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ABSTRACT

The paper deals with single-=stage delay systems of the

©types M/M/n and M/D/n and single-stage delay-logs systems
of the type M/N/n=s both in case of full or limited acces=
sibility. Further distinctions are made between single and
multi-queues, ideal and real gradings, and a finite or in=
finite number of txaffic sources. Waiting calls are ssrved
acg. to the disciplines FIFQ,RANDOM,or LIFO.

Starting from known results, various systems are reviewed

gystematicalliy with wespect to their stationary state prob=
. abilities, characteristic mean values and waiting time dis=
}tributionq Curves of calculated results are given and com=
pared with simulations,

1. INTRODUCTION

1.1 PROBLEM

In cexrtain tyves of telephone and data switching systenms
the data traffic flcw from peripheral to centralized de~
vices i& handled by concentrating switching networks: Usu~
ally, these access networks are operated ag delay systemsi
To désign such networks, reliable methods for grude =0f=
service calculation are nece 28580

o deseribe the traffiz flow in such systems, an adequate
quening model is constyucted cor g of dervers and
waiting places for gueuing. Arriving requests (calls) are
gerierated by a finite oy an infinite number of traffic
sources. If there are nultiple servers a certain server is
selected acc, to a hunting discipline. If all accessible
BErvers are occuplied, an arriving cdll may wait if there is
a walting place ava iilables Wailting calls are selected for
sexrvice acc.to.a ceTLaln intergueue or gueue discipline.

Input and service processseés of the queuing model are de~
scribed by distribution functions (df) of intérarrival
times of calls and service times, respectively.

The queuing model is analyzed by considering the discrete
stochastic process of the random number of calls within the
system. Under the assumption of stationarity the steady-
state probabili are obtained om which other character-
istic valies are derived for system dimensioning as e.g.
mean walting times.

In the past a numberx of solutions Has been dexrived for
single-~stage delay systems. These solutions will row be ex-
tended with respect to criteria as finite sources, real

d waiting capacity;respectively. The re=
su]tq are part of a table book on delay systems ]201 and
are also used ag basic modules for the analysis of link
systems with waiting 113].

1.2 BURVEY OF ANALYZED QUREUING MODELS

To yepresent Che queuwing models biriefly, Kendall's short
notation will be used with some modifications ag follows:
X/ Ak 8

type of arvival process, e.g. M: Markovian

¥ otvpe of service process, e.g. D: Deterministic
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Table 1: Survey of queuing models.

(g=nunber of traffic sources)

2. GENBRAL  QUNUING WODEL

2.1 SYSTEM STRUCTURE ZND OPERATING MOBES -

The system structure of the general quening model is shown
in Flg L.
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Fig.l: General queuning model.

Arriving calls hunt the servers with full or limited ac-
cessibility, cf. Fig.2.
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The special interconnection scheme in case of limited ac-
ces groups is called “grading". Two main types will be dis=
tinguished:

~ "{deal" gradings with a combinatorial number of grading

groups g = (i) in caseé of random hHunting or g = (Q)k!

in case of sequential hunting; and
-~ nonideal ("real) gradings.

In the latter case only standard gradings ]11! will be con-
sidered. From n;k and g the mean interconnecting number is
defined as = g-k /n.

Arriving calls are handled acc. to certain operating strat-
egies comprising hunting mode, queue and interqueue disci-
plines. As hunting mode we assume random or sequential
hunting. For nonideal gradings only sequential hunting will
be regarded. If no idle server is accessible, the incoming
¢call occuples a walting place in its group; if all avail-
able walting places are occupied, the incoming call is lost.

Waitihg calls are selected for sexrvice acc. to operating
modes as interqueue disciplines (selection of a certain
queue in a multi-queue system), queie disciplines (se-~
lection of a call within a queue), or disciplines with re-
gard to all "~ waiting calls in a multi-queue system. In this
paper the basic disciplines FIFO (first-in, first-out) ,
RANDOM; and LIFO (last=in, first-out) will be considered,

_When a call is selected for service,-its waiting place is
‘released immediately.

2.2 ARRIVAL AND SERVICE PROCESSES

Arriving calls are generated either by a finite number gof
traffic sources with an idle source arrival rate 0 oxr by
an infinite number g > ® of traffic sources with a con-~
stant arrival rate A . Throughout the paper only negative
exponential df ave assumed for the random interarrival

times TA podaes 2
1=-e J 7 = o0
Alt) = PGl = ~(g=r)olt n
Alt) (h=4 1=e fg=1) r g <
where - ¥ . the number of nonidle sources. The random service

(holding) times TII are mutual independent and identically
distributed acc. to 'a negative exponential or constant df
with mean h, i.e.
1= 3 Markovian (M)

(2)

' Deterministic (D)

Ht) = P{T, %4} = 1

where = 1/h the termination rate: The service time is
1ndependent of the source group by which a call has been
gerierated. From A, &, and h the offered traffic = A*h
and the idle source offered traffic B = a+h are deflnbd in
case of infinite or finite number of sources, respectively.

