
Issues with the Interworking of Application
Layer Protocols and the MIDCOM Architecture

Andreas Müller and Sebastian Kiesel

Abstract— In the current Internet, there are many
devices performing specific functions in the network
going beyond simply routing and forwarding IP pack-
ets to their destination. Common examples for such
devices—which are frequently referred to as middle-
boxes—are firewalls and network address translators.
Middleboxes usually operate exclusively on the net-
work and transport layer in order to fulfill their task,
mostly taking adequate action on the basis of the ad-
dresses and port numbers of traversing IP packets.
However, there are some services ordinary middleboxes
do not get along with. As a result of that, the corre-
sponding data packets mostly do not reach their actual
destination and hence, a reasonable communication is
normally no longer possible.

One approach for dealing with this problem is the so-
called IETF MIDCOM (MIDdlebox COMmunications)
architecture. In this paper—after elucidating the prob-
lem in more detail and providing an overview of other
existing solution approaches—, we especially focus on
MIDCOM and we address some potential problems
concerning the interworking between this approach and
some specific services, including possible solutions for
coping with them. This way, we want to point out the
issues that should be taken into account when design-
ing new application layer protocols or when extending
existing ones in order to make them fully interoperable
with the MIDCOM architecture.

Keywords— IETF MIDCOM, middlebox, firewall,
NAT, SIP, protocol design

I. Introduction

IN the current Internet, there are many devices, such
as firewalls or network address translators (NAT),

performing specific functions in the network going
beyond simply routing and forwarding IP packets
to their destination. These devices—which are fre-
quently referred to as middleboxes—have all in com-
mon, that they usually evaluate exclusively protcol-
related information from the network and the trans-
port layer in order to fulfill their tasks. Firewalls,
for example, represent a building block for protect-
ing local networks from potential attackers. They
are widely-spread used for the enforcement of access
policies on the data traffic routed accross a border-
line between two domains of different security levels
and requirements. The currently most prevalent form
are pure packet filters, usually deciding on the basis
of IP addresses and port numbers whether a packet
should be forwarded or not. Alternatively, a firewall
could also be realized as an application layer gateway
(ALG), but as ALGs are usually more complex to im-
plement and need more time for processing traversing
data flows, they are not so often used as the other al-

Andreas Müller and Sebastian Kiesel are with the Institute
of Communication Networks and Computer Engineering (IKR),
University of Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart,
Germany. E-mail: {muellera, kiesel}@ikr.uni-stuttgart.de.

ternative. For that reason, we will focus in this paper
on scenarios, where the bulk data (and especially real-
time multimedia streams) is inspected by pure packet
filters only. Signaling messages may be handled by ap-
plication layer entities, as they are less frequent and
less sensitive to delays.

The network administrator, who is in charge of the
firewall, usually wants to allow or disallow the use of
a predefined set of services. Packet filters, in con-
trast, do not have any notion of services. Their deci-
sions whether to allow (forward) or disallow (discard)
a packet are rather based on the IP addresses and
TCP or UDP port numbers contained in the individ-
ual packets. For many Internet services, like e-mail or
web browsing, generally dedicated, well-known port
numbers are used. Consequently, this way, it is possi-
ble to map services to port numbers and vice versa, so
that from the list of (un)wanted services a static ac-
cess control list (ACL) can be generated, containing all
port numbers of the packets that should be forwarded
and serving as the basis for any firewall decision.

Basically, this would be all well and good, if there
were not some services behaving differently. The ser-
vices considered here deviate from the well-known port
number concept and their major characteristics can be
put down to two single points:
1. They are session-oriented, i. e., a communication
relationship usually covers several different flows.
2. The connection parameters—such as IP addresses
and port numbers—of at least some of these flows
are dynamically negotiated using some special control
flow.

Common examples for such services are IP-
telephony, the File Transfer Protocol (FTP) as well
as many peer-to-peer services. An IP-telephony ses-
sion, for example, normally is made up of one signal-
ing flow and one or more data flows for the transport
of the actual media (voice) data. One very common
protocol for signaling is the Session Initiation Proto-
col (SIP), which normally uses the well-known port
number ‘5060’. However, the IP addresses and port
numbers defining the end points of the corresponding
media streams are dynamically negotiated during the
SIP session establishment phase. As a consequence,
an ordinary packet filter actually would be able to de-
tect all IP packets belonging to the signaling flow, but
it would not be able to identify any packets belonging
to the data flows. Therefore, these packets in most
cases would be simply discarded. This, of course, rep-
resents a very strong restriction to the usage of such
services and therefore a serious, generally applicable
solution has to be found.

