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Abstract

Today’s telecommunications systems are enhanced by a large and steadily growing num-
ber of supplementary services, each of which consists of a set of service features. A situation
where a combination of these services behaves differently than expected from the single ser-
vices’ behaviours, is called service interaction. This interaction problem is considered as a
major obstacle to the introduction of new services into telecommunications networks. In this
contribution, we give a survey of the work carried out in this field during the last decade.
After a brief review of classification criteria that exist for feature interactions so far, we use
a perspective we call the emergence level view. This perspective pays respect to the fact that
the sources for interactions can be of many different kinds, like, e. g., requirement conflicts
or resource contentions. It is used to rationalise the impossibility of coping with the prob-
lem with one single approach. Afterwards, we present a framework of four different criteria
in order to classify the approaches dealing with the problem: The general kind of approach
taken, a refinement of the well-known detection, resolution, and prevention categories, serves
as the main classification criterion. It is complemented by the method used, the stage dur-
ing the feature lifecycle where an approach applies, and the system (network) context. The
major results of the different approaches are then presented briefly using this classification
framework. We finally draw some conclusions on the applicability of this framework and on
possible directions of further research in this field.

Index Terms (Keywords): Telecommunication Service, Supplementary Service, Service In-
teraction, Feature Interaction, Service Interference, Feature Interference
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1 Introduction

The term “Feature Interaction Problem” in telecommunications systems has been coined in the
early 80s by Bellcore. In 1988, Bowen et al. [1] have taken the first effort to provide a framework to
this large problem area. Since then, researchers and practitioners from academia, research centers,
and industry are working towards a viable solution. The work carried out in this area has already
grown enormously, discovering many new aspects of the problem. This article is going to give an
overview on the research that has already been done, and also some help to structure this large
field.

Our aim is to provide a common base for the classification of approaches towards the problem,
to make it easier for researchers to compare their own work with existing approaches, and for other
people interested in the field to have a concise source of information on the state of the art.

1.1 Definition of Terms

Very often, an imprecise definition of the terms used in this field is a source of confusion. For this
reason, an informal definition of important key terms is summarised in this section.

e Service (Telecommunication Service). According to the ITU-T [2], a service is offered by
an administration to its customers in order to satisfy a specific telecommunication require-
ment. Telecommunication Services are divided into two broad groups: A bearer service is a
type of telecommunication service that provides the capability for the transmission of sig-
nals between user-network interfaces. A feleservice is a type of service that provides the
complete capability, including terminal equipment functions, for communication between
users according to protocols established by agreement between administrations. In the class
of teleservices, a number of basic teleservices can be identified. Examples are telephony,
facsimile, or data transmission.

o Supplementary Service. In ITU-T terminology [3], a “supplementary service modifies or
supplements a basic telecommunication service. [...] It must be offered together with or
in association with a basic telecommunication service. The same supplementary service
may be common to a number of telecommunication services.” Well-known examples for
supplementary services are Call Forwarding Unconditional (CFU), Call Waiting (CW), or
Credit Card Calling (CRED).

e Service Feature; Feature. The term feature is defined as a “unit of one or more telecom-
munications or telecommunications management based capabilities a network provides to a
user.” in [4]. ITU-T defines the term service feature as the smallest part of a service that can
be perceived by the service user [5]. In that context, the term service refers to a telecommu-
nication service.

o Feature Interaction; Service Interaction. Using the definitions above, a distinction between
the terms feature interaction and service interaction has to be made, as already pointed out
in [6]. The term feature interaction refers to situations, where different service features or
instances of the same service features affect each other. This can take place within the same
service as well as between features of different services. In these situations, the term service
interaction applies. Generally, service interactions can be observed when two telecommuni-
cation services affect each other. It has to be noted, that in this context, a telecommunication
service is represented by a basic telecommunication service plus an arbitrary set of supple-
mentary services.
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e Feature Interference; Service Interference. The term interference is used to express the un-
desirability of an interaction in the sense presented above [7]. However, sometimes it is
difficult if not impossible to generally specify whether the behaviour of a service or a ser-
vice feature is desired or not.

The term feature interaction is applied in most publications as the most general term for the
description of the problem, because most interactions between services or supplementary services
can be tracked down to interactions between single service features, and because an interference
is defined as an undesired interaction, i. e., a special case of an interaction.

1.2 The Problem

The increasing demand for new telecommunication services has led to a rapidly growing number
of new services, as well as to the enhancement of existing services with new service features.
This trend is expected to continue in the future [8]. There are many different aspects, why the
phenomenon of feature interactions is considered as a major problem. Some of these will be
discussed in this section.

In order to facilitate the procurement of new services, the architectural concept of the In-
telligent Network (IN) [5, 9, 10] has been developed. It divides the functions of the basic call
processing from the execution of supplementary services and thus presents a well-defined inter-
face for the realisation of new services, easing that procedure. At the same time, the danger of
interactions is increased due to the larger number of new services, the less substantial experience
needed to develop such services, and the lack of automatic interaction treatment tool support.

As the number of features and services grows, the amount of work which has to be invested into
the treatment of interactions explodes, because the number of possible combinations of features
and services grows exponentially with their number. Thus, the interaction problem dominates the
software development period [1]. For the same reason, the complete testing of the services and
features in combination has become almost unmanageable. The interaction problem has become
a major obstacle to a time and cost efficient introduction of new services, and also increases the
risk for a service provider.

Two examples from the area of telephony features illustrate the problem and demonstrate
the character of real interactions. Consider a situation where participant A has subscribed to the
service Originating Call Screening (OCS) and does not want calls to party C to be put through.
He calls party B, who has activated the service Call Forwarding Unconditional (CFU) to party
C. What is going to happen with A’s call? If he is not put through, he may be confused, as B is
not on his screening list. Otherwise, the intention of OCS not to be connected to C is invalidated.
Whether this is acceptable depends from the forwarding party’s intention (see Zave [11] for more
details).

In the second example (by E. J. Cameron), a problem is sketched that occurs only if three
service features are active in a special constellation, although pairs of these features do not show
any interference. Party A, subscriber of an Unlisted Number service calls party B, subscriber of an
Automatic Recall of the last caller. If B uses this feature, A’s number appears on B’s phone bill, as
he is also subscriber of Itemised Billing. This is clearly a violation of the intention of A’s Unlisted
Number service. For more and detailed examples, the reader is referred to [12, 13, 14]. Some more
introductory and tutorial papers on the problem are [15, 16, 17].

The consequences of introducing interactions into a network can be significant. Although
Kuhn [18] reports no failures of the PSTN (public switched telephone network) due to feature
interactions in an investigation carried out between April 1992 and March 1994, the results reach
from confusion and annoyance of users up to financial loss for customers, service providers and
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network operators. Furthermore, the cost of the development of a new service may be increased
enormously or, even worse, the service does not reach the marketplace at all.

Interestingly, the feature interaction problem is not limited to the telecommunications environ-
ment, but occurs also in other large evolving software systems, as pointed out by Aho and Griffeth
[19]. Therefore, the results achieved should be considered relevant to large areas of software and
systems engineering research.

1.3 Taxonomy of the Problem

A sound taxonomy for a large problem area is a valuable step towards the management of the
problem. There is already a number of schemes in the literature, the most important of which we
would like to outline here.

e The causal view [13] is the most widely used taxonomy, as it already provides hints to
the source of the individual problems as well as it indicates where possible solutions may
be found. In this view, three main problem sources are identified: limitations of network
support, intrinsic problems in distributed systems, and violations of assumptions.

e The lifecycle view [6] classifies feature interactions according to the phase during a software
lifecycle where they can be managed best, as displayed in Table 3 later in this contribution.

e The configuration view [13] identifies the logical entities involved in an interaction case.
Cameron et al. differentiate the number of users and the number of components involved,
and they distinguish between user and system features.

e The organisational view [6] focuses on the responsibility for an interaction and its conse-
quences. Thus, it is an interaction management issue.

