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ABSTRACT

In this paper a full available trunkgroup with

n channels is considered,; to which R Poisson in~
put streams corresponding to R priority classes
are offered. An arriving call, finding all chan-
nels occupied, can displace an established call
of the momentarily lowest priority class, pro-
vided that this class is lower than its own
class. Three disciplines how to select the esta-
blished call to be displaced are considered:
"first-come, last-displaced", "first-come, first
=displaced™ and "random-displacement®.

At first the discipline-invariable probabilities
of loss or displacement, resp., are derived.

Furthermore these probabilities will be deter=-
mined in the case, where established calls are
displaced by arriving calls not only of a higher
but also of the same priority class.

For this case as well as for the disciplines

"firgt-come, last-displaced™ and "random-dis-

placement™ the following distribution functions

are derived for each priority class:

= The distribution Py(>t) or Pxfo(>t), resp. ,
for a call, starting in the state x or xi,%,.
resp.

=« The distribution P(>t) for an arbitrary call

= The distribution P4q(>t) referred to displaced
calls only

= The distribution Pg(>t) referred to nondis-
placed calls only

as well as the corresponding mean holding
times.
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1. INTRODUCTION

In non-public switching networks e.g. for
flight=-traffic econtrol or weather-service it may
be useful to assign to each call a certain prio=
rity class. If a call finds 2ll channels of a
trunk group busy, it will interrupt and displace
one of the existing calls, provided that this
established call is of lower priority. So an in=
coming call is only lost, if at the time of its
arrival a8ll channels are occuplied by calls of a
higher or its own priority.

This above mentioned priority assignment could
alzo be useful in public communication networks
in the case of cable breakdowns, catastrophes
etc, By this application it would not be necess-
ary to switeh off all "non-important™ sube-
scribers from the exchange during the repair
time or for the duration of the catastrophe.

In this paper a full available trunk group with
n channels is considered. The following assump-
tions, concerning the offered traffic, will be
made s

= R input streams - according to R priority
classes = are offered to the trunk group

= Each input stream is Poissonian with the
arrival rate A, (r= 1,2, ... R).

= All the calls have the same time-independent
terminating rate u, =u.

= Lost or displaced calls are cleared

The rules for the selection of the established
call to be displaced constitute the displaeing-
discipline. Three disciplines will be considered

first-come, last-displaced; firstecome, firste
displaced and random-displacement. 0f course an
existing call of the momentarily lowest class,
i.e. the class with the highest priority number,
will be displaced.

Under the condition that only established calls
of lower priorities can be displaced, the dis-
placing=discipline has no influence on the pro-
pabilities of loss and displacement.

On the contrary, the holding time distribution
of 8 certasin priority class r (r=2,3, ... R
will depend on these disciplines.

2. THE PROBARBILITY OF LOSS, THE PROBABILITY OF
DISPLACEMENT

These probabilities can be derived frem the
state probabilities of the system. To ecalculate
these state probabilities, the following facts
have to be taken into account:

a) The input and occupation processes of the
classes r+l, r+2, ... R=1, R have no influ-
ence on those of class v (r=1,2, ... R=1),
where class 1 has the highest and class R the
lowest priority.

b) As a consequence of a) the probability of the



state "x4 lines occupied by class 1" is given
by an Eriang distribution /1/.

} If it is possible to prove that the probabi=-
lity of a state "(x1+x2) lines occupied by
the classes 1 and 2™ " is also an Erlang dis-
tribution, then we obviously obtain an
Erlang distribution for the probability
T{Xq+A2H e +Xp) lines occupied by the
clagses 1,2, ... r".

herefore it is necessary to find the state pro=-
ability py, where x= xq+xp. First we define the
tate probability Py, x,» g.e. the probability
or "4 lines occupied’by class 1, x2 lines occu~
ied by class 2%,

y using the statistical equilibrium we obtain
or px,,x, the following set of equations:

k<n:
(ux+A1+A2)~pr’x2 = u(x2+1)~>pxl,xﬂ1
+u(x1+1)-pxl+1’x2 "
R 1
+)‘2 px;,xz-l
*Xq°Py,-1,x,
K=n, x2>02
(“x+A1)'px,,x, = hpoPy o1 ,x,41 (2)
A2 Py, ,x,-1 APy -1,x,
£=n, x2=0:
ux-px!’xz ® xi'px,—l,xz+1 (3)
3
*AiPy,-1,x,

‘e must replace nonexisting state probabilities
¥ the value zero.

