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Abstract—The complexity of mobile communication systems
is permanently increasing. This is due to the introduction and
refinement of sophisticated communication mechanisms such as
Multiple Input Multiple Output (MIMO), hybrid ARQ, channel-
aware scheduling, or node cooperation. Many of these mech-
anisms require detailed multi-cell simulation models for their
performance evaluation. This involves computationally extensive
models of the wireless multi-path fading channel, which quickly
becomes a bottleneck with respect to simulation time. It is
therefore of great interest to reduce the amount of computation
time spent in the channel calculation. In this paper, we present
an attractive approach that offloads the channel computation to
a massively parallel but inexpensive NVIDIA graphics card. We
discuss the parallel architecture of the resulting simulation sys-
tem, and study the involved synchronization and communication
aspects. We show that the developed system achieves a speed-up
factor of about 30 compared to an implementation on regular
PC hardware.

I. INTRODUCTION

In the past decades, the complexity of mobile communi-
cation systems has permanently increased. The demand for
higher peak data rates and better spectral efficiencies has re-
quired the development of sophisticated communication tech-
niques. Examples include Multiple Input Multiple Output [15]
(MIMO), hybrid ARQ, channel-aware scheduling, or node
cooperation mechanisms such as interference coordination [1].
The performance evaluation of these mechanisms requires de-
tailed multi-cell simulation models that comprise many aspects
of the physical layer. Especially the channel transfer functions
are an important aspect. For OFDM based radio systems, this
function has to be evaluated for all frequencies and requires
therefore a huge amount of floating-point computation [11].

On conventional computer hardware, the computing time
required for the simulation of these mechanisms is very high,
leading to very long simulation times. The exploitation of
parallelism is one possibility to reduce the simulation time.
Dedicated hardware optimized for floating-point calculations
may be used additionally. In particular, graphic cards pro-
vide an enormous amount of single-precision floating point
computing power at low cost. However, this computing power
used to be reserved for graphics acceleration. In [2], Adams
et al. leveraged this power by formulating scientific code for
solving Maxwell equations by means of OpenGL. This is a
very cumbersome way of accessing the graphics card.

In 2007, NVIDIA released the CUDA architecture [3],
which allows to access the graphics processors (GPU) on
the graphics card by using a well-defined API. Memory ac-
cess and programming is facilitated with standard C-language
programming. CUDA provides an easy interface to a large
floating point computing power, which opens the way to a
large speed-up of the above discussed wireless network model
components.

In this paper, we consider the implementation of multi-
path channel models using the NVIDIA CUDA architecture.
We discuss the parallel architecture of the resulting simula-
tion system, and we study the involved synchronization and
communication aspects. This architecture is compared to an
implementation on a regular PC hardware, revealing a speed-
up factor of about 30. The proposed system can therefore
effectively increase the speed of wireless network simulations.

This paper is structured as follows. Section II introduces
wireless channel models with a special focus on multi-path
fading channels. Section III overviews the CUDA architecture
and its capabilities. Subsequently, Section IV introduces the
proposed wireless multi-path channel model implemented on
the NVIDIA CUDA architecture. Finally, Section V evaluates
its performance.

II. WIRELESS CHANNEL MODELS

This section overviews wireless channel models in general
and multi-path fading models in particular. Several basic
effects have to be taken into account when modeling a
wireless channel. First, distance-dependent path loss describes
the reduction in power density as a function of propagation
distance, frequency and other factors. The second effect is
multi-path propagation, describing the effect that the signal
at the receiver is composed of a large number of reflected
radio waves. The different signal paths all experience different
propagation delays. This causes the spread of the original
signal in the time domain which is called delay spread. The
multi-path effect can either increase or decrease the received
signal strength, depending on whether the indvidual wave-
fronts interfere constructively or destructively. In particular, a
time varying channel is obtained when there is a relative move-
ment between transmitter and receiver. This motion produces
Doppler shifts of incoming waves [4]. This shift is different for



Fig. 1. Time varying multi-path propagation

every multi-path component depending on its angle of arrival,
resulting in a Doppler spectrum and not only a single Doppler
shift frequency for the received signal. All these effects are
illustrated in Fig. 1.

A. Multi-Path Fading Models

Multi-Path fading in a wireless environment can be charac-
terized by two main properties, namely the frequency selec-
tivity and the time variability. The variation in time always
occurs as soon as the terminal is moving and affects the
amplitude and phase of the received signal. The variation
depends on the speed of the mobile terminal and is also
referred to as fast fading. If the delay spread of the channel
is much smaller than the data symbol period, the channel
is said to experience flat fading. In contrast, if frequency-
selective fading is observed, different frequency components
of the signal experience uncorrelated fading. While there exist
several models for the wireless multi-path fading channel, we
will study one particular model proposed by Höher in [9].