Issues with the Interworking of Application Layer Protocols and the MIDCOM Architecture

NATs, on the other hand, are frequently used for
mapping and aggregating private IP addresses to pub-
lic ones and vice versa, thus facilitating the connection
of local area networks with a private address space to
the public Internet. However, if IP addresses are dy-
namically negotiated between two peers and carried
as part of special control messages—what is the case
for the considered services—, these addresses cannot
be mapped by a conventional NAT. Therefore, a peer
in the public Internet possibly would try to send data
packets to a private IP address, what in most cases
naturally would fail. Consequently, this means, that
in case of NATs, problems do not only arise due to
the use of non-well-known port numbers, but also due
to the dynamic negotiation of IP addresses. However,
it has the same effect, namely that a reasonable com-
munication is not feasible.

Similar effects appear in conjunction with virtually
any other kinds of middleboxes, but for simplicity, we
restrict to considering only packet filters and NATs
for the rest of this paper, as these two entities are the
currently most prevalent form of such devices. Nev-
ertheless, the general principles and conclusions hold
for almost all other kinds of middleboxes analogously.

Basically, there exist several different approaches
for dealing with these problems. One of them is
the so-called MIDCOM architecture, which is devel-
oped and specified by the IETF (Internet Engineering
Task Force) MIDCOM working group. The basic idea
of this approach is to analyze the control flow of a
session—for example with the help of an intermedi-
ate proxy server—, to extract the dynamically nego-
tiated connection parameters of the data flows and
to configure the middlebox on the basis of this infor-
mation on the fly. Even though being fundamentally
well-suited for coping with the considered issues, it
may come to some problems with respect to the in-
terworking between application layer protocols, such
as SIP, and the MIDCOM architecture. This fact was
the major reason for writing this paper. In the follow-
ing, we want to make aware of the potential problems,
that may arise when applying the MIDCOM architec-
ture, and we want to point out the issues that should
be taken into account when designing new applica-
tion layer protocols or extending existing ones in order
to make them fully interoperable with this approach.
Our goal is to provide a systematic and comprehen-
sive overview of these issues and to formulate specific,
generally applicable mechanisms that should be sup-
ported by ‘MIDCOM-friendly’ protocols.

The remainder of this paper is structured as follows:
In section II, several existing solution approaches for
coping with the considered problems are presented
and shortly evaluated with respect to their suitabil-
ity. Section III subsequently especially focuses on the
MIDCOM architecture, which is illustrated consider-
ing the concrete example of enabling SIP-based com-
munications through a firewall. Afterwards, in section
IV, the potential problems concerning the interwork-
ing between the MIDCOM architecture and some ser-

vices showing the characteristics as presented before
are put together, and we present possible solutions for
coping with them. This leads to some general guide-
lines, that should always be taken into account when
designing new services which rely on the MIDCOM
architecture or when extending existing ones in order
to make them fully compliant with this approach. Fi-
nally, in section V, we conclude with a short summary
of the most important observations made.

II. Existing Solution Approaches

In the following subsections, the basic solution ap-
proaches for dealing with the problems arising in con-
junction with middleboxes are shortly presented, al-
ways considering a packet filter as middlebox.

A. Removal of the Packet Filter

The trivial solution would be to simply remove the
firewall, so that all data traffic is forwarded, indepen-
dently of the actual service the respective data packets
are belonging to. Even though this could be done to
cope with the specified difficulties, it is not recom-
mended to do so, because by having the firewall re-
moved, the network would become vulnerable to po-
tential attackers, as no longer any traffic control is
performed. For that reason, this approach can be la-
beled as completely unsuitable.

B. Setting up a Permissive, Static ACL

Basically, it would also be possible to keep the static
configuration of the firewall, but in that case, a suffi-
cient number of permanent pinholes has to be set up.
For enabling the use of SIP-based IP-telephony, for
example, all UDP traffic using port numbers larger
than 1024 ought to be forwarded by the firewall by
default, as any of these ports numbers might be used
for a dynamically negotiated media stream.

Of course, this proceeding would be somewhat bet-
ter than removing the firewall completely, but never-
theless, it still remains dubiously whether the firewall
can guarantee a sufficient degree of security for a local
network if such a high number of ports is opened by
default. Therefore, it should also be refrained from
applying this alternative.

C. Establishing an HTTP Tunnel

Most firewalls grant users access to the world wide
web. This fact is frequently capitalized on to enable
the use of services the firewall normally would block
and hence represents another possibility for coping
with the considered problems. The basic idea behind
this approach is to tunnel arbitrary binary data—in
our case, we would tunnel whole IP packets—through
the HTTP protocol. For doing that, all packets be-
longing to dynamically negotiated data flows have to
be encapsulated in an appropriate way and then can
be sent over the HTTP tunnel. At the other end of
such a tunnel, the actual user data has to be decapsu-
lated again, whereupon the original data flow can be
reconstructed. For bearing the HTTP connection, a

EUNICE 2004 Tampere, Finland

TCP connection has to be established, using the well-
known port number for HTTP (80/tcp). This way, a
simple packet filter can only observe TCP segments
with this well known port number, but it cannot rec-
ognize the tunneled packets.

