
On the Use of Cryptographic Cookies for
Transport Layer Connection Establishment

Sebastian Kiesel
University of Stuttgart, Institute of Communication Networks and Computer Engineering (IND)

Pfaffenwaldring 47, 70569 Stuttgart, Germany
<kiesel@ind.uni-stuttgart.de>

Abstract

In October 2000, the specification of SCTP (Stream Con-
trol Transmission Protocol, a new transport layer proto-
col) was published by the Internet Engineering Task Force
(IETF). SCTP uses a cryptographic cookie mechanism to
protect itself against denial-of-service attacks aiming at the
association startup procedure. However, the basic idea of
the cookie mechanism is not new. A similar mechanism for
the TCP protocol has been proposed back in 1996 and has
been implemented in the TCP protocol engines of several
operating systems. The TCP SYN cookie mechanism has
not been published as an RFC, probably because it does
not require any changes to the existing TCP specification.

This paper gives an introduction to the problem of DoS
attacks against transport layer protocols and presents the
basic idea of the cookie approach. The specific implementa-
tions of this idea both for TCP and SCTP are explained and
compared, especially with respect to the fact that for TCP,
the mechanism had to fit into the existing protocol specifi-
cation, whereas for SCTP, the protocol has been designed
from scratch with the cookie mechanism in mind.

1. Introduction

Virtually any communication network to which un-
trusted nodes are connected to may become the victim of
a denial-of-service (DoS) attack. The objective of a DoS
attack is to degrade or interrupt a service offered by the net-
work or one of the end systems connected to it, making it
impossible or less performant for legitimate clients to use
that service. Sometimes, DoS attacks aim at causing incor-
rect behavior or even a system crash at the target node by
totally overwhelming the system with requests.

DoS attacks may be carried out on any layer of the net-
work protocol stack. On the network layer, for example,
a simple attack would jam parts of a network with useless
data packets (e.g., ICMP echo request (“ping”) messages in
an IP network) in order to make overloaded routers delay or

drop legitimate packets. On the application layer an attacker
would use application specific requests to cause exhaustion
of a limited resource at the target node, such as computation
power, memory, I/O bandwidth or transaction IDs, etc. Es-
pecially useful for this kind of attack are request types with
the following criteria: They should make it hard or impos-
sible to distinguish forged from legitimate requests. They
should be harmful even if the attacker uses fake source ad-
dresses in the packets (in order to make it harder to track
him down), and they should have a high ratio of wasted re-
sources at the victim to the effort of generating them by the
attacker.

For the rest of this paper, transport layer protocols such
as TCP, which implement a connection oriented service on
top of a packet network, are considered. For most of these
protocols the first message used for establishment of a new
connection meets all of the criteria mentioned above. Virtu-
ally all protocols use a handshake procedure for connection
establishment that resembles the generalized handshake de-
picted in figure 1.

Node “A”, which wants to establish a connection to node
“Z”, sends some kind of “Connection Request” message
to “Z”, which acknowledges this message before the data
transfer can begin. Some protocols may use more proto-
col legs (e.g., for the negotiation of protocol parameters)
before the transmission of actual user data may begin, but
this does not change the principle. As long as “A” does not
acknowledge the receipt of the “Connection Acknowledge”
message (either explicitly with an appropriate message type
or implicitly by starting the transmission of user data – this
is protocol dependent), “Z” may be either in a “half open”
state or already in “established” state.

As soon as “Z” has received the first message it has to
dedicate some of its memory for storing the state informa-
tion of the new connection. Of course, “A” has to allo-
cate memory for this so-called Transmission Control Block
(TCB) even before sending the initial message.

The problem of DoS attacks arises from the fact that
“Z” has to allocate memory (i.e., commit resources) upon
receiving a new “Connection Request” message. A hos-
tile node “X” might send thousands of these messages and

state
"half open"
enterenter

state
"established"

"established"
state

enter

for TCB!
memory
allocaterequested"

state

enter "conn.

