that are input to the resolu-
tion detection are taken from the reference data set that contains flow data from a production
network. Hence, they depend on traffic as well as on exporter characteristics and no pattern
or characteristic must be assumed in the resolution detection profiling step. Especially, raw
timestamps with adjacent values may not exist and resolution outliers as well as unaligned res-
olutions from hidden clocks (introduced in Section 4.4.3.1) are further challenges.

Resolution estimation is a known problem in network measurement and was recently addressed
by Arlos and Fiedler [124, 125]. They devoloped methods for estimating the timestamp resolu-
tion of measurement hardware and software tools. However, the methods require a laboratory
setup and are based on artificial high-volume traffic where packets are sent back-to-back. An
alternative method is based on highly accurate and synchronized clocks of the packet generator
and the system under test. Both methods could be used for the profile creation approach that is
based on laboratory measurement, which was discussed in a previous section. However, they
are infeasible for resolution detection based on flow data from a production network because of
the missing control over traffic and lack of highly accurate and synchronized clocks.

For the given resolution detection problem with its special properties no suitable algorithm
has been found. Simple approaches for resolution detection, such as calculating the greatest
common divisor or testing the remainder of divisions with different resolutions values (modulo-
based algorithms), proved not to work reliably. This is due to the resolution outliers and un-
aligned resolutions from hidden clocks in NetFlow data (introduced in Section 4.4.3.1). Hence,
an algorithm based on the Discrete Fourier Transform (DFT) and heuristic peak detection has
been developed that obtains the resolutions of the different timestamps. Resolution detection is
related to the problem of estimating the fundamental frequency (also called F0 or pitch) in audio
signals. The cepstral method for pitch detection in speech signals (evaluated in [126]) is similar
to the method presented in the following. It is based on a DFT and a heuristic peak detection
algorithm. However, audio signals are different from time series presented here (e.g., there are
zero crossings) and therefore such methods for audio signals are not directly applicable.
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Figure 6.3: Resolution profiling procedure

The method developed in this thesis is shown in Figure 6.3. The resolution profiling procedure
consisting of steps A,B,C obtains all resolution parameters. Step B is the resolution detection
itself, which is further subdivided into six stages.

The first step (step A) takes records of the reference data set and extracts raw as well as record
timestamps. Furthermore, timestamps are classified by source, i.e., per exporter or OP depend-
ing on whether the resolution parameter belongs to the EC or the OPC of the exporter profile.
Per timestamp type and source the timestamp streams are forwarded to a separate resolution
detection algorithm (step B) that calculates the resolutions ρx. Step C finally checks the time-
stamps of the same timestamp source for consistency and performs a check on whether ESA
holds. Resolution values are consistent, if record and raw timestamps have the same resolution
(e.g., resolutions of start and end timestamps (ρs, ρe) have the same value as record duration
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(ρd) and raw resolutions (ρfirst, ρlast)). If resolutions are consistent, they are put into the ex-
porter profile, otherwise an error will be raised. Export time and system time are assumed to be
aligned if the resolution of the export timestamps ρx and the resolution of the raw system time
ρsu are the same. In such cases the ESA flag is set to true.

In the following the resolution detection step B is described in detail. This resolution detection
algorithm consists of the following six stages:

Stage 1: Collection of record timestamps

This stage collects the timestamp values in a data structure that removes duplicates and
also sorts timestamps on insertion. If 100,000 samples are present in the data set or
10 million timestamps have been received, the sorted timestamp list is forwarded to the
next stage.

Stage 2: Time series creation

All timestamp values are converted into a time series with a y-value of one where a
timestamp exists and a y-value of zero otherwise. The time series is aligned at zero by
subtracting the value of the first sample from all x-values. The resulting x∗ values as well
as the y(x∗) values of this time series are forwarded to the length adaptation stage.

Stage 3: Length adaptation

The time series length is adapted to the length N that is a power of two, which is a
requirement for FFT. Due to counter wraps and other effects the time series could be
very long and lead to high processing effort in the next stage. Furthermore, the length
cannot be known while collecting samples at stage 1 and therefore has to be reduced in
this stage. This stage reduces the time series to a predefined maximum (220 in the current
implementation).

Stage 4: Discrete Fourier Transform

On the adapted length time series a DFT is applied to transform the time series into the
frequency domain. The DFT is implemented as Fast Fourier Transform (FFT) for effi-
ciency reasons. From the complex frequency spectrum a single sided amplitude spectrum
|Y (k)| of length N is generated for further evaluation.

Stage 5: Peak detection

The amplitude spectrum contains peaks for frequency components found in the time se-
ries. In general, the first peak with k > 0 denotes the fundamental frequency, which
indicates the resolution of the timestamps. However, fundamental frequency detection
and hence peak detection requires more sophisticated algorithms since peaks often have a
certain width and there is a wide range of possible resolutions. A suitable peak detection
algorithm that reliably detects the peaks is detailed in Appendix D. It returns the position
of the peak kp .

Stage 6: Conversion to resolution

In the last step the kp-value is converted into the resolution value ρ of the considered
timestamp using the following equation that results from DFT properties: ρ = N

kp
. If k = 0
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no fundamental frequency is found, which means that there are no resolution effects and
thus ρ = 1 is returned.

As highlighted, the resolution detection algorithm starts as soon as a certain amount of records
or samples has been collected. The profiling step can stop as soon as enough data was available
for running the resolution detection for all timestamp types and source classes. Hence, not the
whole reference data set needs to be processed. At the end, the resolution values as well as the
ESA flag are written to the exporter profile.

6.4.4 Observation Point Pair Inference

For OWD measurement, as well as for extracting profile parameters, it is important to know
the order of OPs in an OPP, i.e., which OP is traversed first and which second. This cannot
be determined ad-hoc based on OWD samples created from flow data for two reasons. First,
a certain fraction of OWD samples on correct paths can be negative due to random errors,
especially if the range of the error distribution is wider than the true OWD value. Second,
there might be unsynchronized exporter clocks. This does not allow using OWD samples for
determining which OP is traversed first and which second. However, quantifying clock skew
requires knowing topology and thus knowing OPPs. Hence, OPPs are inferred in profiling
step 5, i.e., before RTC skew calculation is determined in profiling step 6.

The OPP inference algorithm takes properties of traffic into account, especially the property
that a forward flow causes a reverse flow due to the request-response nature of most protocols.
For each exporter passed by both flows, RTT values are calculated. Thus, no timestamps across
exporters have to be compared, which relieves from the problem of unsynchronized clocks.
Furthermore, detection of forward and reverse flow does not take knowledge about server port
numbers into account. Such an approach is often not sufficient, e.g., if non-well-known port
numbers are used. Additionally, the algorithm handles several OPPs on a path at once.

Figure 6.4 depicts an exemplary scenario of three exporters and shows how the algorithm is
applied. In this example client A sends a request (forward flow) to server B, which sends the
corresponding response (reverse flow). At each exporter, the RTT can be calculated from flow
timestamps of forward and reverse flows that traverse the OPs. The ordering of exporters and
hence also the OPs on the path is possible by sorting OPs according to the RTT values obtained.
Due to random errors, however, RTT-based ordering will not be the same for all pairs of forward
and reverse flows, but a certain amount of RTT values has to be collected for averaging out
random errors and for achieving stable results. The algorithm performs a data collection run
on a flow data set, which contains all one-record-flows of the data set. After the collection
it determines the correct OP ordering based on the large amount of RTT samples considered,
which enables to eliminate the random errors.

For each flow key tuple, the following steps are performed and eventually a set of OPPs is
returned:

1. Get all flow records of the selected tuple as well as all flow records of the reverse tuple.
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Figure 6.4: OPP inference

2. Add all OPPs to the OPP result set that are not yet contained. OPP ordering is initially
defined based on opID ordering and will be redefined later.

3. Calculate RTT values for all exporters based on the record start timestamps that report
the forward and the reverse flow.

4. Take the RTT value with the largest absolute value and use the timestamps of this RTT
value to (re)define forward and reverse flow and change the sign of RTT values obtained
if necessary.

5. Order the exporters according to RTT values and increment for each OPP a counter
whether its current opID-based OP ordering is correct or not.

6. Remove all flow records with the tuple or reverse tuple considered from the data set.
Thus, neither forward nor reverse tuples will be considered in the following iterations.

After the collection run, the result set is evaluated and for each OPP where the counter for
correct ordering is lower than the counter for incorrect ordering, the OPs are switched. OPPs
for which no distinct decision is possible or not enough data is available are removed from the
result set. OPPs left in the result set are stored as part of the OPPC in the exporter profile.

This approach of OPP inference requires that flow data is generated for each flow that traverses
the exporters, i.e., that flow capturing is enabled on the respective interfaces. Furthermore,
it requires that the forward and reverse flow passes the same router, at least for a fraction of
traffic, i.e., that there is symmetric routing. The first requirement can be achieved by enabling
flow capturing on the respective interfaces. The second requirement is often fulfilled, however,
if not it might require some effort to achieve. If any of the requirements cannot be fulfilled, the
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OPP ordering information has to be taken from other sources, such as configuration DBs or from
administrators. There is also the possibility of adding missing OPPs based on OPPs that could
be inferred. This functionality has not been considered further, but it can be done manually at
the current stage. Another limitation is that OPPs within an exporter cannot be inferred with the
current algorithm. This happens if flows pass two flow capturing enabled network interfaces of
the same router.

6.5 Summary

The exporter profile contains parameters that improve OWD measurement accuracy as well as
processing efficiency. Parameters in the profile do not only depend on the flow capturing device
implementation, but also on electronic components, configuration and traffic. This leads to the
definition of parameter dependency classes based on which profile parameters can be classified.
With the definition of the exporter profile these dependencies have been systematically evalu-
ated and profile parameters have been grouped into the Exporter Component (EC), Observation
Point Component (OPC) and Observation Point Path Component (OPPC). These components
specify for which entities the parameters have to be obtained. For profile creation, five different
approaches have been considered, each addressing a different set of parameter dependencies.
Based on an evaluation of the five approaches the profile creation approach that is only based
on flow data and covers all parameters has been chosen.