These taxonomies have proven to be valuable in order to address the different aspects of the
problem and are applied to classify the contributions listed in [20], although each of them covers
the problem only partially. For the selection and assessment of methods tackling the feature inter-
action problem, we consider a scheme sketched in [21] as a better starting point, as it provides a
framework that points to the nature of the problem and can be exploited in order to decide where
a specific problem has to be addressed. We call it the emergence level view.

Interactions emerge from different levels in a system. Combes ef al. [21] separate the logical
level, the network level and the implementation level. This view is adopted in principle in the
present contribution, although the levels are called logical level, abstract architecture, and con-
crete architecture, the architectural terms taken from [22]. This model matches the conceptual
model underlying the Intelligent Network (INCM) [5] quite well. The highest level, the logical
level is used to model concepts like purpose and intention, focused to the users’ perspective. It
corresponds to the service plane in the INCM. The middle level uses an abstract architecture in
order to model services on a network-oriented level, that corresponds to the Global Functional
Plane and Distributed Functional Plane in the INCM. The Physical Plane of the INCM should be
understood as a concrete architectural view. However, a concrete architecture takes into account
all the irregularities of real system implementations, like, e. g., physical limitations (memory,
bandwidth), interworking with legacy systems and different signalling protocols and procedures,
which are not or incompletely covered by the Physical Plane of the INCM.

In this model, several facts can be observed, that are relevant for an overall solution of the
interaction problem. Each of the levels can be the source of interactions, however of different
kinds. Thus, it is practically impossible to have one single method that is able to cope with all
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these kinds of interactions. Interactions can be inherited from higher to lower levels, becoming
manifest in a different way. In these cases, it is possible to treat the interaction at this lower level,
although this is not advisable, as it is only the treatment of the symptoms and not of the source
of the interaction, which is situated in the level the interaction emerges from. It is also possible,
that an interaction is not inherited during the mapping of a higher level to a lower one, as, e. g.,
an ambiguity in the execution order is replaced by a deterministic decision. This may lead to
hazardous situations, because the interaction is still present in principle, but does not become
manifest. These observations are visualised in Fig. 1.

logical Emerging
level Interactions

unmapped

\v/

abSt'_’aCt Inherited Emerging
architecture Interactions Interactions

unmapped unmapped

V V

conc rete Inherited Inherited Emerging
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| Interactions that become manifest in a real system

Figure 1: Inheritance of interactions in the emergence level view.

The following conclusions can be drawn: Interactions should be addressed at the levels they
emerge from, using methods suitable to the application at these levels. It is necessary to have a
framework that supports the mapping from one level to the next lower one, like the Intelligent
Network conceptual model, which goes into the right direction, but still has several imprecision,
like, e. g., the interworking with legacy services. Furthermore, the question of suitable granularity
for each level and the achievement of a correct mapping from one level to the next one is still a
topic for research.

2 Classification Framework for Approaches

In this section, a classification framework for methods dealing with interactions is introduced, that
will be used throughout the rest of this contribution. Although the emergence level view described
above is valuable for the understanding of the complexity of the problem and to rationalise the
necessity of having a combination of methods in order to solve it, it does not provide enough
resolution to classify methods that deal with interactions.

The generally accepted categorisation of approaches based on the terminology of avoidance,
detection and resolution introduced by Cameron and Velthuijsen [6] and refined by Bouma and
Velthuijsen [23, Introduction] to the grouping displayed in Fig. 2 is chosen as a starting point.
Although this framework has proven to be useful, the huge amount of research carried out in this
field and the broad spectrum of methods that are applied suggest a refinement and extension that
is given in Section 2.1.
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Figure 2: Categorization of approaches to addressing feature interactions (after [23]).

As a second measure, the method which is applied is selected. Although, of course, there is
a wealth of methods in the different individual approaches, these can be fit quite easily into a
comparatively small and sound number of categories (which are described in Section 2.2). The
scheme is supplemented by the state during a feature lifecycle, where a given method applies.
Here, we consider the simple division into “off-line” and “on-line” as too coarse. Independent
of the three categories above, it makes sense to differentiate the system context of the different
solutions. These categories are described in the following subsections.

2.1 Approach

Table 1 displays a refinement of the well established terminology of detection, resolution and
prevention.

Detection
Interaction
Interference (undesired)
Resolution
Restriction
General
Situation-specific
Integration
Cooperation
Conscious
Oblivious
Prevention (Avoidance)
Structural (system structure)
Procedural (specific design process)
Management

Table 1: Classification of approaches

Detection denotes the identification of the existence (presence) of interactions. As it is prac-
tically (for realistic systems) impossible to prove the absence of mistakes and an interaction not
necessarily is undesired, it cannot be expected that a network is free of any interactions. Con-
cerning the presence of interactions, two directions within the approach can be identified: the
identification of interactions in general has no notion of the undesirability of an interaction, but
merely detects situations where certain criteria are met. The detection of interference situations
needs the concept of desirableness, as only undesired interactions are identified, desired ones are
ignored.
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Resolution usually should be the consequence of detection. If an interaction between two ser-
vice features is detected, resolution may follow several different routes. The simplest approach is
restriction, 1. e., it is avoided that both features find themselves in a situation where they inter-
act with each other. Characteristic for this approach is that each feature itself does not modify or
adapt its normal behaviour. Two sub-approaches can be identified: general restriction is charac-
terised by a static set of rules which disallows the activation of one feature if another feature is
present, situation-specific restriction is characterised by a set of rules that takes into account the
current situation in which the features are activated.! Integration of both features into one with
larger functionality may be another strategy to handle interactions. Cooperation of the interacting
features is the most sophisticated approach in order to resolve interactions. In this approach, the
features change or adapt their behaviour in order to resolve the problem. Conscious cooperation
is achieved, if one of the features possesses explicit knowledge about the other and vice versa, and
if one or both are equipped with mechanisms to resolve their specific interactions. In oblivious
cooperation, there exist general mechanisms that require no service specific knowledge in order
to resolve interactions with unknown counterparts.

There is a number of approaches that include or integrate the detection and resolution of in-
teractions. In such cases, the two aspects of the methods are discussed separately, as no separate
class for methods integrating detection and resolution is introduced for sake of clearness.

Prevention is used for approaches where feature interactions cannot occur. These approaches
can be divided into two subgroups: structural approaches avoid the occurrence of interactions by
a suitable system structure, including, e. g., architecture and protocols. Procedural approaches
attack from another direction, introducing new strategies or restricting existing processes of ser-
vice creation, or giving sets of design guidelines, for example. This distinction has already been
identified in [6], although not formulated generally. We prefer the term prevention to avoidance,
because the difference to approaches integrating detection and resolution becomes clearer.

As the problem is so complex, and the number of feature combinations grows exponentially
with their number, it is inevitable to add management issues to the list of approaches. Under this
heading, all techniques are collected that consider aspects of the management of the problem as
a whole, like, e. g., managing the huge number of test cases or identifying and filtering relevant
scenarios out of the large number of possible feature combinations. Sections 3 to 6 on detection,
resolution, prevention and management of feature interactions are ordered according to Table 1.

2.2 Method

Design oriented methods
Feature design
Feature execution control
Feature execution environment
System design and architecture
Analytical methods
Formal techniques (verification)
Informal methods (heuristics)
Experimental techniques (testing, simulation)

Table 2: Classification by method applied

! As an example serves the well-known circular CFW problem. A general restriction can be achieved by a limitation
of the number of forwarding steps, while a situation-specific restriction could be achieved by checking if a circular
situation really has occurred.
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Two different kinds of methods that are applied can be isolated. Design oriented methods like
feature design, the application of mechanisms for feature execution control, or the provisioning of
a feature execution environment as well as issues of overall system design architecture attack the
problem by tailoring the design of some system parts appropriately. Analytical methods are applied
in order to cope with feature interactions in existing systems or system models. In this context,
formal techniques (verification), play a major role, although informal methods (heuristics), and
experimental techniques (testing, simulation) have to be mentioned as important counterparts.