"A" "Z"
idle/closed

Conn. ACK

Conn. Req.

Data

generate TCB

Figure 1. Connection establishment of a gen-
eralized transport layer protocol

therewith cause an overflow of the victim’s buffer memory,
where the state information for connections being in the
“half open” state is stored (figure 2). As it does not matter
for the DoS attack whether the “Connection Acknowledge”
actually arrives at “X”, the attacker may use random source
addresses, which makes it harder to track him down and to
distinguish the offending packets from legitimate ones. De-
pending on the protocol, the hosts that correspond to these
randomly chosen addresses either discard the unexpected
acknowledgements or respond with an error message. Also,
“X” does not have to allocate memory for a TCB as it is not
really interested in establishing a connection.

Once the buffer is full Z’s protocol engine either has to
discard new arriving “Connection Request” messages or to
remove older entries from the buffer. Both strategies can
hinder or prevent the establishment of legitimate connec-
tions. Increasing the buffer capacity makes flooding attacks
more difficult for the attacker (i.e., it has to send more pack-
ets to disturb service) but cannot solve the problem in prin-
ciple. Adding a timer that removes TCBs which are in “half
open” state over a longer period1 does not help either, as
this timeout has to be at least as long as the maximum round
trip time (RTT) that can occur in the network, for making
sure that legitimate users can connect. In many wide area
networks with high RTTs and high bit rates an attacker can
send more “Connection Request” message within one RTT
than a reasonably sized buffer can hold.

The rest of this paper is organized as follows: Section 2
introduces the basic idea of the cookie mechanism. Sec-
tions 3 and 4 explain the cookie implementations for TCP
and SCTP, respectively. The paper is concluded with Sec-
tion 5.

1actually, most protocols implement a timer, in case the network con-
nection between “A” and “Z” gets interrupted right after the “Connection
Request” message has arrived at “Z”

Out of mem−
ory! Cannot
allocate TCB!

Out of mem−
ory! Cannot
allocate TCB!

forge C. Req.

C. ACK

open" state
enter "half
ory for TCB &
allocate mem−

C. Req.

C. ACK

open" state
enter "half
ory for TCB &
allocate mem−

forge C. Req.

C. Req.

Abort

Abort

src=R

forge

src=S

src=T

src=S

forge C. Req.

C. ACK

open" state
enter "half
ory for TCB &
allocate mem−

"A" "X" "S""T""R" "Z"

failed!

Conn.

generate
TCB

attempt

ignore

ignore

ignore

ignore

Figure 2. DoS attack against the generalized
protocol

2. Cookie mechanisms for connection estab-
lishment

In the previous section it was reasoned about why it is
neither possible to protect a buffer based mechanism against
this type of flooding attack without possibly blocking legit-
imate peers, nor feasible to increase the buffer capacity to
a size large enough to make overflows impossible. So, the
only solution to this problem is to make the buffer unneces-
sary.

The basic idea (figure 3) is that “Z” must not commit any
resources upon receipt of the “Connection Request” mes-
sage. Instead, “Z” could answer with a message containing
a cryptographically signed token (“cookie”), which should
be hard to guess for an attacker but easy to recognize by
“Z” as actually issued by itself. Furthermore, this message
should contain all state information needed to build the TCB
of “Z” for the respective connection. After sending this
message, all state information should be discarded, making
the “Z” invulnerable to queue overflows. An end system
that really wants to connect has to return the cookie with
its second message (the third message in the protocol run).
After getting back the cookie from the connection initiator,
“Z” verifies the authenticity of the cookie and then sets up
the TCB using the information contained in the cookie itself

enter

state
"established"

"A" "Z"

Conn. Req.

generate TCB

Cookie issue

Cookie return

Conn. ACK

Data

any ressources
not allocate
cookie, but do
generate state

idle/closed (!)