For flow data based exporter profiling a seven step profiling method has been developed, which
iteratively determines profiling parameters. While some profiling steps are based on well-known
algorithms or result directly from considerations of previous chapters, other steps required the
development of more sophisticated methods. Respective approaches for record rate determi-
nation, timestamp resolution profiling, and OPP inference have been developed. The profiling
method has some limitations under certain circumstances, e.g., if there is predominantly asym-
metric routing.

The profiling method has been applied on data of a global enterprise network. The results that
have been gained and the impact of profile parameters on OWD measurement accuracy and
processing efficiency are considered in the next chapter.
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7 Applicability and Evaluation

This chapter describes how the concepts introduced in the previous chapters were applied in
an enterprise network scenario and presents evaluations of these concepts based on reference
measurements. The concepts applied are error compensation and quantification concepts from
Chapter 4, online processing approaches and dimensioning from Chapter 5, as well as the ex-
porter profile and its creation from Chapter 6.

The first section presents the evaluation scenario and measurement setup for obtaining flow and
reference data. In the following two sections, the evaluation of OWD measurement supported by
exporter profiles is detailed. The second section focuses on errors and their compensation and
quantification. The third section presents results and validations for the window dimensioning
method. Both of the latter sections take exporter profile parameters into account that have been
obtained based on the method introduced in Section 6.4. For the sake of better readability, not
all profile parameters are listed at a single point, but right in the section where their impact is
evaluated. The last section summarizes the evaluation results.

7.1 Evaluated Network Scenario

In order to validate and evaluate the flow-based OWD measurement approach, data from a
global enterprise network was collected. This section details this evaluation scenario, the data
collection process, and the properties of the data set.

The measurements in the enterprise network consisted of two components: active reference
measurements and collection of flow data exported by the routers of the network. For detailed
analysis, three locations in different countries have been selected, as shown in Figure 7.1. At the
location in Germany, a measurement machine was connected to the network that performed ac-
tive TCP-based RTT measurements with peer machines at the locations in France and Australia.
The measurement machine also collected flow data (NetFlow v5) by means of a Flow-Tools
[99] and patched NfDump [101] collector. Flow data was copied in the Linux kernel and sent to
both collector processes, which wrote flow data in compressed file formats to two separate hard
disks. In order to retrieve this data, a central collector of the enterprise network was configured
to mirror the flow data it received to the measurement machine.

Active measurements and flow data collection ran from afternoon of Wednesday, 3rd November
2010 to noon of Monday, 8th November 2010. The NetFlow v5 data set contains flow data
from several hundred routers and its overall size is 180 GB in compressed Flow-Tools format,
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Figure 7.1: Evaluation scenario

or 786 GB uncompressed. From the exported flow data, the topology as shown in Figure 7.1
was derived and confirmed by the enterprise’s network department. The flows from the active
measurements traverse the MPLS CE routers at each location as well as two core routers (DE-
CO1 and DE-CO2) at the German location with asymmetric routing. The interfaces traversed
are indicated by capital letters (A,B,C). At the Australian location, the flows traverse the CE
router twice due to a WAN optimizer connected to interface B of this router. There is also a
WAN optimizer at the German location. However, there is no NetFlow data from the interfaces
it is connected to and therefore this component is not shown in Figure 7.1. The same applies
to all other routers and switches that did not export flow data. Interface B of the Australian
location is not considered for OWD measurement.

Unless otherwise noted, results presented in this chapter are based on the Flow-Tools data set,
since Flow-Tools stores the raw timestamps by default. NfDump data is used if the collection
timestamp of records is required, which NfDump records due to a software patch applied. In
the following, only the routers shown in Figure 7.1 and only flow records from UDP or TCP
flows are considered unless noted otherwise.

7.2 Profile-based Error Compensation and Quantification

This section shows the applicability of the exporter profiling method (see Section 6.4) for com-
pensation and quantification of errors in OWD extraction. It first presents the results of the pro-
filing run and which error corrections or quantifications can be derived from the error-related
parameters. Second, a comparison of active measurement data with OWD results obtained from
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exporter interface bp,min bp,max

DE-CO1 A 39 bytes 1500 bytes
DE-CO2 B 46 bytes 1500 bytes
AU-CE A 21 bytes 1500 bytes
AU-CE C 22 bytes 1500 bytes
FR-CE A 25 bytes 1500 bytes
FR-CE B 23 bytes 1500 bytes

Table 7.1: Minimal and maximal byte count of relevant observation points

NetFlow data shows that exporter profile usage leads to a considerable improvement of accu-
racy. The third part covers the impact of resolution effects on confidence interval calculation for
OWD values and improvements that can be achieved by taking profile parameters into account.
In the fourth part, the impact of system clock skew and its compensation is highlighted based
on an additional evaluation scenario.

7.2.1 Error-related Profile Parameters

Exporter profile values were created based on data from the third measurement day (Friday,
5th November 2010). In the following, the profiling results for byte count, system clock skew,
timestamp resolution, OPP inference, and RTC clock skew/offset are presented.

Byte Count Parameters

For record matching it is important to consider potential byte count errors (see Section 4.3.2.1).
The values required for determining these errors are the minimum and the maximum byte count
per packet (bp,min and bp,max), which are obtained per OP in the first profiling step. As shown
in Table 7.1, these byte count values differ for the different OPs in the scenario and the exporter
DE-CO2 shows the 46-bytes limitation on interface B, i.e., it reports the Ethernet payload size
instead of the IP packet size. Interestingly, also some interfaces of DE-CO1 show this behavior
(not shown in the table), while other interfaces of the same exporter do not show the limitation.
The latter is the case for interface A of DE-CO1, which is relevant for the evaluation scenario.
This clearly indicates that byte count parameters have to be obtained per OP.

System Clock Skew

In the second profiling step, the system clock skew ϕ0,y (see Section 4.4.2.2) was determined
for each OP . Table 7.2 shows ϕ0,y values for the OPs of the evaluation scenario. These values
are consistent across OPs of the same exporter, which indicates that the considered routers use
a single system clock for NetFlow timestamp generation.

The table shows that ϕ0,y varies in a certain range for the considered OPs. Additionally, the
last column of the table shows the calculated systematic error es for the record start time caused
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exporter interface ϕ0,y es for δs = 60 s

DE-CO1 A,B,C 2.16 ·10−6 0.13 ms
DE-CO2 A, B 7.58 ·10−6 0.45 ms
DE-CE A,B,C,D 1.12 ·10−5 0.67 ms
AU-CE A,B,C −1.63 ·10−5 −0.98 ms
FR-CE A,B 2.61 ·10−5 1.57 ms

Table 7.2: System clock skew ϕ0,y values and resulting theoretical start time error es for eval-
uated observation points
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Figure 7.2: Histogram of system clock skew (ϕ0,y) values from all OPs in the data set. Bin
size 5 ·10−6.

by ϕ0,y if the start time export delay δs is 60 s (a typical value for records expired by active
timeout). As shown this error is up to 1.57 ms per OP in the evaluation scenario. For an OPP
the overall error is the difference of both es values of the OPs. As an example this maximum
error is therefore 2.55 ms for the OPP AU-CE/FR-CE in the evaluation scenario.

An evaluation of the ϕ0,y values of all OPs in the data set, however, shows that ϕ0,y values
can be much higher than in the evaluation scenario. The histogram in Figure 7.2 shows that a
significant number of OPs have ϕ0,y values of about −1 ·10−4 or 0.5 ·10−4, which is up to five
times as much as the values observed for the evaluation scenario routers. Consequently, there
are OPPs where the error caused by ϕ0,y can be more than 10 ms. This shows that the impact
of system clock skew is much more severe on routers that are not part of the evaluation scenario
and that within the evaluation scenario system clock skew causes only small errors. Therefore,
Section 7.2.4 will present a separate evaluation of system clock skew impact of an OPP with
high system clock skew differences that is not part of the evaluation scenario.
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exporter ρsec ρnsec ρsu ρsu aligned ρx ESA
DE-CO1 1.00 s 15,197 ns 4.00 ms yes 4.00 ms yes
DE-CO2 1.00 s 15,197 ns 4.00 ms yes 4.00 ms yes
AU-CE 1.00 s 15,197 ns 4.00 ms yes 4.00 ms yes
FR-CE 1.00 s 36,158 ns 999.6 ms no 999.6 ms yes

Table 7.3: Exporter Component (EC) resolution values of considered exporters

exporter interface ρfirst ρs ρlast ρe ρd

DE-CO1 A 64.00 ms 64.00 ms 64.00 ms 64.00 ms 64.00 ms
DE-CO2 B 64.00 ms 64.00 ms 64.00 ms 64.00 ms 64.00 ms
AU-CE A 4.00 ms 4.00 ms 4.00 ms 4.00 ms 4.00 ms
AU-CE C 4.00 ms 4.00 ms 4.00 ms 4.00 ms 4.00 ms
FR-CE A 4.00 ms 4.00 ms 4.00 ms 4.00 ms 4.00 ms
FR-CE B 4.00 ms 4.00 ms 4.00 ms 4.00 ms 4.00 ms

Table 7.4: Observation Point Component (OPC) resolution values of relevant observation
points

Resolution Parameters

The timestamp resolutions of raw and record timestamps are created in the resolution profiling
step of the exporter profile creation (see Section 6.4.3). As some timestamps are created by the
exporting process and other timestamps are created by the metering process at the observation
point, the timestamps are either part of the Exporter Component (EC) or of the Observation
Point Component (OPC) of the exporter profile.

