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The paper deals with single-stage delay systems of the types M/M/n and M/Djn and single-
stage delay-loss systems of the type M/M/n — s both in case of full or limited accessibility. Further
distinctions are made between single and multi-queues, ideal and real gradings, and a finite or
infinite number of traffic sources. Waiting calls are served according to the disciplines FIFO,
RANDOM or LIFO. ‘

In Part I of the paper, the theoretical background is developed. The various queuing systems
are reviewed systematically with respect to their stationary state probabilities and characteristic
traffic values (means, distribution functions of waiting time).

Part II concludes with numerical results of the major characteristic values and simulation
results for validation of approximate analysis methods.

Einstufige Wartesysteme mit vollkommener oder unvollkommener Erreichbarkeit, unendlicher oder
endlicher Quellenzahl und exponentiellen oder konstanten Belegungsdauern — Teil I: Theorie

Der Beitrag behandelt einstufige Wartesysteme des Typs M/M/n und M/D/n bzw. einstufige
Warte-Verlustsysteme des Typs M/M/n— s jeweils im Fall vollkommener und unvollkommener
Erreichbarkeit. Weitere Unterscheidungsmerkmale der betrachteten Systeme sind die Anzahl der
Warteschlangen, ideale oder reale Mischungen sowie eine endlich oder unendlich groBe Anzahl
von Verkehrsquellen. Zur Abfertigung wartender Rufe werden die Disziplinen FIFO, RANDOM
und LIFO vorausgesetzt.

Im Teil I des Beitrags werden die theoretischen Grundlagen entwickelt. Die verschiedenen
Warteschlangenmodelle werden systematisch behandelt hinsichtlich ihrer stationiren Zustands-
wahrscheinlichkeiten und charakteristischen Verkehrswerte (Mittelwerte, Verteilungsfunktionen
der Wartezeiten).

Teil 11 schlieBt den Beitrag ab mit numerischen Ergebnissen der wichtigsten VerkehrsgréBen
sowie Simulationsergebnissen zum Genauigkeitsnachweis von approximativen Analyseverfahren.

1. Introduction
1.1. Problem

In certain types of telephone and data switching
systems the data traffic flow from peripheral to
centralized devices is handled by concentrating
switching networks. Usually, these access networks
are operated as delay systems. To design such net-
works, reliable methods for grade-of-service calcula-
tion are necessary.

To describe the traffic flow in such systems, an
adequate queuing model is constructed consisting
of servers and waiting places for queuing. Arriving
requests (calls) are generated by a finite or an in-
finite number of traffic sources. If there are multiple
servers, a certain server is selected ace. to a hunting
discipline. If all accessible servers are occupied, an
arriving call may wait if there is a waiting place
available. Waiting calls are selected for service ac-
cording to a certain interqueue or queue discipline.

* Revised manuscript of a paper presented at the 8th
International Teletraffic Congress (ITC), Melbourne, No-
vember 10—17, 1976.

** Dr.-Ing. G. Kampe, Dr.-Ing. P. Kiithn, Institut fir
Nachrichtenvermittlung und Datenverarbeitung, Universi-
tit, Seidenstrasse 36, D-7000 Stuttgart 1. ‘

- Input and service processes of the queuing model
are described by distribution functions (df) of inter-
arrival times of calls and service times, respectively.

The queuing model is analyzed by considering the
discrete stochastic process of the random number of
calls within the system. Under the assumption of
stationarity the steady-state probabilities are ob-
tained from which other characteristic values are
derived for system dimensioning as e.g. mean
waiting times.

In the past a number of solutions has been derived
for single-stage delay systems. These solutions will
now be extended with respect to criteria as finite
sources, real gradings or limited waiting capacity,
respectively. The results are part of a table book on
delay systems [20] and are also used as basic mo-
dules for the analysis of link systems with waiting
[13].

1.2. Survey of analyzed queuing models

To represent the queuing models briefly, Ken-
dall’s short notation will be used with some modifi-
cations as follows:

XY |n(k) —s

where
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G. KAMPE and P. KUHN:
X type of arrival process, e.g. M: Markovian,

Y type of service process, e.g. D: Deterministic,

n number of servers,

k accessibility (if limited),

s mnumber of waiting places (if limited).

With this notation an overview on the problems
dealt in this paper is given in Table 1.

Table 1. Survey of queuing models (¢ number of traffic
sources).

Type of Delay systems Delay-loss
queuing model systems
M/Mn(k) M/D/n(k)y M[Mn(k)—s
g—o0 g<loo q—> o0 q->o0 <o
Chapter 3 Chapter 4 Chapter 5
Full single
access queue 3.1 3.2 41 5.1 5.2
multi- )
. queue 3.3 3.4 5.3 5.4
Limited ideal
access  grading o 5 5 42 55 5.6
real
grading

2. General Queuing Model

2.1. System structure and operating modes

The system structure of the general queuing
model is shown in Fig. 1.

Arriving calls hunt the servers with fall or imited
accessibility, of. Fig. 2.

The special interconnection scheme in case of
limited access groups is called “grading”. Two main

1 gz =+ g
g number of groups (classes),

l xg W .number of sources of group 7s
o idle source arrival rate in

group 4,
sj.-number of waiting places
I of queue 7,
Sngle-stoge n numbe}r.qf servers,
connecting array k acces31b111§y, .

i mean service time.

Fig. 1. General queuing model.

Full access Limited access

Single Myl Ideal Real (standard)
queve queve grading grading

Vb IR REERR

OO0 Q ] o o o o
|== RS
n=3 n=3 n=b
k=3 k=3 k=3

M=3 g=6 k=6

@ ® © @ n=18 M=2

Fig. 2. Examples of connecting arrays with full or limited
ACCess.
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types will be distinguished :

e “ideal” gradings with a combinatorial number of
grading groups g = (%) in case of random hunting
or g = n (I)k!in case of sequential hunting, and

o nonideal (“real’”’) gradings.

In the latter case only standard gradings [11] will
be considered. From =, k, and g the mean inter-
connecting number is defined as M = g - k/n.