Even though an HTTP tunnel basically could facil-
itate the use of any kind of services through a firewall,
it basically circumvents the packet filter and its access
policy. Therefore, this approach cannot be advocated
as a good solution from a security point of view. Fur-
thermore, it is an indispensable prerequisite that both
peers involved in a session support the establishment
of an HTTP tunnel, what does not hold in general, of
course. On the other hand, the end-to-end delay for
the data transmission naturally would increase signif-
icantly, as the encapsulation and decapsulation pro-
cess might be very time-consuming and the transport
over TCP itself also introduces some additional delay,
due to congestion control or repeated retransmission
mechanisms, for instance. However, for many real-
time critical services, like IP-telephony, for example,
such a high delay would most likely be unacceptable.

D. Using an Application Layer Gateway

The usage of an application layer gateway (ALG),
acting as a proxy server for both, the control and the
data flows, represents another alternative to overcome
the problems presented before. The fundamental prin-
ciple of this approach is to forward all messages be-
longing to the control or the data flows via an inter-
mediate ALG rather than exchanging them directly
between the involved peers. Hence, the ALG termi-
nates any flow and re-establishes it again to the other
peer, thus actively participating in any message trans-
fer. The access control for the respective service is
not performed in a packet filter, but in the ALG it-
self, which in that case consequently functions as the
policy enforcement point.

However, it has to be ensured, that all messages first
of all are sent to the ALG. For the control messages,
this could be achieved by an adequate configuration
of the end devices, for instance, or alternatively by
using some kind of transparent proxy. For the actual
data, on the other hand, it is a little bit more com-
plicated, as the corresponding connection parameters
are dynamically negotiated by means of the control
flow. Therefore, it is in the responsibility of the ALG
itself to enforce that all data is sent via it. This can
be achieved by manipulating the messages of the con-
trol flow accordingly. For example all IP addresses
specifying the end points of a data flow have to be
replaced by the IP address of the ALG and the port
numbers normally also have to be modified in a proper
way, in order to be able to share one ALG among sev-
eral users. Similarly to a NAT—but operating on the
application layer—the ALG then has to perform some
address/port mapping for all received packets and for-
ward them to the actual recipient. Figure 1 shows the
basic arrangement of such a solution.

Basically, this approach is rather well-suited for

Alice Bob
ALG

control

data

Local Network
Modification of the

data flow parameters

Mapping of the port
 numbers/IP addresses

control

data

Fig. 1. Using an application layer gateway

dealing with the dynamically negotiated data flows.
However, the redirection of all messages to the ALG
and the analysis and modifications performed by this
device also introduce an additional delay, which might
be not acceptable for a multitude of different services
with comparatively high real-time requirements. Fur-
thermore, an arrangement as depicted in figure 1 has
only a very limited scalability. This is mainly because
an ALG always has to process any messages exchanged
between two peers and keep state of all active sessions,
so that it shows a rather high complexity. In the end,
we can say, that it depends on the actual service and
especially the requirements of that service to the end-
to-end delay whether this approach represents a suit-
able solution or not.

E. Dynamic Configuration of the Packet Filter

Another approach is the dynamic configuration of
the packet filter on the basis of the dynamically ne-
gotiated connection parameters of one or more data
flow(s). For that purpose, the control flow has to be
analyzed in order to be able to determine all relevant
parameters and to open or close corresponding pin-
holes in the firewall on the fly. In this context, there
are by and large two degrees of freedom for realizing
this analysis:
1. How the analysis is performed
2. Where the analysis takes place

Concerning the way the analysis is undertaken, one
has to differentiate between a passive and an active
solution. Passive means, that the device, which is re-
sponsible for the analysis, operates exclusively on the
network and transport layer and that it especially does
not terminate the control flow. In this case, the appli-
cation layer messages can only be evaluated by look-
ing at the payload contained in individual IP packets
passing by. When applying an active analysis, on the
other hand, the control flow is terminated by an in-
termediate proxy server and re-established again to
the other peer. This is more powerful than analyzing
messages passively, as a much more detailed analysis
of the flows is possible, but it takes usually more time
than a passive solution, thus causing a higher end-to-
end delay.

The other degree of freedom is where the analysis
actually is carried out. This could be done either in
the same device the firewall is integrated in or alterna-
tively by another device, which then has to communi-

Issues with the Interworking of Application Layer Protocols and the MIDCOM Architecture

cate the required pinholes to the firewall, using some
special control protocol, for instance.