Table 7.3 shows the EC resolutions of the considered exporters, which are UNIX time sec-
ond (ρsec), nanosecond (ρnsec), and system uptime (ρsu) raw timestamps resolutions. Further-
more, this table lists whether the system uptime resolution is aligned (see Section 4.4.3.1) and
gives the resolution of the export timestamp (ρx). The last column shows whether ESA (see
Section 4.4.3.1) holds. While ρsec is 1.0 s as expected, ρnsec differs between 15,197 ns and
36,158 ns. With both values, however, the export time has still a much higher resolution than
the millisecond resolution of the other timestamps. Hence, a better resolution detection algo-
rithm is not necessary. Tests with modulo-based detection methods or tuning of the FFT-based
detection revealed an aligned resolution of 15,258 ns for all cases.

As shown ρsu equals ρx for each exporter, hence, it is assumed that ESA holds (see Sec-
tion 6.4.1). The exporter FR-CE has a very high ρx value of 1 s, which is reported as 999.6 ms
due to rounding errors that do not have further impact. As for the other exporters, ρx equals ρsu
and ESA holds for FR-CE. However, ρsu and ρx are both unaligned for FR-CE and the limited
resolution could therefore not have been detected with simple (e.g., modulo-based) resolution
detection methods. Since ESA holds for all considered exporters the exporter timestamp res-
olutions do not impact record timestamp resolution and hence do not cause any systematic or
random timestamp errors.
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Observation Point bias random error
exporter interface βs, βe σ s, σ e τs, τe

DE-CO1 A −32ms 18.475 ms 64 ms
DE-CO2 B −32ms 18.475 ms 64 ms
AU-CE A −2ms 1.155 ms 4 ms
AU-CE C −2ms 1.155 ms 4 ms
FR-CE A −2ms 1.155 ms 4 ms
FR-CE B −2ms 1.155 ms 4 ms

Table 7.5: Calculated bias and random error parameters per OP resulting from limited resolu-
tion

Observation Point 1 Observation Point 2 bias random error
exp. interf. exp. interf. β∆ts , β∆te σ∆ts , σ∆te τ∆ts , τ∆te
DE-CO1 A AU-CE A 30ms 18.511 ms 68 ms
DE-CO1 A FR-CE A 30ms 18.511 ms 68 ms
AU-CE C DE-CO2 B −30ms 18.511 ms 68 ms
FR-CE B DE-CO2 B −30ms 18.511 ms 68 ms

Table 7.6: Calculated bias and random error parameters per OPP resulting from limited resolu-
tion

Table 7.4 shows the values of the OPC raw and record timestamp resolutions. With 4.00 ms
and 64.00 ms there are only two different values and resolutions are consistent in each row.
Slight differences between the values are revealed only in the fourth decimal digit (not shown),
thus all resolution values passed the consistency check. At some interfaces of DE-CO1 and
DE-CO2, resolution values smaller than 64.00 ms have been obtained. This shows that per-
exporter resolution profiling of these values is infeasible, but per-OP profiling as described in
the exporter profiling method is necessary.

From the resolution limits reported in the OPC, the known systematic error (bias) and the ran-
dom error for start and end timestamps per OP can be calculated. The results are shown in
Table 7.5. The bias β , as well as the standard deviation σ and range τ of the random error
are obtained according to the equations introduced in Section 4.4.3. Based on these per-OP
parameters, the per-OPP parameters in Table 7.6 can be calculated. As Section 7.2.2 will show,
the errors obtained by comparison with reference measurements are very close to the calculated
errors.

Observation Point Pair Inference

The OPP inference profiling step (see Section 6.4.4) found the OPPs as shown in Table 7.7. The
last column of this table shows the fraction of RTT values that indicated the given direction of
the OPP. Although there is asymmetric routing in the evaluation scenario, three of the four pairs
can be correctly identified. Apparently not all traffic between the OPs is routed asymmetrically
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OP1 exporter OP1 interface OP2 exporter OP2 interface direction correct
DE-CO1 A AU-CE A 100.00 %
DE-CO1 A FR-CE A 50.70 %, 82.60 %
AU-CE C DE-CO2 B 99.98 %
FR-CE B DE-CO2 B 89.14 %

Table 7.7: Results of OPP direction inference

exporter ϕ0,u ω0,u

DE-CO1 1.53 ·10−7 0.5 ms
DE-CO2 1.24 ·10−7 reference
DE-CE −2.76 ·10−7 0.7 ms
AU-CE 9.77 ·10−8 −0.3ms
FR-CE 1.29 ·10−7 0.5 ms

Table 7.8: RTC skew and offset

like the probe traffic, but some of it takes a symmetric route. The only OPP for which not enough
symmetric traffic was available is the OPP between interface A of DE-CO1 and interface A of
FR-CE. This OPP has been added manually based on the two OPPs detected between DE-
CO1 and the edge router DE-CE, as well as between DE-CE and FR-CE. This is the reason
why this row in the table shows two values for the correct direction, 50.70 % for the OPP
between the routers in Germany and 82.60 % for the OPP between DE-CE and DE-FR. Since the
geographical distance between DE-CO1 and DE-CE is very small and both routers have 64 ms
timestamp resolution, detecting this OPP correctly is very hard. Nevertheless this detection was
successful, however, only with a very low value of 50.70 %. Interestingly, most other OPPs
between the DE-CE and DE-CO1/DE-CO2 routers have been detected correctly (not shown
in the table). Strict OPP consistency checks could improve OPP inference in such scenarios.
However, such checks are not considered in this work.

Real-Time Clock Skew

The sixth profiling step revealed the offset and skew values for the RTC that are shown in
Table 7.8. Skew was determined based on the export and collection timestamps. DE-CO2 was
chosen as reference exporter for offset calculation. For each exporter, the OPPs with most traffic
from/to the reference exporter was selected for offset calculation.

Skew and offset values are very low, i.e., it is assumed that the clocks are properly synchronized.
In terms of exporter profiling, all skew values are below the unsynchronized clock threshold of
1 ·10−6 (1 ppm). The offset values are below the threshold of 5 ms.
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7.2.2 Comparison with Active Reference Measurements

The accuracy of the flow-based OWD measurement approach was evaluated by comparison
with active measurements. This requires that measurement samples from active and flow-based
measurements that result from the same packets flowing through the network are available and
can be compared. In principle there is the possibility of performing active OWD measurements
for reference purposes. However, this would have required additional precisely synchronized
equipment at each measurement location, which could not be set up in the enterprise network.

Another possibility is to rely on measurement results available from active measurement mech-
anisms for QoS monitoring that are already in place. Such a mechanism is IPSLA, which sends
probe packets between routers and which was configured for some paths in the enterprise net-
work. IPSLA OWD measurements have initially been taken into account for comparison [2].
However, IPSLA reports OWD as the mean value of samples obtained from several UDP pack-
ets. Since all UDP packets use the same five tuple, only one flow record is available from this
active measurement. Thus, only two flow-based OWD samples could be compared to a mean
value calculated from the OWD of each packet within this flow, which does not allow for a
detailed evaluation. Furthermore, routers that send and receive IPSLA packets do not export
flow records for these flows. This is another problem of the IPSLA-based evaluation approach,
which limits this approach to paths with at least two flow capturing enabled routers between
two IPSLA-enabled routers.

Since active OWD measurements could not be used for comparison, the evaluation of the accu-
racy of flow-based OWD measurement presented in the following is based on active TCP-based
RTT measurements. For this purpose, the measurement machine introduced in the evaluation
scenario (Figure 7.1) uses the hping tool [127]. It sent TCP ACK to the ping peers, which
responded with a TCP RST. Since the ACK messages do not belong to an established TCP
connection, they do not match a defined protocol state on arrival at the ping peer and are thus
immediately answered by the ping peer OS with RST. The ping peers ran Windows XP with
disabled firewall and had enough free CPU resources. While such measurements generally dif-
fer from ICMP-ping-based RTT measurements [128], using TCP pings is a common practice
[129]. In both cases, i.e., ICMP or TCP pings, the OS kernel sends back the response imme-
diately. During the measurements, the measurement machine sent every 20 minutes one burst
of 1000 TCP ACK packets to each ping peer with a rate of 10 packets per second. TCP source
port numbers have been changed sequentially within a burst while the destination port number
was kept constant.

Each RTT sample obtained by TCP pings can be compared directly to two flow-based OWD
samples, which allows to evaluate accuracy in terms of random errors and outliers. The quan-
tification of systematic errors is limited, since systematic errors in upstream and downstream
direction may compensate each other. Results of RTT, flow-based OWD without correction,
and flow-based OWD with correction are provided below each other for better comparison in
Figure 7.3 for the path Germany-France and in Figure 7.4 for the path Germany-Australia.

The results of the active reference measurements are presented in Figure 7.3(a) and Figure 7.4(a).
For each burst the charts show the minimum, mean and maximum values. The RTTs for the
path between Germany and France (Figure 7.3(a)) show a typical mean value of 24.5 ms with a
maximum value of 546 ms. In some bursts, the mean value reaches 200 ms, which shows that
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(a) Active RTT measurements
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(b) Uncorrected flow-based OWD of RTT measurement traffic
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(c) Corrected flow-based OWD of RTT measurement traffic

Figure 7.3: Path Germany-France: Comparison of active RTT and flow-based OWD
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(b) Uncorrected flow-based OWD of RTT measurement traffic
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(c) Corrected flow-based OWD of RTT measurement traffic

Figure 7.4: Path Germany-Australia: Comparison of active RTT and flow-based OWD
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there is a high delay variation and a high number of packets is affected by queuing delay. As
expected, the RTT values on the path Germany-Australia are much higher (Figure 7.4(a)). The
smallest value is 290 ms and there are sporadic peaks of 674 ms. Over three days, the median
RTT is considerably higher (410 ms) than in the rest of the considered period (295 ms). This
indicates that there have been routing changes in the underlying MPLS network that impacted
propagation delay, which lead to larger RTT values.