2.3 CHARACTERISTIC VALUES

Characteristic values are measures for the system perform-
ance (grade-of-service).They are derived from yandom variab-
les. describing the stochastic behaviour of the service
system as, e.g., X (random number of calls in sexvice) ,

7 (random number of calls waiting), oxr Ty (randonm waiting

time) .

plad) stationary state probabilities seen from an
outside cbserver

(o) stationary state probabilities seen from an
arriving call

Y carried traffic

Q mean gueue length of waiting calls

W probability of delay

B probability of loss

w mean waiting time of offered calls

tw. mean waiting time of waiting calls

W(>t) complementary df of waiting tine

s R e ot
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3. DELAY SYSTEMS WITH

v

EXPONENTIAL HOLDING TIMES

In this chapter pure delay systems will be considered hav=
ing single or many queues, infinite or finite number of
traffic sources; and full or limited accessibility,

respectively.

3.1 FULL ACCESS,

INFINITE SOURCE,

SINGLE QUEUE MODEL M/M/n

3.1.1 stationary State Probabilities

To desc¢ribe the system state,

a single state variable

i=0,1,... is sufficient indicating the number of calls

in the system. For xeasonsg of

distinétion is made between the numbers x and z

conformity in this paper a
of calls

being served or waiting by introduction of a pseudo-twodi~

mensional state variable (x,2)

a(x~1,0)

(x, 0“” o

b(x,0)

, cf. Fig.3.

a(n z=1) -

n, 0)<%_ 1,*._,_(l’l 271 g (R 2y

bn,z)

Fig.3: State space and transitions of the M/M/n delay
system with full access and a single queue.

In case of an infinite source traffic, the transition rates
are
alxo) = A , k=01 (3a)
aln,z) = A , Z=07..
blx.0} = X& , X=t2..,md
’ SN 3b
binz) = ne ,Z=01 (3R)
In the stationary state the eguilibrium eguations for the
probabilities of state p(x,z) are:
plro) <bixo) = plx=10)-alx-1,00 | x=12.., 7, (4a)
pinz)-bnz) = plnzalalnzt) 2212, ... (4b)
Introducing eq. (3a;b) into eg{4a,b) we have
plxo) = Pyr , Xsn (5a)
oz S
pinz) = Popi -f " 220, (5b)
where by = p(0,0) - and p = A/n.

The probability pg indicates generally that the system is in

the idle state;

it is found from the normalizing condition

that the sum of all state probabilities must equate to 1.

3.1.2 Characteristic Values
The characteristic values are
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defined as follows:

The df of waiting times depends on the underlying queue
discipline. Generally it holds:

o2

Wist) = P{T, 0t} = Zﬁ pinz)-

(]

o pnz) = A (6)

z=0

®

PI00) e &)

/’fﬂ,O)-ﬂ— (8) .
= pin0) s (9a)

_h

n{1-¢) (95)

wilt]z) (10)

where w(t|z) the conditional complementary df of waiting

times conditioned on the number z
In case of F

an arriving call.

witlz) = P, >tlz) =

which results to
1‘, Tw

5 tret)” -net
i=0 ¢! ¢ '

of waiting calls met by
IFO

(11a)

(11b)



So far, solutions eq.(5) ~ (11) do back to A.K.Erlang |5[.
For the RANDOM gueue discipline, the values w(tiz) are So=
Iutions of a differential equation system formiulated by
C.Palm and E.vaulot |7,25,28| for the random process of
waiting (Kolmogorov-backward equations) :

Witlz) = - (1ene) wltlz) + dwltz+1) +ne Fy wlilz-1) 2 20, (12)

To evaluate the df of waiting times numerically, approxima-
tions are important based on the lower moments; viz.

E[%’*WA’}O] = 1‘7/7?(4‘-?) :l‘w' (13a)
E[Tw2 7;V>0] = th/nz-{ri-?)z-( 1-§)2) (13b)
El1m,>d = 6h3(4+23’)/773-(4~5’)§(2—9)2 (13¢) .
respectively the variation coefficilent Cu acc. to
¢ = E[TP"ZI?;")O]Z . (13d)
E[‘/’w [Tw>0) 248

J.Riordan |25f approximates W(>t) by a hyperexponential df

; t gt
%{%QZ e lg-pe (14)

 where the parameters p,aj,;ap; are determined from the first,
second, and third moment acc.to eq.(l3a-=c). A new approxi-
mation |20,21] is based on the Weibull df:

—(at)®
l’\_fvgiﬁg e(a) (15)

>

whexe the parameters a and b are determined only from the
first and second moment by diteration acc, to

t, =1(1:4)]a (162)
2 ri+f) |

¢ = oo (16b)
" rl+sl .

This approximation fits better with simulation than
eqg. (14) although it is based on two moments only!

3.2 FULL: ACCESS; FINTTE SOURCE, SINGLE QUEUE MODEL M/M/n

' 3.2.1 Stationary State Probabilites

Iin a finite source pure delay system with a total number of
g sources there are s = g-n waiting places available. The
staté space is similar to Fig.3 but limited by z S,zmaqu~n:

“The transition rates are:

a’(X/O) = (g-x) S =00 (17a)
alnz) = (g-n-z)& z2=0.., G-
blxo) = xé k=12, 0
blnz) = nE L 2=01..,47 (170)

In the stationary state the egquilibrium eguations for the
state probabilities p(x,z) seen from an outside observer

are given by eq.{4a,b) with finite state space (zmaxﬁq—n)-
Introducing eq. (17a,b) into eq.(4a,b) we find
ﬂk o
pico) = prig 1T (g-d) rsn (182)
To4=0
z ne~t
pinz) = Pa':,g”r EVTT (g-c) 220, (181
! =0
An arriving call meets a state (x,2) with probability
(g-r-2)-pixz) r= 0,
Nixz) = 57 . ?M (19)