await cookie

state cookie

return
unmodified

verify cookie

enter
"established"
state

idle/closed

ory for TCB
allocate mem−

Figure 3. State cookie mechanism for protect-
ing connection setup

and in the message that bears the cookie.
From a theoretical viewpoint both the protocol and the

protocol engine running at the receiving node “Z” can be
decomposed into two distinct phases or subprocesses, re-
spectively. The first two legs of the protocol are used by
“A” to acquire a ticket (the cookie), which allows it to be-
gin the second protocol stage during which the actual user
data is transmitted, beginning with the third message. The
function of “Z” can be separated into one auxiliary pro-
cess which is started upon receipt of a new “Connection
Request” message and terminates immediately after gener-
ating the cookie, and the main process that runs the rest of
the protocol run (see figure 4). The author has used such a
decomposition for a formal analysis of the cookie mecha-
nism used by the SCTP protocol (see below) with the BAN
logic [1].

3. TCP

The “Transmission Control Protocol” (TCP) [6, 9] used
in the Internet is a protocol with the properties described
above. It is vulnerable to a DoS attack called “swamping”
or “SYN flooding” (the latter name is due to the fact that
the first packet of a TCP connection has the so-called “SYN
bit” set). In September 1996, after it had been found that an

K z’z
shared
secret

"A"
msg. type

process Z’ for state
cookie generation

protocol engineDATA

return
Cookie

issue
Cookie

Con.req.

Con.ACK

discriminator memoryless auxillary

main process "Z"

Figure 4. State cookie mechanism modeled
with two processes at “Z”

attack against a server actually had exploited this weakness,
which was known in theory for a long time, Dan Bernstein
and Eric Schenk proposed to “eliminate the queue. Don’t
create the TCB until the ACK comes back.” [2].

The most interesting detail about TCP SYN cookies is
that these were added to the existing protocol, without
changing the original TCP protocol specification. There-
fore, this section is organized as follows: in the first subsec-
tion, the basic idea is given and the relevant requirements of
the TCP standard are summarized. Then, details of the TCP
SYN cookie implementation are explained. In the last sub-
section, some implications of adding cookies to the existing
protocol are presented.

In practice, SYN cookie implementations are available
for Linux (as an optional feature in the standard kernel
source package) and other operating systems.

3.1. TCP SYN cookies: The basic idea

When designing TCP SYN cookies, one of the require-
ments was that the implementation should be interoperable
with all existing TCP implementations conforming to the
standards. Therefore, no new cookie data field could be
added to the TCP header. This would have required changes
to all existing end systems in the Internet: They would have
to read the cookie from the incoming (second) message and
copy it into the outgoing (third) message of the protocol run.

The solution was to use the sequence number fields for
carrying the cookie. In every TCP implementation the se-
quence numbers usually do not start with zero. Instead,
each peer announces its “Initial Sequence Number” (ISN)
in its respective first packet (Values x and y in figure 5).
These packets are the only two packets that have the SYN
(synchronize) flag set. The ISN values are – increased by
one – acknowledged by the peer in the following message.
That is, by subtracting one from the ACK number of the
third packet, peer “Z” can yield the value it had issued itself

"A" "Z"
SEQ=x, SYN=True

ACK=x+1
SEQ=y, SYN=True

SEQ=x+1, SYN=F
ACK=y+1

CLOSED

ESTABL’D

SYN_SENT

SYN_RCVD

ESTABL’D

LISTEN

Figure 5. TCP three-way-handshake

as its ISN in the second packet. A method for transpar-
ently carrying a 32 bit value from “Z” to “A” and back to
“Z” within the second and third leg of the protocol run was
found. However, “Z” cannot choose this value (its ISN) to-
tally unconstrained:

RFC 793 and RFC 1323 [6, 9] require that when estab-
lishing a TCP connection, the two peers announce their re-
spective ISN (a 32 bit unsigned integer value) in the first
2 packets (SYN bit set) of the connection. Additionaly,
RFC 1323 [9] requires the ISN to be initialized with a 32 bit
counter, incremented “approximately”

�����
times per second

(equals 262.144 kHz2). This results in a ISN wrap around
every

�����
	��
���������
�������������������� "!#��$%! ���& .