B. Höher Channel Model

Höher proposed a statistical discrete-time model for the
WSSUS1 multi-path fading channel in [9]. This is a widely
used model and allows an easy implementation of the well
know COST207 channel models, such as Typical Urban or
Bad Urban. In his paper, Höher applied Forney’s [5] discrete-
time representation to Schulze’s Monte Carlo-based channel
model [8], [10]. He has shown that the instantaneous channel
transfer function for the case of an optimum receiver filter on
the basis of the Monte Carlo method is:

Fk(ω) = limN→∞
1√
N

N∑

n=1

ej(θn+2πfDnkT−ωτn) (1)

where N is the number of propagation paths (taps) and θn, τn

and fDn
are random sequences each with a specific probability

distribution. We can notice in this equation that, for every fre-
quency ω and at every time (symbol) kT we need to loop over
the N taps and do this complex computations which involve

1wide-sense stationary with uncorrelated scattering

multiplication, addition, sine, co-sine, and finally square root
calculation and division.

The Höher channel model has many advantages over other
models, which make it well-suited for system-level simulation
of radio systems. A relatively low number of N is sufficient
to guarantee that the moments of the realization are close to
the moments of the desired distribution, and single precision
is enough for the model to give good results [6].

According to the Monte Carlo principle, it is convenient
to establish a (portable) uniformly distributed noise generator
with outputs Un ∈ [0, l[, and to calculate νn by a functional
transformation [14]:

νn = gν(un) = P−1
ν (un); 0 ≤ un < 1 (2)

Where νn, is a substitute for θn, fDn
, and τn respectively,

and the memoryless nonlinearity gν(un) is the inverse of the
desired cumulative distribution function (cdf).

III. NVIDIA CUDA

GPUs are specifically designed for graphic applications
and are very restrictive in terms of operation and program-
ming. Because of their nature, GPUs are only effective in
tackling problems, that can be solved by stream processing.
Repeating the same instruction on different data sets achieves
data parallelism, which is called Single-Instruction-Multiple-
Data (SIMD). A SIMD architecture depends basically on the
separation of control and data, such that a large number of
simple math co-processors are under the control of a single
master CPU. Thus, they can only process independent vertices
and fragments. In this sense, GPUs are stream processors, that
can operate in parallel by running a single kernel on many data
records in a stream at once. A stream is simply a set of data
records, e.g. vertices, that require similar computation.

A. General Purpose-GPU

GP-GPU is the idea of using a GPU in non-graphics
applications, since not every application can be implemented
as a graphics problem. Yet, only a special type of application
that can benefit from GP-GPUs, those with floating-point
intensive calculations that are repeated on a huge amount
of data. Previous implementations on GP-GPUs suffer from
problems such as [7]:

• System bottlenecks: Typical GPU programs rely heavily
on the CPU to manage the complex parts of the control
and data flow. The CPU-GPU communication is slower
than the interaction among threads on the GPU. Therefore
the latencies of these interaction limit the occupation of
the GPU.

• Instruction set: GPUs offer huge peak performance
gains. Yet, their architecture greatly constrains the pro-
gramming of such devices. Therefore, representing the
inherent complexity of the algorithms to be implemented
is difficult and may lead to inefficient programs.

• Programming model: Previous GPUs could only be
programmed through a graphics API, imposing a high
learning curve to the novice. Further, the overhead for



non-graphics application is increased because of the in-
adequate API.

• Memory access model: The GPU DRAM can be read
randomly. Yet, writing results back to memory is difficult,
since GPUs usually present results on the computer
screen.

B. NVIDIA CUDA Architecture

CUDA (Compute Unified Device Architecture) is a new
hardware and software architecture for issuing and manag-
ing computations on the GPU. It allows for data-parallel
computing without the need of mapping the problem to a
graphics API. For a programmer CUDA greatly simplifies
using the GPU as a co-processor for tasks different from
graphics processing.

Memory hierarchy: A device is composed of a set of
multi-processors, each is a SIMD unit with different on-chip
memories. Compared to the device memory, these on-chip
memories are usually very fast, but also very small. The
different types of on-chip memory are optimized for different
memory uses and differ in their hierarchy and visibility.
Registers are available in each processor and are dedicated
to threads, shared memory is shared by all the processors of
a block, while the read-only constant cache and texture cache
are shared by all the processors on the device. Threads can
share data with each other through the on-chip shared memory,
that has a very fast general read and write access. Applications
can take advantage of shared memory by minimizing over-
fetch and round-trips to DRAM and therefore become less
dependent on DRAM memory bandwidth. Shared memory is
banked into 16 banks, that can be accessed simultaneously by
16 different threads in one cycle. To simplify programming,
the device memory can also contain sections that are dedicated
per thread (local memory). The different types of memory are
summarized in table I.