L tgapto) Sl frptng)
2,
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3,2.2 Chardcteristic Values

Analogously to Sectiom 3:1.2 holds

n-1 g-n ‘
Y=A = 7 rplro) +n) pnz) : (20)
X=0 Z2=0
. = : A ,
£ = zpnz) = §-A-5 (21)
et
W= ) ey (22)
z:0 .
wooo= b, by=eiW (23a,b)
The df of waiting times is determined by
§-n-1
Wit 2. Nnz)wltlz) . (24)
Z=0

In c¢ase of FIFO w(tlz) is given by ed.(lla). Solutions
eq. (18) ~ (24) were deyived by F.L.Bauer and H.Stormer f3].
An approximate solution was reported by A,Lotze [22|.

For RANDOM sexrvice of waiting calls a system of differen-

tial equations has to be solved analogously to eq.(12). The
egquations read in the general case of z:

tg=n-z-1)a+nelwitlz) + (q—n—z—1)o<: w(tlz#t) (25)
cwrltlz-1)

witlz) =
+ ne g

The solution of eq. (25} incorporates the roots of a char-
acteristic equation {263. For numerical purposes we use the
concept of approximating the conditional af w(tiz) by
exponential or hyperexponential df -meeting the first,
second and third moment of w(t|z) exactly. This concept
was 1n;roduced in case cf systems M/M/n +§  With RANDOM

By this
wltlz) & pz'e:%f ¢ lp)e

where the parameters g, , a,. v &y, are determined. from the
first, second, and thlxd moment of w(t!z) These moments
are obtained from lineay cystems of equations derived from

eq. (25), |18, 26] .

(26)

3.3 FULL ACCESS, INFINITE SOURCE,. MULTI-QUEUE MODEL M/M/n

In this case the general delay system of Fig.l is considerj
ed with g> input groups or classes of calls with arxival
rates Aj cod = 12,009

3.3.1 Stationary State Probabilities

For a complete description of the system performance,
various system state descriptions are defined which are
also used for delay~loss systems (cf. Chapter 5) :

cl,..,cz) o number 9f group=i-calls in
service
¢, group index of that call wait-
ing at the j~th position

a) (Xl,..,xg;

b) (Xl""xg; Zl""zg) X, as a)

i
zj number of group-j-calls waiting
c) (%X ; Cl""cz ) x total number of calls in serv-
ice without regard to their
- origin
c, as a)
J
ay (x ; greeerg ) x as ¢)
z, as b)
J
e) (= z) x as <)

2z total number of waiting calls

sibility,
s where = Kqte .ot <n%
3 where x Hq g

Because of full acc
are zero in all casge

the quantities Cj’ 2y and z



For any of the disciplines FIFO,RBNDOM; or LIFO with re-
spect to all waiting calls holds:

3ok, 2
) Pl iG] = Po'E(%?) 1% (27)
= =1 1
et L
b) Pl 2y, ,7;9) =y TT(”)F?)ZITT(“}T) (38)
=t =17
4
B 5T , Ken
©) P{X/ C’/""Q) = PR (29)
Pral o’y
AX
Qo  plez,..z) =4 % Lo e 00
ietg h n 9 194
AT, i S ¥=
[c)) nil ;:L(zf'/)' 7
AX
x<m
e) plx,z) = B ;; ; ‘ 319
by ¥ , k=7

~ where Ai = Xi/’e ; B = A1+"+Ag PPy = Ai /n ;i p= A/ .
The proof of eq(27).is carried out by insertion into the
egquilibrium stdte equation ‘and stating consistency for all
equations regarding the underlying queue discipline.
Eg.(28) = (31) can be found either directly by the same
technique or by combining equally probable microstates to
macrostates. Eq.(27) has been proved in case of FIFO along
with gueuing network theorems [1!. In case of RANDOM
eq.(30) was derived directly |[15].

aAdditionally,we state that there are g+l partial equilib=
riums within the very microstate space. The most important
one is that where each microstate is already in equilibri~
wn with all its lgﬂgr neighbour states. This property has
already been observed in cornection with milti-queue
delay-loss systens, of.|15,16,18], revealing some inter-

ésting aspects &s ;e.g.,with zéspect to

- procf-technique
= recursive calculation of the state probabllltles
= approximations.,

Especially the last aspect was very successful for approx-
imate solutions of multidimensional state spaces yielding
excellent aceuracy; cf.;30,16,18 and Chapter 5 .

3.3.2 Characteristic Values

BAny of the distributions egq.(27) - (30) yields the fol-
lowing results (index j refers to calls of group number j,
quantities without index refer to Section 3.1 )

% = Ay (32)
QJ = pinopEs (4 ?)Z = %-ﬂ (33)
W = pmo) "':“‘ = W (34)
wy = pno) = m(4 v i w (35a)
by = s = (350)

]

Wy >t) Wixt) | §=12.,4. (36)

3.4 FULL ACCESS, FINITE SOURCE, MULTI-QUEUE MODEL M/M/n

Now the general delay system of Fig.l is considered with
g>1 input groups (queues), each having an individual num-
ber of sources . and idle source arrival rvate a. ,

J o= 1,2,¢.,6 « Fo¥ short, only plicit solutions of state
probabilities are given. The state description follows
Saction 3.3 .