3.2. TCP SYN cookies implementation details

The TCP SYN cookie approach has to store a crypto-
graphic cookie (long enough to be sufficiently secure) and
all needed state information in Z’s ISN field which is only
32 bits wide and cannot be chosen arbitrarily. This implies
several restrictions on the efficiency of the protocol (MSS
value, see below) and on the availability of additional TCP
options such as window scaling [7]. Therefore, a host will
always generate TCP SYN cookies, but it will use them
(i.e., not add entries into the SYN queue and process cook-
ies coming back from the peers) only if it is actually un-
der attack, otherwise it will use the normal mechanism of a
SYN queue. Using the TCP SYN cookie mechanism when
the host is not under attack could – at least in theory – open
a security hole in some environments, see section 3.3.

Fortunately, only one value is required for creating the
TCB, which cannot be deduced from the normal contents
of the third packet (i.e., the packet that returns the cookie):
the maximum segment size (MSS). The initiator of a con-
nection sends its MSS value, i.e., the maximum size of a
single TCP segment (“packet”) it can receive, in the first
packet. The receiver of the SYN packet is expected to an-

2Note: the Linux kernel uses 1 MHz

swer with its own MSS or the value received from the initia-
tor, whichever is smaller, and to store this value in its TCB.
However, it is possibly inefficient but RFC compliant to an-
swer with an MSS which is smaller than both the own MSS
and the value received from the originator. Therefore it is
feasible to respond with one value out of a short (8 values)
list of common MSS values, as long as the chosen value
is smaller or equal than both peer’s MSS values. The Linux
implementation of TCP SYN cookies uses a table with eight
entries: 64, 256, 512, 536, 1024, 1440, 1460, 4312 bytes3.
Only 3 bits are needed to store the index into this table,
compared to 16 bits for a MSS up to 65535 bytes.

Other features like window scaling [7] are optional, the
connection initiator must be prepared that the peer might
not be capable of handling them. They will be turned off if
SYN cookies are actually in use.

This formula was proposed to compute the ISN:

' Shall sec1 and sec2 be two (constant) secret values.' Shall cnt be a counter that increases about once a
minute. For practical reasons, on a POSIX compliant
system this could be the return value of the time (2)
system call4, divided by 64, i.e., shifted right by 6 bits:
cnt=time()>>6;' Shall MT[0..7] be an array of 8 sorted MSS values.' Upon arrival of a packet with the SYN bit
set, which requests a new connection with the
parameters (saddr, sport, daddr, dport,
sMSS, sISN), compute the following values:

MSSi =

())))*))))+

, -
sMSS . MT[7]� -
MT[7] / sMSS . MT[6]0�0�0� -
MT[2] / sMSS . MT[1]1 -
MT[1] / sMSS . MT[0]5

h1 = 2436572 6(sec1,saddr,sport,
daddr,dport,sec1)

h2 = 2436572 (sec2,cnt,saddr,sport,
daddr,dport,sec2)

H2 = h2 & ((1<<24)-1)

C = cnt<<24
3Note that there is no very large value (e.g., 64kB) in the list. This

makes networks capable of handling large segment sizes (like HIPPI)
rather inefficient (but only if the destination host is under attack during
connection establishment)

4number of seconds since 01/01/1970 00:00:00 UTC
5MT[0] must be equal to the smallest MSS which is allowed by the

TCP/IP standards. Therefore, the case sMSS<MT[0] cannot occur.
6The MD5 Message-Digest Algorithm[8] has been proposed and used

in the Linux implementation as hash algorithm.

' Compute Z’s ISN from these values and other param-
eters. This is the TCP SYN cookie:

dISN = (MSSi << 29)
+ (C+H2+h1+sISN)&((1<<29)-1)

' If the node is not under attack, i.e., if there is room
in the SYN queue left, create a TCB and send the
SYN ACK packet with the dISN as calculated above.