The NetFlow records that report flows of the measurement path have been taken from the flow
data collected by the measurement machine. In order to obtain comparable results, only flow
records of the RTT measurement traffic have been fed into the online processing framework
for OWD sample creation (see Chapter 5). Figure 7.3(b) and Figure 7.4(b) show the resulting
uncorrected OWD values, i.e., no blunder filter, systematic error compensation, or other correc-
tion methods have been applied. Like with the RTT evaluation, the OWD values are evaluated
per measurement burst and for each burst, the minimum, mean, and maximum OWD is shown.
Upstream and downstream OWD are displayed separately. The systematic error of 30 ms that
corresponds to the calculated bias shown in Table 7.5, can clearly be seen in Figure 7.3(b) as
it leads to negative mean values for the downstream direction. Figure 7.3(b) and Figure 7.4(b)
show maximum value peaks that correspond to the peaks observed in the active RTT measure-
ments of Figure 7.3(a) and Figure 7.4(a). Additionally, there are negative minimum values that
are implausible and are caused by blunder from exporter-internal delays (see Section 4.4.4).

Figure 7.3(c) and Figure 7.4(c) shows the flow-based OWD results with all correction and filter-
ing methods applied in the online processing chain. In Figure 7.3(c) upstream and downstream
direction have the same mean value due to the compensation of the systematic error. Addi-
tionally, the implausible minimum values caused by exporter-internal delays have disappeared,
while the peaks of maximum values that correspond to the peaks are also present in the RTT
measurement results are still present. In Figure 7.3(c) the benefit of OWD measurements com-
pared to RTT measurements becomes clearly visible: delay is caused mainly in downstream
direction while there is only one large peak in upstream direction. Such observations are valu-
able input to troubleshooting and performance reporting. Figure 7.4(c) clearly shows that the
OWD changes due to MPLS routing effects do not impact OWD in upstream and downstream
direction in the same way at certain points in time. This indicates that there may have been
partially asymmetric routing in the MPLS network.

In order to evaluate the per-sample impact of sporadic and random errors, active RTT measure-
ment samples and flow-based OWD samples have been directly compared. The samples have
been mapped to each other based on time stamp and TCP port numbers. The difference between
active probe-traffic based RTT samples and NetFlow-based OWD samples is defined as

∆RT T = RT Tf low−RT Tprobe = OWD f low,upstr.+OWD f low,downstr.−RT Tprobe (7.1)

Figure 7.5 shows the result of this sample-by-sample comparison as a histogram with logarith-
mic Y-axis for the uncorrected and corrected case. The charts show that all samples with a
large difference between active and NetFlow-based measurement have been eliminated by the
profile-based corrections. The remaining error of the corrected samples is caused by the random
error caused by limited timestamp resolution. Due to the blunder filtering, some correct OWD
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Figure 7.5: Difference between RTT from active measurement and flow-based OWD

RTT path ∆RT Tmin ∆RT T ∆RT Tmax s τ∆RT T,99.99

France uncorrected −444.4ms −6.95ms 68.0 ms 37.88 491
France corrected −100.6ms −1.10ms 67.9 ms 26.70 138
Australia uncorrected −455.1ms −7.29ms 67.0 ms 37.47 491
Australia corrected −99.0ms −0.86ms 67.5 ms 25.78 137

Table 7.9: RTT difference comparison

samples are also dropped (green line is always lower than blue line). This is, however, a good
trade-off regarding the accuracy gained.

Table 7.9 gives a summary of these comparisons. It shows the minimum, mean, and maximum
∆RT T as well as the standard deviation s of ∆RT T . The difference of the mean value is only
about 1 ms for the corrected case, which most likely corresponds to the sum of OWDs of the
unobserved paths between the last routers and the end systems. The random error distribution
for this error measurement corresponds to the convolution of all four uniform distributions of
each OP, which results in a bell-shaped PDF. Its standard deviation is σ = 26.17 calculated from
the resolution values of Table 7.4 using Equation (4.21). This calculated value is very close to
the empirical standard deviation s given in Table 7.9. The table also gives the range of the error
distribution symmetric to the mean value within which 99.99 % of samples are located. This is
denoted as τ∆RT T,99.99 and indicates the range obtained with outliers removed (e.g., the outliers
on the left of the green distribution in Figure 7.5). τ∆RT T,99.99 for the corrected cases is very
close to the theoretical range resulting from resolution values, which is 136 ms (resulting from
addition of values from Table 7.5).

In summary, the profile-based correction leads to highly accurate OWD samples, which only
show the random error that can be known a priori from the profile parameters.
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7.2.3 Confidence Interval Calculation

The OWD samples created after applying all error correction steps are still subject to random
errors caused by limited timestamp resolution. In order to reduce the impact of random errors,
several samples can be collected to get a better estimate of the mean value, attributed with a
confidence interval. As highlighted in Section 2.2.2, the most widely used formula for calcu-
lating the confidence interval is based on the actual standard deviation of the collected samples
and the Student-T distribution (Equation (2.6)). The Student-T based formula is problematic,
however, with bimodal distributions (see Section 4.4.3.3). Thus, a formula based on the normal
distribution and known standard deviation (Equation (2.7)) is favored. The standard deviation
is calculated based on convolutions of uniform distributions, i.e., by applying Equation (4.20),
Equation (4.22), Equation (4.23). In this section, confidence intervals with a 95 % confidence
level are calculated for OWD values of the evaluation scenario. The approach based on the
Student-T distribution (called method T) and the approach using the normal distribution (called
method N) are both used and the results are compared.

Two OWD sample data sets obtained from NetFlow data of routers shown in Figure 7.1 will be
considered:

- OWD-64-64
OWD samples obtained from the OPP consisting of one interface of DE-CE and one
interface of DE-CO2. According to the profile, the first OP has ρs=ρe=64 ms and the
second OP ρs=ρe=64 ms. This set contains 256,000 samples.

- OWD-4-64
OWD samples obtained from the OPP consisting of one interface of AU-CE and one
interface of DE-CO2. According to the profile the first OP has ρs=ρe=4 ms and the second
OP ρs=ρe=64 ms. This set contains 30,000 samples.

Both data sets result from profile-based OWD calculation, i.e., error correction and filtering
mechanisms have been applied. NetFlow records resulting from the active probing traffic have
been removed, since this traffic causes correlation effects due to the roughly constant IAT and
thus impacts the resulting error distributions. Sporadic high OWD values have been removed
as well (less than 1 % of samples).

Each data set has been split into chunks of several samples for which mean values have been
calculated. OWD-64-64 has been split into 25 chunks, OWD-4-64 into 30 chunks. Mean values
of the chunks do not differ by more than 2 ms. Within each chunk, confidence intervals have
been calculated for samples within a sliding window using the two different approaches. For
each chunk it was evaluated how often the confidence interval contains the “true” mean value
of the chunk. This frequency will be called effective confidence. The size of the sliding window
was varied from 1 to 100 in order to study the confidence interval calculation for different
numbers of samples.

First the results of the data set OWD-64-64 are considered. In this case both OPs have the
same resolution. Thus, bimodal distributions can occur, which can heavily impair the method T
confidence interval calculation (see Section 4.4.3.3). Figure 7.6(a) shows this problem for the



150 Chapter 7. Applicability and Evaluation

0 5 10 15 20 25
0.5

0.6

0.7

0.8

0.9

1

chunk No.

e
ff

e
c
ti
v
e

 c
o

n
fi
d

e
n

c
e

 

 

Normal

Student−T

(a) Effective confidence for 15 samples per window
over chunks

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

samples considered

e
ff

e
c
ti
v
e

 c
o

n
fi
d

e
n

c
e

 

 

Normal mean

Student−T mean

(b) Mean values for window sizes of up to 100 samples

Figure 7.6: Comparison of effective confidence bounds using Student-T and normal distribu-
tion based confidence interval calculation

exemplary case where the window for calculating confidence intervals always contained 15
samples. The effective confidence of the method N results shows variations between 0.8 and
almost 1.0. However, the method T based results show much more variations and effective
confidence results of less than 0.6 for chunk No. 24. Most likely, the samples in these chunks
follow a bimodal distribution. In such cases extreme errors result from cases where the T-based
method returns a confidence interval size of zero if all samples are on the same peak of the
bimodal distribution.

Figure 7.6(b) shows the effective confidence for all window sizes. Neither the method T nor
the method N deliver the confidence level 0.95 that was intended. However, the method N
provides a much better approximation. Looking at the boxplots1 in Figure 7.7, method T results
generally lead to a much larger range of effective confidence and are thus less stable than the
method T results, which stay consistently in a smaller range.

The same evaluation for the OWD-4-64 data set (Figure 7.8) shows a much smaller resulting
effective confidence range for both methods. Method T is less problematic here, since the
distribution of OWD values comes close to a trapezoidal distribution and due to the high number
of peaks (see Figure B.1 in Appendix B.1), the probability that all samples within a window are
on the same peak is very low. In this case the method T even provides slightly better results
than the method N.

In summary, this evaluation shows that calculating the confidence intervals based on the normal
distribution (method N) in general provides more stable results than the calculation based on
the Student-T distribution (method T). While the method T provided slightly better results for
the OWD-4-64 data set, its results are clearly not tolerable for the OWD-64-64 data set. Hence,
using the method N, which requires a priori knowledge about standard deviations from the
exporter profiles (resolution values), is the best solution.