For any of the disciplines FIFO, RANDOM, or LIFO with
respect to all waiting calls holds:

3

pa i Yﬂ4
@s)ﬁ(%)w "ﬁ (g, -v)) (37)

a) P{Xf/“‘l"‘qufﬁ"'/cl) = ‘:'ﬁ(ﬁ‘(.\“-

ki

' g 3 (L

b} P(Xh e ]/211 119)“ g’é-ﬂ;( )Z a:ij:{"};f 7 V)) (38)
where B = ai_/s . The eguations can be proved as outlined
in Sectlon 3.3.1 o Por FIFO eq. (37) was proved in |1{.

The marginal (macré) state probabilities analogously to
eq. (29) =~ (30) are scmewhat difficult to give in explicit
form. Under a slight approximate assumption, however, an
explivit solution cap be derived in case of RANDOM and
G, = O , L = 1,2,.050 ¢
i
1 o

LT (6) , ren
plz,..2,) = o 078 (- (39)
: ny
& Feo -y 11yt

X=n
where B= G/€, g = dqy#agts .+ . To prove this formula, we
assume for x = n that the n calls being in service had
been generated unlforwdy from the various soulce groups,
i.¢, we assume xj'n gy /9 4+ 3 = 14244459 + For g=1 thls
formula coincides with eq (18) .

3.5 LIMITED ACCESS,; INFINITE SOURCE MODEL M/M/n (k)

Now, the n servers are assumed to be graded with limited
accessibility k . Both, ideal and real gradings are con=
sidexed.

3.5.1 Stationary Stats Probabilities

In the general case; there does not exist an explicit
closed form solution, Bxact results can only be obteined by
iterative solution of equilibrium eguations of microstate
probabilities [16,i%,39|. Here we only refer to approximate
solutions for the symmetrical case Aj = NGy 9=li256 058 «

Defining the state fx,z) analogously to Section 3.3:.1
the state space acc. to Fig.4d. is obtained,

S (x+1,2)
\ ‘ ;
alx,z=15m,2)
(x,21) STI00 (x,2) T (x,z+1)
b{x,z;x,8~1) ?g T~
a(?{"?‘rz;xsz) X z;x~1 Z)\Symmafgz
(x=1,2)

Fig.4: State space and transitions of the M/M/n (k) delay
system with iimited access.

In case of an infinite numbey of sources the transition
rates are:

al-4z; xz) =  Aalx) , k=712 m 120  (40a)

alyz-1,xz2) = Aelx) , Y=AEdq.m 221 (40b)

bliz %12 )+ ez gz-f) =x6, x=12.,n (40¢)
where c(x) the blocking probability and u(x) = I-c(x) the

passage probability of the grading acc. to

. o= (77'“,’73’»/

. (s
c(x) = (A)/v’;; , .t‘:ﬁ/;f%j_“’fﬂ
fﬁ/ } ,F$é£%v”

(ideal gradings) (41)

(real gradings)
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In case of real gradings c¢(x) is calculated using a reduc-

ed accessibility k¥ = k*(n,k,?,M,interqueue disce) 4 e.q,
in case of standard gradings |19]
ty g df g A M ] L ;
é:é-—?ﬁwgv}wz s K- v (42)

with a=0 or a=1 for interqueue discipline FIFO or RANDOM,

respectively.

Under the special assumption of partial balance of state

. (%,z) with its lower neighbour states ("half-symmetry") the

equilibrium state equation reads in the general case:

xeplxz) = aletzxz)ple-1z) + alyztxz) piz-1) (43)
By insertion of eq. (40a,b)and summation over all z the
marginal state probabilities pi(x) are obtained by re-=
cursion:
X4 p -
ple) = pedTut) [ Tli-Aed)] | ¥=gfom 49
1=0 t=q
3.5.2 Characteristic vValues
n oo n X >
Actle)
0 = L2 zptz) =) pix) ) =S 45
Y=k z=0 4 x:;ép t'z:é L-Actd) t45)
7o 7
W= 2 plzlely) =) pl)ct) (46)
¥=k z=0 =4
w = O/ , b= w/iw. (47a,b)

The 4f of waiting times can be approximated by a gamma df
t19] or even better by a Weibull df analogously to eqy (15)

T and (16) using the following variation coefficient
H"fﬁj‘* o for F/F
5 (4' mn )E
e -
CW = (48)
for R/F

SNIGS.  FETOR
29N )

where F/F or R/F are short hotations for intergueue/queue
discipline FIFO (F) or RANDOM (R) 4 respectively.