2.3 Lifecycle

For a thorough classification of approaches to the feature interaction problem, the two categories
of “off-line” and “on-line” are too simplistic. A more detailed scheme, which is mainly an adaption
of the ETSI (European Telecommunications Standards Institute) reference model [24], is used in
this section. However, as the lifecycle view is not really orthogonal to the approach (Section 2.1), it
is not applied consequently in the classification of the actual work in Sections 3 to 6. The value of
the lifecycle category lies in its suitability as a foundation for the definition of service interaction
handling processes [25].

Off-line
Specification
Requirements (User level)
Network level
Detailed specification
Implementation
On-line, but not yet publicly available
Testing
Deployment
On-line, publicly available
Provisioning
Registration
Activation
Invocation
Course of execution
Deactivation
Erasure
Withdrawal
Feature removal

Table 3: Classification by lifecycle stage

The off-line part starts with the specification phase that can be further subdivided. The require-
ment specification level, also termed user level, corresponds approximately to the logical level in
the emergence level view. The network level specification and the detailed specification corre-
spond to the abstract architecture in terms of the emergence level view. In the latter category falls
the work supported by a Service Creation Environment (SCE) in the IN context, if the internal
specification of the service independent building blocks are regarded as a part of this specifica-
tion. The implementation phase concludes the sequence of off-line service development. In the IN
approach, the implementation step is replaced by an automatic generation of an implementation
from a detailed specification using a software tool.

After an implementation is available, an on-line phase begins, where the feature is not yet
publicly available. In a testbed, careful and methodical festing takes place. If the tests are passed,
the feature will be deployed into the network. With the provisioning of the feature, it is available
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to the network users, and they may now register with the feature. Usually, a feature like the call-
forwarding supplementary service has then to be activated explicitly by the user. It is then invoked,
e. g., by an incoming call. The course of execution denotes the phase in which the feature is ac-
tually being executed. Deactivation of a service by a user, erasure of the users registration data,
and withdrawal of a service from the network seem to be unimportant to the feature interaction
problem on the first sight, but have significant consequences, if, €. g., resolution is carried out re-
strictively. Feature removal has to be considered as an important phase if integration or conscious
cooperation has been applied in order to resolve feature interactions.

2.4 System Context

Telephone systems (narrow band)
Conventional switching systems (including N-ISDN)
IN/AIN structured systems
PABX systems
Broadband systems
New approaches / Future systems (TINA, “Touring Machine”)
Broadband ISDN systems

Table 4: Classification by system context

Most work in the context of feature interactions has been done for telephone systems (narrow
band), which include conventional telephone switching systems in general and narrow band ISDN
systems. Very important is the problem of feature interactions for IN/AIN structured systems. Pri-
vate PABX systems are also an issue. If not explicitly stated otherwise, the approaches discussed
here apply to IN/AIN structured systems, sometimes with inclusion of systems with traditional
switch-based services.

Much less work aims at broadband systems. Nevertheless, two streams can be separated: New
approaches on future systems like TINA (Telecommunications Information Networking Architec-
ture) or the TOURING MACHINE [26], and broadband ISDN systems, studied, e. g., by Magill et
al. [27] and Tsang et al. [28], who report results of the impact of the feature interaction problem
to networked multimedia services.

The generality of this problem type makes it likely for this scheme to require extension in the
future, possibly also to non-telecommunications areas.

2.5 Relation to the emergence level view

In this section, we relate the emergence level view of interactions to the classification of ap-
proaches outlined above and to the survey of service interaction research in the remainder of this
contribution. Detection of interactions does not contribute directly to the reduction of the num-
ber of interaction emerging at each level, i. e. the width of the arrows in Fig. 1. Resolution and
prevention contribute in different ways: resolution requires the presence of interactions in order
to take countermeasures, while prevention removes the source for their emergence. If the sources
are addressed, the risk of further interactions with the introduction of new services is reduced;
therefore, prevention is more powerful than resolution.

The approaches described in the remainder of this contribution only address interactions
emerging from the logical and abstract architectural level. This is probably caused by the fact, that
the concrete architecture of communications switching systems is a huge evolving legacy system,
and new features are introduced rather by adding small pieces than by drastically re-engineering
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larger parts of the system. This observation explains the reluctance of researchers to address the
problem at such a low level, however also points to the necessity of creating coherent frameworks
and architectures and to apply them throughout all abstraction layers of the emergence level view.

In the following four sections, the research of the last decade in this field is presented briefly,
structured according to the criteria listed in Table 1 and supplemented where suitable by the
methodological criteria of Table 2.

3 Detection

3.1 Detection of interactions

In this section, approaches that detect interactions irrespective of their desirableness or undesir-
ability are addressed. The counterpart, the detection of interference, i. e., undesired interactions,
can be found in Section 3.2.

3.1.1 Formal techniques

Formal techniques are a suitable means to address the development of distributed systems, as they
allow the choice of a suitable abstraction level and, with proper tool support, the verification of a
system’s correctness, at least with respect to a number of criteria. A large amount of work address-
ing the feature interaction problem relies on the application of formal description techniques for
the specification of the system and its features in combination with formal verification. In [29],
Velthuijsen reviews several formal method approaches and discusses the problems comprised.
Bredereke [30] gives a detailed survey on this kind of approaches.

The classical way to use formal techniques in order to ensure the correctness of a system, is
to create a functional specification of the system and its components using a formal description
technique and to verify this specification using verification techniques, mostly model checking.
An important precondition for the successful application of formal techniques is the availability
of a suitable formal model for the system. There is much research with focus on the creation
of formal system and service models, like [31, 32, 33] for conventional and Intelligent Network
services, and [34, 35] for object oriented systems and architectures. Compared to the approaches
described in the following paragraphs, that publications do not focus on interaction detection.

Verification using general criteria. Interactions are detected checking general correctness cri-
teria like presence of deadlock and lifelock, transitions to invalid states, ambiguities, etc. This kind
of approaches are termed general-property approaches by Bredereke [30, 36].

There are a number of process algebraic approaches using the standardised formal description
technique LOTOS [37] or similar languages. Stepien and Logrippo [38] detect a category of inter-
actions which manifest itself in ambiguous actions, i. €., non-deterministic behaviour. LOTOS is
used as a formal description technique. In order to avoid the state explosion problem, a necessary
condition for these ambiguities is established; the system is verified using backward execution of
the specification in order to show if these ambiguities are reachable.

Based on the assumption that architectural weaknesses are the major source for feature in-
teractions, Turner [39] proposes a description language called ANISE (Architectural Notions In
Service Engineering) supporting the modelling of network and service behaviour on a user level.
It is semantically closely related to LOTOS and applies notions and mechanisms of OSI services
to the specification of telecommunications services. A precise description of features supports
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the detection of interactions by enabling the highlighting of potential areas for their occurrence.
However, a detection method itself is not described in that paper.

Due to their sound theoretical foundations, Petri nets are considered as a suitable means to
ensure a distributed system’s correctness by Choi et al. [40]. They model an IN on the Distributed
Functional Plane abstraction level using Petri nets for the description of the call state models and
for the features as extensions of these models. Interactions are detected using reachability analysis,
invariants, deadlock and trap detection, and net simulation. A tool prototype is presented.

Inoue et al. [41, 42] detect interactions which manifest themselves by non-deterministic state
transitions, by the absence of an executable state transition (deadlock), and by transitions to so
called “abnormal states”, i. e., logical contradictions in the relationship between the state of ter-
minals, using the State Transition Rules (STR) description technique. Interactions are resolved
by adding rules which select one of the non-deterministic transitions or introduce a new state
transition respectively.