1Boxes indicate the interquartile range, whiskers the minimum and maximum values. The red line marks the
median value.
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Figure 7.7: OWD-64-64: Effective confidence obtained for different amount of samples
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Figure 7.8: OWD-4-64: Distributions of effective confidence intervals obtained for different
amount of samples

7.2.4 System Clock Skew Compensation

As indicated in Section 7.2.1, the system clock skew of the OPs considered in the evaluation
scenario is small compared to other routers in the data set. Additionally, the active probe traffic
consisted of one-packet flows, thus the inactive timeout triggered always the record export after
roughly 10 s, and hence δs is often very small. Thus, the error caused by system clock skew was
very small in the previous evaluations compared to cases with active timeout. There, the error
caused by ϕ0,y becomes more severe.

In order to show the impact of system clock skew compensation, an OPP with system clock
skew values of ϕ0,y,OP1 = −7.83 · 10−5 and ϕ0,y,OP2 = 3.14 · 10−5 was selected. As shown in
the histogram in Figure 7.2, these are very common values. From the 24 h of flow data of this
OPP, OWD samples have been created with and without system clock skew compensation. For
each OWD sample, the export delay of either OP was determined, i.e., δs of OP1 and OP2 if the
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Figure 7.9: System clock skew compensation impact

sample was created from record start time, or δe of OP1 and OP2 if the sample was created from
record end time. Each OWD sample was stored in a data set for OP1 and a data set for OP2
along with the respective export delays. All samples of a data set have been put into buckets
according to export delay. 700 buckets with 100 ms width have been used in order to cover the
typical export delay values from 0 s to 70 s. For each bucket the mean OWD was calculated.

Figure 7.9 shows scatter plots with the export delay value of buckets on the X-Axis and the
mean OWD value of each bucket on the Y-Axis. For the samples indicated by a cross, system
clock skew was not compensated. A clear linear dependency between export delay values and
resulting OWD can be seen. If system clock skew effects are compensated (samples indicated by
a circle), there is no more such dependency, but the majority of samples is close to a horizontal
line at 5 ms. Figure 7.9 shows outliers due to two reasons: first, OWD values themselves may
sporadically be high. Second, there is random error and its impact on the mean value depends on
the amount of samples per bucket, which is not equal. The random error has not been evaluated
further for this scenario.

From Figure 7.9 it becomes clear that system clock skew can lead to errors of up to 10 ms,
which is severe compared to other systematic errors. Thus, system clock skew compensation is
an important part of error compensation.

7.2.5 Summary of Profile Impact on Measurement Accuracy

This section has presented how using the exporter profile in OWD extraction improves the
accuracy of flow-based OWD measurements. The profile parameters that have been created
from the flow data of the evaluation scenario show on which OPs there is a byte count limitation
and that exporter clocks are synchronized. Furthermore, parameters on the system clock skew
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and the resolutions of the timestamps have been created. They are required for blunder filtering,
correcting the system clock skew impact, and for calculating systematic and random errors.

An evaluation, which has been largely based on active measurements in an evaluation scenario,
has revealed the following errors in flow-based OWD measurements and respective profile-
based corrections or quantifications

- Exporter-internal delays lead to errors of several 100 ms, but such samples can be properly
detected and discarded based on the system clock skew from the profile.

- Mixed timestamp resolutions at the OPP caused a systematic error of 30 ms. Bias calcu-
lation from profile parameters and correction compensates this error.

- The standard deviation and range of the random error distribution corresponds to the
values calculated from the exporter profile.

- Calculating confidence intervals benefits from profile parameters due to the known stan-
dard deviation. It has been shown that the Student-T based confidence interval calculation
method, which does not take a known standard deviation into account, leads to inaccurate
confidence intervals due to the multi-modal distributions that occur.

- System-clock skew can lead to errors of up to 10 ms, but these errors can be corrected
based on profile parameters.

In summary, the exporter profile highly improves the accuracy and enables the quantification of
errors in flow-based OWD measurements. Its impact on dimensioning of the window size for
online processing is considered in the next section.

7.3 Profile-based Window Size Dimensioning

In addition to error compensation and quantification, profile parameters serve the purpose of
dimensioning the window size in online processing (Section 5.3). The respective profile pa-
rameters are obtained from weekday data sets in order to cover the high record rates during
peak times. For window dimensioning, it is important to quantify how the window size param-
eters impact the amount of OWD samples that can be calculated and the amount of memory
consumed in order to find a suitable trade-off.

For evaluating the OWD sample count estimation and estimation of records buffered in memory,
OWD samples of the OPP between DE-CO1, interface A and AU-CE, interface A are consid-
ered. The sample count estimation is based on profile data of week days, thus the data from a
Thursday and a Friday will be considered in the following.

7.3.1 Estimating the Amount of Delay Samples

As indicated in Section 5.3, the export jitter PDF or its histogram as discretized version is input
to the sample count estimation according to Equation (5.7). Figure 7.10 shows the per-OPP
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Figure 7.10: Histograms of per-OPP export jitter per record (hR(Ji)) and per sample (hS(Ji))
with bin size 100 ms

export jitter histograms per record hR(Ji) and per OWD sample hS(Ji) for two different days.
Both histograms look similar and in general OP2 exports records earlier than OP1 (see also
Figure 5.8, which explains this effect). In the following, profile parameters are created from the
Thursday characteristics and applied to Friday data.

In order to evaluate the estimation accuracy, the sample count estimated by Equation (5.7)
is compared to the real amount of OWD samples that have been obtained using the online
processing method (see Section 5.2.3) with different window sizes. Figure 7.11 shows the
estimated sample count and the real sample count. For both days, similar results are obtained.
Increasing the window size up to 5 s already delivers 80 % of the samples that can be obtained
at maximum. With 15 s window size almost 100 % of the samples can be obtained. While the
estimation for Friday is very close to the real sample count obtained, there is a small deviation
for the Thursday data. If the Thursday profile data is taken for dimensioning, the real sample
count is underestimated by 10 % for window sizes of 5 s, while there is less deviation for other
window sizes. This estimation accuracy is considered to be sufficient for window dimensioning,
since it only gives general guidelines for memory usage and thus does not need highly accurate
results.

7.3.2 Estimating the Number of Records in Memory

For estimating the memory consumption of the online processing chain, the maximum amount
of records that are present in memory for a given window size is important. This parameter is
estimated based on the maximum record rate of each OP of the OPP (Equation (5.10)). Since it
requires matching the records to know which flows will also traverse other OPs, all records that
are created by an OP have to be considered.

The maximum record rates λR,max(L,Tj) in the profile have been obtained for every 15 minute
interval of time of day Tj for different record window sizes L according to the method presented
in Section 6.4.2. The record rates have been calculated based on the record arrival times at the
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Figure 7.12: Maximum record rate λR,max,L per 15 minute interval

collector recorded by the modified NfDump. Figure 7.12 shows the different rates obtained at
the OPs. This figure clearly shows the burstiness of NetFlow traffic: the smaller the window
the higher the maximum rate. Comparing Figure 7.12(a) and Figure 7.12(b) the different peak
times in different continents can be seen. This effect and its impact was detailed in Figure 5.9.

Based on the maximum record rates, the maximum amount of records in memory |RL,max|
can be calculated by Equation (5.10). It is compared in the following to the real maximum
number of records that is present in memory during OWD calculation. For two windows sizes,
Figure 7.13 exemplarily shows that the worst case estimation indicated by the green line holds
and that during real processing hardly more records will reside in memory. An interesting
observation in Figure 7.13 is that increasing the window by a factor 10 leads to approximately
2.3 times more maximum records in memory only. This shows that reducing the window size
to save memory does not prove to be as effective as it might seem at the first glance due to
the burstiness of NetFlow traffic. However, in summary, the profile-based estimation of records
buffered in memory provides good results for dimensioning.
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Figure 7.13: Calculated max. records in memory compared with real values for different L

7.4 Summary

This chapter has presented the application of the exporter profile concept to data from an evalu-
ation scenario. It has shown to which extent OWD sample accuracy and window dimensioning
for OWD extraction benefit from the exporter profile.

The error-related profile parameters indicated that observation points in the evaluation scenario
are subject to byte count errors and have different system clock skew values. Furthermore,
resolution parameters of the profile can be reliably detected. Despite the asymmetric routing
in the scenario, OPP inference worked well with the exception of one OPP that was added
manually based on other OPPs. Real-time clock checks revealed that exporter clocks were
synchronized.

Based on these exporter profile parameters the OWD accuracy can be highly improved. Espe-
cially the profile-based blunder removal and systematic error compensation lead to consider-
able improvements. As predicted in Chapter 4, the confidence bound estimation based on the
Student-T distribution is not feasible because it is impaired by the bimodal distributions that
can occur. It has been shown that the confidence bound calculation based on the normal distri-
bution with support from profile parameters provides much better approximations. However, a
difference to the desired confidence level remains. An analysis of system clock skew values of
the whole data set revealed that errors of up to 10 ms can occur in many cases, but correction
of these errors is possible. The evaluations of measurement errors showed that error correction
and quantification is possible solely based on profile parameters.

Due to the need to buffer flow records in memory for some time, online processing of Net-
Flow data for OWD measurement can cause high and unpredictable memory consumption. The
method for window dimensioning based on profile parameters has been evaluated by first cre-
ating profile parameters for the record rates and sample distributions. Afterwards, it has been
checked whether the estimates hold in online processing of the data. The evaluation of the
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window dimensioning method showed that the estimates obtained by the exporter profile are
appropriate and that the worst case number of records in memory is hardly exceeded.