Arriving calls are handled according to certain
operating strategies comprising hunting mode,
queue and interqueue disciplines. As hunting mode
we assume random or sequential hunting. For non-
ideal gradings only sequential hunting will be re-
garded. If no idle server is accessible, the incoming
call occupies a waiting place in its group; if all
available waiting places are occupied, the incoming
call is lost.

Waiting calls are selected for service according to
operating modes as interqueue disciplines (selection
of a certain queue in a multi-queue system), queue
disciplines (selection of a call within a queue), or
disciplines with regard to all waiting calls in a multi-
queue system. In this paper the basic disciplines
FIFO (first-in, first-out), RANDOM, and LIFO
(last-in, first-out) will be considered. When a call is
selected for service, its waiting place is released
immediately.

2.2. Arrival and service processes

Arriving calls are generated either by a finite
number ¢ of traffic sources with an idle source
arrival rate o or by an infinite number ¢ ->oco of
traffic sources with a constant arrival rate Z.
Throughout the paper only negative exponential df’s
are assumed for the random interarrival times 7',
ie.

P 1 — e 2,
A =PITA=E= o, g oo

q >0

(1)

where r the number of nonidle sources. The random
service (holding) times 7'y are mutual independent
and identically distributed according to a negative
exponential or constant df with mean A, i.e.

1 —e~¢f, Markovian (M)

H(t)=P{Tu=1t}=10,t<h, Deter- 2)
|1, ¢ >k, ministic (D)

where ¢ == 1/h the termination rate. The service
time is independent of the source group by which
a call has been generated. From A, «, and % the
offered traffic 4 == A -k and the idle source offered
traffic f = o+ h are defined in case of infinite or
finite number of sources, respectively.

2.3. Characteristic values

Characteristic values are measures for the system
performance (grade-of-service). They are derived
from random variables describing the stochastic
behaviour of the service systems as, e.g., X (random
number of calls in service), Z (random number of
calls waiting), or T'w (random waiting time);
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stationary state probabilities seen from an
outside observer,

=3

7(...) stationary state probabilities seen from an
arriving call,

Y carried traffic,

02 mean queue length of waiting calls,

W probability of delay,

B probability of loss,

w mean waiting time of offered calls,

tw mean waiting time of waiting calls,

W (>t) complementary df of waiting times.

3. Delay Systems with Exponential Holding Times

In this chapter pure delay systems will be con-
sidered having single or many queues, infinite or
finite number of traffic sources, and full or limited
accessibility, respectively.

3.1. Full access, infinite source, single queue model
M|M|n

3.1.1. Stationary state probabilities

To describe the system state, a single state vari-
able ¢ = 0, 1, ... is sufficient indicating the number
of calls in the system. For reasons of conformity in
this paper a distinction is made between the num-
bers x and z of calls being served or waiting by
introducing a pseudo-twodimensional state variable
(2, z), of. Fig. 3.

a(x-1,0) aln,z-1)
2 0 T 0 (0, O T 2 ) (n,2) T
b(x,0) ' b(n,z)
Fig. 3. State space and transitions of the M/M/n delay
system with full access and a single queue.

In case of an infinite source traffic, the transition
rates are

a(x,0) =4, z=0,1,....,n—1,
an,z)= 21, z2=0,1,..., (3)
b(z,0)=2¢e, x=12,....,n—1,
bn,z)=mne, =2z=0,1,.... (3b)

In the stationary state the equilibrium equations
for the probabilities of state p(x, z) are

p(,0)0(x,0) =p@—1,00a(x—1,0), (4a)
z=1,2,...,n,

p(?’b, Z) b(”} Z) = p(n,z - l)a(n,z~ 1)’

z=1,2,...

Introducing egs. (3a, b) into egs. (4a, b) we have

(4b)

Az

plz, 0):290"7&(5 r=un, (5a)
An

p(n: Z) = pO m4 Qz: 4 g O! (5b)

where po=p(0,0) and ¢ = 4/n.

The probability py indicates generally that the
system is in the idle state; it is found from the
normalizing condition that the sum of all state
probabilities must equate to one.
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3.1.2. Characteristic values
The characteristic values are defined as follows:

n-1 oo
Y= E[X]=Sep@0)+n3pma =4, 6

Q=BZ]=2epina) =pm0) L og. (O
® 1
W= P{Tw> 0} :zgop(n, 2) = p(n,0) oo (8)
: h
w=E[TW]=Q/Z:P(nsO)W_7@)2s (9a)
Q h
tw=E[Tw|Tw>0]= Wi (9b)

The df of waiting times depends on the underlying
queue discipline. Generally it holds

W(>8 = P{Tw> 1= S plnawiels, (10)

where w(t|2) the conditional complementary df of
waiting times conditioned on the number z of
waiting calls met by an arriving call. In case of FIFO

2 t y
w(t|z) = P{Tw> 1|z} 2'20 (ifr)l e-net,
= H

z=0,1,... (11a)

which results to
w9

e—t/tw .

(11b)

So far, solutions (5) to (11) go back to A. K. Er-
lang [5].

For the RANDOM queue discipline, the values
w(t|z) are solutions of a differential equation system
formulated by C. Palm and E. Vaulot [7], [25], [28]
for the random process of waiting (Kolmogorov--
backward equations):

w(t|z) = — (A+ne)w(t|z) + Aw(t|z+ 1)+

2z
_ e J— =0
—]—naz 1w(t|z 1), 2 =0,

To evaluate the df of waiting times numericaily,
approximations are important based on the lower
moments, viz.

E[Tvw| Ty > 0] = hjn(1 — ) = bw, (13a)

B[T%| Tw>0] = 2/2n>(1 — )2 (1 — 0/2), (13b)

BT | Tw> 0] = 6434+ 20)/n3(1 — 0)3 (2 — 0)?,

(13¢)

respectively the variation coefficient cw according to

3 = E[T%| Tw > 0] _
E[Tw|Tw > 0]2

(12)

_2—y
- 5o

J. Riordan [25] approximates W (>t) by a hyper-
exponential df
W=

Wi ~ pe—mt _|_ (1 — p) e—aat

(13d)

(14)
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where the parameters p, a1, ag are determined from
the first, second, and third moment according to
eqs. (13a—c). A new approximation [20], [21] is
based on the Weibull df:

e_(‘u)b

(15)

where the parameters @ and b are determined only
from the first and second moment by iteration

according to
1
r(1 + %)
= e
r<1 + “’z?)