Harada et al. [43, 44] specify a telephone system and its features using also the STR descrip-
tion technique. Conflicting pairs of rules, i. e., rules triggered by the same event, are identified
using a kind of reachability analysis and applying a number of constraints to the identified pairs
afterwards, resulting in a list of critical scenarios together with the conflicting rules for these
scenarios that have to be evaluated manually by the service designer. In [45], Ohta and Harada
show how several categories of interactions (described in an earlier section in that paper) can be
identified using the mapping onto their finite state machine manifestation. Resolution within the
specification stage takes place using priorisation, additional states, and correction of terminology.
Kawarasaki and Ohta [46] extend this detection method by addressing the problem of transitions
in the network that occur invisible to a user, leading to a difference between user knowledge of
the network state and the actual network state, and propose a verification algorithm for this prob-
lem. Additionally, the problems of retries due to user input errors, and the problem that different
actions appear synonymously in interaction detection are addressed. On the finite state machine
level, the problem of illegal and lost transitions is addressed. They present a method of avoiding
the state-explosion problem arising when reachability analysis is applied based on coloured Petri
nets.

Nakamura et al. [47] demonstrate, how the P-invariant of a Petri net model, which presents
a necessary condition of the reachability of a state, can be used to circumvent the state space
explosion problem, that usually occurs if exhaustive state enumeration techniques are applied, as,
e. g., in [44]. A case study demonstrates, that the resulting quality is comparable to conventional
techniques, while the computational effort is smaller by several orders of magnitude.

Brothers et al. [48] describe the FIDO tool used to detect interactions based on a real-time
transition model [49] of the services and features. The transition and constraint rules for these
descriptions are extracted from the service logic programs (SLPs) of the Intelligent Network semi-
automatically.

Bredereke [50, 30] presents an automata theoretic formalisation of the feature interaction prob-
lem. He introduces a specification style that is based on the principles of modification on a coarse-
grained level and addition of transitions as the only allowed change of a specification (deletions
are not allowed). Based on these principles, the term of feature interaction is formally defined, and
necessary conditions for interactions are presented. The detection technique is implemented in the
tool CONFINE based on the formal description technique ESTELLE [50, 51]. A resolution mech-
anism is sketched, which is based on the introduction of precedence relations between transitions
and on the specification of additional behaviour in order to resolve the conflict.

Klein et al. [52] introduce a specification technique for features based on State Transition
Diagrams (STD), where a feature is seen as a refinement of such a STD, and a feature interaction
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can be defined formally as a situation where it is not possible to find a common refinement for a
system incorporating both (interacting) features.

Khoumsi [53] shows how interactions can be detected in systems specified in the form of ex-
tended finite state machines (EFSM) with guarded transitions and initial values for variables. The
criteria for interactions are based on invariants involving variables local to each of the two par-
ticipating services, as well as some static properties like deadlock, lifelock, and non-deterministic
situations. Once identified, resolution of interactions takes place using conscious cooperation.

Thistle et al. [54] apply an automata theoretic approach called supervisory control theory to the
problem. In this approach, modularity of design is emphasised. Events are divided into the classes
“observable” and “controllable”. A service is modelled in this framework as a supervisor which
has the ability to disable controllable events on the basis of the past sequence of observable events.
Interactions are detected using the languages (i. e., event sequences) expressed by the automata.
A method to resolve interactions is sketched.

Chen et al. [55] also use supervisory control theory. Interactions can be detected by reachabil-
ity of previously defined critical states or non-satisfaction of a behaviour represented by a minimal
language, or by detection of blocking behaviour. Resolution takes place by a priorisation of differ-
ent features controlling the same basic system; if a feature is overridden by another one, it follows
the system’s behaviour passively and is able to resume its operation at a later point in time.

Dssouli et al. [56] use scenarios for specification of features and derive finite state machines
(timed automata) automatically from these scenarios. Interaction detection is carried out identify-
ing operational inconsistencies (i. €., non-deterministic transitions), temporal inconsistencies, and
inconsistencies against invariants.

Iraqi and Erradi [57] apply an object-oriented formal description technique called MONDEL
to the feature interaction problems. Detection of interactions is carried out by generating the prod-
uct automaton out of the specification and applying several automata-theoretic criteria like non-
determinism. It is also outlined how feature interactions can be resolved: by mutual exclusion in
the case of ambiguities, by hiding of events from the other features, or by establishing a protocol
between the conflicting features.

Verification using problem specific criteria. A number of approaches extend the general cor-
rectness criteria by own problem specific criteria for the presence of interactions, like, e. g., access
conflicts to system resources or read/write conflicts to system-wide variables. However, these cri-
teria only point to the presence of interactions, they do not necessarily express that an interaction
is unwanted.

Braithwaite and Atlee [58] present a call processing model which is based on layered state
machines. Features are modelled as additional layers, which are able to pass through, consume,
or modify events. This architecture implicitly resolves interactions imposed by non-determinism
through priorisation, which is described in greater detail by Pomakis and Atlee [59]. Interactions
of the types of result conflicts, resource contention, invalidation of information needed by other
features, and assertions raised by other features are detected. A tabular description technique and
reachability analysis for the verification of the specifications are applied. Au and Atlee [60] eval-
uate the approach described in [58, 59] by a case study with respect to the Bellcore benchmark
[12, 13].

Dworack [61] develops a specification framework in order to specify service features nearly
independently from each other, using a finite state machine approach. He identifies several mani-
festations of feature interactions in his approach.

Frappier et al. [62] apply relational specifications that map an input history of events (non-
deterministically) to an output space, as a description technique for features. An interaction occurs
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if a number of features, although defined for a specific input history, cannot agree on one common
output. It is shown how the method can be applied in practice using the Prolog language.

Lee [63, 64] uses the formal specification language Object-Z to describe basic call processing
and features. Interactions are identified by analysing the specification and finding out if there exist
state variables which are manipulated (read/written) by several features and thus are the common
state being affected and a potential source for interactions.

Satisfiability approaches In some approaches, the system is described logically, usually using
temporal, predicate or modal logic. Using this description, it is checked whether service require-
ments are consistent or contradictive. Capellmann et al. [65] uses the term satisfiability approach
for this kind of methods.

Bergstra and Bouma [66] describe a process algebraic method for the detection of interac-
tions using so called interworkings, i. e., a description technique similar to Message Sequence
Charts (MSC), but synchronous, and timed frames, a kind of labelled transition systems including
a notion for time steps. Interactions are detected on the level of logical inconsistencies within the
model.

Blom et al. [67] use first-order linear-time temporal logic for the description of the basic ser-
vice and the features. This specification technique is described more detailed in [68]. The descrip-
tion can be mapped automatically onto finite state machines. Interactions can be identified if they
are based on conflicts in the logical formula denoting the invocation state, or on the effects caused
by an event. In their framework, reachability analysis has to be applied in order to verify whether
the conflicts are reachable and thus result in interactions. In [69], the framework TUSSILAGO for
the specification of telephone services is presented. The interaction detection approach is based
on the previously described method [67], but the modelling technique is enhanced using Message
Sequence Charts and a modular specification style.

Rochefort and Hoover [70] show the application of a constructive proof system, i. €., a system
where a satisfiability proof and the generation of an executable model are combined, to the feature
interaction problem.

3.1.2 Informal methods

Artificial intelligence and natural language processing seem to be promising approaches for detec-
tion of interactions on the requirement level. Dankel et al. [71] propose a requirements capturing
system based on artificial intelligence which is able to parse natural language and to convert it
to predicates. With the aid of these predicates, ambiguity can be removed from the specification
and a set of potential interactions can be generated, which has to be examined manually by the
designer.

Charnois [72] uses natural language processing to identify feature interactions in textual re-
quirement descriptions. Interactions manifest themselves in the form of semantic anomalies.

Methods of object oriented software engineering are another means to cope with the inter-
action problem. Kimbler and Sgbirk [73] show the application of use cases to the feature inter-
action problem. Use cases on the network level are established, and by their analysis, possible
feature combinations are examined using the simple but effective criterion that two features are
interaction-prone if they access the same service or call specific data. The interaction-prone sce-
narios have to be analysed manually.

Kimbler et al. [74] report results from the PEIN (Pan-European IN) project consortium super-
vised by EURESCOM. In this approach, the features are first categorised with respect to the roles
they play and resources they use in order to identify interaction-prone combination by possible
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conflicts of their categories. Features are analysed in a service context using a structured ap-
proach. For features considered as interaction-prone, a detailed investigation has to be performed
manually.