In summary, this section showed that flow-based OWD measurement is feasible, but requires
profile support for essential error corrections and for dimensioning of the online processing
chain. This especially holds for the systematic errors, sporadic large errors (blunder), and the
errors caused by system clock skew. Furthermore, the random error can be correctly quantified
based on profile parameters.
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8 Conclusions

8.1 Summary

Enterprise networks provide communication services to business critical applications and must
therefore deliver high performance. This demands for thorough monitoring and management
of such networks in order to detect performance problems at an early stage. One-Way Delay
(OWD) is an important measurand in this domain since OWD directly impacts response time
and is an indicator for congestion that causes higher queuing delay. This thesis has proposed
a novel method for flow-based OWD measurement. It takes flow data as input, which is of-
ten already collected from routers for other purposes or flow capturing can be easily enabled.
Compared to active OWD measurement approaches this means that no additional measurement
traffic or setup of active measurements is necessary and OWD samples are directly obtained for
production traffic.

Due to the properties of flow data and limitations of flow capturing devices, flow-based OWD
measurement is by far no straightforward data processing approach, but has to deal with several
challenges:

- Effects from flow capturing

Due to the timeout-based flow capturing mechanisms and network effects, flow records
from two observation points can differ in the amount of aggregated packets and also in
terms of fields that are not affected by this aggregation. If such effects are not considered,
record matching cannot be performed properly and wrong or no OWD samples can be
obtained at all.

- Errors in flow capturing

There are several errors and limitations in flow capturing implementations of routers that
have not been documented before. These errors in timestamp values or byte count values
heavily impact OWD results and record matching.

- Large amount of flow data

Routers in large enterprise networks produce a large amount of flow data that needs to be
processed efficiently. Processing of flow data for the extraction of OWD samples requires
fine-grained flow data analysis and the matching of records from different observation
points. Such tasks are typically not performed in today’s flow data processing applica-
tions.

159



160 Chapter 8. Conclusions

These challenges have been addressed by the following methods for finding corresponding
solutions:

- Recording of flow data and active measurements in a large enterprise network

Flow data from an enterprise network was collected for several times until the final mea-
surements that are documented in this thesis could be performed. These measurements
required the setup of a special machine for flow data collection, the implementation of ac-
tive reference measurement facilities, and performance tests in a laboratory environment.

- Design and implementation of a flexible processing framework

In the context of this thesis, a flexible flow data processing framework was designed and
implemented. This was the basis for iterative studies of different flow data processing
mechanisms and statistical evaluations.

- Laboratory setups and measurements

Laboratory measurements with flow capturing enabled routers allowed for more precise
timing analysis than enterprise network measurements. With several measurement setups
and runs the behavior of the routers available in the laboratory have been studied.

- Iterative modeling and validation

Based on the three previous methods, the models developed in this thesis have been itera-
tively refined and evaluated. The laboratory measurements provided detailed and precise
results while the enterprise network measurements delivered data from a high number of
different routers for model validation.

The resulting solutions and main contributions of this thesis address the challenges mentioned
above:

- Detailed overview on network and flow capturing effects

All effects and their impact on record matching and hence OWD measurement have been
summarized in tables that show impact and countermeasures. This is an important input
for the design of flow-based OWD measurement.

- Timestamp creation model

A timestamp creation model has been developed that reflects all effects in flow captur-
ing devices regarding the creation of NetFlow v5 timestamps. With different parameter
settings, the model can be adjusted to match the timestamp creation behavior of different
flow capturing devices.

- OWD extraction model

The OWD extraction model reflects all steps that have to be performed for proper OWD
extraction. This includes mechanisms for record matching as well as the correction and
quantification of timestamp errors.
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- Online processing approach

An implementation of the OWD extraction model as online processing approach has
demonstrated its feasibility. The processing approach is able to handle high data rates
and is configurable in terms of resource consumption.

- Exporter profile concept

The model parameters that describe the flow capturing behavior of a device are summa-
rized in the exporter profile. A profile creation approach that systematically obtains these
parameters based on flow data has been proposed and evaluated.

- Evaluation of measurement accuracy

An evaluation based on active reference measurements and flow data collection showed
which accuracy can be achieved using flow-based OWD measurements. This evalua-
tion has also revealed the exporter profile parameters for an evaluation scenario of an
enterprise network and therefore provides general information regarding flow capturing
behavior and accuracy.

The aforementioned key points have been systematically addressed throughout this thesis, as
the following summary on the chapters will show.

Chapter 2 introduced fundamentals of IP-based networks and delay measurement. The section
on router functionality and architecture showed that depending on the router architecture a dif-
ferent number of forwarding engines and queues are present. This has impact on the positions
where flow capturing can be performed and which queues can contribute queuing delay be-
fore or after a measuring point. Furthermore, network structures have been discussed and the
differences between the global Internet and global enterprise networks have been highlighted.
Enterprise networks typically use MPLS VPNs with several edge routers per branch location
for resilience reasons. Edge routers are typical devices where flow capturing is be performed.
A section on metrology introduced metrological terms and detailed the concept of measure-
ment errors and error propagation. Before existing approaches for delay measurement have
been discussed, the measurands and metrics have been clarified. It has been shown that there
are different definitions for network delay, and a definition for this thesis has been specified.
The overview of existing delay measurement approaches distinguished active and passive mea-
surement approaches. It was highlighted that predominantly active measurement technologies
are used in today’s networks, but passive approaches have certain advantages and are of high
interest in research activities. Finally, the problem of clock errors has been addressed by first
clarifying related terms and then introducing clock synchronization mechanisms and algorithms
for removing clock skew or drift from measurement data sets.

Chapter 3 dealt with flow capturing, an important mechanism for traffic monitoring in enterprise
and provider networks. This chapter started with giving consistent definitions of the general
term flow, more specific flow definitions, and flow capturing related terms. Then it introduced
and compared several flow capturing mechanisms. Here, the main focus was on NetFlow, which
is the most widely used de-facto standard for flow capturing today. For delay measurement, the
very point at which flow data is captured in routers is important. Thus, flow capturing imple-
mentations in routers and probes have been discussed in detail. Related work in flow capturing
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was addressed in terms of flow capturing application and deployment, as well as in terms of
flow data processing approaches. It was shown that flow capturing is used predominantly for
traffic reporting and accounting while little research towards obtaining QoS-related information
has been performed. Flow data processing is predominantly performed in an offline processing
approach, i.e., data is stored to disk or to a database before being analyzed.

Based on the fundamentals provided by Chapter 2 and Chapter 3, Chapter 4 has motivated the
flow-based OWD measurement approach in Section 4.1. This approach has been compared
to other active and passive delay measurement approaches and it has been found that this ap-
proach is advantageous due to the three criteria one-way, passive and low effort measurement.
The following three sections have systematically addressed problems in flow-based OWD mea-
surement that arise from different effects and errors. Section 4.2 started with considering net-
work effects, Section 4.3 has dealt with flow capturing effects and errors, and Section 4.4 has
detailed timestamp effects and errors in flow capturing devices by introducing a timestamp cre-
ation model. Systematically, each effect has been evaluated in terms of its impact on OWD
extraction, and for each measurement error methods for correction or quantification have been
given. Throughout these sections an OWD extraction model has been developed that takes flow
records as input and creates OWD samples as output while handling all effects and errors ap-
propriately. It has been shown that error correction and quantification requires parameters on
flow capturing devices that can be provided by means of an exporter profile.

Chapter 5 detailed an online processing approach for the efficient implementation of the OWD
extraction model. First, the export effects in flow data have been analyzed and, by taking pro-
cessing requirements into account, a multi-stage window-based extraction mechanism has been
proposed. This mechanism uses a result and a record window that define how long flow records
and OWD results are buffered in memory. Second, the window-based processing approach
has been detailed by evaluating the typical flow record export characteristics and deriving from
the latter methods for window handling and dimensioning. An overview of a design for the
window-based processing approach has been given. This design was implemented and has
proven its technical feasibility. The third section has presented a profile-based method for win-
dow dimensioning that takes record rates and export jitter distributions into account for giving
an estimation on the number of OWD samples and memory requirements with different win-
dow sizes. This method especially considers the effects in global enterprise networks regarding
different record rates at different times of a day for different locations. The parameters required
for dimensioning depend on traffic characteristics and flow capturing device configuration and
could be given in an exporter profile.

The exporter profile approach that has been motivated by the need for measurement-error and
export-effect related parameters in Chapter 4 and Chapter 5 has been detailed in Chapter 6.
This chapter has systematically elaborated the various parameter dependencies and specified the
exporter profile consisting of three parts that contain parameters on the flow capturing device,
a certain observation point, or an OPP, i.e., a path between observation points. Section 6.3
has discussed various profile creation approaches based on parameter dependencies. It has
been concluded that traffic-dependent parameters can only be obtained by a profile creation
approach based on flow data and that this approach can also be used for obtaining the other
parameters. Consequently, a flow data based profile creation approach has been proposed in
Section 6.4. This approach is a seven step iterative offline processing approach that extracts
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profile parameters from a reference flow data set. Due to the special properties of flow data three
profiling steps demanded for the design of special algorithms. These algorithms for record rate
estimation, obtaining timestamp resolution, and OPP inference have been presented in detail.

Chapter 7 has presented how flow-based OWD measurement with profile support was applied
using flow data from an enterprise network. Furthermore, this chapter has evaluated measure-
ment accuracy. The evaluation was based on NetFlow v5 data and active RTT reference mea-
surements that were collected over five days from three different locations. OWD measurements
have been evaluated on a path between two European locations as well as between a European
and an Australian location of the global enterprise network. For each exporter of the scenario
profile parameters were obtained. A comparison with active measurement has shown that mea-
surement accuracy can be considerable improved using the profile-based correction methods.
Furthermore, the flow-based OWD measurement results closely match the active measurement
results and random errors can be correctly quantified based on profile parameters. The effect of
exporter-internal clock skew has been evaluated separately and it has been shown that this effect
can lead to a correctable error of up to 10 ms. In terms of profile-based window dimensioning
for the online processing approach, it has been shown that the amount of samples as well as
memory requirements can be well estimated.