This approximation fits better with simulation than
eq. (14) although it is based on two moments only!

(16a)

—1. (16b)

3.2. Full access, finite source, single queue model
M|M|n
3.2.1. Stationary state probabilities

In a finite source pure delay system with a total
number of ¢ sources there are s = ¢ — n waiting
places available. The state space is similar to Fig. 3
but limited by 2z =< zmax = ¢ — n. The transition
rates are:

a(z,0)=(¢g—x)a, x=0,1,...,n—1, (17a)
amn,z)=@Gg—n—2)a, 2=01,...,¢q—n—1,
b(z,0)==ze¢, z=1,2,...,n— 1,
b(n,z)=mne, z2=0,1,...,9—n. (17b)

In the stationary state the equilibrium equations
for the state probabilities p(z, 2) seen from an out-
side observer are given by eqs. (4a, b) with finite
state space (2max = ¢ — n). Introducing eqs. (17a,
b) into eqs. (4a, b) we find

53::01

p(z, 0) = 0~~H(g—-@), z=n, (18a)
n z ntz—-1

pin, z)—poﬂ(if;) TTg—i, 2=0. (8D)
=0

An arriving call meets a state (x, 2) with probability

(QWw-"Z):H(% ?)

n(x’z)::n~1 N ?
( '—'i)r(%o)”}‘z\ ”l—:})}”(%,?)
=0 j=0
x=0,1,...,n, 2=0,1,...,9—n—1. (19)

3.2.2, Characteristic values
Analogously to Section 3.1.2 it holds

n—1 —n
Y=A4= zox p(x,0) + nqzop (n,2), (20)
g=n A
Q=7epmn,2)=q—A4—", (21)
z=0 ﬂ
g—n—
—= z (22)
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0Q w

w:;l—k, tW:W'k (23a, b)
The df of waiting times is determined by
Z n, z)w(t]z). (24)

In case of FIFO w(t|z) is given by eq. (11a). Solu-
tions (18) to (24) were derived by F. L. Bauer and
H. Stérmer [3]. An approximate solution was re-
ported by A. Lotze [22].

For RANDOM service of waiting calls a system
of differential equations has to be solved analogously
to eq. (12). The equations read in the general case
of z:

w(t|z)=~[(g—n—2z—1a-+new(t|z)+
+(@—n—z—Nawtlz+1)+

-{—nazj_lw(t]z-ml).

(25)

The solution of eq. (25) incorporates the roots of a
characteristic equation [26]. For numerical pur-
poses we use the concept of approximating the con-
ditional df w (¢|2) by exponential or hyperexponen-
tial df meeting the first, second, and third moment
of w(t|z) exactly. This concept was introduced in
case of systems M/M[n—s with RANDOM queue
discipline and yields extremely high accuracy [18].
By this
w(t]2)

P pze-—aut + (1 — Pz) e ezl (26)

where the parameters p;, ai,, @2, are determined
from the first, second, and third moment of w (t|z).
These moments are obtained from linear systems of
equations derived from eq. (25), [18], [26]. ‘

3.3. Full access, infinite source, multi-quene
model M|M|n

In this case the general delay system of Fig. 1 is
considered with g>1 input groups or classes of
calls with arrival rates 4;, 7 =1,2,...,¢.

3.3.1. Stationary state probabilities
For a complete description of the system per-
formance, various system state descriptions are de-
fined which are also used for delay-loss systems
(ef. Chapter 5):
a) (w1 x; number of group-i-
calls in service,

s eees Lgi Cly ones C2)

¢; group index of that
call waiting at the
j-th position,

2z; as a), ‘

z; number of group-j-
calls waiting,

b} (@1, ..., %95 21, .-+, 2g)

total number of calls
in service without re-
gard to their origin,

¢; as a),

¢) (®;c1,...,Cz) T

d) (x;21,...,2¢) x as ¢,

z; as b),
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x as o),

2z total number of wait-
ing calls.

e) (#;2)

Because of full accessibility, the quantities ¢;, z;,

and z are zero in all cases where x = xy -+ -2, < n.
For any of the disciplines FIFO, RANDOM, or

LIFO with respect to all waiting calls it holds:

a) p(@1,...,2g;C1yv0., Cr) =
g Az z
=l (25 ey @D
i=1\ Xit ) j=1
b) p(xly“"xg:zl, 529):
g/ Az ¢ (o
= )zl ), (28
poEl xi!) yE(Zﬂ) =%
A=
Po zl x<<n,
e} p{x;c1y...,Cr) = An 2 (29)
\poz*rjzl—[l@cj, r=mn,
Az
pO x' 5 x<n,
d) plx;21,...,29) = An o (30)
" Dl B x:n;
\po n! 7131<zj')
A=z
POW, x<mn,
e) ple =1 (31)
Po~ 0% x=n,
where 4;=Aj/e, A =41+ -+ A4y, 0i=A44/n,
o=Aln.

The proof of eq. (27) is carried out by insertion
into the equilibrium state equation and stating con-
sistency for all equations regarding the underlying
queue discipline. Eqgs. (28) to (31) can be found
either directly by the same technique or by combin-
ing equally probable microstates to macrostates.
Eq. (27) has been proved in case of FIFO along with
queuing network theorems [1]. In case of RANDOM
eq. (30) was derived directly [15].

Additionally, we state that there are g -+ 1 partial
equilibriums within the very microstate space. The
most important one is that where each microstate is
already in equilibrium with all its lower neighbour
states. This property has already been observed in
connection with multi-queue delay-loss systems, cf.
[15], [16], [18], revealing some interesting aspects
as, e.g., with respect to
e proof-technique,

» recursive calculation of the state probabilities,
e approximations.