' If the queue is full send the SYN ACK packet anyway,
without creating a TCB. Indicate in the packet that the
node is not able to accept any of the extra options such
as window scaling. Store the current time as the “last
queue overflow time”.

' When the third packet of the connection comes back
from the peer, find or generate the corresponding TCB:

1. Look for a TCB with (saddr, sport, daddr,
dport) in the queue. If found, use this TCB.

2. If the “last queue overflow time” is longer than a few
minutes ago the node should not accept a cookie. Dis-
card the packet and give up.

3. If the last queue overflow was recently check whether
the packet bears a valid SYN cookie. With the third
packet the peer should acknowledge the dISN. There-
fore, recalculate the expected cookie value from the
parameters of the packet using the algorithm given
above. For cnt, use the 4 most recently used values.
Compare these calculated values with the bottom 29
bits of the assumed cookie in the packet. If there is
a match generate a TCB using the parameters in the
packet. Use the top 3 bits of the cookie as an index
into the MSS table MT[] to figure out the appropriate
MSS.

A note on the addends of dISN: h1 is a constant offset
to the ISN that does never change for a given IP addresses /
TCP ports combination. This value should be hard to guess
for any attacker. cnt and h2 simulate the behavior of the
ISN counter as required by the TCP standard, with two re-
strictions: the counter is only 29 bits wide and only the top
5 bits increase steadily (once every 64 seconds) whereas
the lower 24 bits jitter unpredictably because of the second
hash. The second hash is used to prevent that an attacker
who has access to a list of old, outdated cookies sent to an-
other host could guess the cookies that the target host would
issue now to that host. Adding sISN ensures that the is-
sued ISN increase steadily even within short time periods,
assuming that the connection initiator uses a standards con-
forming ISN itself.

3.3. Security implications when using TCP SYN
cookies

The SYN cookies approach does not violate any require-
ment of the TCP specification. However, it changes the se-
mantics of the third packet of a connection. In certain en-
vironments, this may impose a security vulnerability which
is extremely unlikely to be exploitable in practice, but given
at least in theory.

The first and second packet of a TCP connection can be
distinguished easily from each others and the subsequent
packets: The first packet has the SYN flag set, but not the
ACK flag. The second packet has both flags set. The third
and all subsequent (data) packets – until the beginning of
the connection release phase – have only the ACK flag set.

Many sites use simple stateless packet filters to protect
their hosts from unwanted TCP connections from the Inter-
net. These are basically routers that drop (discard) specific
IP packets instead of forwarding them, based on various cri-
teria, such as IP addresses and protocol types and parame-
ters. A frequently used setup is to allow outbound TCP con-
nections (initiated from a local host to a host in the Internet)
but to disallow inbound connections by simply dropping all
inbound packets which have the SYN but not the ACK bit
set, and by allowing all other packets to pass. As all the
“first” packets are filtered in inbound direction the remote
hosts cannot initiate TCP connections to the local hosts.

The TCP SYN cookies approach changes the meaning of
the packets. The first two legs of the protocol run are used
by the connection initiator to acquire a cookie, which al-
lows it to initiate the real connection starting with the third
packet. That is, if a host in the Internet was able to ac-
quire a valid cookie by some other means it could initiate
a TCP connection starting with the third packet. A simple
packet filter in a setup as described above would forward
this packet, therefore allowing the establishment of an in-
bound connection – despite its contrary policy. Note that
there is no simple solution as it is not possible to distin-
guish a “third” packet from all the subsequent data packets
without maintaining any state information at the packet fil-
ter.

One possibility for acquiring a cookie would be to sim-
ply guess the 32 bit value. In November 2001 a secu-
rity advisory [3] described a weakness in the Linux TCP
SYN cookie implementation. Because a bad random num-
ber source yielding predictable numbers was used the likeli-
hood of guessing a valid cookie was increased dramatically.

