
Interference mitigation with auto-coordinated beamforming

ITG 5.2.4

Matthias Kaschub, Thomas Werthmann {matthias.kaschub,thomas.werthmann}@ikr.uni-stuttgart.de 18.02.2010 - Darmstadt

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Introduction

Algorithm

- Algorithm principle
- Cost functions

Simulation szenario

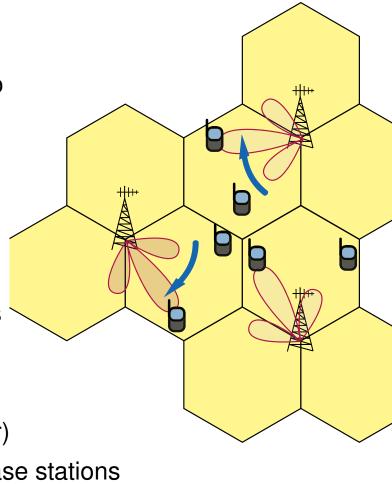
Evaluation

- Traffic dependency
- Throughput and fairness

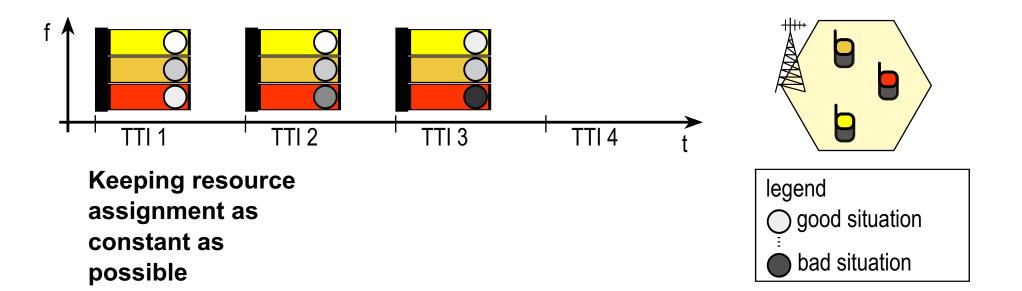
Conclusion

Definition

Interference Coordination algorithms reduce the inter-cell-interference by coordinating multiple radio entities


Scenario

- Cellular radio network, OFDMA, frequency reuse 1
- Interference limited
- Mainlobe steering beamformers at base stations add degree of freedom for scheduling

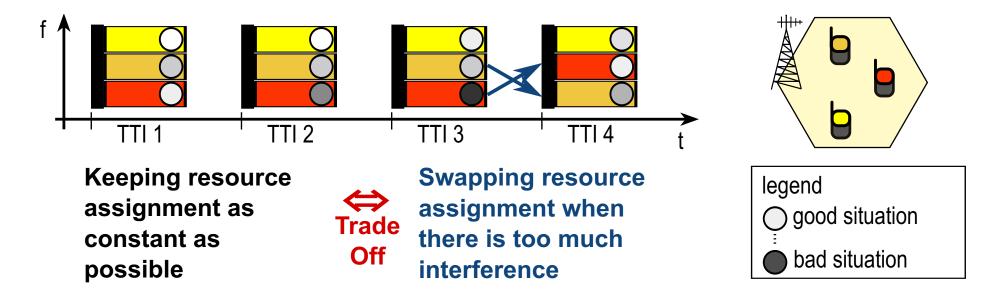

Our goal

Exploiting this degree of freedom (scheduling order)

- Without communication between neighboring base stations
- Without additional measurement and reporting

Algorithm principle

Keeping resource assignment stay constant


• Advantage

Reduces variation of interference over time, improves channel measurement

• Disadvantage

No adaptation to interference situation

Algorithm principle

Swapping resource assignment when there is too much interference

Advantage

allows for adaptation (tries to escape bad situations)

• Disadvantage

higher variance of interference, resource assignment cannot converge

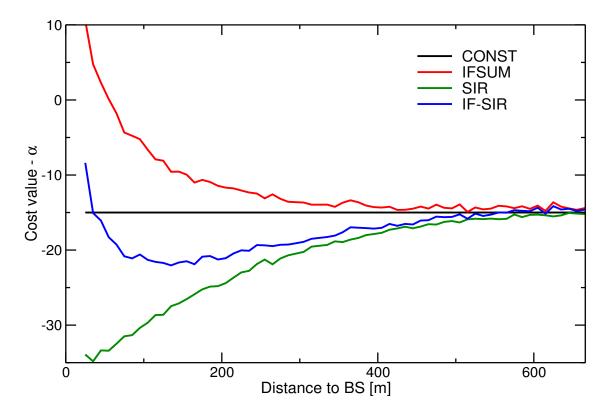
\rightarrow Keeping assingment is the default, swapping has to occur only rarely