Especially the last aspect was very successful for
approximate solutions of multidimensional state
spaces yielding excellent accuracy, cf. [30], [16], [18],
and Chapter 5.

3.3.2. Characteristic values

Any of the distributions eqs. (27) to (30) yields
the following results (index g refers to calls of group

AEU, Band 32
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‘number §, quantities without index refer to Sec-

tion 3.1):
Y= 4, (32)
(s o _ o
2;=p(n;0) (1= o ; Q, (33
1
Wj:p(n,o)l—__.@w —W, (34)
wy = p(n;0) T =" (35a)
by = wi—a) =tw, (35b)
Wi>t=W(1, j=1,2,...,9. (36)

3.4. Full access, finite source, mulli-queue model
Now the general delay system of Fig. 1 is con-
sidered with g>1 input groups (queues), each
having an individual number of sources ¢; and idle
source arrival rate oy, 5=1,2,...,¢9. For short,
only explicit solutions of state probabilities are
given. The state description follows Section 3.3.
For any of the disciplines FIFO, RANDOM, or
LIFO with respect to all waiting calls it holds:

a) P(@1, ..., Xg;C1, ..., Cp) = (37)
=~ (AT )

b) 20(901, ”6‘97217-' ) 2g) = (38)
. ( B orof G 1 (),

where (; = o;/e. The equa»tio'ns can be proved as
outlined in Section 3.3.1.

The marginal (macro) state probabilities analog-
ously to eqs. (29) and (30) are somewhat difficult
to give in explicit form. Under a slight approximate
assumption, however, an explicit solution can be
derived in case of RANDOM and «; = o, ¢ =1,

2,0

P@;as, ..., 2) = (39)
(70 6wxﬁ(@“@) x<n
0 x! ‘L.:Ji s
- n n—1 [ 24
wo b T@ it JT P
O PR D
Icg1\1£10 (Qk : Q] W>}’ ="
where f=afe, @=q1+qa+ - +q4. To prove

this formula, we assume for x = n that the » calls
being in service had been generated uniformly from
the various source groups, i.e. we assume z; &~ n- ¢;/@,
j=1,2,...,9. For g=1 this formula coincides
with eq. (18).

3.5. Limited access, infinite source model M | M [n (k)

Now, the n servers are assumed to be graded with
limited accessibility k. Both, ideal and real gradings
are considered.
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3.5.1. Stationary state probabilities

In the general case, there does not exist an ex-
plicit closed form solution. Exact results can only
be obtained by iterative solution of equilibrium
equations of microstate probabilities [16], [18], [19].
Here we only refer to approximate solutions for the
symmetrical case ;= A1fg, 1=1,2,...,9.

Defining the state (z, z) analogously to Section
3.3.1, the state space according to Fig. 4 is obtained.

~. (x+1,2)
\\
~.
S~
alx,z-1;%,2) H
S~
(rz-No " (%7 T (xz+1)
b(x,z;x,2-1) H ~
> .
alx-1,2; 0,231 ¥b(x, z; x-1,2) ™~ Symmetry ling
(x-1,2) ~

Fig. 4. State space and transitions of the M /M /n (k
system with limited access.

) delay

In case of an infinite number of sources the tran-
sition rates are:

alx—1,z;2,2) = Au(x),

r=1,2,...,n, 2=0, (40a)
a(x,z— 1;2,2) = Ae(x),

z=kk+1,...,n, 221, (40b)
bx,z;2—1,2) +b(x,z;0,2— 1) =uwe,

x=1,2,...,n (40¢)

where c¢(x) the blocking probability and «(zx) =
1-—c(x) the passage probability of the grading
according to

0, x=0,1,....k—1,

(z)/(;z), c="rkk+1,...,n

(ideal gradings),

(ac /(n ,a=kk-+1,...,n
k* k*) (real gradings) .

In case of real gradings, ¢(x) is calculated using a
reduced accessibility £* == k* (n, k, o, M, interqueue
disc.), e.g. in case of standard gradings [19]

k* ~~

c(x) = (41)

+u Qk/4 _1_

a\;k'w——

— k2 (k

with @ = 0 or @ = 1 for interqueu plin i

or RANDOM, respectively.

Under the special assumption of partial balance
of state (x, z) with its lower neighbour states (‘“‘half-
symmetry”’) the equilibrium state equation reads
in the general case:

zep(x,z)=alx—L,z;2,2) ple—1,2) +

+a@,z—1;2,2)pla,z—1). (43)

By insertion of egs. (402, b) and summation over

all z the marginal state probabilities p(z) are ob-

tained by reeur@ion
p () = po Ax

/H[ZwAG (44)

x=0,1,...,n
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3.5.2. Characteristic values

n

0=3 3p@ma=3r03

—, (45
=k o S S e W
=3 3p@e) =2p@Ec@, (46)
0Q
w:zh, tw = ;;/ (47a, b)

The df of waiting times can be approximated by a
gamma df [19] or even better by a Weibull df ana-
logously to eqs. (15) and (16) using the following
variation coefficient

— for F/F,
(48)

—1 for R/F

9 Q”/k(l _ M—2/3)

where F/F or R/F are short notations for inter-
queue/queue discipline FIFO (F) or RANDOM (R),
respectively.

Egs. (43) to (47) were derived by M. Thierer [30],
[81] for ideal gradings (“Interconnection Delay
Formula IDF”). Extensions with respect to real
gradings and the df of waiting times were reported
in [19].