If the target host uses a good random source it is very
improbable to succeed with guessing the cookie, but – at
least in theory – still not totally impossible. To protect itself
against long-term brute force attacks a host must not accept
SYN cookies if it is not currently under attack.

4. SCTP

The “Stream Control Transmission Protocol” (SCTP)
[10] is a relatively new transport layer protocol for the IP
protocol stack. It has been developed by the IETF (Internet
Engineering Task Force) SIGTRAN (SIGnaling TRANs-
port) working group [4] to be the base of an architecture for
the transport of SS7 signaling data over IP networks. The
“Signaling System No. 7” (SS7) is a packet-oriented net-
work used for controlling the operation of the (connection-
oriented) Public Switched Telephone Network (PSTN). De-
spite this specific aim, SCTP is designed as a generic trans-
port layer protocol, such as TCP and UDP. This general ap-
proach is emphasized by the fact that further development
of SCTP has been turned over to the IETF TSVWG (Trans-
port Area Working Group) in the meantime.

The next subsection will give a brief overview on SCTP
before SCTP’s cookie mechanism is considered in the fol-
lowing subsection.

4.1. SCTP services and features

SCTP [10] is the core protocol of the SIGTRAN archi-
tecture. In the IP protocol stack SCTP is located above IP
as transport layer protocol, in the same layer as TCP [6] and
UDP [5] (see figure 6). SCTP combines properties of UDP
and TCP, and adds new features as well.

SCTP uses the unreliable connectionless packet service
offered by IP to provide its upper layer protocol (ULP) with
a reliable datagram service. Unlike UDP, SCTP detects
packet loss, duplicate packets or bit errors and retransmits
or discards the respective packets. Unlike TCP, SCTP pre-
serves the boundaries of messages: distinct byte blocks are
passed from and to SCTP’s ULP instead of a continuous

SCTP

IP Application

Socket Adapt.
compat.

TCP UDP

Module

Host to Subnet

[+ IPsec (optional)]IP

SS7 UserPart

Figure 6. IP Protocol stack with SCTP

"A" "Z"
CLOSED INIT (ITAG=Ta) CLOSED

ITAG=Tz, cookie)

INIT ACK
(VTAG=Ta,

COOKIE ECHO
(VTAG=Tz, cookie)

COOKIE ACK
(VTAG=Ta)

DATA(VTAG=Tz)

DATA(VTAG=Ta)

state cookie
generate

WAIT
COOKIE

CLOSED (!)

COOKIE
ECHOED

ESTABL’D

verify cookie

ESTABL’D

return

cookie
opaque

Figure 7. SCTP: init procedure signaling-time
diagram

byte stream as with TCP. For a comparison of UDP, TCP
and SCTP see table 1.

SCTP allows to split one association (SCTP term for
connection) into up to 65536 logical subchannels per di-
rection, so-called streams. Each user message is transmit-
ted in one of these streams. Unless the “U” (unordered)
flag is set for a message, SCTP ensures in-order delivery
within the same stream. If one message is lost or corrupted
in the network and has to be retransmitted, only the corre-
sponding stream is subject to head-of-line blocking whereas
messages for other streams can be delivered, anyway. Us-
ing one association split up into several streams – instead
of using multiple associations bearing only one stream each
– reduces the overhead at connection setup and improves
the efficiency of the TCP-like fast retransmit algorithm by
using it on the aggregate message flow.

For increased availability and reliability SCTP supports
multihoming, that is, a node may be attached to the IP net-
work with several interfaces, each having its own IP ad-
dress.

SCTP uses two techniques as countermeasures against
“blind spoofing” and denial-of-service attacks.