3.2 Detection of interference
3.2.1 Formal techniques

The detection of interference requires a notion for the desirableness or undesirability of an inter-
action. A number of approaches achieve this by using two different specifications, a behavioural
one to express the behaviour of the system and a property-oriented specification expressing the
properties to be fulfilled by the specification. These specifications not necessarily have to be ex-
pressed in different languages. This kind of approach is termed specified-property approach by
Bredereke [30], or satisfaction-on-a-model by Capellmann et al. [65]. There are also approaches
that verify the satisfaction of general, system-wide criteria in order to guarantee the absence of
interference.

Approaches using two different specification techniques. A number of approaches using dif-
ferent specification languages for the behaviour and property parts are presented in the following
sections.

Thomas [75] describes a model of a telephone network on the user level formalised using LO-
TOS. Its properties are described using temporal logic. She demonstrates how feature interferences
can be identified using model checking for temporal properties, however, she has reached the lim-
its of the used Casar/Aldébaran toolkit quite soon. Other problems, like non-determinacies, are
discovered by static analysis, e. g., by finding overlapping guards.

Capellmann et al. [76, 77, 65] describe a method to detect interference using a description of
the basic services and service features on the distributed functional plane of the IN standards using
Product Nets, a high level variant of Petri Nets. Detection of interference takes place by checking
separate temporal properties of the behaviour. In order to avoid the state space explosion problem,
they use abstractions based on homomorphisms, thus reducing the complexity of the specification.

Aggoun and Combes [78] present an approach for interference detection and resolution based
on the concept of observers. These observers are applied at two stages during the service lifecycle.
A passive observer, based on a description as a finite automaton with success and error states,
is applied at the network-level specification stage, where a formal model in SDL (Specification
and Description Language of the ITU-T [79]) is validated using exhaustive or guided simulation.
Renard et al. [80] describes the tool support to carry out these steps, and the results of a benchmark
evaluation. Interferences are detected by a success and error state mechanism, but no actions are
taken. Active observers are applied in the course of execution and are able to trigger the resolution
of interferences.

Bouma et al. [81] describe an approach taken in the RACE project SCORE (Service Creation
in an Object oriented Reuse Environment) to the detection of interference using a property lan-
guage (temporal logic) and a descriptive language (SDL). Combes and Pickin [82] show how a
property language based on linear time temporal logic can be applied to a behaviour specification
in a constructive language. The level of abstraction is the Global Functional Plane of the IN con-
ceptual model. In [21], Combes ef al. describe the formalisation and verification method in more
detail, and they present experimental results of finding interferences in a number of well-known
IN services. They conclude, that a number of formal techniques have to be used in a coherent
way to detect interferences, a static analyser for interactions due to non-determinism and data-
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sharing, a behavioural tool to verify temporal logic requirements, and a simulation tool to carry
out a heuristic evaluation of the system.

In their work on provably correct telecommunications systems (ProCoS), Fischer et al. [83]
and Kleuker [84] address the feature interaction problem with a method that allows to derive im-
plementations from formal specifications using transformations that keep correctness properties.
It is demonstrated how features can be added incrementally starting from a correct initial model.

Single specification approaches. In some approaches, the properties that have to be fulfilled by
a behavioural specification are expressed in the same language, thus obtaining only one specifica-
tion document containing properties and behaviour.

Korver [85] applies the formal description technique LOTOS in order to describe Intelligent
Network service processing in the Global Functional Plane. In order to check for the fulfilment
of specific properties, testers are applied, i. e., processes that encode the property to be checked
and run in parallel to the specification. Verification is done using reachability analysis and the
minimisation of the generated labelled transition system.

Faci [86] presents a method for the specification of telecommunications services in LOTOS.
Interaction detection is carried out exploiting the testing theory for this language by generating test
cases automatically from the formal specifications of the services. A necessary precondition is that
both features have got disjoint signalling alphabets. Although a technique like test case generation
and application is used, this method has to be regarded as a formal verification approach.

A knowledge goal oriented approach is described by Faci and Logrippo in [87]. The features
are specified independently and integrated; afterwards, a set of knowledge goals for both features
is defined by the designer (using a parallel LOTOS process) and it is verified whether these goals
are reachable; if not, a feature interference (or a design error) is present.

The approach of Boumezbeur and Logrippo [88] is based on a constraint-oriented LOTOS
specification of a telephone system’s observable behaviour. Each telephone feature is specified
as an individual process in order to facilitate modularity and maintainability of the specification.
Interferences are identified by execution of the specification within an interpretative environment.
Symbolic execution trees are derived using test sequences in the form of LOTOS processes, and
these trees are checked manually for unwanted situations. In an outlook, the authors point out, how
this manual checking could be improved by techniques like causal constraint analysis, complete
execution tree calculation, random walk validation, and goal-oriented execution.

Stepien and Logrippo [89] use abstract data types of specification languages like LOTOS, SDL
and Prolog in order to represent a notion for the violation of a features intention. The abstract data
type, which is defined for each feature independently (with the important limitation that all pos-
sible actions in the whole system have to be respected), is applied in an executable specification;
interference is identified using either goal-oriented or backward execution, where the goal respec-
tively the starting point is the violation of an intention. Problems with combinatorial explosion are
reported, which can be reduced giving additional directives to the tool.

Lin and Lin [90] model service features in the Intelligent Network on the Distributed Func-
tional Plane level of abstraction using PROMELA [91]. Both properties and behaviour are specified
in this language, and state-space exploration (using the SPIN tool) is used in order to verify the
properties. For the management of the large number of scenarios they use a front-end tool in or-
der to select features and scenarios from a repository automatically. In an appendix, parts of the
specification and the assertions are listed.

Gammelgaard and Kristensen [92] present a description based on transition rules and predi-
cates (first order logic). Features are an extension or modification of a basic service, interference
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becomes manifest as conflicts between the predicates that a certain state has to satisfy. Their work
has been carried out in the SCORE project.

Bostrom and Engstedt [93] present a method based on a tool using predicate logic and a elab-
orate description technique (the DELPHI framework). Interference is detected, if the specification
is not consistent and if properties specified for an individual feature are not fulfilled by the joint
specification. This is shown using propositional logic and a theorem prover. In order to resolve the
interactions, so called “interaction features” are introduced, which impose priority mechanisms
between the conflicting features.

Global property approaches. A third kind of interference detection approach uses properties
which are not stated explicitly for each feature, but are defined system-wide and have to be fulfilled
by each individual feature.

Dahl and Najm [94] use the formal description technique LOTOS in order to model call and
service processing in the Intelligent Network. They present a strategy to enhance the basic call
service by a new service feature, leading to different specifications for each feature, and then to
combine the two specifications into one. Interference is revealed as differences of the service state,
data types, and of the invocation of the feature.

Gibson [95] demonstrates, using a number of examples, how several feature interferences are
introduced artificially on the requirement modelling level by the use of imprecise or improper
models. He concludes in a number of recommendations for the establishment of a requirements
specification, like, e. g., strong typing, object orientation, invariants, avoidance of ambiguities
in naming of actions, explicit appearance of features, arbitration, choice of modelling language,
operational requirements, incremental development, and restrictive assumptions.

3.2.2 Experimental techniques

Among the experimental techniques are simulation of network environments and testing in real
and simulated environments. As all the approaches herein have a notion of desirableness, they fall
into the interference detection category.

Kelly et al. [96, 97] present an approach using simulation of feature behaviour on the net-
work level (for Centrex services) and on the service plane (for IN services), using a SDL-based
animation tool.

Tsang and Magill [98] propose a feature management system to detect interferences that does
not require knowledge of the features. As a reference, a feature manager (FM) records the se-
quence of the states of a feature and its used resources which specifies the correct operation. If
this sequence is not matched during the feature’s operation, a report is generated. Despite of its
similarities to [78], this approach is rated experimental, as the correct behaviour of a feature is
recorded from a reference implementation.

Godskesen [99] formally defines the meaning of the term interference at the requirements, the
specification and the implementation level. He describes formally, how tests have to be applied
in order to test for the absence of interference on the implementation level using tests for all the
implementations of the individual features.