3.6. Limited access, finite source model M| M [n (k)

In this section the solution technique from Sec-
tion 3.5 is extended to the finite source model with
9 = Q/g sources per grading group and o; = «,
=129
3.6.1. Statlonary state probabilities

With the state definition (x,z), 2 =20,1,...,n
2=0,1,..., zmax (), the same state diagram of
Fig. 4 holds in the general case with

alx —1,z;2,2) =

=[Qu@—1)—(@—1)1—d(@—1)]«, (49a)
z=1,2,...,n, 2=0,1,...,2max(¥),

a(x,z—1;2,2)=[Qec(x) —xd(x) —z+1]«,

x=nkk+1,...,n z=1,2,..., 2max(x), (49b)

b(z,z;o—1,2) + b(x,z;2,2— 1) = e,
x=1,2,...,n

(49¢)

where c(x) according to eq. (41), and d(x) that
proportion of calls in service, originated by sources
of momentary blocked grading groups. It was found
[14] that d(x) can be approximated by

d(x) = gkc(x)x M = nc(x),
r=kk+1,....,n

(50)

Another complication is caused by the finiteness of
the state space. Here, an upper number of waiting
calls in state x is introduced by rounding up the
expected number of sources being not in service
within the blocked grading groups:
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0, z=0,1,....k—1,
— ENTIER (— Qc{x) + xd(x)),
c=kEk-+1,...,n.

Zmax () =

(51)

The general equilibrium state equation reads
analogously to eq. (43) with eqgs. (49), (50), and (51).
The two-dimensional state probabilities p(x, z) are
caleulated numerically by recursion. From p(z, 2)
the state probabilities 7z (x, z) seen by an arriving
call are determined analogously to eq. (19):
w(x,0) = (Q —a)p(x,0)/D, =0,1,...,k—1,
w(x,2)=(Q—2x—=2)p,2)D, e=kk+1,...,n,
) z=0,1,..., 2max () — 1, (52)

(@, 2max (¢)) = [Qu(x) — «(1 — d(x))] X

X p (%, 2max (2))[D ,
with

k-1
D=i§O(Q~i)p(i,0) + 2 (@—i—7)p(.j)+

7 (Zmax(f)—1
{ j=0

=k

+[Qu@)—iﬂ-d@ﬂp@xmm@»}

3.6.2. Characteristic values

Based on p(z, 2) and #(z, z) the following values
are derived:

7 Zmax (%)
Y=A4=2 3 xp2)), (53)
z=1 2=0
7 Zmax () A
Q=3 T =Q—4—", (54
z=k 2=0 ﬂ
7 Zmesx (1)~ 1 Qo(x) —ad(x) —z
W e ’ , (8D
xgk P (x, 2) o (55)
w:;(%k, tw:%—. (56a, b)

4. Delay Systems with Constant Holding Times

In this chapter single or multi-queue delay sys-
tems are considered having an infinite number of
traffic sources with total arrival rate A and constant
holding time A.

4.1. Full access, infinite source model M|D|n

4.1.1. Stationary state probabilities

For the exact analysis we follow the concept of
deseribing the system state at time epochs {,
to-+h, to+2h, ... introduced by C. D. Crommelin
[8]. This special view allows the description by an
imbedded Markov chain. For conformity the system
states at that time epochs will again be indicated
by (z, z).

In the stationary state the following equilibrium
equations hold:

@
Pp(x,0) = ayqzs + le (7, 7) Go—i , x<<n, (b7a)
=

n+z

p(n,2) = anqn+z +,721p(n, 0 qute—i, T=n,2=0,
(57b)
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T At
axz.Zp(i,O), gi=—e4, (87¢)

where -
i=0 vl

To solve eqs. (57a, b) usually the generating func-
tion of the stationary state probabilities p(z, z)
is defined. The solution for the state probabilities
involves n roots of a transcendental equation.

For numerical reasons a direct method is used to
solve eqs. (57a, b) by iteration starting from an
initial state distribution (M/M/n). An upper value
Zmax is determined such that |£(zmax) — 2]/2
< 1078, To keep the computing time as low as
possible, a number of computational tricks had to
be applied. By this method, systems with up to 250
servers and offered traffic per server up to 0.95 can
be calculated relatively fast.

4.1.2. Characteristic values

From the stationary state probabilities the char-
acteristic mean values 2, W, w, and fw can be
evaluated by application of definitions given in
eqgs. (7) to (9).

The df of waiting times is explicitly known in
case of FIFO with respect to all calls, cf. [8]:

W(>1t) = (68)
B r n—1 [—A([u+r)](7“"+1)”“1”” Apt)
"1_,2020“” [r—pu+1)n—1—9]! e
where t=@r+1)h, 0=7r=1.

The numerical evaluation, however, runs into com-
plication for large delays. This problem can be
overcome by programming with double-precision
and by exponential continuation of W (>{) for
large t. The second moment can be determined
using a general relationship between the Fk-th
factorial moment of the number of calls in the
system and the k-th ordinary moment of the waiting
time for queuing models M/G/n [10]. Using this
theorem, we arrive at
EZ(Z —1

Xy, rIv0 = *VK* —[?SZ*J -1, (59)
where E[Z(Z—1)] is easily obtained from the
numerically explicit state probabilities. In case of
n=1 the known result c% prro = (24 +1)/3 is
obtained [29].

In case of RANDOM with respect to all waiting
calls, an exact solution is known only for n=1, cf.
P. J. Burke [6]. In the multi-server case n> 1, we
approximate the second moment according to a
heuristic similarity theorem [9], [21] using the re-
sults of the second moment of waiting time for
queuing systems M /M jn FIFO, M|M|n RANDOM,
and M/D/n FIFO. By that

Sy, ranvom & (2 6%y, ¥rro + 0)/(2 — o), (60)

where ¢% wrro according to eq. (59). This formula
yields in case of n=1 the exact result [29]. With
tw and cw, ranpom an approximate expression for
the df of waiting times is obtained using the Weibull
df according to egs. (15), (16).
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4.2. Limited access, infinite source model M|D|n (k)

For this model M. Thierer [32] derived the sta-
tionary state equations based on the blocking
probability c(x) for ideal gradings and a two-
dimensional state (x, z) as in Section 3.5. Starting
from that solution, the method has been extended
to real gradings and the df of waiting times.