MEMORY TYPE ACCESS SCOPE COMMENT
Register Memory per thread size decided at run time
Local Memory per thread size decided at run time
Shared Memory per block 16K in 16 banks
Device Memory global access slow but huge
Constant Memory global access cached for fast access
Texture Memory global access cached for fast access

TABLE I
DIFFERENT MEMORY TYPES AND THEIR SCOPES

Programming paradigm: The CUDA software stack is
composed of several layers - a hardware driver, an application
programming interface (API) and its runtime, and two higher-
level mathematical libraries. The hardware has been designed
to support a lightweight driver and runtime layers, resulting
in high performance.

CUDA provided a minimal set of extensions to the C-
programming language to allow the programmer to target a
part of the written code to be executed on the device. The C-
language extension includes function/variable type qualifiers
to specify whether a function/variable executes/resides on the

host or on the device and built-in variables like blockId and
threadId to identify threads and blocks. Runtime components
are a set of APIs that give the programmer hands on device
management, context management, memory management, and
execution control.

C. CUDA Execution Model

To benefit from the processing power of the GPUs, a huge
number of threads is needed to fill the pipeline and to employ
all computing resources. GPU threads are different from the
POSIX threads. All GPU threads share the same executable
instructions (kernel), but each thread operates on different
data sets. A kernel is executed by a group of threads called
a batch. The batch of threads that executes a certain kernel
is organized as a grid of thread blocks. A thread block is a
group of threads that can cooperate by sharing data through
the fast shared memory and synchronizing their execution.
There is a limited number of threads that a block can contain.
However, blocks executing the same kernel can be batched
together into a grid, so that a larger number of threads can
be launched in a single kernel invocation. This reduces the
expense of thread cooperation, because threads in different
blocks can not communicate with each other. Multiprocessor
registers and shared memory are split among all threads within
a grid. Therefore each multiprocessor can only process a
limited number of blocks.

Every call specifies the execution configuration for the
kernel, which defines the dimension of the grid and blocks,
that will execute the kernel on the device. This model allows
kernels to efficiently run without recompilation on various
devices with different parallel capabilities: Depending on the
parallel capabilities of a device, it may run all the blocks of
a grid sequentially or in parallel or as a combination of both.

IV. COMPUTING MULTI-PATH FADING CHANNEL MODELS

WITH CUDA

We show here, how the frequency selective multi-path fast
fading algorithms can be mapped to the CUDA architecture.
The main three challenges to the design for CUDA are: First,
model independence of device capabilities and simulation
environment. Second, the efficient use of device resources.
And third, the real-time communication between the host and
the device.

A. Simulation Scenario independant Computation

In Höher’s equation Eq.1, the vectors for θn, τn, and FDn

are of size N each, where N is the number of propagation
paths. The value of N depends on the simulation scenario. This
way, the amount of memory needed to store the random vec-
tors depends on N . Therefore kernel execution configurations
are different from one simulation experiment to another. To
gain optimal performance the presented solution adapts itself
according to the available resources of the device.

The execution of a kernel is designed to be handled with
a fixed number of paths Ns, that is chosen depending on the
available resources on the device. This way the vectors will



be with of fixed size Ns and the execution time of the kernel
is deterministic. The processing of N paths is scheduled as a
group of Ns paths, executed as a series of sequential kernel
calls. The last kernel call in this series has extra work to do.
It is responsible for the division by

√
N and for copying the

output data from the device to the host memory.

B. Efficient Usage of Resources

The on-chip shared memory is banked. This requires a
special arrangement of data to achieve bank-conflict free
execution. For every channel we need to store four vectors
of size Ns each. Since there are 16 memory banks, we use 16
threads computing 16 different channels in parallel. So, vectors
of every channel are not allocated as a contiguous block in the
memory, but with 16 memory locations separating every two
successive elements in a vector.

Accessing device memory degrades the performance. Fol-
lowing a certain memory access pattern can hide the memory
access overhead. The access pattern proposed in [13] is found
to be the most successful one. As a consequence of this special
access pattern, the received results are not ordered and special
data retrieval methods on the host are needed.