3.2.3 Informal methods

Mierop et al. [7] present results from the European Community research project ROSA (RACE
Open Services Architecture) [100]. A separation of service-induced and resource-induced inter-
ference is introduced. The detection method presented is based on service-induced interference
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(e. g., ambiguous situations) only. These situations are detected during the object-oriented spec-
ification of the service, which is explained by the example of Call Forwarding on Busy and Call
Waiting, where the interference is identified by the ambiguity created by the busy signal.

Informal criteria to describe the execution of IN services are used by Kuisch ez al. [101]. They
present a detection method for interactions between IN services based on templates, in which the
functionality of a feature is expressed through the usage of Detection Points of the Basic Call State
Models, data (information flows) and resources. This method is intended as a direct aid for service
developers and is especially suitable for a (relatively straightforward) tool implementation.

Wakahara ef al. [102] propose a detection method based on “input-output relationships” be-
tween service features. The features are specified informally, and the investigations take place
using message sequence charts. The interactions are classified using the criteria duplication, re-
dundancy, (incorrect) order of execution, inconsistency, vagueness or non-determinism, and loop-
ing. For each of these criteria, an informal detection procedure is sketched.

4 Resolution

Resolution of feature interactions that have been discovered during a previous detection process
or that have already been identified in a different way, is a necessary consequence for mastering
the problem. A number of approaches referenced in the following sections have already been
discussed in the previous section on feature interaction detection, as they introduce a method
for detection as well as a proposal for resolution. However, in the following sections, only their
resolution aspects are treated. It must be noted, that in the resolution category, the distinction
between interaction and interference is not relevant. Thus, the term interaction is used throughout
this section.

4.1 Restriction

Historically, restriction is the classical method to be applied if feature interactions are likely to
occur. In the ITU-T recommendations for ISDN supplementary services [103] for example, for
each supplementary service there exists a section on the interactions with other services. The
usual treatment of interactions there is the introduction of precedence or mutual exclusion rules,
which obviously fall into the restriction category.

4.1.1 General restriction

General restriction is a rather rigid method which is very often chosen by practical approaches.
Homayoon and Singh [104] study the problems of interactions between switching system based
and IN based features, and present a complex feature arbitration policy using rules for the ac-
tivation and invocation of features. The technical consequences are investigated, paying special
respect to the feature processing environment (including an arbitrator) and the interfaces needed
between the different functional entities (switches, Service Control Points).

Schessel [105] presents an approach towards the resolution of feature interactions between
switch-based features using tables that contain information on the priority of one feature over
another one, on mutual exclusion of two features, and on the current feature status for a specific
call. The content of the tables is provided by the feature developers and can be changed and edited
by the administration.
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4.1.2 Situation dependent restriction

Situation dependent restriction is more flexible than general restriction, as it allows to decide
whether to carry out a specific operation dependent on the situation encountered by the conflicting
services. In contrast to general restriction, it does not affect the ability to activate and invoke the
conflicting features.

Specification approaches. A number of contributions address the resolution of interactions in a
restrictive way on the specification level, mostly using relatively simple precedence mechanisms.

Khoumsi [53] resolves interactions which are detected in extended finite state machines using
general criteria by an algorithm with three steps. First, all undesired states in the compound de-
scription are removed; secondly, an acceptable and realisable behaviour has to be specified where
necessary and finally, a common additional automaton (supervisor) is added to the conflicting ser-
vices in order to achieve the desired joint behaviour by introduction of precedence and exclusion
relations.

In Chen’s approach [55], supervisory control with priorities is employed in order to resolve
interactions detected by a method described in the same paper. An individual supervisor has got
the possibility to override one with lower priority, thus resolving conflicts by restricting the control
to one supervisor at a time. The other supervisors follow passively the behaviour of the system.

A similar approach is taken by Bostrom and Engstedt [93], who introduce so called interaction
features which impose priorities between the conflicting parts of the interacting features.

Blom et al. [68] add an interaction handler in the form of a temporal logic term to the combi-
nation of the conflicting features. They achieve resolution of the interaction by mutual exclusion
or priorisation of the conflicting parts.

Precedences between transitions are used in the resolution method sketched by Bredereke [50],
however, in cases where this is not sufficient, additional behaviour has to be specified. This method
is described in more detail in a technical report [106], where ESTELLE is used as a specification
language.

Cheng [107] uses a LOTOS specification on the Distributed Functional Plane level of the IN
Conceptual Model in order to resolve feature interactions caused by the features’ invocation and/or
termination due to the same event (detection point). He uses priorities and invocation precedence
rules, represented by constraints on the feature specification.

Mierop et al. [7] use an agent based object oriented approach in order to control the prob-
lems. Interference, once detected by an informal method described in the paper, is resolved using
priorisation in the user profile or by the user agent using an user-independent predefined policy.

Feature interaction managers. The ITU-T recommendation on Intelligent Networks [108] in-
troduces the notion of a Feature Interaction Manager in the sense of an arbitrator between IN and
switch based services. The resolution approaches discussed in this section proceed beyond this
notion, as they use a FIM in order to resolve interactions.

The basic idea of Cain [109] is the introduction of an entity between the features and the
basic call processing models that filters the signals to and from the features in order to resolve
interactions. The motivation is to keep the implementation of the service features separate from the
knowledge on feature interactions, and to concentrate this knowledge into one functional entity.
Three different kinds of interaction managers are described briefly. A “two-pass” model issues a
request (i. e., a signal) to all features and collects all responses, then decides which action to take.
The features are notified by a “commit” message, if their action has been accepted, and with a
“rollback” message otherwise. A “side-effect-free”” model collects the responses from all features,
and afterwards decides, which are acceptable and which are not. Therefore, the side effects of all



4 RESOLUTION 19

features have to be buffered. An “error-free” model, where for each possible interaction situation
a method is kept how to resolve this case, is explained in more detail in Cain’s work, as it is
considered as the only one which is really feasible.

Fritsche [110, 111] presents a method to resolve feature interactions using a Feature Inter-
action Manager with a matrix holding information under which conditions a participant has the
possibility to accept being involved in a newly invoked feature (i. e., taking a new role). Using
the information in this matrix, it is decided, whether the feature may be activated, blocked, which
changes have to be made, or which additional measures (like display messages) have to be taken.
The information in this matrix has to be provided by the feature developer, which is not subject
of that paper. The author presents a prototypical system realised with a SDL toolset in order to
validate his concepts.

Ogino [112] describes the resolution of interactions between services that are realised within
the same service node. This concentration of different services into one single network entity
eases the treatment of interactions significantly. The resolution is based on a table where different
interaction categories for feature combinations are noted and measures are taken according to
these categories. Thus, the major effort of the proposed method lies in the construction of this
table.

Active observers in the approach of Aggoun and Combes [78] are applied in order to monitor
specific INAP (Intelligent Network Application Protocol [113]) messages. They have the ability
to decide whether an action is desired or undesired, and cooperate with a solver that implements
mechanisms in order to solve several kinds of interactions detected by the active observers.

Tsang and Magill [114] extend their detection method presented in [98] by resolution aspects.
Interactions are detected using one entity of a feature interaction manager (FIM) for each sub-
scriber. In a learning mode, the correct behaviour of a feature is entered into the FIM by observing
the stream of messages between the basic call state models and the service processes. During op-
erations, in a management mode, the actual messages are compared with the database of learned
messages and an interaction is detected if there is an inconsistency between these. It is possible to
resolve some conflicts in their approach. Trigger conflicts (shared triggers) are resolved by a policy
preferring the trigger with the least interactions and the highest priority, more severe problems are
solved using the philosophy of damage limitation by ending the call in a controlled manner. The
authors claim that their approach is more viable to the problem solution than any other approach,
as it requires very few modifications to the IN infrastructure.