4.2.1. Stationary state probabilities

According to [32] the equations of state are as
follows:

(61a)
plx, 0) = M (x, O)jgxo%_jié)p(i’ 7)), x=0,1,...,n,
 atz n
P(5,2) = M(@7) 3 grizs 2P0 (61D)
x=k ...,n, 2220,
where (61c)

Mz, z) =M@ —1,2)u(x—1) + M(z,z — 1) c(z),

with ¢; according to eq. (57¢) and ¢(z) according to
eq. (41) for ideal as well as real gradings (£* accord-
ing to eq. (42)).

For the numerical evaluation, an iteration method
is used as explained in Section 4.1.1 with initial
values from the system M/M/n(k) and an upper
value zmax. Using a number of computational
methods for the reduction of computer storage and
computation time, systems with up to 200 servers
and with an offered traffic per server up to 0.95
have been calculated economically fast. The method
was used for the calculation of tables [20].

4.2.2. Characteristic values

The characteristic values £, W, w, and tw are
calculated from the state probabilities p(x, z) ac-
cording to the definitions given in eqs. (45) to (47).

For the df of waiting times only the case of
RANDOM interqueue and FIFO queue discipline
has been considered (R/F). For the variation co-
efficient of waiting times a heuristic formula was
derived from systematic simulation studies:

{‘2 ot 3
W, BIF S e ok (1 — M~2PB)

—1 (62

for n >k, and M =2. With tw and cw,g 7 the df of
waiting times can be approximated by a Weibull
df according to egs. (15) and (16).

5. Delay-Loss Systems with Exponential Holding
Times

In this chapter, combined delay and loss systems
are considered, i.e. systems with a limited number
of waiting places according to Table 1. For systems
with general holding times, one server and finite
waiting room (M|G[1 — s) there were also exact and
approximate solutions derived for the df of waiting
times in case of FIFO and RANDOM queue dis-
cipline, cf. [20], [21], which are not included in this

paper.
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5.1. Full access, infinite source, single queue model
M|Mn—s
5.1.1. Stationary state probabilities

Using the same notations as in Section 3.1, the
only difference in the calculation of state probabili-
ties lies in the finiteness of the state space in Fig. 8
with respect to zymax = s. The state probabilities
are given by eq. (5a, b).

5.1.2. Characteristic values
Analogously to Section 3.1:

. n—1 s
Y :méOxp(a:, 0) -+ nzgop (n,2) =41 —B), (63)

u 1—ps s S
=7zpmz2)=pn0 — ,
zgolp( ) =p( )Q[u_@)z i—p
(64)
s—1 : 1 — @s
W=2pnz=pn0)—-, (65)
z=0 — Q0
B=pns)=pn0)o, (66)
A 1 s0% w
w=W— _f__@—l_F} . bw=- (6Ta,b)
The df of waiting times reads in case of FIFO
s—1 i s—1 1y
W(>t) = v s ﬁi_gszlﬁi —
1— 0% i=o il =0 1!
(68)

These results go back to H. Stérmer [27]. For the
queue digciplines RANDOM and LIFO, exact re-
sults for the df of waiting times and higher order
moments have also been derived, cf. [17], [18]. In
the exact solution of the df of waiting times, how-
ever, eigenvalues of a system of differential equa-
tions are involved.

In case of RANDOM queue discipline, approxi-
mate methods have been used according to the
concept of approximating the conditional df of
waiting times by exponential sums, as explained
in Section 3.2.2, or according to the approximation
of the total df of waiting times by a Weibull df as
explained in Section 3.1.2. The latter method has
also been used for the calculation of tables [20].

5.2. Full access, finite source, single queue model
M[Mn—s
5.2.1. Stationary state probabilities

By the same arguments as used in Section 5.1,
the solution (18a, b) holds for p(x, 2) also in case of
a finite number of sources. The arriving call state
distribution s (x, z) is obtained analogously to
eq. (19) by substituting the upper bound (¢ — #) by s.

5.2.2. Characteristic values

The characteristic values Y, 2, W, w, tw, and
W (> t) are obtained from eqs. (20) to (24) by sub-
stituting (¢—mn) by s in the upper summation
bounds (in a delay-loss system it holds s << g —#).
The loss probability B is equal to m(n, s). These
results are included in the more general treatment
of this model with priorities [4].
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In case of RANDOM queue discipline, the same
principles can be applied for exact and approximate
calculations as explained in Section 3.2.

5.3. Full access, infinite source, multi-queue model
M|Mn —s

In the multi-queue delay-loss system two types
of storage models will be distinguished: firstly,
when there is a common storage capacity S for all
calls, and secondly, when there is a limited storage
capacity s; exclusively for calls of group or class j,
7=1,2,...,9.

5.3.1. Stationary state probabilities

Using the identical state definitions as introduced
in Section 3.3.1 we state:

For any of the disciplines FIFO, RANDOM, LIFO
with respect to all waiting calls the state distribu-

- tions according to egs. (27) to (31) hold also in case
of delay-loss systems with common storage capacity
§ for all classes of calls (z = 8).

Such a general theorem does not apply in case of
individual storages per class. Nevertheless, it can
be proved:

For any of the disciplines FIFO, RANDOM,
LIFO with respect to all waiting calls the marginal
state distributions according to egs. (29), (30) hold
in case of delay-loss systems with an individual
storage capacity s; for calls of class § (2 = sy),
j=1,2,....9.

The proof of these theorems again is done by
inserting the results into the equilibrium state
equations and stating consistency. In case of
RANDOM, eq. (30) has been proved directly [15].

For the practical case where s; = s and 4; = AJg,
a special solution has been derived which is included
in an algorithm given in Section 5.5.

5.3.2. Characteristic values 4

Dependent on the underlying storage model, the
characteristic values can be defined straightforward-
Iy from the state distribution eq. (30). The defini-
tions will not be reproduced here.

5.4. Full access, finite source, multi-quene model
M|Mn—s

As in Section 3.4, we will only concentrate on the
state probabilities. Using the same state definitions
as introduced in Section 3.3.1, we find for the two
considered storage models:

For any of the disciplines FIFO, RANDOM, LIFO
with respect to all waiting calls the state distribu-
tions according to eqgs. (37), (38) also hold in case
of delay-loss systems with common storage capacity
S for all classes of calls (z = ).