E.1 Passive analysis

If the analysis is done passively and inside the fire-
wall itself, this is frequently referred to as a modular
firewall. A passive analysis in an external instance ba-
sically does not make any sense, because on the one
hand, the gain in performance, which can be obtained
through a passive analysis of the control flow, would
get lost again by the lavish communication between
the firewall and the analyzing instance, so that you
just as well could use a more powerful proxy server.
On the other hand, it is rather hard to ensure, that
all messages are re-directed to the device which is re-
sponsible for the message analysis, if this device op-
erates exclusively on the network and the transport
layer. For these reasons, one should desist from ap-
plying such a solution.

Modular firewalls are made up of the core packet
filter functionality and additional application-specific
modules, which are responsible for analyzing the pay-
load data contained in the IP packets belonging to a
particular service in order to be able to set up or re-
move pinholes in the firewall dynamically. An example
for such an application-specific module is a protocol
helper for Linux’s netfilter system, which already ex-
ists for FTP and a couple of other services. However,
such modular firewalls have some serious drawbacks:

Aside from the limited scalability of this solution, a
modular firewall is not able to analyze all messages be-
longing to a control flow, as no TCP/UDP re-assembly
is performed and therefore application layer messages
being spread across several IP packets cannot be rea-
sonably evaluated. Furthermore, in the case that the
dynamic configuration of the firewall fails—for exam-
ple due to potentially existing conflicts with high-
level policies—the firewall has no means to apprise
the involved parties of this fact. So consequently, no
data exchange could take place any more, without the
end users being aware of the actual reasons for that.
Therefore, such a solution is only applicable in a rather
restricted, lowly loaded scenario, but not in the access
network of an Internet service provider, for instance.

E.2 Active analysis / The MIDCOM Approach

Most of the problems arising in conjunction with
modular firewalls can be overcome when analyzing the
application layer messages actively, for example with
the help of a special proxy server. Due to the fact,
that a proxy server terminates any control flow and
re-establishes it again, it is able to reassemble TCP
and UDP segments if necessary and it can directly in-
fluence the signaling between the peers involved in a
session, for example by generating or modifying cor-
responding application layer messages. This is espe-
cially important for the case, that the dynamic config-
uration of the firewall could not be performed success-
fully, as this way it is possible to inform the affected
end devices about the failure in a proper way.

On the one hand, such a proxy server could be di-
rectly integrated in a firewall, performing the dynamic
configuration with the help of a special application
programming interface, for instance. However, due to
the direct coupling of the proxy server and the fire-
wall and the affiliated increase in complexity of that
device, such a solution still shows a very limited scala-
bility. On the other hand, however, the active analysis
could also be realized by an external instance, which
controls the firewall using some special control pro-
tocol. This approach is frequently referred to as the
MIDCOM approach. Basically, the device which is
responsible for the analysis of the control flows—the
so-called MIDCOM agent—could be either an inter-
mediate proxy server or alternatively one of the end
devices being involved in a session. However, if the dy-
namic configuration is performed by the end devices
themselves, this introduces a couple of new problems:
In this case, it is for example not possible to use arbi-
trary devices, as they necessarily have to support the
corresponding functionality. Furthermore, it is cer-
tainly a rather delicate issue to empower the end de-
vices to open and close arbitrary ports in the firewall,
because by doing so, the configuration of this device
and hence the enforcement of the access policy, for
which the firewall originally was installed, is getting
out of control of the network administrator.

Therefore, it is advantageous to use a dedicated
proxy server—a so-called MIDCOM proxy—, which
could be used to enforce some high-level policies in-
troduced by the network administrator, for example.
In general, this approach also shows a very high scal-
ability, as load balancing is possible. The basic ar-
rangement of such a solution is depicted in figure 2.

FirewallAlice Bob

Local Network

Firewall
 Control Protocol

control

data

control flow

data flow

SIP Proxy

Fig. 2. Arrangement of the MIDCOM approach

For the rest of this paper, we will only consider the
MIDCOM approach with a MIDCOM proxy, as this
alternative seems to be one of the most promising so-
lutions and because it was also chosen by the IETF
for dealing with the problems brought up before.

III. The MIDCOM Approach for SIP

In order to identify specific problems of the inter-
working between SIP and the MIDCOM architecture,
we implemented an arrangement as depicted in fig-
ure 2 for enabling the use of SIP-based IP-telephony
through a firewall. An example for a typical call flow
of such a scenario is shown in figure 3. All SIP mes-
sages exchanged between the involved peers are always

EUNICE 2004 Tampere, Finland

sent via an SIP proxy server. This proxy is responsi-
ble for the analysis of these messages, takes adequate
action if necessary and normally forwards them to the
actual recipient afterwards.