Makarewitch [115, 116] reports partial results of two EURESCOM projects. The focus is on
the runtime resolution of feature interactions using a feature interaction manager, divided into
different components, each of which is specialised to one specific area of concern, i. e. charg-
ing, connection, data analysis, user interaction. These processes are placed in the Service Control
Function (SCF) between the service logic process instances and the IN environment (SSF, SRF,
SDF). They are able to process stimuli from the environment in order to give correct signals to the
service logic process instances (SLPI), and to filter the responses from the SLPIs in order to give
consistent signals to the environment. The functionality of these entities depend on the services
implemented in the system, i. e., they may have to be changed for each new service. The entities
are situated in the same SCF, and are unable to work correctly if the different services are executed
in different SCFs. The services considered as examples are simple originating services, Freephone
and Premium-Rate, Credit-Card-Calling, and Virtual Private Networks.

Practical methods. Marples ef al. [117] describe an experimental testbed, which is able to em-
ulate IN-based services as well as legacy services on a simulated software infrastructure. It is
suitable to examine services for any kind of interactions, and can be used to implement and vali-
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date prototypical extensions, like, e. g., feature interaction managers.

4.2 Integration

Especially on the specification level it is not always easy to decide whether an approach belongs
to the restriction or integration category, as the addition of special treatment of the interaction case
often has got integrative as well as situation specific restrictive aspects. The criterion to decide this
is the possibility to clearly assign the parts of the specification to one of both features.

In their State Transition Rules (STR) approach [45], Ohta and Harada generate new state
transition rules which give priorities to features and resolve transitions into undefined states.

Inoue et al. [41] resolve interactions by adding rules which select one of the nondeterministic
transitions detected previously or introduce a new state transition respectively, in cases where no
executable state transitions are present.

Kakuda ef al. [118, 119] also use state transition rules for service specification. They re-
solve feature interactions using a protocol synthesis technique. Interactions manifest itself as non-
determinism in the feature specification, which is resolved inserting conditional branch functions
into the protocol specification, thereby determining which sequence is selected.

4.3 Cooperation

Cooperation between features is the most sophisticated concept to resolve interactions. Cooper-
ation goes beyond the simple decision taken in restriction approaches whether to carry out an
operation or not; it is tried to find a solution or compromise which satisfies the needs of all partic-
ipating features.

4.3.1 Conscious cooperation

In conscious cooperation, the cooperation mechanisms are designed aware of the purpose and
implementation details of the conflicting features.

Iraqi and Erradi [57] sketch three strategies to resolve interactions between features using a
composition by choosing one of the features involved, by hiding the offending events from one an-
other (both of these strategies are restrictive), or by establishing a protocol between the features in
order to find an acceptable solution by cooperation between features situated at different physical
locations.

Prehofer [120] presents an approach for implementing features in an object-oriented envi-
ronment which allows the treatment of feature interactions as part of the design methodology,
“feature oriented programming.” This is achieved by adaptation of the services of one features to
the context of another one, and by an implicit ordering of the features. With this procedure, the
correctness of the functionality of one feature in the context of another feature is maintained.

Utas [121, 122] discusses the realisation of switch based and Intelligent Network features
in a practical system. He presents the means that are provided by the software architecture of
a real system in order to resolve feature interactions. Among the mechanisms used to achieve
cooperation is a cooperative building of signalling messages. There are, however, tight limitations
in real systems, imposed, €. g., by the capabilities of signalling protocols.

4.3.2 Oblivious cooperation

Oblivious cooperation is among the most promising long-term solution concepts to achieve reso-
lution of interactions. Features or services cooperate, although they do not have any special knowl-
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edge of each other, thereby supporting one of the goals of new service-centered architectures like
the Intelligent Network, the independent development of new services.

Velthuijsen [123] evaluates the suitability of distributed artificial intelligence methods com-
paring four different DAI approaches to feature interactions. Three of the approaches deal with
network management systems, where interaction problems similar to subscriber feature interac-
tions can be observed. The approaches address problems of data availability, different adminis-
trative domains, network resource contention and problems caused by individual instance-specific
feature parameters. As cooperative problem solving is based on peer-to-peer cooperation, it is es-
pecially suitable for today’s de-regulated telecommunications market, because no single trusted
entity is needed. Thus, it turns out to be a promising approach in order to solve interaction prob-
lems, but there remain many open research problems, like the design of evaluation functions or
the interference of different problem solving mechanisms.

Griffeth and Velthuijsen [124] use negotiating agents (indirect negotiation) in order to detect
interactions by identification of conflicts in a goal hierarchy and resolve them by exchanging pro-
posals and counter-proposals and finally agreeing on a goal which is acceptable for all involved
entities. This approach is validated on an experimental platform called TOURING MACHINE [26].
This is a distributed object oriented experimental architecture for the provisioning of multime-
dia services. It enables the realisation of intelligent services which require knowledge of both
static and dynamic information about the system (provided by a special repository called ‘“Name
Server”). Additionally, it is shown, how this approach can be applied to AIN/IN features. In [125],
the conflict resolution method used in [124] is described in more detail. It respects the privacy
of the agents and the finding of alternative activities to achieve the goals of all involved agents,
which are expressed in a goal hierarchy. In cases where no common acceptable proposal can be
found, one of the agents has to relax its constraints.

Dini and Bochman [126] study the problem of feature interactions in the context of automatic
reconfiguration management. They map the terms of services and features, interaction and inter-
ference onto the object-oriented terminology. They extend the feature interaction problem to the
problem of the substitutability of services, the optimisation of existing (desired) feature interac-
tions, and the automatic adaptation to (desired) changes of feature interactions.

5 Prevention

Prevention complements detection and resolution of feature interactions. By structural means, i. e.,
by development and application of suitable system design and architecture, interactions of some
kinds, like, e. g., resource conflicts, can be avoided. Procedural approaches enforce a well defined
and strict design methodology that does not allow interaction prone sequences of actions to be
used.

5.1 Structural prevention

This class of prevention approaches is characterised by a system structure that has got means to
avoid feature interactions.

Van der Linden [127] proposes the application of ODP (Open Distributed Processing) prin-
ciples in order to avoid unwanted feature interactions. Central to his approach are the terms of
separation of the system entities (features) and substitutability enabled by a well-defined exter-
nal interface. Each feature is described using a framework of statements about purpose, meaning,
structure, quality and technology, leading to a possibility to avoid interactions by transparency.
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Cattrall et al. [128] propose an architectural model which avoids a number of feature interac-
tions by resolving its causes. It is based on a division between roles fulfilled by different users and
the terminal equipment they use.

Zibman et al. [129, 130] propose an agent architecture that is able to avoid feature interac-
tions by a proper separation of concerns within a telecommunications system. This is achieved
using agents that have got dispatch rules and precedence rules that are independent from spe-
cific services, but based on signals used commonly in the system. They claim that their approach
handles all interactions listed in [13], and demonstrate it using several examples from that paper.
Finally, they give an outlook how their approach could be mapped on multimedia and IN network
infrastructure.

Weiss et al. [131] describe an agent-based system for distributed multimedia applications, that
minimises feature interactions by design. This is achieved by decoupling (i. e., the separation of
policies and agent implementations), by off-line negotiation of service guarantees, by multiple
levels of abstraction for the expression of service requirements, and by a learning mechanism that
deals with changes to the environment.

Keck [132] analyses interaction emergence in today’s Intelligent Networks and focuses on
interactions that are caused by insufficient information and mechanisms provided by the network.
In order to prevent these problems, he proposes a Session Configuration Profile (SessCoP) that is
able to provide the missing (additional) information and mechanisms to the interacting services,
thus giving them the opportunity to react adequately.

5.2 Procedural prevention

To the knowledge of the authors, there is no documented approach that can be placed in the cat-
egory of procedural prevention. Such an approach would be characterised by a very strict and
probably tool supported service definition, specification and implementation process, that leads to
implementations that are free of interactions simply by following a set of rules. Such an approach
would reduce the service interaction problem to the task of ensuring that a service is implemented
correctly with regard to the rules of the prevention method. However, a number of approaches
described in the previous section on structural prevention contain also aspects of procedural pre-
vention, like, e. g., van der Linden’s software structuring policies [127].