Eqg: (43) = (47) were derived by M.Thierer iBO;Bll for ideal
gradings ("Interconnection Delay Formula IDF") . Extensions
with respect to real gradings and the df of waiting times
vere reported in |19] ¥

3.6 LIMITED ACCESS, FINITE SOURCE MODEL M/M/n(k)

In this section the solution technique from Section 3.5 is
extended to the finite source model with q5 = Q/g sources
per grading group and G4 = Gy F=1,25 0009

3.6.1 Stationary State Probabilities
With the state definition (x,z), z=0,1,..,n, 2=0,1,...,

Zmax (X} » the same state diagramm of Fig.4 holds in the
general case with

al-fz,xz) = (atx-1) - (x-1)(4-a’{x~f))] o X =127, (49a)
2= 01 Zg %)

alvzfxz) = [Qclx) -xd() -z J« R (491)
z s 420,700

bz x1z) + blxzxz-1) = ¢ K= 12,.,m, (49¢)

where c(x) acc. to eq.(41),
calls in service, origi ;
blocked grading groups.
approximated by

dix) =

nentary
|
It was found |14] that d{x) can be

gﬁ»c(x)/xM = el /x| r=kbefn. (50)

7 t

I g R g

Another complicationis caused by the finiteness of the
state space. Here; an upper number of waiting c¢alls in
state x 1s introduced by rounding up the expected number
of sources not in sefwice within the blocked grading
groups ¢

r

Ixmal1l

z )= (51)

e -ENTHER[-Qele)2di)) | v hdis].., 7
The general equilibrivm state equation reads analogously

to eq. (43) with eq: (4%),(50), and (51). The two-dimensional
state probabilities px,z) are calculated numerically by
recursion. From pi(x,;z} the state probabilities T (x,z) seen
by an arriving call are determined analogously to eq. (19):

xlx0) = [@—x)p(x;o)/g ‘ . r=01., &1
Nlz) = (@-y-z) plez}/p . Kekkd ; (52)
: 250170 (k)
P4 Z,pt) = (0wt - et-dec)] bz 1) /D, e
with

i1
D= Z (&—L)pl’tﬂ) * Z{ j“ (G-s-f)plig) +[6?a{a) - d(z))] p[nz,m{z})}.
i

3.6.2 Characteristic Values

Based on plx,z) and W(x;z) the following values are

derived: o
N Zisax (¥ ‘
Y=A =) ) xpkez) (53)
X=1 Z=0
N Zmai (] A
) =) ) zplzl =Q-A-g (54)
=% 7=0
N Zygyl¥)=
- Qcle)-xdl)-2 .
w Z‘; L M) (55)
w = hQ/A L, by= w/W (56a,b)
4. DEIAY SYSTEMS WEWH CONSTANT HOLDING TIMES

In thig chapter single or multi-gqueue delay systems are
considered having an #nfinite number of traffic sources
with total arrival rate A and constant holding time h .

4.1 PULL ACCESS, INFINITE SOURCE MODEL M/D/n

4.,1.1 Stationary State Probabilities

For the exact analysgis we follow the concept of descr:b:mg

the system state at time epochs ty ¢ toth o tgt2h o, ...
introduced by C.D.Cromzelin |8f This special view allows
the description by an imbadded Markov chain, For conformi-

ty the system states at that time epochs will again be

indicated by - (%,2).

In the stationary state the following.equilibrium equations
hold:

ks
plo) = ayg, + }j{ pini)-g, X< (57a)
=1
i
pinz) = zm } plni)q Ly , ¥=mnz20, (571)
where .
X v
a = Lopd g = ’»37.@"‘ (57¢)

X=0



To solve ed.(57a,b) usually the generating functioh G(z) of
the stationary state probabilities p(,z) is defined. The
solution for the state probabilities involves n roots of
a transcendental eguation.

For numerical reasons a direct method 1s used to solve

eq. (57a,b) by iteration starting from an initial state
distribution ( M/M/n ). An upper value zpax ' is determined
such that 19(2 o - QI/Q <1078 . To keep the compute
time as low as pos Slble a number of computational tricks
had to be applied. By this method, systems with up to 200
servers and offered traffic per server up to 0.95 can be
calculated relatively fast.

4.1.2 Characteristic Values

From the stationary state probabilities the characteristic
mean values £,W,w, and ty can be evaluated by application
of definitions given in eq.(7) -~ (9).

The df of waiting times is expllc1t3y known in case of

FIFO with respect to all waiting calls, cf. ]8| :
(rept)m-1=v"
ront [ Algrv)
Wit) = 1-0, a4 Tt 7T - e ;- (58)
us0 =0 [(7* wrt)m 4= v]

where

t = (r+0)h 0ETAS

<i 'The numérical evaluation, however; runs into complication

for large delays. This problem can be overcome by programm-
ing with double-precision and by exponential continuation
of W(rt) for large t. The second moment can be determined
using the general relationship between the k-th factorial
moment of the number of calls in the system and the k-th
ordinary moment of the waiting time for queuing models

M/G/1i IlO].Using this theorem, we arrive at
» Wz _
W, FiFo 04 ) (59)

is easily oPtained from the numerically
the known

where E[ﬁ @~ 1)]
explicit state probabilities. In case of n=l
result ,¢A+1//3 is cbtained ]2?]

c.2 =
“w,F180

In case of RANDOM with respect to all waiting calls;, an
exact solution is known only for n=1, cf. P.J.Burke l6].
In the multi-server case n>l we approximate the second
moment acc. to a heuristic similearity theorem |9 21] using
the results of the second moment of waiting time for gusu-
ing systems M/M/n FIFO, M/M/n RANDOM; and M/D/n FIFO.

By that

& V(o

Cw, ravoort = (?CWF/F #9)/(2-9) , (60)
where c 2 acc. to ed.(59). This formula yields in

W, FIFO - "
case of n = 1 the exact result §29i. With ty and
CW,RANDOM an approximate expression for the 4af of waiting
times is obtained using the Weibull df acc. to eqg. (15), (16) .