Alice Bob

INVITE (+SDP)

100 Trying

180 Ringing

200 OK (+SDP)

ACK

BYE

OK

200 OK

Open Pinhole

OK

t

Close Pinhole

FirewallSIP Proxy

Local Network

Firewall Control ProtocolSIP

INVITE (+SDP)

180 Ringing

200 OK (+SDP)

ACK

 Media Stream

BYE

200 OK

Internet

Fig. 3. The MIDCOM approach for SIP

The fundamental procedure for establishing an SIP
session is basically always the same: The initiator of
the call, who in the considered example is called Alice,
first of all issues an INVITE request, indicating that
she wants to set up a new session. Upon reception
of this message, the called party (in our case Bob)—
provided that he is willing to accept the session—
replies with a ‘200 OK’ response, which finally has
to be confirmed by Alice with a concluding ACK re-
quest again. Afterwards, a media stream is set up be-
tween the two peers, which subsequently can be used
for exchanging any kind of data, like voice or video,
for example. In contrast to the SIP messages, the data
flow is usually not re-directed to a proxy server, but
directly exchanged between the involved peers.

The parameters for the media streams are usually
dynamically negotiated by means of the Session De-
scription Protocol (SDP). For that purpose, either
the initial INVITE request and the corresponding
‘200 OK’ response (like in the considered example),
or the ‘200 OK’ response and the concluding ACK re-
quest contain such SDP messages, which are used for
specifying the IP addresses and port numbers repre-
senting the end points of these data flows as well as
other parameters (e. g., codec types, etc.). In order to
be able to make the exchange of media data possible,
the SIP proxy server consequently has to extract these
parameters and as soon as it has enough information,
it should request the firewall to open a correspond-

ing pinhole. After having received a positive acknowl-
edgement confirming the dynamic configuration, the
proxy server finally can forward the initially detained
‘200 OK’ response to the actual destination, thus con-
tinuing the session establishment procedure. The pin-
hole is closed again, as soon as one of the involved
parties terminates the session by sending a BYE re-
quest to the other peer.

In addition to the already mentioned SIP messages
for establishing a new session, figure 3 shows also some
so-called provisional responses, having a response code
starting with one. However, for the MIDCOM prin-
ciple itself, provisional responses actually are neither
important nor required and therefore, they are not
treated in more detail here.

An issue, which was not addressed so far, is the
question, which protocol would be most suitable for
the communication between the proxy server and the
firewall. Of course, this is a pivotal point of the MID-
COM approach and therefore the Internet Engineering
Task Force (IETF) brought the so-called MIDCOM
working group into being, which inter alia is dealing
with this question. In this context, they have already
worked out some general protocol requirements, de-
tailed semantics of such a protocol and they evaluated
several existing IETF protocols with respect to their
suitability [6], [9], [8], [3]. The working group con-
cluded, that the Simple Network Management Proto-
col (SNMP) seems to be the most appropriate alter-
native. However, there are also some efforts to de-
sign a totally new protocol from scratch, being com-
pletely consistent with the established requirements
and semantics. Such a new protocol is the Simple Mid-
dlebox Configuration Protocol (SIMCO), for example,
which was only published as an Internet draft, so far
[7]. SIMCO—specifically tailored to the MIDCOM
approach—is much more lightweight than SNMP and
hence obviously easier to handle. However, as it is
not a crucial factor for the fundamental considerations
which control protocol is actually being used, in fig-
ure 3 only some textual circumlocutions are used.

IV. Inherent Problems

In principle, the MIDCOM approach is well-suited
to cope with the difficulties arising in conjunction with
the traversal of middleboxes. However, as many ap-
plication layer protocols have been designed without
considering the requirements of this approach, it fre-
quently comes to some problems. Such problems pre-
dominantly appear if the dynamic configuration of the
middlebox fails, if the session, for which the middle-
box had been configured dynamically, is released ab-
normally or if certain security mechanisms are used.
Subsequently, both the inherent problems as well as
possible solutions for coping with them are presented
and clarified again considering the concrete example of
enabling the use of SIP-based communications in pres-
ence of a packet filter. The outcome of our analysis is
a set of specific protocol mechanisms, which are indis-
pensable prerequisites for a reasonable application of

Issues with the Interworking of Application Layer Protocols and the MIDCOM Architecture

a system pursuant to figure 2 and which consequently
should always be taken into account when designing
new application layer protocols or when extending ex-
isting ones in order to make them fully interoperable
with the MIDCOM architecture.

A. MIDCOM Error Handling

Theoretically, of course, it is always possible, that
the dynamic configuration of a middlebox fails. In
case of a packet filter, for example, this would mean,
that a pinhole—which actually is required for a data
flow—cannot be opened successfully. Possible reasons
for that are a disturbed communication link between
the proxy server and the middlebox or potentially ex-
isting conflicts with some high-level policies, for in-
stance. Concerning this matter, at least two differ-
ent issues have to be considered: On the one hand,
how the end users can be notified about the failure
of the dynamic configuration in a proper way and on
the other hand, how an effect frequently referred to as
‘ghost ringing’ could be avoided.