¥ introducing the offered traffic

A
I (%)
A, = o=

& well a8 xq= x=% in eq.(1,2,3) and summa-
izing the eq.{(1) and (2) from x3=0 to xp=x
e obtain after some tedious transformations:

x<n:
(x+A1+A2)-px = (x+1)ep .y (A +A5)ep 4 (5)
X=n
nep, = (A1+A2).pn_1 (6)

f eq.(5) is arranged in the following way
(Ag+A,)epy =(x+1)ep g = (Aj+As)ep, o -X°D

t is obvious that (5) is fulfilled, if (0

-x*p, = ¢ = const.

(A1+A2)~p X

x=1
8 a consequence of eq.(6) as aboundary condi-
ion of (5) it follows that c= 0O,

bviously the solution of eq.(6,7) is the
rlang distribution with the offered traffic
Al"’AZ ) ®

his result can be easily interpreted: If an es-
ablished 2=call with the time~-independent ter-
inating-rate u is diplaced and the occupation
8 continued by a 1=call of the same terminat-
ng-rate u, then the occupation process is not
nfluenced. The displacing, new i1=-call has the
ame holding time distribution exp(-ht) as the
emaining part of the displaced call would have
ad.
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Therefore the state probability py of the state
"(x1+x2+ <.+ Xn) lines occupied by calls of the
classes 1,2, ... r" is

p 4
£r

Y - (8)

where
r
A, =] A,
<r .oyi

This will facilitate the further derivations.
Regarding class r, the input and occupation pro-
cess of the classes 1,2, ... r=1 can be treated
as one process resulting from one offered traf-
fic Aq+Ap+ ... Ap-q. So, henceforth, we will
consider only two classes: Class 1 as the high
priority class and class 2 as the low priority
class, corresponding to the classes 1,2, ... r=i
and class r, resp. The calls of class 1 will be
denoted for the sake of briefness with 1~-calls,
and analogously those of class 2 with 2=-calls.

2.1 Class 1

The probability of loss B4, the carried load Yy
and the probability py, for "xj lines occupied
by class 1 are identical with the well known re-
sults found by A.K.Erlang /1/:

Xy
A
xy!
Py, * ___LXI (?)
]
i=0 it
Bl B pxx=n = En(Ai) (10)
hl
Y, = A (1-Bdhy = A1[1'B1] T (11)
2.2 Class 2 = A [1-E (A))]
It holds (cf. eq.(8)):
Xyi+Xa
(A1+A2)
o - (xy1+x2)! (12)
Xitxa o p o (agen)t
L
i=0 it
Therefore
By = Pyl4xgen - En(A1+A2) (13)
The carried load is given by
P2 (14)
Y, = A2(1-B2)h2 = A,(1-B,) =

The mean holding time h, of a 2-call is not yet
known and will be determined later on (eq.(16)).
As 2-calls can be displaced, the mean holding
time will be less than h.

The expectation value of the holding time of a

displacing call is h =1/u and the remaining part
of the corresponding displaced call would have

had the same expectation value h. So it is evi=
dent that the carried traffic of class 2 is re-
duced by displacements in the same amount as the
carried traffic of class 1 increases. That means

AY1 = -AY2

For AY4 holds

= - - 4w
aY, = A, [1-E_(A})] A [1-E (A +0,)]



8Yy = Ay [E (A +A,) -E_(4,)]

Let us now introduce the probability of dis-
placement Uy referred to all 2-cslls. Then we
cbtain for AYs ¢

mAYz = UA“kg-h = UA°A2

That means that from the Ay 2-calls, arriving
per time-unit, the Up=th part is displaced.
These displaced 2-calls would have had a further
mean holding time h.