4,2 LIMITED ACCESS, INFINITE SOURCE MODEL M/D/n(k)

For this model M.Thierer [32] derived the stationary state
equations based on the blocking probability cofx) for ideal
gradings and & two-dimensional state (x;z) as in Section
3.5 . Starting from that solution the method has been ex-
tended to real gradings and the df of waiting times.

4.2.,1 Statiopnary State Probabilitics
Acce to [32[ the equations of state ave as follows:

ksl

X

plxol = Mixo)- 2 9. . *p, Plig) , r=ol.m (61a)
pas L
X4+Z n

plz) = MGz)2. furg " Loplg) , rehm (o)
'“C’ 0 z&o/ .

where

Mbyzl= Mieg2) ulet) +Mlgz-1)cw) (61¢)

and c¢(») acc. to eq. (41) for

with qy acc. to eg.{57¢)
to eqg. (42) ).

ideal as well as real gradifigs (k¥ acc.

For the numerical evaluation an iteration method -is used
ag explained in Section-4.1.1 with initial values from the
system M/M/n(k) and an upper value Zmax +. Using a num=
ber of computational txicks the necessary computer storage
and compute time could be cut down such that fairly large
systems with up to 200 servers and an offered traffic per
server up to 0,95 can be calculated in less than 1 minute.
The method was used for the calculation of tables |20|.

4,2.2 Characteristic Values

The characteristic values §,W,w, and tyy are calculated
from the numerically explic¢it state probabilities p(x,z)
acc. to the definitions given in eq.(45) - (47).

For the df of waiting times only the case of RANDOM inter-
queue é&nd FIFO queue discipline has been considered {R/F).
For the variation coefficient of waiting times a heuristic
formula was derived frem systematic simulation studies:

C;f/ jiE = ““‘,’;}rgm‘wmw -7
‘ 1 {1-M77)

(62)

for n*k , and N 2 . With ty and CW the df of wait=
ing times can be approximated by a Welibull af ace. to
eq. (15) and (16).

5, DELAY-LOSS "~ SYSTEMS WITH EXPONENTIAL HOLDING TIMES

In this chapter combined delay and loss systems are congid-

ered, i.e. systems with a limited number of waiting placeg

acc. to Table 1 .For systems with generdl holdlng times

one gerver and finite waiting roeom M/G/1=8 there were

also-exact and approximate solutions derived for the df of

waltlng times in case of FIFO and RANDOM queue discipliney
120 21], which are, however, not included din ‘this paper,

5.1 FULL ACCESS; INPINITE SOURCE,;SINGLE QUEUE ;MODEL M/M/ni=s

5.1.1 Stationary State Probabilities

Using the same notations as in Section 3.1, the only dif-
ference in the calculation of state probabilities lies in
the finiteness of lhe state space in Fig.3 with respect to
Zinay = S. The state probabilities are given by eq. (ba,bj.

5.1.2 Characteristic Values

Analogously to Section 3.1:

Lo s
Y = Lorplo) * n) pmz) = A1-B) (63)
¥=0 Z:0
. 2 = [4z07 587
0= 402-,0(72,1.) pin,0)-§ [(H)z P ] (64)
51 s
Wo= 3 P”“:) = p{ﬂ/g)._z._}g_ (65)
Z=g
B8 = pins) = pmo)-§* (66)
= I R :
wo= W'fe'h"y 1-9% ] by = (©7a,0)
The df of waiting times reads in case of FIFO
TR -1 ‘- —net
W[ gt s 50 e, e
Wot)= 555 [/1 Sl e (68)



- THe characteristi¢ values
‘obtained from eq.(20)-(24) by substituting (g-n) by s in

These results go back to H.Stérmer ’27[. For the queue dis~
¢iplines RANDOM and LIFO exact results for the df of
waiting times and higher order monents have also been de=~
rived, cf. ]17,18]. In:the exact solution of the df of
waditing times, howéver, eigenvalues of a system of differ-
‘ential eguations are involved. :

In case of RANDOM quéue disecipline approximate methods have
béen used acc. to the congept of approximating the condi=
tional df of waiting time by exponential sums as explained
in Section 3.2.2 for the calculation of tables |20f.

5.2 FULL ACCESS, FINLTE SOURCE, SINGLE QUEUE MODEL M/M/n-s

5.2.1 Stationary State Probabilities

By the same arguments as used in Section 5.1 , the solution
eq. (18a,b) holds for p(x,z) also in case of a finite number
of sources. The arriving call state distribution m(x,z) is
obtained analogously to eg. (19) by substituting the upper
bound (g~n) by s .

5.2.2 Characteristic Values

Y, 9 W, wi , and W(>t) are

the upper summation bounds ( in a delay~loss system holds
s <g+#n ), The loss probability B is equal to T(n,s).

These results are included in the more general treatment

of this model with priorities [4|¢

In case of RANDOM queue discipline, the same principles

can be applied for exact and approximate calculations as
explained in Section 3.2

5,3 FULL ACCESS,INFINITE SOURCE,MULTI~QUEUE MODEL M/M/n~s

In the multi=gueue delay-loss system two types of storage
models will be distiriguighed: firstly, when ‘there is a
comiion storage ¢apacity 8 for all calls, and secondly,
when there is a limited storage capacity Sj exclusively
for calls of group or class j , J2142,..,9

5.3.1 Stationary State Probabilities

Using the identical state definitions as introduced in
Seéction 3:3.1 we state:

... For any of the disciplines FIFO, RANDOM, LIFO with respect
“to all waiting calls

‘the state distributions acc. to
eqg.(27) - (31) hold also in case of delay~loss systems with
common storage capacity $ for all classes of calls (z = 8).