6 Management of the overall problem

During the previous three sections, methods that deal directly with the interaction problem have
been discussed. It became clear that there probably will be no single method to cover all aspects
of the problem at once. Bowen et al. [1] outline in their fundamental paper the many dimensions
of the problem during the different design stages. Kung [133] points out a number of additional
problems that occur in a competitive environment, where different service providers develop and
offer their services in the same network.

The contributions in this section are divided into two groups: the first group is concerned with
the management of the combinatorial complexity of the interaction problem, including tools for
context generation and information acquisition, the second group comprises approaches concern-
ing the whole interaction handling process.

The management of the combinatorial complexity is a research issue with respect to the ap-
plicability of specific methods. Kimbler [134] proposes a technique where feature combinations
are selected for further evaluation depending of their occurrence probability and a quantification
of the potential risk connected with a specific interaction scenario.



7 TRENDS AND FUTURE DIRECTIONS 23

Keck [135] proposes criteria in order to reduce the large number of possible scenarios that can
occur when two (or more) services are combined, based on the exploitation of symmetries and the
structure of the trigger detection points used by the features.

Lin and Lin [90] present an automated environment for producing feature contexts, i. €., sce-
narios consisting of features and the appropriate call state models. Using these tool-generated
descriptions, formal verification for a large number of interaction scenarios can be carried out
automatically.

Blumenthal et al. [136] describe a tool to examine services for potential interactions using a
knowledge base for known problem cases, including information on Bellcore requirements and
actual implementations.

To master the problem as a whole, sophisticated coordination of a number of different methods
and means to be employed, i. e., a well-defined interaction handling process, is required. In [137],
Kimbler presents results of the EURESCOM Project P509 “Handling Service Interactions in the
Service Life Cycle,” where a service interaction handling process (SIHP) is defined. It consists of
four phases. In the first phase, an analysis plan is established stating what feature combinations
have to be analysed. A filtering step reduces in the second phase the number of scenarios in order
to make the treatment possible. Afterwards, detection and finally resolution techniques make up
the third and fourth steps. Georgatsos et al. [138] present requirements for system management
that have been identified during this project. A more detailed overview on the results of the P509
project can be found in [25].

Tool support for the overall process of dealing with interactions is described by Cameron et
al. [139], where an integrated toolset for service creation and feature interaction analysis and
management is presented.

7 Trends and future directions

The service interaction problem as described in this contribution has two major aspects, which
are equally important and require further consideration. In this section, these aspects and their
implications on service interaction research are discussed briefly.

7.1 Telecommunications network specific issues

The discussion of the interaction problem has been triggered initially by the difficulties of inte-
grating new telecommunication services into existing networks. This is the practical aspect of the
problem. The steadily growing number of new telecommunications networks and services and the
worldwide trend to de-regulated telecommunications markets imposes rising pressure onto ser-
vice providers, network operators and equipment vendors to tackle this problem. In the current
telecommunications environment, the following factors will impact the urgency of the problem
significantly:

e Heterogeneity of service provisioning. In order to provide a new service, a number of op-
tions, like switch based, service node based, IN based, terminal equipment based or even
Internet-/IP-Network based may be chosen. It is obvious that this heterogeneity exponen-
tiates possible interactions, as well as it complicates to take countermeasures. However,
economic boundary conditions dictate a protection of the large investments in the existing
network infrastructure and require mechanisms for resolution and avoidance of interactions
that can be smoothly integrated into existing infrastructures with only moderate changes or
extensions of present systems. This aspect should also taken into account when the evolution
of signalling in modern networks is discussed [140].
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e Omnipresence of supplementary services. The growing penetration of the market with per-
sonal and terminal mobility services, number portability, voice and facsimile mailboxes,
integration of Internet services (e. g., electronic mail notification, Internet shopping) marks
a development towards each phone call being a supplementary-service enhanced call. In
such a scenario, restrictive interaction resolution methods will soon reach their limits.

e Network interconnection and interoperability; convergence of telecommunications and data
networks. Most services rely on information passed by signalling messages. Usually, this
information is restricted if network boundaries are passed or the information cannot be
evaluated outside the original network. This makes it difficult if not impossible for some
services to work properly across network boundaries. However, especially in a de-regulated
telecommunications market, many network boundaries exist. Thus, the establishment of
standards for management of interactions between network operators or service providers is
urgently required, as it is a significant and economically relevant question to decide which
one of the conflicting services will have to be modified or removed if interference occurs.

e Network security. Service interactions are characterised by the fact that a service’s behaviour
is changed in the presence of other services. This may have severe consequences if this
service is a security service, used for protection of privacy or anonymity, or for reliable
transactions in electronic commerce.

7.2 Software and systems engineering issues

There is also a fundamental aspect of the problem. Typical for all large and evolving, possibly
also distributed systems, is the stepwise addition of functionality. In order to achieve this, either
knowledge of the whole system including all former modifications and additions is required, which
is virtually impossible for large systems, or a concept or a methodology that allows the addition
of functionality with a limited knowledge of the system as a whole. Research progress in the
following areas with special respect to legacy systems may be able to provide solutions to these
problems

e Requirements engineering. A significant number of service interactions are caused by the
fact that the way the requirements are expressed does not reflect the concepts provided by
a system. E. g., in telephone networks, the notion of a “caller” is used, even if the network
supports conference calls, or the “called number” is used synonymously for the identity
of the called person. This is especially difficult because such concepts may be enhanced
gradually by adding new services.

e Definition of coherent architectural frameworks and concepts. Closely related to the former
item, methods for the definition of a framework that is open for extension on the one side,
but also complete in a sense that it is possible for a new extension to anticipate the possible
impact of other extensions (which has to be limited by the system’s well-defined capabili-
ties for addition of functionality), are needed. Such a framework requires rigorous formal
definition and well defined interfaces for extension. For telecommunications networks, the
TINA initiative [141] is a step towards this direction.

o FDTs and verification techniques. The application of FDTs requires a formal model of the
whole existing system and a proof or validation of its correctness, a enormous, if not impos-
sible task for systems of realistic complexity. Even if systems are formally described at an
abstraction level that is comparable to the level used in standardisation documents, which
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is actually much coarser grained as required for implementation, today’s verification tools
and methods rapidly approach their limits, as, e. g., reported in [75]. Here, despite of some
“success stories” of tool application, still a lot of improvement is urgently needed.

8 Conclusions

During the classification of the large number of publications cited in this contribution, the classi-
fication scheme presented at the beginning has proven as very useful, as the majority of different
approaches fit quite naturally into the framework. In some cases, it has been difficult to decide
the category of an approach, because it contained aspects of several categories. Then, usually the
category for the most sophisticated concept of the approach has been chosen. Nevertheless, it has
been difficult in rare cases to decide whether a detection approach is formal or experimental, or a
resolution method restrictive or integrative.

By reviewing the approaches dealing with the feature interaction problem, some interesting ob-
servations have been made. In the detection category, there is an overwhelming number of formal
method approaches, using all kinds of methods, while there is very little support for real imple-
mentations, especially for dealing with legacy services. In the resolution area, there are promising
approaches, but many of them rely on explicit mutual knowledge of both services, which is clearly
a problem in a de-regulated, multi-provider environment. The prevention approaches are long term
solutions that require a suitable network infrastructure. Here, almost no short term perspective is
seen, especially if legacy services have to be covered. Management papers are still of modest
number, although the complexity and size of the problem makes mastering this area a crucial
issue.

This contribution documents that there is already a widespread and successful activity in the
field of feature interactions. Nevertheless, many open issues remain. This paper focuses on the
intricate nature of the feature interaction problem, explained using the emergence level view, and
gives a structure to the large number of approaches, based on a refinement of the detection, reso-
lution and prevention categories. It gives an overview to the beginner and a concise reference of
the work of the recent years to the expert. Moreover, it wants to encourage and attract researchers
from other fields to have a closer look at this important and relevant problem domain, that extends
beyond the field of telecommunications systems.
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