So the probability of displacement Uj is given
by:

A
= 2. - c
U, K, [En(A1+A2) En(Ai)] (15a)
It will be useful to define & further probabili-

ty of displacement Uy referred only to those
2=calls which could oecupy a line.

U A, E (A +A.) -E_(A,)
UY w A - q__‘_j;_,, n i 2 n 1 (15b)
1~En(A1+A2) A2 1~En(A1+A2)
These probabilities of displacement are
shown in Fig. 1 and 2.
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Fig. 1. The probabilities of displacement
Ug as a function of the offered
traffic Aq.
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Fig. 2. The probability of displacement
Uy as a function of the offerec
traffic A4.

On the other hand AYs can be expressed in the
following manner:

h
- = - - - z 2
BYy = 2 (1-By)h =X, (1-B,)h, = A, (1-B,) (1~ =)

This enables us to caleulate the mean holding
time hp
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h
Ay [1-E_(a,44,)] (1= T%) = A (B (A +Ay) <E (A,)]

o Ay[E (Ay+ay) <E (2)]
2 Ay [1-E (4, +45)]

b= (1=Uy)n

(16)
From eq.(14,15a,16) we derive

¥, = Ay[1 =E (A, +A5)] “A, [E (Ay+hy) <E (8)]

= A2(i=BZ~UA} (14a)

3, The holding time distributions
3.1 Discipline: first-come, last-displaced

As the holding time distribution function (d.f.)
of i=calls is negative-exponential with the mean
h, this d.f. needs not to be determined. For
class 2, however, three d.f. are of interest:
The holding time d.f. of all 2-calls, of the
displaced 2~calls and finally of the nondisplaced
2=calls.

3.1.1 The difference-differential equation for
the holding time d.f. of all 2=-calls

As the holding time d.f. of the displaced or
nondisplaced 2-calls, resp., can be derived
from the d.f. of all 2~calls, it will be useful
to determine the HoTlding time d.f. for all
2=-c¢glls at first.

This can be done by means of a solution method,
published among others by C.Palm /3/ :

A 2-call cccuplies a free line of a trunkgroup
with (x=1) <n busy lines. What will happen dur=
ing the immediately following time interval dt 7
Three events will influence the holding time of
this considered call:

a) None of the existing (x-1) established calls
ends and no 1=call arrives, (2-calls may ar=
rive without consequence, they are, if at all
displaced before the considered 2-call, and
therefore tThey are not relevant to its hold=-
ing time). The state "x lines occupied" is
not changed during dt.

b) No eall of class 1 arrives, but one of the
{(x=1) established calls ends, which existed
before the arrival of the considered call,
(It is meaningless whether a 1=« or a 2«-call
ends, as all existing 2~calls will be dis~-
placed, if at all, after the considered
2=call. Therefore it makes no difference for
the considered 2-call, whether one of the
(x=1) lines is occupied by a call of class 1

or 2). In this case the considered call con=

tinues its occupation in the new state (x-1).

¢) A 1-call arrives and no call ends. Then the
considered call continues its occupation in
the new state (x+1) .

With respect to the limitting-process dt-+0 mul-
tiple events (arrivals and/or terminations) have
probabilities of higher order in dt and need not
be regarded.

The holding time d.f. of a Z2=call, arriving dupr-
ing the state (x=1), will be denoted by Py(>t).

Therefore Px(>t) denotes the probability that a

2=call, beginning its occupation in the state x,
has a duration of greater than t.

The probability Py(>t+dt) is composed of the
probabilities P, (>t}, Pyyq(>t) and Py.1(>t),
multiplied by tge corresponding probabilities of
remaining in the state x or arriving at the
states (x=1) or (x+1) during the time interval
dt.