Such a general theorem does not apply in case of individual
storages per class. Nevertheless, it can be proved:

Foy any of the disciplines FIFO, RANDOM, LIFO with respect
to all waiting calls  the marginal stdate distributions
acc. to eg.(29),(30) bold in case of delay~loss systems
with an individudl storage capacity sy for calls of
class 3§ (z. sy, =125 ee g .

J 3 .
The proof of these theorems again is done by inserting the
results into the equilibrium state equations and stating
consistency. In case of RANDOM eq. (30) has been proved
directly |15

For the practical case where s, = 8 and Ay = Alg
a gpecial solution has been derived which 18 included in an
algovithm given in Secticn 5.5

5.3.2 Characteristic Values

Dependent on the underlying storage model the charactervis-
tic values can be defined straightforwardly from the state
distribution eq. (30). The definitions will not be repro-
duced hore.

PmEripean g raTIaT ror e

5.4 FULL ACCESS; FINITE SOURCE, MULTI-QUEUE MODEL M/M/n=g

As in Section 3.4; we will only concentrate on the state
probabilities. Using the same state definitions as dntro-
duced in Section 3.3.1 , we find for the two considéered
storage models:

For any of the disciplines FIFO, RANDOM, LIFO with respect
to all waiting calls the state distributions acc. to

edq. (37),(38) also hold in case of delay~loss systems with
common storage capacity 8 for all classes of calls (zés).

‘Under the same approximate assumption as in Section 3.4

eq. (39) holds also in case of delay-logs systems with indi-~
vidual storage capacity s, for calls of ¢lass § (z. £ s.),
o1 2 3 J b

j ll"‘lg‘

5.5 LIMITED ACCESS, IMFINITE SOURCE MODEL M/M/n(k)-s

The ekact analysis of graded delay-loss systems has been
carried out under general assumptions by numerical means,
cf,|16,18i. Here, we only confine o.s, to symmetrical
systems having s, = s waiting places and equal arrivel
rates Aj = \g per grading group, J=1,2;.,.,9 -

5.5.1 Stationary State Probabilities

Contrary to the state descriptions above, we define a state

(% 5 u,,-.,u_ ) with
1 s
x total number of calls in service
u, total number of calls waiting on the

j=th waiting place, j=1,2,..,8 .

Thig description by "waiting place yows"™ reduces the num=
ber of states considerably |161. The state space and ite
transitions are shown for the geéneral case in Fig.5 .

(x+1;u1,..,us) ivs (x;ui,..,uj+1,.a,us) iis (x;u],..,us+1)

X( ” A

Symmetry
= (x;u1,..,u.,..,u ) wess s e -

4 s line
(x—?;ui,..,us) . (x;gig..,uj—1,..,us) e (x;u1,..,us~1)
Fig.5: State space and transitions of the M/M/n(k)-s
delay~loss system with limited access.
With the general transitioh rates
a, = A[t-cen] (69a)
Gy = )[gc’(x)—(uf»;)}/g (69b)
Y .
= oy = y
et M%V g, F723.,s (690)
1 = ¥ 69d
%ﬂ+@&+ +Q% Ye (694d)
and jum assumption (cf. Section 3.3.1)

ormula can be dervived:

S
Xe '/}("f/'{"‘il"'/f’ff) = ax,{f’{x'i"“}p“/“r) ” ~~' 65’,( r/'/)()‘;"“/a-f ) (70
2::4 o{
with
S S S & ~-£N7‘/ER('-gc(x)) / 70



and ¢i{x) acc. to eq.(41). For real gradings the value ¥
for pure delay systemns ‘18[ has to be modified by sub-
stituting p=A/n by ¥/n and by inSerting a reduction
term s/ (s+1); for standard gradings;e.g.,we have

2 . s 3
g2 g BE[ L) BN A i 57

&

, 824, (1)

insted of eq.(42). Since Y is a result, iterations have to
be performed |14 |. Finally, we state that eq.(70) yields
the exact results in case of full access.

5.5.2 Characteristic Values

n g 3

Y =275 . cplew, .u) = Al1-8) (73)
X=0 ({{—’0 L{S-"D
n 4 @

Q jé @Zo%a lgrras) Pl ) (74)
n 4 9.

wo= 220 lew)-2lptr,. u) (75)
kb 40 4z !
(AU A

B =02 2.2 phy,.u) (76)
Y=k 4o UEo

w o= 0/, t,=w/W (77a,b)

5.6 LIMITED ACCESS, FINITE SOURCE MODEL M/M/n(k)-s

5.6.1 Stationary State Probabilities

The method -of Section 5.5 has been extended to a finite
number. of g4 =g = O/g sources per grading group with
Oy o= Gy 35124448 The transition rates £for the state
space act. to Pig.5 ares

a, = [uty) = ea){1-d (1)) ] ot (78a)
. g kel ),
aﬂﬂ— [gc(x)—(u4—4)] (q 9¢(x))°L (78b)
" : i xdly ; }
%}Hl” [%;;,* Wj“”} (7“[7-4J"~9-C~&m} o, f=23.,s (78¢)
b, ”‘%4"‘“"‘549 = Y€ (784)
with ¢ (%) acc. to Section 5.5 and d(x) acc. to eq.(50).