For protection of already established associations against
blind spoofing attacks, SCTP uses so called “verification

UDP TCP SCTP
IP protocol number 17 6 132
Connection oriented no yes yes
Handshake at connection setup N/A 3-way 4-way
Transmission of user messages byte stream user messages
Multiplexing of connections port numbers port numbers port numbers
Multiplexing within one connection no no up to 64k streams

Sequence numbering & ACK’ment no yes yes
In-order delivery of messages / bytes no yes in same stream
Optional out-of-order delivery N/A limited (URG flag) yes
Automatic retransmit of lost packets no yes yes
Detection of duplicated packets no yes yes

Bit error detection (checksum) optional yes yes
Automatic retransmit on errors no yes yes
Flow control, congestion avoidance no yes yes
Multihoming support no no yes
Connection / association restart N/A no yes

Countermeasures against denial-of-service
& blind spoofing attacks

no optional, partly
(SYN cookies)

yes
(cookie, V-tags)

Countermeasures against man-in-the-middle
attacks

no no no

Table 1. Comparison of UDP, TCP and SCTP

tags”. In its respective first message each peer sends a 32
bit random value to the other peer. For all subsequent mes-
sages of the same SCTP association the sender of the mes-
sage has to fill the “verification tag” field in the message’s
SCTP header with the value which it had received from
the other node during the association startup. If a SCTP
node receives a SCTP packet with a wrong verification tag,
it has to discard the packet silently. Therefore a potential
blind spoofing attacker, which is able to send packets with
faked source IP addresses to one of the SCTP peers but does
not know the verification tag values, cannot inject messages
into an existing SCTP association However, the verification
tags are transmitted in clear text, that is, they do not provide
any protection against attackers which are able to eavesdrop
on legitimate messages.

The second mechanism is described in the next subsec-
tion.

4.2. SCTP’s 4-way handshake with cryptographic
cookie

For an association establishment SCTP uses a 4-way
handshake with a cryptographic cookie (figure 7), which
uses the same idea as the TCP SYN cookies approach.
However, unlike TCP, where the cookie mechanism has
been added later without changing the original protocol
specification, the SCTP protocol has been designed and
specified to use the cookie mechanism.

SCTP uses a type indicator field in its messages
(“chunks” in SCTP’s terminology), which makes it possi-
ble to distinguish all four messages used for the handshake
(INIT, INIT ACK, COOKIE ECHO and COOKIE ACK)
from each others and from subsequent messages bearing
user data (DATA). This also simplifies packet filtering. For
faster association setup the first DATA chunks may be bun-
dled with the COOKIE ECHO and COOKIE ACK chunks,
respectively.

The SCTP specification provides for an own data field
for storing the state cookie in the respective messages. The
only size limit for the cookie is the requirement that the
cookie together with all the other parameters has to fit into
the INIT ACK or COOKIE ECHO message, respectively,
which must not exceed 64 kB each. Therefore, all state in-
formation and all options may be stored in the cookie, in-
cluding any auxiliary parameters such as timers, etc.

Note that the SCTP standard does not specify neither the
data format of the cookie nor the cryptographic algorithm
to be used for signing the cookie. Instead, these are “imple-
mentation specific” issues left to the implementor’s choice.
No standardization is required as the only node which has
to read and interpret the cookie is “Z”, the very same node
that issued the cookie. This implies that the association ini-
tiator “A”, which has to receive and return the (unmodified)
cookie, cannot tell anything from the cookie, as it must not
assume that “Z” uses the same SCTP implementation as “A”
uses itself.

5. Conclusions

Both the TCP SYN cookie mechanism and the SCTP as-
sociation startup procedure use the same basic idea. How-
ever, it makes a big difference whether using this mecha-
nism was planned when designing the protocol or not.

The TCP SYN cookie mechanism has to use a rather so-
phisticated alignment of several variables into one field of
the TCP header, in order to remain compliant to the existing
TCP standard. Despite this effort only 3 bits for storing pa-
rameter information and only 29 bits for the cryptographic
cookie are gained. This is sufficient for the basic proto-
col operation, but additional options such as large windows
cannot be used if the host is under attack during connection
setup. Changing the semantics of protocol messages may
impair the function of packet filters (“firewalls”) at least in
theory, even if the modified protocol is full compliant to its
original specification.