For x<n holds:



44t =xudt)°Px(>t)

eplx=1)dtP . (>%) *hgdteP  ,(>t)

Px(>t¢dt) = (1 =)

Px(>t*dt) waPX(M‘.)
dt

s =(x +ux) <P (>t)
*u(x=1)-wa1(>t) +x16Px+1(>t)

with t = % we get:

dPx(>T)

e = =(Agex) P (1) #(x=1)P _,(>1)

+hy P, (1) (17)

In the same way we obtain for x =n:

dPn(>t)
dt

The equations (17,17a) are a set of n differen-
tial equations. It can be solved with the ini=-
tial conditions

P, (>0) = 1 for x=1,2, ... n. (18)

= =(Ag#n)+P (>1) +(n=1)eP _, (>1) (17a)

Equation (17) may be treated as one difference~
differential equation with the boundary condi-
tions

P (>t) = B, ,(>1) = O, (19)
3,4.2 The solution of the difference=-differen=-
tial equation

To solve this difference-differential equation
we introduce the Laplace transform

gy (8) = L{Px(>r)} (20)

If we arrange eq. (17) with the aid of (19,20)
in the usual matrix representation, we get:

gl(s) g5(8) 33(3) coe g,(s)

Aqeiss =fq 0 1
=1 Aqe2+8 =Aq 1
=2 Aqt3+s =hAq 1

. e e (21)

={n=1) As+nes|l
As 8 appears only in the leading diagonal of
the matrix, it is obvious that for gx(s) holds:
M

D, (8) (22)

Where Z,(s) is a polynomial in s of degree n-1
and Dﬁ(s) is the solution of the determinant,
which 'is a polynomial of the n=th dégree.

gx(s) =

At first a solution for Dn(s) or its coeffi-
cients, resp., will be acgievedg If we evaluate
the determinant, beginning with the n=th row,
we obtain:

D (8) = (Aq+n+s)Dpy.q(s) =(n=1)A4Dy.2(s) (23)

where D,_4(8), Dy.p(s) are the determinants of
a system With (n-l% or (n=2) lines, resp.

As D:(s) (j= 1,2, ... n) is a polynomial of
j=th"degree, we write:

j
= s 2 i
Dj(s) = ] dy5° (24)

and introduce it into eq. (23)0 Thus we get a
partial difference equation for 43 j:
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“(Ag#2+3)eds spq 9509 541
+(J+1)A1-di'j = 0 (25)

di,j+2

The boundary conditions can be taken from eq.(21)

Putting i=0 @n eq.(25) we get an ordinary d4if-
ference equation, which has the following solu=-
tion:

J
do,j = J1] =% (26)
K=

If we assume that in eq.(25) dj.q 341 is a known

function, we can derive a recurreﬂ%e formula for

ds; it
R .

J AK

ds s = j!I 1 ,K di-l,v

1,d

k=0 (K+1)! veieq Ag

(27)

So all coefficients di,j (j= 1,2, ... n and
1i=0,1,2, «.. J) can be determined, if we begin
with the determination of dy ji,continue with

dy ; and so on. Thus all coetticients di .n

(i’¢ 0,1,2, ...n) of the determinant Dn(4) are
known.

In a similar way the polynomial Zy,(s) will be
obtained. At first we set
nei

2o = [ cg xeot

(28)

By introducin§ this expression into eq.(22) and

using eq. (21) we get:
=xecy o +(Ag#lexdecy yog #0459 we1 "R ke ¢
= di,n (29)
The boundary conditions are:
®i,0 - %i,ne1 = °
i ,x = 0 for 1<0 and i>x.