Analogously to Section 5:.5.1 the state probabilities are
obtained from eq.(70) with transition rates acc. to
eq.(78a~d) . From p(xjuq,..,ug) the arriving call state

distribution n(x;ul,..,us) is found:
(@t =) Pl s )

Wit ¢) = g3
2o 3 b (R g s )l G 85)

1=0 ‘le Fs50

(79}

<

5.6.2 Characteristic Values

The carried traffic Y, the mean number of waiting calls (Q,
and the mean waiting times t, and w follow directly acc.
to definitions given in eq. (73),(74), and (77a,b). For the
probabilities of delay W and of loss B holds

S

no 4 4 Qolx)~ Xl (X} a4 A%L?h ;,:;‘M s

W = 5;’ ) [/, My, w0y
fo

“ro Ao
n g i/
SR . vdly) . ) .
B = 2. . %{79;(“) JJ TC(r 4y, 45) (81)
X=fh ,a/f;:p A

INCHPERE § AT

Finally, we note for xseasons of completeness that the cor-
responding solutions For graded loss systems are reported
in |5],123], 124}, |11}, and |2| both for ideal and real
gradings.

6. NUMERICAIL = RESULTS

In this chapter some ¢alculated results are given to show
the influence of various system and traffic parameters on
the main characteristic values, and to check the accuracy
of approximate result= by comparison with simulations.

6.1 FULL ACCESS, SINGLE QUEUE MODELS M/M/n

The mean values of ths &ingle queue delay system M/M/n with
full access and finite or infinite number of sources are
known exactly. In Fig.$ the dfs of waiting times Wity /v
are given for systems with n=10 sexrvers, g=20 and g > @
traffic sources,and service acc. to the queue disciplines
FIFC (Qashed curves) and RANDOM (solid curves), respective-
1y. The results £6r FIFO hold exactly whereas the results
for RANDOM are appromimations acc. to Sections 3.1.2 and
3.2.2 . The approximate results are in good accordance with
simulations. :

6.2 LIMITED ACCESS Momns M/M/n(k)

Fig.7 presents the prabability of delay W and the relative
mean wailting time of waliting calls T, = L /h dependent on
the offered traffic per server A/n for a limited access
delay system with n=3( and k=10, The solid curves and the
simulation results hold for a standard grading with M:31/3,
g=15 sources per growp, and R/F discipline. For comparison,
the corresponding réswits are given for this grading for

g =+ % and R/F discipiime (dashed curves) as well as in case
of an ideal grading with a total of Q = 150 sources (dotted
curves) .

6.3 LIMITED ACCESS MODELS M/D/n(k)

In Fig.8 the characteristic values W and Ty are drawn
versus A/n  for gradimgs with n=30; k=10. The solid curves
and simulations hold im ¢ of a standard grading with

M=2 ; R/F discipline, emd constant holding time., For com-
parison the corresponding results are given for this grad-
ing with exponential holding time (dashed curves) and for
an idedl grading with wonstant holding time (dotted curves).

L

8

Note, that the holding #ime characteristic influences main-
ly 1y whereas W rvemalns nearly unchanged (real gradings).

6.4 FULL ACCESS, SINGEE QUEUEL MODEL M/D/n

In Fig.9 the dfs of weiiting times are shown for the delay
system M/D/n  with s=1D for FIFO (dashed curves) and RANDOM

(solid curves) gueue Fi

RANDOM,
Section 4.1:2
ly yields a slightly %

a twormoment &

seiplings, respectively. In case of
roximation has been used acc. to

Compared with simulations, eq.(60) general~

i high variation ccoefficient which

is also reflected in Fig.9 .

6.5 LIMITED ACCESS MHE

S M/M/n(k)-s

Pig. 10 and 11 give 1ts for the limited access delay~

loss system with sta grading having n=30, k=10, M=2,

and  5=3 waiting places per grading group. In Fig.l0 an in-

finite sourt tratffic | assumed. For comparison, the cox-
£ o s results ave added (dashed

the corresponding results for the
ch a total of Q=120 traffic sources
nd finite source delay-loss sy
> caleulated results are suffic

ONE.

finite sourc
For hoth,
with limited

Ly accurabe Lor appd
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CONCLUSION

In this paper a number of single=stage delay systems has
been reviewed in a systematical way. Starﬁing from known
results, which are either hriefly repeated or referred to,
various extensions have been presented with respect to
multi-queues (classes); finite number of traffic sources,
limited accessibility, and different quene disciplines.

The results were partly used for tables on delay systéms
and form basic modules for the analysis of multi-stage
connecting arrays (link systems) with waiting. The exten-
sions in case of multi-class delay systems are also appli-~
cable to Markovian gueuing networks with respect to queue
diggiplines RANDOM and LIFO. In case of multi-class delay-
loss systems two subcases of limited storage capacity are
distinguished: common storage for all classes or individual
storage per class. The gereral product solutions of pure
delay systems can partially be extended to those delay-loss
systems} All presented solutions are adequate for a com=—
putational evaluation; approximate solutions were checked
by simulations yielding sufficient accuracy for practical
applications (dimensioning) .
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