Under the same approximate assumption as in
Section 3.4, eq. (39) holds also in case of delay-loss
systems with individual storage capacity s; for calls
of class § (z = 85), 7=1,2,..., ¢
5.5. Limited access, infinite source model

M|Mnk) —s

The exact analysis of graded delay-loss systems

has been carried out under general assumptions by
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numerical means, cf. [16], [18]. Here, we only con-
fine ourselves to symmetrical systems having s; = s
waiting places and equal arrival rates 1; = A/g per
grading group, j =1,2,...,¢.

5.5.1. Stationary state probabilities
Contrary to the state descriptions above, we
define a state (z; w1, ..., Us), '
where
z total number of calls in service,
u; total number of calls waiting on the j-th waiting
place, j=1,2,...,s.

This description by ‘“waiting place rows’ reduces
the number of states considerably [16]. The state
space and its transitions are shown for the general
case in Fig. 5.

tg) e (g ugtD)

.....

buj

(K;Uq,... . ug=")

(x;u‘,,...,ufﬂ,..‘,us) o

(XYt Ug) o e

Fig. 5. State space and transitions of the M/M/n(k) — s
delay-loss system with limited access.

With the general transition rates ‘
ap1 = A1 — (e — 1],

s 1= Alge(x) — (ur— D]y,

(69a)
(69b)

Ayt = AlUg-1 — (U5 — Dy, 7=2,3,...,s (69¢)

by -+ by, + - by, =e (69d)

and a partial equilibrium assumption (cf. Section
3.3.1), the following recursion formula can be
derived:

cUs) = age ple—Liug, ..., us) +

&
~}—zlauj,1p(ac,a;;;ujﬂl;‘.,) (70)
i=

xep(x;u,.

with

Us Z= Us—1 =

< uy < — ENTIER(— ge (@), (71)

and ¢(x) according to eq. (41). For real gradings, the
value k* of pure delay systems [18] has to be modi-
fied by substituting ¢ = A/n by Y[n and by in-
serting a reduction term s/(s-+ 1); for standard
gradings, e.g., we have

w2 2L - VAL
o BB LE(X) RS ()"

n2 5\n n
k(Y \* 1 8
IV L | 72
+“5(\n) M—1sr1 °F (72)

instead of eq. (42). Since Y is aresult, iterations have
to be performed [14]. Finally, we state that eq. (70)
yields the exact results in case of full access.
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5.5.2. Characteristic values
n g g

Y=5 - Sapl;ug,...

2=0 u1=0 wus=0

7u8) :A(luBL

(73)
n g q
Q:Zk Z_O 'Z_gul—l— o ug) plrur, ..., Us)
S (74)
n g g Us
I/V:Z z {c(x)—— p(x;,ll’l:“':us)y
2=k u1=0 us=0 g

(75)
L TS
B=3 Y e plrsun,., ), (76)
2=k u1==0 Us=0
0Q w

5.6. Limited access, finite source model M| M [n(k) —s

5.6.1. Stationary state probabilities

The method of Section 5.5 has been extended to
a finite number of ¢; = ¢ = @[g sources per grading
group with oy =, j = 1,2, ...,¢. The fransition
rates for the state space according to Fig. 5 are:

g1 = [Quiz —1) — (x — 1) (1 — d(z— )],

(782)

Gt = [g0(@) — (1 — 1)]( - %l%)m (78D)
d

gt = [j1 — (1 — 1)] (q 1) — —9;—5%) “,

1=2,3,...,8, (78¢)

byt by 4 by, =8 (78d)

with ¢(z) according to Section 5.5 and d(x) accord-
ing to eq. (50). Analogously to Section 5.5.1, the
state probabilities are obtained from eq. (70) with
transition rates according to eqs. (78a—d). From

p(@; w1, ..., 1) the arriving call state distribution
m(w; U1, ..., us) is found:
(XU, ..., Us) = (79)
(@ — 2 — g — *»+ — Ug) P(X; UL, .\, Us)
o n g g . . - . . . ’
S22 (Q@—i—ji— =) P71, ., )

i=0 jlzo 7.320

5.6.2. Characteristic values

The carried traffic Y, the mean number of waiting
calls 2, and the mean waiting times tw and w follow

directly according to definitions given in eqgs. (73),
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In Part I of the paper (cf. AEU 82 [1978], 8—18), theoretical results have been reported for
various single-stage delay systems. Part IT presents a number of numerical results for the major
traffic characteristios together with simulation results for validation of approximate analysis

methods.

Einstufige Wartesysteme mit vollkommener oder unvollkommener Erreichbarkeit, unendlicher oder
endlicher Quellenzahl und exponentiellen oder konstanten Belegungsdauern

Teil II: Numerische Ergebnisse und Genauighkeitsnachweis

Tm Teil I des Beitrags (siche ARU 82 [1978], 8—18) wurde iiber theoretische Ergebnisse fir
verschiedenartige einstufige Wartesysteme berichtet. Im Teil II werden fiir die wichtigsten Ver-
kehrsgroBen numerische Ergebnisse angefilhrt und zur Uberprifung approximativer Rechen-

verfahren mit Simulationsergebnissen verglichen.

6. Numerical Results and Validation

Part I of this paper dealt with the theoretica
analysis methods for various delay systems with full
and limited accessibility, infinite and finite source
traffic and an unlimited or limited number of wait-
ing places. Parts of those methods are based on
approximations to make the solution feasible for
evaluation and application.

In this chapter, some calculated results are given
to show the influence of various system and traffic
parameters on the main characteristic values, and
to check the accuracy of approximate results by
comparison with simulations.

6.1. Full access, single queue models M[M|n

The mean values of the single queue delay system
M| M |n with full access and finite or infinite number
of sources are known exactly. In Fig. 6 the df’s of
waiting times W (> 7)/W are given for systems with
n =10 servers, ¢ = 20 and g — oo traffic sources, and
service according to the queue disciplines FIFO
(dashed curves) and RANDOM (solid curves), re-
spectively. The results for FIFO hold exactly
whereas the results for RANDOM are approxima-
tions according to Sections 3.1.2 and 3.2.2. The
approximate results are in good accordance with

simulations.