A.1 Notification of the end users

If the dynamic configuration of a middlebox fails, it
is normally not possible to exchange any data between
the involved peers, as the IP packets belonging to the
data streams never reach their destination. For that
reason, the responsible proxy server has to inform all
users participating in the corresponding session about
this circumstance—otherwise, they would not be able
to take any notice of it, apart from recognizing the dis-
turbed data flow. In this context, the most important
question certainly is, in which way the failure could
be appropriately communicated to the end users. In
the majority of instances, the most reasonable reac-
tion certainly would be the termination of the com-
plete session, as it normally does not make any sense
to maintain a session if no data exchange is possible.

For aborting a session, the proxy server theoretically
could rely upon existing protocol messages, which are
normally used for terminating a session under control
of the respective end devices. In case of SIP, for exam-
ple, the proxy server could send a BYE request, thus
initiating a regular connection release. However, if it
is done this way, the involved peers are still not able
to recognize, that the actual reason for the canceled
session is the failed configuration of the middlebox. In
their opinion, the session rather would have been ter-
minated by the respective communication partner in
the normal way. Therefore, it is desirable to have spe-
cific protocol elements, explicitly indicating the reason
for why a session is being terminated. Such protocol
elements could be either specific requests or error mes-
sages, which may only be sent by the device respon-
sible for the dynamic configuration of the middlebox,
or some extensions for existing messages—like addi-
tional header fields—, specifying the respective reason
for why these messages have been sent.

Considering again the concrete example of SIP-
based communications, one possible measure would

be the introduction of additional SIP headers, called
reason headers. Reason headers actually specify the
reasons for why the respective messages have been
sent [5]. In contrast to the creation of new message
types, these extensions have the advantage, that even
devices which are not aware of them can handle the
corresponding messages more or less reasonably, as
all unknown header fields normally are just ignored.
However, in that case, the end devices again would not
be able to recognize that the message have been sent
by a proxy server due to the failed configuration of a
middlebox, but at least they would realize the desire
to terminate the session.

A.2 Ghost Ringing

Another concomitant phenomenon appearing as a
consequence of the failed configuration of a middlebox
is something frequently referred to as ‘ghost ringing ’—
especially in conjunction with IP telephony. ‘Ghost
ringing’ can occur during the establishment of a new
session and means, that the called party is notified
about the request to set up a new connection, even
though the session can never be completely estab-
lished, as the dynamic configuration of an interme-
diate middlebox fails. In case of IP telephony, for in-
stance, this would mean, that the phone of the callee
rings, he picks up the receiver, but nobody is on the
line. Of course, such a bothering effect like ‘ghost
ringing’ is not desirable at all and therefore possible
remedies have to be found.

The ultimate goal is to defer the notification of the
called party about the request to establish a new ses-
sion until it can be assured, that all middleboxes on
the data path between the caller and the callee can be
successfully configured. For that purpose, it is essen-
tial, that the called party announces the parameters
used for its peer of the data flow(s) before the actual
end user is notified about the wish to set up a new
session. For SIP, for example, this is normally not the
case, as the callee’s phone starts ringing as soon as an
INVITE request is received. In order to be able to re-
alize such a behavior, naturally some specific protocol
mechanisms are required. This could be for exam-
ple done by an additional message exchange between
the called party and intermediate proxy servers, using
some dedicated message types.

If we consider the concrete example of enabling SIP-
based communications through a packet filter again,
such a mechanism could be realized by extending the
SDP messages contained in some SIP messages dur-
ing session establishment by some additional fields
as proposed in [1]. These SDP fields actually rep-
resent some preconditions, that must be met, before
the called party is explicitly notified about the request
to establish a new session. If the called party receives
for example an INVITE request without the precondi-
tion being met, it replies with a ‘183 Session Progress’
response, including the parameters that will be used
for its side of the data flow, but without beginning
to ring. This response subsequently may be analyzed

EUNICE 2004 Tampere, Finland

by an intermediate proxy server, which afterwards is
aware of all parameters specifying the data flow, so
that it is able to open the corresponding pinholes in
the packet filter, or at least able to decide, whether
it is possible to open them or not. Thereupon, the
proxy server may send another INVITE or UPDATE
request [4] to the called party, this time indicating that
the dynamic configuration of the packet filter does not
introduce any problems, so that the end user can be
notified about the wish to establish a new session and
the session setup procedure can proceed as usual.

B. Improper Session Release

As the dynamic configuration of a middlebox is in-
dubitably a highly sensitive issue, it has to be assured,
that all policy rules in a middlebox are removed again
as soon as the corresponding session, for which they
have been set up, is terminated by one of the involved
peers. This is important, as the proxy server, which
is responsible for the middlebox configuration, has to
allocate resources and to store session-related data for
each individual session, thus representing a potential
target for denial of service attacks, for example. Fur-
thermore, particularly in case of a packet filter, all
pinholes which are no more needed by active sessions
should be closed again in order to limit the number of
open ports to the absolutely required minimum and
to impede the sending of unauthorized traffic.