Similarly to the solution of eq. (25) we obtain
for Co,x: ’

E_(A.)
e _=ad |1~ Dt (30)
OyX o,n E (A,)
x=1""1
where .
J
Ai
I
E:(A;) 3 s
J*1 i i
j 4
i=0 i1
For cy 4 e find the following recurrence for=~
mula:™?
E_(A,)
1
c = d 1o Do | 4
i,x i,n
Ex-i(Ai)
K
. (x-1)1x°1 ﬁl K .
i=1,v

X = =
A7 k=0 wl v=1

3
En(Al) n A1 K

nl Y 2 c
AT E _ (A)k=0 k1 vl 1THY (33)

To determine the inverse Laplace transform of
g(s) it is necessary to find the roots of the
denominator D.(s8). As all coefficients of this
polynomial Dn?s) are known, the roots can be nu-
merically computed. In /2/ a general proof,
showing that all roots are simple, negative and



real, is given. So we can decompose gx(s) into
partial fractions:
Zx(s) . n Zx(si) 1

Dpls) 3:4 %E[Dn(s)}‘8=81 i

gx(S) =

The inverse Laplace transform is given by

n=1 :
'ZO cj,x‘si
il_—m————u—ueexp(sir) =
j=-1

P (>1) = o
J'Z]_ de In.si

"33

i=1

3k

: (32)

’xoexp(sir)

where

n=1
¢y J
j=o Jo* *
i,x% n
jd. e
521 P.n"

(33)

The d.f. Py(>t) is depicted in Fig, 3 for n= 5
lines. Note that 2-calls, starting in the
state n, have a noticeably reduced mean hold-
ing time.

TF§(>t)
10
Az2,n=58
Qs \\ X°1.%2
x=8 §§§=§h~_
=4 \\
[ e~ .,
0 05 10 10 20 25

Fig. 3: The distribution function P (>1).

3.1.3 The distribution function P(»>t) of an ar-
bitrary , established 2=call

The probability P(>t) of an arbitrary 2-call,
not regarding the state x in which it starts,
can be found by multiplying the probability
Py(>t) by the probability p% and summarizing
these terms from x=1 to x=n.

The probability p%y denotes the probability that
a 2-call starts in the state x. It can easily
be derived from the state probabilities. It
holds: Dyt

* il 4

(34)
Py *
1-En(A1+A2)

This means that a 2=-call starts in the state x
when it finds the state (x-1)<n at the time of
its arrival.

The holding time d.f. of all established 2-calls
therefore is given by

n
P({>t) =x§1 PP, (>1)

By using eq. (32) we obtain

n n
P(>t) = ) pX ¢} K;  cexp(s ;1)
x21 X iy beX *

224/5

C;rexp(syt) (35)

where

n
C; = I PyKs x (35a)
x=1

As a next step we define a density function,
which is normalized to the mean holding time h:

_ o ar(>t) . L .
p(t) = = -;:—— ‘izl (=8;)C; ~exp(s 1)

by eexp(s;T) (36)

(36a)

3,1.4 The normalized density functions p (1)
and pg(t1) referred to the guccessfﬁl or
displaced 2=calls ,resp.

The density function p(t) for all established
2-calls is composed of pg(T) and pg(T) in the
following way:

(1-Uy) epg (1) +Ugepglt) = p(t) (37)
On the other hand the density function
of all established 2-calls including the
displacing calls of class 1 is negative expo-
nential. So we can write:

(1-Uy)opg (1) #Uy*py (1) = exp(-T) (38)

The density function ps42(t) can be obtained by
folding the density function pa(t) of the dis-
placed 2-calls with the density function exp(-t)
of the displacing 1-calls. Thus we obtain:

(39)

T
Pyyp(T) =€=£ pg (1-7) exp(-z)ag

By introducing eq. (39) in eq.(38) and subtract-
ing eq. (37) from eq. (38) we get

T
[\ pglr=t) exp(=0)ar =pa(1) = [exp(=1)=p(1)]
£=0 U

Y (40)

As it holds si# -1 for all i (ef. /2/), it can
be shown that ’

n
pg(T) =121 a;exp(s;T) (41)
i{s the solution of eq. (40), where
bs 1i+s8
a; = —me—2 iz 1,2, «o.n  (k2)
1 UY 8§

are given (eq. (15a,36a)),the

As U,, bj, and 8;
unction pg(t) is determined.

desiXed density

In a similar way we get

n
pg(t) = ] B85 eexp(s;T) (43)
i=1
where b
Ry 1.1 (44)
1--UY 85

These results enable us to determine the dis-
tribution functions Pd(>r) and P3(>1). We find
by integration