On one hand, CUDA requires a huge number of threads
to fill the GPU’s pipeline. On the other hand, the memory
is shared among the threads, which decreases the available
memory for the registers and the shared memory. By simple
mathematics, the required amount of registers per thread is
calculated to decide on the number of threads. With this
number and the size of the shared memory we can determine
the optimal value of Ns.

In addition to dividing the values of the N propagation
paths into smaller kernels of Ns values to fit inside the shared
memory, we have a thread that schedules one order received
from the simulator into smaller orders that fit in the device
memory. This happens when the memory requirements for the
order will not fit into the device memory.

C. Synchronisation of simulation and channel computation

In an event-driven simulation the simulation time advances
discontinuously and in non-equal steps. In contrast, the chan-
nel computation works on time spans of equal size, which
require constant computation effort. Since the channel com-
putation is independent of the simulation’s progress, channels
can be computed in advance. To limit the amount of memory
needed to hold the channel data, the simulation thread provides
the computation thread with the point in time, before which
channel data can be deleted.

The simulation requires channel symbols at times before
and after the simulation time. Ring buffers are used to store
the channel data as shown in Fig. 2. The ring buffer is filled
by the device and the simulation tool reads from it. The
simulation tool advances the simulation time, and therefore
the ring buffer rotates and some places becomes free, so
the device can continue writing new values. Depending on
the speed of the device and the simulation tool, blocking of
simulation thread and device thread are controlled. To fully

Fig. 2. System architectue for decoupling simulation and channel calculation

utilize CPU and GPU at the same time, it is necessary that
the event-driven simulation and the channel computation take
the same time. The ring buffer can average short variances of
the time consumption, but in practice the slower component
will determine the advance of simulation time.

V. PERFORMANCE EVALUATION AND DISCUSSION

The theoretical execution time was calculated by analyzing
the Höher equation (eq. 1) and calculating the number of clock
cycles required for each part. The bandwidth of PCI-Express
bus is a non-linear function of the data size being transferred.
The bandwidth was calibrated at different operation points
for accurate calculations of memory copying times. By using
the values from [13] for the execution times of different
instructions, we calculate the theoretical lower bound of the
computation time.

The device we used in our evaluation was a NVIDIA
GeForce 8800GTS with 500MHz core clock, 96 stream pro-
cessors, and 320MB of memory. The device was connected via
a 16x PCI-Express bus to an Intel 2.4GHz Core2Duo CPU
with 2GB of RAM. Our application was built on top of an
Ubuntu linux with NVIDIA CUDA driver 169.09, and CUDA
SDK and CUDA toolkit releases 1.0. The channel computation
is embedded into a simple event-driven network simulation
using the IKR-Simlib [16].

For the results shown in Fig. 3 we used 3072 channels,
10 symbols, 1000 subcarriers, and a variable number of
propagation paths (taps) N . The measured time corresponds to
the real values obtained from the whole system and it is larger
than the theoretical lower bound. This difference corresponds
to the device memory accesses which are not accounted for in
our estimation. Finally, we compare the execution time for the
same model with the same parameters on an Intel Core2Duo
processor.

As we can notice from Fig. 3, the difference between the
theoretical lower bound and the measured values from the
GPU is almost constant. At high values of N the memory
overhead is negligible compared to the computation time.
Thus, a speed-up factor of ≈ 30 is achieved. At low values
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Fig. 3. Theoretical and real measured execution time on GPU

of N , the memory overhead is comparable to the instructions
execution time. Therefore the speed-up factor is smaller.

Fig. 4 shows how the different model parameters affect
the overall performance due to the scheduling decisions. For
example, the scheduler divides the channels into groups. Every
new group requires initialization time. In Fig. 4 the group size
is 3072 channels. It is better to have a number of channels,
that is a multiple of the group size.
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Fig. 4. Effect of extra channel group on the execution time

VI. CONCLUSION

In this paper, we propose to offload computing intensive
wireless channel calculations in a wireless network simulator
to a graphics card using NVIDIA CUDA. The proposed ar-
chitecture efficiently utilizes the graphic processing resources
by balancing the load on the GPUs and by efficiently using
different memory types on the graphics card. The achieved
performance of the channel computation is about 30 multiples
faster compared to an Intel Core2Duo processor. The model
efficiently performs the PC-CUDA communication while min-
imizing the device memory access overhead by following the
access pattern explained in [13]. Moreover, the model features
a memory bank conflict free execution. While our work is
based on CUDA release 1.0, NVIDIA has lately announced
the availability of the new releases 1.1, 2.0, and 2.1. The new
releases support asynchronous memory operations, which can
be used to further enhance the performance of the channel
computation.
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