The SCTP protocol in contrast, which was designed from
scratch with the intent to use a cookie mechanism, may use
cookies of almost arbitrary size. This allows to store the
whole parameter range in the cookie (as opposed to “8 com-
mon out of 64k possible MSS values”) and to include all op-
tional parameters. Explicit timestamps may be included to
ensure that the cookie was issued recently. Having no rel-
evant size constraint to take into account implementations
may use almost any cryptographic algorithm which appears
to be appropriate for signing the cookie. If all state infor-
mation is stored in the cookie and if a sufficiently strong
cryptographic algorithm is used for signing the cookie the
handshake procedure may always make use of the cookie
mechanism, no matter whether the host is currently under
attack or not. This makes it unnecessary to implement both
a TCB buffer and the cookie mechanism. Furthermore the
current state of the host (whether being under attack or not)
has no influence on the protocol run and on the semantics
of the messages. If the cookie mechanism was envisioned
from the beginning of the protocol design all messages may
be given reasonable type identifiers. This simplifies state
checking and packet filtering.

The cookie mechanism solves the problem of DoS at-
tacks targeting at exhausting the victim’s memory. How-
ever, this protection is achieved at the price of having to
compute a cryptographic cookie. If generating this state
cookie consumes a significant amount of CPU cycles, DoS
attacks targeting at exhausting the victim’s CPU resources
are to be feared. Note that above a certain packet rate every
INIT-flooding attack will succeed by clogging the victim’s
network link, no matter what defense methods are deployed
at the node. But then this is no longer a “real” INIT-flooding
attack, but an “ordinary” brute-force flooding attack with
packets that happen to bear an INIT message. This is es-
pecially true for so-called “distributed DoS attacks” in the

Internet, which use hundreds of (compromised) nodes under
one common control to attack one target. The CPU effort
needed for generating the cookie does not only depend on
the cryptographic algorithm for signing the cookie but also
on the extent to which other actions such as checking access
control lists or determining other connection parameters are
performed prior to issuing the cookie. If CPU profiler mea-
surements showed that this is relevant in practice protocols
such as SCTP could be further optimized and made even
more invulnerable to DoS attacks by modifying the proto-
col and delaying the negotiation of “expensive” parameters
to later protocol stages.

Cookie mechanisms can improve the security of a proto-
col against blind spoofing attacks at reasonable costs when
they are considered in an early stage of protocol design
without restrictions of prior standardization steps which did
not take security requirements into account.

6. Acknowledgements

The author would like to thank Christian Hauser and
Matthias Kabatnik for the fertile discussions we had.

References

[1] Michael Burrows, Martı́n Abadi, Roger Needham: “A logic
of Authentication” ACM Operating System Review, Vol. 23,
No. 5, December 1989

[2] D. J. Bernstein’s Website about TCP SYN cookies
http://cr.yp.to/syncookies.html

[3] Roman Drahtmueller, Andi Kleen: Linux Kernel security
advisory on the Bugtraq mailing list.
http://www.securityfocus.com/archive/1/
224531

[4] The IETF (Internet Engineering Task Force) SIG-
TRAN (Signaling Transport) working group.
http://www.ietf.org/html.charters/
sigtran-charter.html

[5] RFC 768: Postel, J.: User Datagram Protocol. RFC, August
1980.

[6] RFC 793: Postel, J., Editor: Transmission Control Protocol,
Protocol Specification. RFC, September 1981.

[7] RFC 1106: R. Fox: TCP Big Window and Nak Options.
RFC, June 1989.

[8] RFC 1321: Rivest, R.: The MD5 Message-Digest Algo-
rithm. RFC, April 1992.

[9] RFC 1323: Jacobson, V., Braden, R., Borman, D.: TCP Ex-
tensions for High Performance. RFC, May 1992.

[10] RFC 2960: Stewart, et al.: Stream Control Transmission
Protocol. RFC, October 2000.