1 n 1¢si

Uy 4= 2
Y i=1 8%

it

Py (>1) boeexp(syt)  (45)

- 1
PB(>L) % o

|

) JLbi«exp(sir) (46}
1-Uy i=1 g%

From these d.f. we can derive the mean holding
times:

a0 ,
- 1 L= .
T, '-Z = by h, = T,°h 47)
i=1 5%
1
- 1 ! 1%31 -
2 i N s YN = ® 3
f2,0 TGy 4k, T304 Peya T Tem U0
5%
n
- . i i X - N
To,s * ] =b. n 1,00 (49)

1-Uy {21 32 i 2,8 2

In Fig. 4 the d.f. P(>1), Pg(>1) and Py(>1) are
shown. In addition, the function exp(-1) is de~
picted as a comparison. Fig., 5 represents the

mean polding times as a function of the offered
traffic A4,

Asa@, A2=3,n=5
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Fig. 4: The d.f. P(>1), Pg(>7) and Pd(>t)
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Fig. 5: The mean holding times T, . .
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3,2 Discipline: first-come, first-displaced

This discipline will be especially useful, when
the importance of a call decreases with the
elapsing time. Then it is appropriate that a
call, which finds all lines busy, is allowed to
displace a call of its own class, too. Typical
applications of this discipline are possible in
the field of flight-traffic control and weather-
service.

Tf we allow displacements within the own class,
the formulas for loss and the probability of
displacement according to eq.(10,11,13,15) will
hold no longer. The probabilities of state, how-
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ever, are not influenced anyhow. This enables us
to consider two classes only as in chapter 3.1.

3.2.1 The probability of loss and the probabil-
ity of displacement, the carried traffic,
mean holding time

Clasgs 1
A 1-call will never be rejected

By = 0 (50)

A i1-call will be displaced, if an arriving
1=-call finds all lines occupied by calls of
class 1 only.

UAl = UY1 = En(Al) (51)
The carried traffic is given by

Yy = Ageh =k Uy ch o= A1[1 —En(Al)] (s2)

and the mean holding time for all 1-calls is
according to eq. (11) :

Yy°h
2 s = [1-E (A )]0 = (1-D

hy TR yon o (53)

Class 2

A 2~=call is rejected only, if an arriving 2-call
finds all lines occupied by 1~calls only

B, = E (A) (54)

The probability of displacement is composed of
two parts: 2-calls may either be displaced by
i=calls or by calls of their own class. There-
fore it holds

A
Uy, Xi[En(A1+A2) “E(A)] +[E (Ag+A,) <E (A)]
Aj+h,
I -
= -—A-a--[En(A1+A2) E, (Ay)] (55)
U A +A
- Ra - 1.2 E_(A +A,)=E_(A,)

(56)
Thereby we obtain the carried traffic Y2:

Y2 = A2(1WB2)h -AZUAzh

Ay [1-E (A))] -(A1+A2)[En(A1+A2) -E (A,)]

11}

A [1-E (A +A,)] -A [E (A +A,) -En(Al)]

(58)
This result is identical with that of eq. (14a).
This is evident, because displacements within
the same class have no influence on the carried
traffic of this class,

The mean holding time of all 2=-calls is given
by

i Yoh (A1+A2)[En(A1+A2)«En(A1)]
2 * oA, 1T b
2)A3 Ay [1 -E (A))]
= (1 -Uy Jh (59)

3.2.2 The holding time distributions

It is not necessary to derive these distribution
functions separately for class 1 and for class 2
The results to be derived for class 2 will hold

also for class 1, if we replace Ap by Aq and A4

by Ag = 0. (In this way eq. (50 5%,52,53) can

be derived from eq. (55,55,56,5@,59), too).



imilarly ms shown in chapter 3.1 we obteain the
corresponding difference-differential equation:

x=®l;2, .. n

a Fome s = oo . .
Q?Fx(“’f} e '{Xﬂ%&iﬁ»i{Z%Px(}t} (60)