Patent application no. 09 290 898.7:

"Interference Coordination Scheme with implicit Communication between neighboring basestations"

Definition

Cost function describes how "bad" the current situation (resource allocation) is


Fuzzy threshold α for swap decision

The higher the cost value, the higher the chance that the resource assignment is changed

Evaluated functions

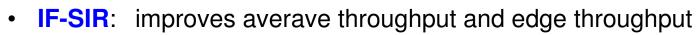
- CONST: Fixed swap propability as comparison
- IFSUM: Interference level
- **SIR**: SIR
- IF-SIR: Combination: interference level - SIR

All these can be derived from RSSI and CQI reports

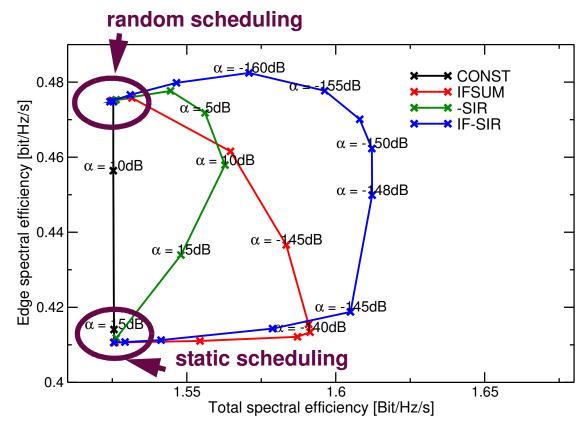
Simulation scenario

Parameter	Setting
Scenario geometry	hexagonal 19 site, 3 sectors per site, wrap-around
BS distance	1000m
Pathloss	Cost 231 (modified HATA)
Shadowing	Gudmundson, time- correlated (8dB)
Fast fading	none
Beamforming antennas	Measured pattern ⁹⁰ ⁴⁰ ⁶⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰
MS Velocity	10km/h

Parameter	Setting
MS Mobility model	Random direction on the playground, mobiles use the same wraparound as the radio propagation
Handover	Ideal handover to BS with strongest signal
HARQ	not enabled
AMC	LTE transport formats with ideal selection
Powercontrol	none
Traffic	On-Off Traffic, 200ms average on-time, full buffer during on phase
Number of MS	8 active (switched ON) MS per sector
Framelength (TTI)	1ms
Bandwidth	10MHz
Measurement of throughput	Over 10ms intervals

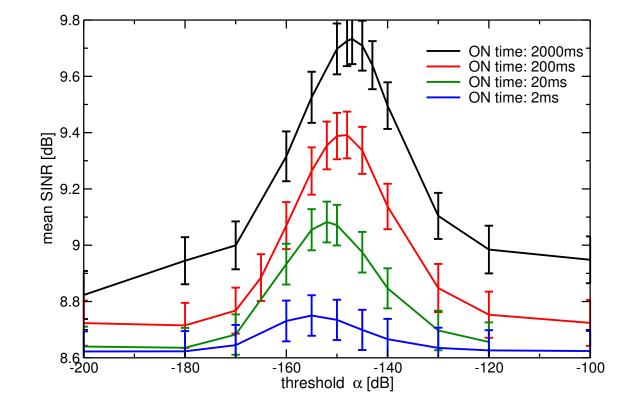

Throughput and fairness results

Common


- 200ms ON time
- Random scheduling has higher edge throughput, due to measurement interval

Influence of cost functions

- CONST: only trade-off between static and random scheduling, no coordination gain
- **IFSUM**: improves mainly average cell throughput
- SIR: improves mainly edge throughput


 \rightarrow Coordination algorithm improves cell and edge throughput

Traffic dependency

Average SINR

- Cost function: IF-SIR
- ON-time geometrically distributed
- Full buffer during ON time

Discussion

- 2s average ON time: close to greedy traffic
- Measurements suggest, that 200ms includes large proportion of traffic
- \rightarrow The longer the traffic is constant, the higher is the coordination gain

Presented interference coordination algorithm achieves coordination gain

- Without BS-to-BS communication
- Without extensive measurement
- With non-greedy traffic

Outlook

- Separating coordiated and uncoordinated traffic
- Situation-dependent cost function (e.g. including history)