8.2 Outlook

The flow-based OWD measurement approach and its mechanisms have several known limita-
tions, which have been highlighted in the previous chapters. While the applicability in a large
enterprise network with different types of flow capturing routers has been demonstrated, there
may nevertheless exist network scenarios and flow capturing devices that require extensions
to the current approach. Such extensions can be subject to future work and several ideas are
presented in the following.

One point for extensions is the timestamp creation model and its adaption towards other flow
capturing approaches. This thesis introduced different flow capturing effects and detailed the
various timestamp representations. While the timestamp creation model can be adapted to other
timestamp representations, it directly corresponds to NetFlow v5 timestamps and the evaluation
in the enterprise network has also been based on NetFlow v5. This was the predominant flow
capturing protocol used at the time the measurements have been conducted. Due to the increas-
ing use of flexible flow capturing mechanisms and the migration to IPv6 (which NetFlow v5
cannot handle), NetFlow v9 and IPFIX will supersede NetFlow v5. This requires adaption of
the timestamp creation model and exporter profile to other timestamp representations and ad-
ditional timestamp correction steps, e.g., based on recent publications on timestamp errors in
NetFlow v9.

In terms of processing of flow data for OWD extraction there is also room for extensions. One
point is the possibility to take knowledge on routing into account. This can help to decide,
based on the known OPP pairs, whether matching flow records from other OPs can still arrive
or for a certain flow or not. Hence, flow records for which no matching records can arrive
can be removed from memory very early, which could lead to considerable lower memory
consumption. The amount of savings may depend on the network scenario and deployment of
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flow capturing. Furthermore, knowledge on routing could be taken as input for a distributed
flow-based OWD measurement scheme, where each computer of a compute cluster extracts
OWD samples of a certain OPP set only. With knowledge on routing, it can be decided which
flow records belong to which OPP and flow records can be forwarded to the respective compute
nodes accordingly.

This thesis has evaluated flow-based OWD measurements based on a comparison to active RTT
measurements in a global enterprise network. This evaluation showed that flow-based OWD
measurement can highly benefit from profile based error correction and error quantification,
which leads to correct results. However, the evaluation could be extended towards a comparison
with active OWD measurements, which were not possible in the enterprise network considered
due to the high effort required for such measurements. Furthermore, a comparison with active
measurements that create multi-packet-flows could provide further details compared to the ac-
tive RTT measurement using one-packet-flows that have been performed in this thesis. Another
point in terms of evaluation is studying the long-term behavior of flow-based OWD measure-
ments. The evaluations in this thesis have taken data from several week days into account.
However, in order to ensure that the flow-based OWD measurement can provide the reliability
and robustness required in productive network monitoring environments, further studies and
long-term tests are necessary. This includes evaluations based on flow data from a longer time
period on profile stability and processing effort for online OWD extraction as well as profile
creation. Ideally, this also covers different network topologies with different flow capturing
deployments.

In summary, this thesis has shown the feasibility of flow-based OWD measurement with profile
support. The steps indicated as outlook can help to explore further details, extend the presented
mechanisms, and clarify requirements for productive usage. Eventually, flow-based OWD mea-
surement with profile support can become feasible as addition or replacement for active OWD
measurements that are performed today. Furthermore, the approaches for improving timestamp
accuracy can be taken as input for any other flow analysis application that relies on flow captur-
ing timestamps.



A Details on Network Effects

A.1 Packet Size Distribution

As presented in Section 4.3.2.1, some exporters report byte counts in terms of IP packet size
while other exporters report byte count in terms of Ethernet payload. This leads to errors for
packets with size smaller than 46 Bytes. In order to validate whether this error is relevant, this
section presents an evaluation of packet size distribution for small packets. Fragmentation is
also partly considered.

Input data for this evaluation is flow data of the considered enterprise network from one day.
In general, it is not possible to get the precise packet size distribution from flow data due to the
aggregation of several packets into flow records. However, there are two possibilities to get a
conservative estimate that in any case will be equal or less than the real number of packets with
certain size. The first possibility is to filter for records with one packet only and evaluate the
byte count reported in each record (one-packet-filtering). This is precise, but considers only a
fraction of records. The second possibility is to calculate b′ = b b

pc for each record. b′ is an
estimate of the smallest packet’s byte count. This method (multi-packet-estimate) also covers
cases where several small packets are present in a multi-packet flow. However, the smallest
packet estimate will be too large if there is much difference between packet sizes in a flow.

Figure A.1 shows the packet size distribution results obtained using the two different methods
introduced above. The y-axis of the histograms is logarithmic and the bytes per packet on the
x-axis, truncated at 60 bytes. All values have been normalized to the overall record count and
are therefore comparable. Since all samples of the one-packet filter result in the same value
for the multi-packet-estimate, the frequency of the latter is always higher than that of the one-
packet-filter method.

Both charts show the highest peak 46 Bytes, which results from records that use Ethernet pay-
load size as byte count and therefore report 46 Bytes also for all IP packets that are actually
smaller. Interestingly, there are a couple of packets smaller than 40 Bytes. The smallest packets
(21 Bytes) even carry only 1 Byte payload in the IP Packet (20 Byte Header). Most of the small-
est packets for cases where the frequency is smaller than 1e-06 are UDP packets with source and
destination point zero, i.e., they are fragments where no UDP header is present. The noticeable
peak of 24 Bytes bytes is only present in multi-packet-estimate histogram. Most packets of this
size are carrying Generic Routing Encapsulation (GRE) tuneling protocol. 24 Byte packets of
this protocol are most likely keepalive messages, which are sent periodically in intervals smaller
than inactive timeout and thus several of these packets are contained in a flow record.
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Figure A.1: Packet size distribution histograms. Truncated at 60 bytes, logarithmic Y-Axis.
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Figure A.2: Packet size distribution histograms from multi-packet-estimate for UDP and TCP
flows with port number unequal to zero (no fragments). Truncated at 60 bytes, logarithmic
Y-Axis.

Fragments from different observation points cannot be matched based on the five tuple, since
the transport protocol header information is not available. The chart in Figure A.2 therefore
shows the packet size distribution for TCP and UDP flow records with valid port numbers, i.e.,
no fragments. The first peak for UDP is at 28 bytes, which is the smallest UDP packet size,
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and there are several peaks below 46 bytes, which means that NetFlow’s 46-byte problem in
packet count is relevant for matching here. TCP packets start at 40 Bytes in both charts, which
results from the IP packet size of the smallest TCP packets (Acknowledgments). Other peaks
at 44 Bytes and 48 Bytes seem to be in most cases TCP packets without payload, but carrying
TCP options.
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B Details on Timestamp Effects

B.1 Multi-modal Distributions from different Timestamp Resolutions

The effect that the random error PDF shows multiple modes and is not a continuous distribution
was introduced in Section 4.4.3.3 and will also be shown in Section B.2. Depending on the
shift between the two timestamp metering points, a different shape of the PDF and a different
number of peaks results.

As soon as there are different timestamp resolutions at the two OPs of the OPP, a trapezoidal
PDF results for the continuous case. For the discretized case of OWD measurement, also a
multimodal resolution will result, however, with a higher number of peaks. An evaluation of
the distribution of a case that occurs often in flow data (ρfirst1 = 4 ms and ρfirst1 = 64 ms) is
presented in Figure B.1. These results have been obtained by Monte Carlo experiments using
the IKR simulation library [130] for modeling the resolution effects. This figure shows two
distributions with different constant delay values. As expected we see 16 peaks in the perfectly
aligned case and 17 peaks in the other case. Both distributions are symmetric and describe a
discretized trapezoidal error distribution (systematic error compensated), as indicated by the
broken lines.
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Figure B.1: ∆ts distribution from Monte Carlo experiments. Random error characteristic for an
OPP with ρs,OP1 = 4 ms, ρs,OP1 = 64 ms
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Figure B.2: Experiment setup

B.2 Model Validation by Laboratory Measurements

This section presents delay measurements that have been a network laboratory. Flow record
timestamps have been obtained from a router via NetFlow v5 and a dedicated measurement
card. Evaluations of the measurement show Export-Systime-Alignment (ESA) effects as well
as impact of systematic and random error in scenarios where one or several OPs have a sub-
millisecond resolution. Additionally, flow record timestamps created without truncating rnsec
are considered.

B.2.1 Measurement Setup

Figure B.2 shows the experimental setup used to perform the measurements. We used the
hping3 tool [127] to create one-packet TCP flows. The sender sends TCP SYN packets to
ports of the receiver for which no listening socket (e.g., server daemon) is registered. Thus,
the receiver sends a TCP RST packet back and the sender can calculate the RTT based on this
answer. Measurements considered in the following have only been performed on the forward
flow. RTT values measured by the hping3 tool serve validation purposes only and are not
considered in the following.

The forward flow (red) of this conversation is sent twice across a NetFlow-enabled router and
a network emulation machine. The reverse flow takes a different path. The router used was a
cisco systems 7204 VXR with NPE200 processor board running IOS Version 12.3(1a) and a
Fast Ethernet line card with two interfaces (FE0 and FE1). On both interfaces of this router
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(ingress) NetFlow v5 was enabled and NetFlow v5 packets were sent via another interface to a
collector running the flow-capture daemon of the FlowTools tool set [99]. Additionally, policy
routing with ACLs was used to setup the routing in a way that the forward flow passed the
router twice. The network emulation machine used Linux netem [131] for emulating predefined
delays.

Two Gigabit Ethernet switches (Netgear GS108T) with mirroring functionality were used to
copy traffic received at certain switch ports to the measurement card before the packets reach
the router interfaces. Due to the low volume of traffic and the usage of Gigabit switches in
combination with Fast Ethernet router ports, effects of switch port contention due to mirroring
are negligible. The measurement card used was an endace DAG 7.5G2 device that enabled us to
capture traces in pcap format with 7.5 ns clock resolution from two ports (DAG0 and DAG1).