6.2. Limited access models M| M [n (k)

Fig. 7 presents the probability of delay W and
the relative mean waiting time of waiting calls
7w = lw/h dependent on the offered traffic per
server A/n for a limited access delay system with
n = 30 and k& = 10. The solid curves and the simu-
lation results hold for a standard grading with
M = 313, q¢= 15 sources per group, and R/IF

1°

N
=

W) /W—"
—
/o
7

=)
o+
_
//
Ve

Fig. 6. Distribution function of waiting times of waiting
calls W (> 7)/W versus normalized time z = ¢/A.

Full access delay systems M/M/n; n =k =10, g = 1;
number of sources: ¢ == 20, oo}

queue disciplines: FIFO (---), RANDOM (—); e simula-
tion; offered traffic per server ¢ = 0.75.

* Revised manuscript of a paper presented at the 8th
International Teletraffic Congress (ITC), Melbourne, No-
vember 10—17, 1976.

*% Dr.-Ing. G. Kampe, Dr.-Ing. P. Kiihn, Institut fir
Nachrichtenvermittlung und Datenverarbeitung, Universi-
tit, Seidenstrasse 36, D-7000 Stuttgart 1.
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Figs. 7 and 8. Probability of delay W and relative mean waiting time of waiting calls 7w versus offered traffic per server

¢ = A4/n.

Limited access delay systems M/M/n(k); n = 30, k = 10,
M = 3!/3 (standard grading); number of sources per group:
q = 15, «o; interqueue/queue discipline: R/F;

—— standard grading, ¢ = 15/group,

—— - standard grading, ¢ —> co/group,

-- -~ ideal grading, @ = 150;

simulation with 959, confidence intervals.

|-e-|

discipline. For comparison, the corresponding results
are given for this grading for ¢ — oo and R/F dis-
cipline (dashed curves) as well as in case of an ideal
grading with a total of @ = 150 sources (dotted
curves).

6.5. Limated access models M |D/n (k)

In Fig. 8 the characteristic values W and 7w are
drawn versus 4 /n for gradings with n = 30, k = 10.
The solid curves and simulations hold in case of a
standard grading with M = 2, R/F discipline, and
constant holding time. For comparison, the cor-
responding results are given for this grading with
exponential holding time (dashed curves) and for
an ideal grading with constant holding time (dotted
curves).

Fig. 9. Distribution function of waiting times of waiting
calls W (> 7)/W versus normalized time 7 = ¢/h.

Full acces delay systems M/Djn; n =k = 10, g = 1;
number of sources: g — oo}

queue disciplines: FIFO (—--), RANDOM (—);

e o simulation.

W 0= 0.5 0= 0.8

FIFO calculation 0.1431 0.2855
simulation 0.1423 0.2808

RANDOM calculation 0.1431 0.2855
simulation 0.1482 0.2813

Limited access delay systems M/D/n(k) and M/M/n(k);
n =30, k = 10, M = 2 (standard grading);

number of sources per group: ¢ — oo;"

interqueue/queue discipline: R/F;

M[D/n(k), standard grading,

——— M|/M/n(k), standard grading,

---- M/D[n(k), ideal grading;

e simulation with 959, confidence intervals.

Note, that the holding time characteristic in-
fluences mainly 7w whereas W remains nearly un-
changed (real gradings).
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Tigs. 10 and 11. Probability of delay W, probability of loss B, and relative mean waiting time of waiting calls Tw versus

o= A4A/n.
Limited access delay-loss system M/M/n (k) — s; n = 30,
k = 10, M = 2 (standard grading);
number of waiting places/group: s = 3, oo;
number of sources per group: g > oo;
interqueue/queue discipline: R/F';
— M|/M/[u(k) —s, ——— M|M[n(k),

e simulation with 959, confidence intervals.

6.4. Full access, single queue model M|D/n

In Tig. 9 the df’s of waiting times are shown for
the delay system M/D/n with n = 10 for FIFO
(dashed curves) and RANDOM (solid curves) queue
disciplines, respectively. In case of RANDOM, a
two-moment approximation has been used according
to Section 4.1.2. Compared with simulations,
eq. (60) generally yields a slightly too high variation
coefficient which is also reflected in Fig. 9.

6.5. Limaited access models M| Mn (k) — s

Figs. 10 and 11 give results for the limited access
delay-loss system with standard grading having
7n=230, k=10, M =2, and s =3 waiting places
per grading group. In Fig. 10 an infinite source
traffic is assumed. For comparison, the correspond-
ing pure delay system results are added (dashed
curves). Fig. 11 presents the corresponding results
for the finite source model with a total of @ =120
traffic sources. For both, the infinite and finite
source delay-loss system with limited access, the
calculated results are sufficiently accurate for appli-
cations.

7. Conelusion

In this paper, a number of single-stage delay
systems has been reviewed in a systematical way.

Limited access delay-loss system M/M/n(k) — s; n = 30,
k=10, M = 2 (standard grading);
number of waiting places/group: s = 3;
number of sources per group: ¢ = 20;
interqueue/queue discipline: R/F;
M|M/n(k) — s, finite sources;
e simulation with 959, confidence intervals.

Starting from known results, which are either
briefly repeated or referred to, various extensions
have been presented with respect to multi-queues
(classes), finite number of traffic sources, limited
accessibility, and different queue disciplines. The
results were partly used for tables on delay systems
and form basic modules for the analysis of multi-
stage connecting arrays (link systems) with waiting.
The extensions in case of multi-class delay systems
are also applicable to Markovian queuing networks
with respect to queue disciplines RANDOM and
LIFO. In case of multi-class delay-loss systems two
subcases of limited storage capacity are distin-
guished : common storage for all classes or individual
storage per class. The general product solutions of
pure delay systems can partially be extended to
those delay-loss systems. All presented solutions are
adequate for a computational evaluation; approxi-
mate solutions were checked by simulations yielding
sufficient accuracy for practical applications (di-
mensioning).
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