However, there is a potential problem concerning
this matter, as there might be some situations in which
the proxy server is not able to detect the end of a
session by just analyzing the messages exchanged be-
tween the involved peers. This holds for example for
situations, when a session is released improperly, due
to a non-standard-conformant behavior of the respec-
tive end devices (e. g., operating system crash). In
addition to that, potential attackers might precipi-
tate such a situation intentionally. For these reasons,
the proxy server, which is responsible for the dynamic
configuration of the middlebox, should be able to de-
termine on its own, whether a certain session is still
active or not. For that purpose, the application layer
protocol, which is used for the control flow, has to
support some special protocol mechanisms. By and
large, there are two different alternatives for realizing
such mechanisms:
1. Specific message types could be specified, being at
the disposal of a proxy server for actively enquiring the
involved peers about the status of a particular session.
2. Some kind of keep-alive mechanisms could be in-
troduced, i. e. that the peers participating in a session
would have to periodically exchange some refresh mes-
sages as long as the session is active.

Basically, it is quite obvious, that the first approach,
namely the specification of dedicated control mes-
sages, is in some ways advantageous to using some
keep-alive mechanism, as that way, the proxy server
is in the position to ascertain at any time whether a
session is still active or not. If making use of the sec-
ond approach, this would only be feasible after a cer-

tain period elapsed without any refresh message being
sent. However, if an existing application layer protocol
should be made compliant to the MIDCOM approach,
it is presumably easier to extend the existing proto-
col by some keep-alive mechanisms than to introduce
completely new message types, as this in most cases
would entail some incompatibility problems with older
entities being not aware of these new message types.
This also holds for SIP, for example.

The base specification of SIP itself does not know
neither any keep-alive mechanisms nor some special
messages for actively querying the status of a SIP ses-
sion. Therefore, again some protocol extensions have
to be introduced in order to enable a proper applica-
tion of the MIDCOM approach. One possibility for
such an extension are so-called SIP session timers,
as suggested in [2]. Basically, an SIP session timer
is nothing else than an additional header field, spec-
ifying the time period after which a refresh message
(e. g. a new INVITE request or an UPDATE request)
has to be sent to the respective other peer as long as
the session is alive. If a scheduled keep-alive message
is missing, the proxy server subsequently could close
any pinhole associated with the corresponding session
again, without having seen any BYE message.

C. Encryption and Digital Signatures

Frequently, users want to establish a secure com-
munication path between each other, in order to
make eavesdropping or unauthorized data manipu-
lation more difficult. In this context, the term ‘se-
cure’ normally refers to confidentiality, authentication
and data integrity. In general, confidentiality can be
achieved by encrypting messages, whereas authentica-
tion and data integrity can be realized by means of dig-
ital signatures. However, these mechanisms also repre-
sent potential problems with respect to the interwork-
ing between application layer protocols making use of
such mechanisms and the MIDCOM approach: On
the one hand, an intermediate MIDCOM proxy must
be able to analyze the control flow of a session, what
is generally not feasible if the corresponding messages
are encrypted. On the other hand, a MIDCOM proxy
sometimes also has to modify these parameters—for
example if it is responsible for configuring a NAT—,
whereupon the digital signature of this message would
become invalid, so that the whole message probably
would be discarded by the actual recipient.

One possible solution for dealing with this problem
was proposed in [10]—especially for the case of SIP.
The basic idea behind this solution is that a user is
able to explicitly authorize another device to encrypt
and sign messages on behalf of him. If, for example,
a MIDCOM proxy has to be passed in order to con-
figure a middlebox dynamically, the respective user
could first of all encrypt all messages using the public
key of that proxy and sign them with his own private
key. The messages then are sent to the proxy server
together with a corresponding authorization, which
entitles the proxy to encrypt and sign messages on

Issues with the Interworking of Application Layer Protocols and the MIDCOM Architecture

behalf of the user. Consequently, this way, the proxy
server is able to analyze and—if applicable—modify
the messages, as it can decrypt them using its private
key. After taking adequate action, the proxy encrypts
the (modified) messages again using the public key of
the actual recipient and signs them using its own pri-
vate key. Of course, this procedure can be applied
recursively, i. e. a proxy server could encrypt and sign
messages on behalf of a user and forward them to an-
other proxy, which then could encrypt and sign them
on behalf of the first proxy and so on. However, a
crucial point of this approach certainly is that one
can fully trust any intermediate MIDCOM proxy.