The router as well as all computers were synchronized via NTP to the laboratory server, which
itself was synchronized via radio clock (DCF77) to UTC. The measurement card itself cannot
synchronize via NTP, but was synchronized right before measurement start to the clock of the
trace capturing machine. Thus, the measurement card’s clock was free running during the
experiments. Measurements revealed a skew of the card’s clock of 4.2·10−6 (about 15 ms per
hour). This means that for measurements with durations in the range of 10 s, this skew causes
an error of about 42 µs.

NetFlow v5 data exported from the router showed a limited aligned resolution of 4 ms in rfirst,
rlast, and rsu, i.e., ρfirst = 4 ms, ρlast = 4 ms, ρsu = 4 ms. The RTC (u(t)) had the typical
resolution characteristics of ρsec = 1 s and ρnsec = 15,258 ns. The system clock skew of this
router was determined to be ϕ0,y = 6.7·10−7.

The measurement setup allows quantifying NetFlow’s accuracy for OWD measurement by com-
paring it to values obtained from the measurement card. Since only one router is involved, there
are no clock synchronization issues associated with NetFlow data from the two OPs at FE0 and
FE1. The same holds for the trace-based reference OWD measurements where timestamps for
DAG0 and DAG1 are taken from the same clock. Furthermore, NetFlow-based OWD measure-
ment and trace-based OWD measurements are based on the same traffic and only the difference
between the values obtained from the two methods is relevant. Thus, the accuracy of the emu-
lated ∆t delay does not impact the comparison. Measurement values presented in the following
are based on a measurement run with ∆t = 1 ms and 10,000 TCP-packets sent by hping3 with
1.4 ms inter packet gap.

B.2.2 Evaluation of Systematic Errors

Figure B.3 shows the mean values of ∆ts calculated from all samples between different OPs.
As shown, the OWD values obtained from DAG and NetFlow differ by 80µs only. We assume
that a large fraction of this error reflects the router-internal packet processing delay that occurs
before NetFlow timestamps are taken. For the OPP considered, there is no bias on ∆ts, since the
timestamp resolutions on both OPs are the same (same router with a central processing card).

The OWD values measured between DAG0 and FE0 as well as DAG1 and FE1 are measured on
paths without artificial delay. However, the bias due to timestamp truncation is β∆ts = −

ρs
2 =
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Figure B.4: Distributions of ∆tsvalues, same OP types

−2ms, which is reflected in the result. The remaining error is most likely resulting from NTP
clock synchronization and partly of the measurement card’s clock skew. From the impact of βs
we conclude ESA holds, i.e., that flow export times are aligned with system clock resolution.
If this had not been the case ρsu, would cause a bias that would compensate βs (ρfirst=ρsuin this
scenario).

B.2.3 Evaluation of Random Errors

In terms of random errors, we will consider the distributions of ∆ts values between different
OPs. All timestamp processing and calculation is performed with 0.1 µs resolution (UNIX time
as double precision floating point). Also rnsec is taken as raw value stored from the collector
and only truncated to 0.1 µs resolution and not to millisecond resolution, as it is usually done.
Unless otherwise noted, histograms have been calculated using buckets of 100 µs width, with
each bucket indicated in charts by the (inclusive) lower bound.

Figure B.4 and Figure B.5 show the distributions of ∆ts values and hence the error resulting from
limited resolutions in flow record timestamps. Figure B.4 shows two charts with values obtained
from the same type of OPs (pure DAG(a), pure NetFlow(b)), while the charts in Figure B.5 show
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Figure B.5: Distributions of ∆tsvalues, different OP types

results obtained by using different type of OPs (DAG and NetFlow timestamps). Table B.1
presents characteristic values of the distributions shown in the figures.

The error distribution of the reference measurement using the DAG card (Figure B.4(a)) in-
dicates the delay distribution, which results from emulation inaccuracy as well as from other
effects on the path and DAG card clock skew. The range of the distribution is 120 µs neglect-
ing outliers. A completely different distribution results from the NetFlow data (Figure B.4(b)).
Here, the two peaks show the impact of the limited resolution in NetFlow timestamp values
(ρfirst) in conjunction with completely synchronized clocks between OPs as a result from the
measurement scenario using one router only. In case of uncorrelated data, a triangular distribu-
tion with the highest frequency value at the mean value of the distribution would result, which is
obviously not the case. Left of each peak Figure B.4(b) shows a very small number of samples,
which result from rnsec not being truncated, i.e., here the record timestamps are generally not
exactly aligned at 4 ms.

If ∆ts is calculated from DAG and NetFlow timestamps, a uniform distribution as in Fig-
ure B.5(a) results. Since there is no emulated delay on the path DAG0-FE0, this chart shows

Table B.1: Characteristic values of measurement results

Path ∆ts Var(∆ts) s(∆ts)
DAG0-DAG1 (reference) 1.2113 ms 0.0049 0.0703
FE0-FE1 (NetFlow only) 1.1297 ms 3.2429 1.8008
DAG0-FE0 (no delay) −2.1473ms 1.3338 1.1549
DAG0-FE1 −1.0178ms 1.3352 1.1555
FE0-FE1 (rnsec truncated ) 1.1297 ms 3.2429 1.8008
DAG0-FE0 (rnsec truncated) −2.7062ms 1.3336 1.1548
DAG0-FE1 (rnsec truncated) −1.5767ms 1.3350 1.1554
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the random error resulting from timestamp characteristics only. Thus, the distribution is almost
perfectly rectangular and its empirical standard deviation of s = 1.1549 is very close to the

standard deviation calculated from timestamp resolution, which is σ∆ts =

√
ρfirst2

12 = 1.1547.

Taking the path with the emulated delay into consideration (DAG0-FE1), the random error is not
perfectly rectangular anymore due to the impact of the delay variation (Figure B.5(b)). Hence,
this distribution reflects a convolution of the delay distribution Figure B.4(a) and the rectangular
distribution from NetFlow timestamp errors (Figure B.5a).

In summary, the results show that there is no impact on random errors caused by a limited
resolution of the system uptime (rsu), which is another indication that ESA holds for the OPs
considered in this setup. This has also be validated by checking tb, which is aligned to 4 ms
timestamps besides the jitter introduced by rnsec. In case ESA would not hold, there would be a
random error on tb of some milliseconds, thus this value would vary much more.

B.2.4 Impact of Truncating NetFlow’s Nanosecond Timestamp

The impact of truncating the raw timestamp rnsec to milliseconds was discussed in Section 4.4.3.2.
This truncation is equivalent to a limited resolution of 1 ms of this timestamp and therefore
likely to cause a systematic error of βnsec =−0.5ms. However, if only NetFlow data with trun-
cated rnsec timestamps is used, this error is compensated in OWD measurements. When using
high resolution timestamps as in this experiment, this error can be quantified.

The NetFlow and trace data was processed without truncating rnsec timestamps for the results
presented above. Using the same data, but truncating rnsec for NetFlow timestamps results in
the values presented on the bottom of Table B.1. The mean value for the Netflow-only path
(FE0-FE1) does not change, since the truncation of rnsec is performed for both OPs and thus the
systematic error is compensated. Compared to (Figure B.4(b))) there are only two large peaks
in the distribution (not shown) and no small peaks are left.

As soon as one NetFlow OP and one DAG OP are considered, the systematic error introduced
by rnsec truncation becomes visible. Comparing the mean values resulting for the paths DAG0-
FE0 and DAG0-FE1, there is a difference of -0.5589 mseach, which is very close to the bias
calculated from ρnsec = 1 ms (βnsec = −0.5ms). Thus, rnsec truncation introduces a systematic
error as expected. Table B.1 also shows differences in the standard deviation, however, there is
only very little impact of rnsec truncation on that.



C Details on Export Characteristics

C.1 Export Characteristics

Figure C.1 and Figure C.2 show the CDF for the export delay from record start δs, export delay
from record end δe, and the record duration d taken from two exporters. From each exporter
more than 100,000 records have been taken to plot the CDF. At both exporters an active timeout
of 60 s is configured. The export jitter at both exporters clearly differs: on exporter 1 some δs
values are greater than 70 s while at exporter 2 the maximum δs is 62 s.
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D Peak Detection Algorithm for
Resolution Detection

The peak detection algorithm is highlighted using two example spectra created in the resolution
profiling procedure (see Section 6.4.3). Figure D.1 shows exemplary spectra of timestamp
streams. The left spectrum shows wide peaks as they occur for high resolutions and the right
spectrum shows lots of small peaks as they occur for low resolutions. Note that the left spectrum
shows all N values while the right spectrum only shows less than 5% of it. Especially with high
resolutions the peak at k=0 has a certain width and thus peak search cannot start immediately
for low k values. Contrary, peak search must start immediately with low resolution values (right
spectrum).

These considerations lead to a peak search algorithm that uses a peak search window. As shown
in Figure D.1 a peak has to be at least of height 0.2 ·|Y (k0)|. The right and the left search window
border depend on the number of peaks np that are larger than this threshold. The left border of
the window starts at kl = bN/npc, the right border is at kl = N−bN/npc. If np < 1000, the kp
value where |Y (kp)| · (N−kp) delivers the highest value within the search window is selected as
peak value. Otherwise, if np >= 1000 the first peak within the search window that is larger than
the threshold is selected. Only if immediately higher values follow, the selection is changed
to them. This algorithm reliably selected the correct peak, as exemplarily demonstrated by the
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two spectra in Figure D.1 and as validated by results delivered for the evaluated scenario that
passed all consistency checks reliably. In case there are problems with resolution detection,
spectrum data can be dumped for manual inspection. Especially for low resolutions there might
be slightly inaccurate results due to rounding errors.
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