%(xui)wPXQ1(>T) %(§1¢A2)GPX+1(>T)

The boundary conditions with respect to x are
given by

P (>1) = B (>0) = 0 (61)

and the initial conditions with respect to <t
Px(>0) = 1 x=l1,2, c.o 0

It is not necessary to develop a solution for
eq., (60). This equation is identical to eq.(17),
if we replace A5 in (17) by Aq+hy. Therefore we
can calculate t%e holding time distribution

P {>1) for this discipline in the same way as we
did for the discipline "first-come, last-=dise~
placed®,

The analogous problem without displacements by
calls of the own cless can be solved; too. In
this case eq.(60) holds only for x=1,2, ..n=1;
for %= n we cobtain:

Lp 1) = =(neh;)eB, (>1) +(n=1)eB, 1 (>1) (60a)

A 2=call, arriving when all lines are busy, is
then lost and cannot influence the state
*n lines occupied®.

But now equation (60) loses its regularity and
cannot be solved as described in chapter 3.1. An
analogous solution method as shown in chapter
3.% will, however, be possible.

To derive the d.f. for all calls of class 2, we
need the probability that a 2-call starts in the
state x. According to the discipline "first-come,
first-displaced”™ only existing i-calls are rele=
vant to an arriving 2-call. The reason for this
is that an established 2-call is, if at all, al-
ways displaced before the considered 2-call.
Conversely, a 2-call, which arrives after the
considered 2-call, will affect the holding time
of the considered call. This explains, why now
in eqg.(60) the term A4+Ap appears instead of A4
in eq.(17). Therefore we obtain:

Py
. Lt B 64
Px ¥ 1B, (Ay) (61
That means, we can calculate p; in the same man-

ner as in chapter 3.1, but now we have to re-
place Aq+hp in eq,(}ﬂg by Aq.

3.2.3 The distribution functions P(>1), Pg(>7)
and Pgl(>1)

To determine the d.T. P(>t), Pg(>t) and Pg(>1)

- . s .
as well as the corresponding mean holding times,

we can proceed in the same way as in chapter 3.1,

To solve the problem for r>»2 priority classes,
the rules, presented in chapter 2, are valid.

3,3 The discipline: random-displacement

3,3.1 The probabilities of loss and displace-
ment, mean holding time

Henceforth we don't admit displacements within
the own class. The results for the probabilities
of loss or displacement, resp., the carried
traffic and the mean holding time of all 1-calls
or of all 2-calls can be taken therefore from
chapter 2.
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3,3%3,2 The holding time distributions

Up to now only the quantity of established calls
of c¢lass 1 and 2 (¢f. 3.1) or only of class 1
(cf. 3.2) existing in the system were signifi-
cant for an arriving 2=-call. Now it is necessary
to know the number x4 of existing 1-calls and
the number xp of existing 2-calls, separately.
The reason is that in the state "n lines busy"®
the probability w of an established 2-call to be
selected for displacement depends on the number
xp of existing 2=-calls. It holds:

xzml
X

W o=

Thus it is inevitable to set up a partial dif-
ference-differential equation for the d.f.

Py, ,x, (>T)of the 2-calls. We obtain analogously
to chapter 3.1

for x =OA,”.nﬂ;x2=1£,...m1
Aj¥Ry = 142, oeo B=1

d s a L]

EPX19X§>T) = (x1+x2+A1+A2) Px; ,X2(>T)
+A1°Px,+1,xz(”) +A2'Px,,x,+1(>”
0Py l1,x, )

Hxp=1)eRy (%) (65)

and for x,.= 0,1, ... n=1; %, 23,2, s0o N

x1+x2 = 0n

,gmp (>t) = =(x,+x,+A, )P (>1)

dt Xi1s%2 1772771 Ky yXa

+x1.PX1°1,Xz(>T)
+(x2-1)'le’x2“1(>T)

Ka=i
+A1 % ‘le+1.xz_1(>1) (66)

The boundary conditions are given by
PX1,11(>T) =0 xy=0,1;, ...} x2=(g7)
and the initial conditions

= 20,1, coo N=13 %X,=21,2, oo 0
Pxx,xz(>0) 1 X4 L n=ii %3 L (68)

A handy genersl expression for Px X (»1) with
the aid of eq. (65) cannot be 1982 gdeprived,
because eq. (65) represents a partial differ-
ence=differential equation with nonconstant co-
efficients with respect to the variables x s¥X5e
Moreover, this equation is additionally com-
plicated by the boundary equation (66).