In order to be able to apply this solution in a proper
way, an application layer protocol should support at
least the following mechanisms:
1. A MIDCOM proxy should be able to explicitly re-
quest permission from a user or another proxy to en-
crypt and sign messages on behalf of him.
2. An end device or a proxy server should have some
means for authorizing a MIDCOM proxy to encrypt
and sign messages on behalf of him. This authoriza-
tion must be checkable by any following device. In
[10], for instance, a special SIP header is introduced
for that purpose, specifying the proxy server which
is entitled to act on behalf of a certain user. This
header then is signed by the user/proxy granting this
permission and attached to the original message.
3. It should be possible to inform the sender of a mes-
sage about potentially arising problems concerning the
delegated encryption and signing of messages, so that
the user can decide in which way he wants to react
in such situations. Appropriate reactions could be to
try another route through the network or to send the
messages unencrypted, for instance.

D. Further Issues

Another prerequisite for a proper application of the
MIDCOM approach, which has not been mentioned
so far but which basically is more or less self-evident,
is the required support of proxy servers by the ap-
plication layer protocol used for the control flow of a
session. Theoretically, of course, it would always be
feasible to establish some workaround, for example by
installing a transparent proxy server, but such a kluge
is definitely not an ideal and desirable solution and
therefore should be avoided if possible.

V. Summary and Conclusions

In this paper, we have shown why some session-
oriented services consisting of a control flow and one or
more data flows frequently cause problems in conjunc-
tion with middleboxes, such as packet filters or NATs.
These problems mainly originate from the fact, that
the connection parameters specifying the end points of
the data flows are dynamically negotiated by means
of the control flow.

In a first step, the general solution approaches for
dealing with these issues were presented and shortly
evaluated with respect to their suitability. Afterwards,

especially the so-called MIDCOM approach was out-
lined a little bit more in detail. The basic idea of
this approach is to configure a middlebox on the fly,
what could be done under control of an intermediate
proxy server, for example. Subsequently, we pointed
out some potential problems concerning the interwork-
ing between the application layer protocol used for the
control flow of a session and the MIDCOM architec-
ture. As was shown, for a proper application of the
MIDCOM approach, the respective protocol should
support at least the following mechanisms:
• The protocol has to be ‘proxy-friendly’
• Some specific message types or other protocol ele-
ments are required, for being able to notify the end
devices in case of a failed configuration of the middle-
box appropriately.
• A certain user should only be notified about the
desire to establish a new session, if it can be ensured,
that the dynamic configuration of the middlebox can
be carried out successfully.
• There must be either some keep-alive mechanisms or
some special message types, which can be used by an
intermediate proxy server to detect whether a session
is still active or not.
• In order to be able to cope with encryption of mes-
sages and digital signatures, it should be possible to
authorize MIDCOM proxies to encrypt and sign mes-
sages on behalf of certain users or other proxy servers.
This includes mechanisms for requesting, granting and
checking such permissions.
These issues should always be taken into account when
designing new application layer protocols showing the
characteristics as listed in the introduction, or when
extending already existing ones in order to make them
fully interoperable with the MIDCOM approach.

References

[1] G. Camarillo, B. Marshall, and J. Rosenberg. Integration
of Resource Management and Session Initiation Protocol
(SIP). RFC 3312. IETF, October 2002.

[2] S. Donovan and J. Rosenberg. Session Timers in the Ses-
sion Initiation Protocol (SIP). Internet Draft (work in
progress). IETF, January 2004.

[3] M. Barnes (Editor). Middlebox Communications (MID-
COM) Protocol Evaluation. Internet Draft (work in
progress). IETF, November 2002.

[4] J. Rosenberg. The Session Initiation Protocol (SIP) UP-
DATE Method. RFC 3311. IETF, September 2002.

[5] H. Schulzrinne, D. R. Oran, and G. Camarillo. The Rea-
son Header Field for the Session Initiation Protocol (SIP).
RFC 3326. IETF, December 2002.

[6] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and
A. Rayhan. Middlebox Communication Architecture and
Framework. RFC 3303. IETF, August 2002.

[7] M. Stiemerling, J. Quittek, and C. Cadar. Simple Middle-
box Configuration (SIMCO) Protocol Version 3.0. Internet
Draft (work in progress). IETF, January 2004.

[8] M. Stiemerling, J. Quittek, and T. Taylor. MIDCOM Pro-
tocol Semantics. Internet Draft (work in progress). IETF,
January 2004.

[9] R. Swale, P. Sijben, P. Mart, S. Brim, and M. Shore. Mid-
dlebox Communications (MIDCOM) Protocol Require-
ments. RFC 3304. IETF, August 2002.

[10] K. Umschaden, J. Stadler, and I. Miladinovic. End-to-end
Security for Firewall/NAT Traversal within the Session Ini-
tiation Protocol (SIP). Internet Draft (work in progress).
IETF, May 2003.