Besides a direct solution of the set of differ-
ential equations (65,66), which is, of course,
only reasonsable for small systems of equations,;

a numerical computation of the distribution
functions Px,,x2(>1) is possible as shown below:

We define a Laplace transform
‘ Zx,,x,(8)
Dp(8)

and introduce it in the eg. (65,66). If we write
down these equations for gy, x zs) in the matrix
notation, we get a matrix of the rank

m= (n+1)n/2.

By, (8) F L, (00D} =

The polynomials Dy(s) can be developed by in-
serting m+1 appropriate values for 8 (e.g. B =
20,1,2, ...) in the determinant. Thus we obtain
m+i pairs of values which consist of values for
s and the resulting values of the determinant.



By application of these pairs of values the co-
efficients of the polynomial Dp(s) can be cal-
culated by solving a set of m¢l linear equations,

In the same way the m polynomials le.xi(s) can
be found by inserting m values for eadh polyno-
mial Zy  4,(s) in those determinants which are
obtained by substituting the ‘"right side" of
the matrix for the corresponding column of the
determinant. All these polynomials Z (a)
are of degree (m-1), *1 9%z

By decomposing By, (8) into partial fractions
and applying the 1ﬂ6érse Laplace transform we
obtain finally P (>t).

X14X2
To get the desired d.f. P(>7), we need in addi-
tion to Py,,x,(>7) the probability of state
Pxi,x,+ FOP these probabilities holds:

%¥320,1,2, ... n=1; %Xy 20,1,25 oo. n=i;
Kgtx520,1,2, ... n-1

(A1+A2+x1+x2)»p +A,°p

X%z = Aiapxgoipxz 2 ¥xy,%s-1
4'<X:LM’)”px,q-.‘gs,xz
@ L]
+(x2 1) pxlsx2+1 (69)

xi*xaz ny x,= 1,2, oo n

(A14x14x2)'px;,xz = Alspx;—l,XQ +A2°Dx!anm1
+A1GpX1'1,X2+1 (70)
Together with the normalizing condition
? nEX)
p =1 (71)
= 2 Xy Xz
xi-O X5=0 s

8 set of m=(n+2)(n+1)/2 equations (69,70,71)
is given to determine the m state probabilities.

The solution of this set of equations can effi-
ciently be done by iteration methods, e.g. by
the Gauss=Seidel method, which is especially
suitable for solutions on a computer. This meth-
od has the advantage of a small memory-require«
ment and provides a high accuracy of the re=-
sults.

With the solution of the state probabilities
Px;,x; We can find analogously to eq. (34) the
proﬁagility that a 2-call starts in the state
(xiaxz)-

3.3.3 The distributicn functions B{>7), Pg{>t)
and Pg(>1),mean holding times

The d.f. of all 2-calls as well as those of the
displaced or succesful, nondisplaced 2=calls,
resp., and the mean holding times can be caleu-
lated in the same way as shown in chapter 3,1,

References

/1/ Brockmeyer,E., Halstrém,H.L. and Jensen,A,:
The life and works of A,K.Erlang.
Acga Polytechn. Scandinavia, Copenhagen,
1960,

/27 Katzschner,L.: Verlustsysteme der WHhlverp=
mittlungstechnik mit Priorititen.
Ph.D, Thesis, University of Stuttgart,1970.

/3/ Palm,C.: Research on telephone traffic
carried by full availibility groups.
TELE (1957),1, pp. 1 = 107,

224/8



