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Abstract

Recent traffic measurement of IP backbone networks discovered that aggregated IP traffic can be either
uncorrelated or strongly correlated at small time scales, although at large time scales it exhibits long
range dependence (LRD). Based on the infinite source Poisson traffic model, we show in this paper
that the lack of correlation is an intrinsic small time scale property of LRD traffic due to the multiplex-
ing of a large number of independent traffic flows. Particularly, the access bandwidth of users is a crit-
ical factor determining the boundary between the two ranges of time scales in which the uncorrelation
and correlation property dominate the traffic behaviour respectively. A higher access bandwidth makes
this boundary located at a smaller time scale. We refer to this time scale as boundary time scale and
argue that the existence of a very small boundary time scale can explain the reported strong correlation
at small time scales. Furthermore, the traffic behavior at different time scales leads to different queue-
ing behaviors with respect to different queueing lengths. It is shown a large boundary time scale results
in a large degree of buffer efficiency and thus brings substantial performance improvement in spite of
the existence of LRD at large time scales.
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1. INTRODUCTION

The long range dependence (LRD) phenomenon, which describes the existence
of strong temporal correlation over a large time span, was discovered as an ubiqui-
tous large time scale phenomenon of IP traffic [3][5][9][11][13]. LRD traffic has
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the hallmark of slow decay of traffic rate variability with the increasing measure-
ment window. Explicitly,

2H -2

VAR[X,] Oct for t — o ()

where X, denotes the traffic rate in byte/s observed in a time interval of length 7, ¢
is constant and 0.5 < H <1 is a measure of the degree of LRD called Hurst param-
eter. Larger values of Hurst parameter indicate higher degrees of LRD and an
uncorrelated process like Poisson process has a Hurst parameter of 0.5. For the slow
decay of variance, LRD traffic is regarded as bursty and generally has a significant
detrimental impact on the queueing performance, for instance, high traffic loss for
small buffer and large queueing delay in case of large buffer.

For the small time scale traffic behavior, recent measurement of the backbone
IP traffic [15] discovered some very interesting features. In the time scale range of
about 1ms~100ms, traffic fluctuation is either uncorrelated or strongly correlated
depending on the composing traffic flows. If the aggregated traffic mainly consists
of sparse flows, i.e., the flows with large packet interarrival time, it shows uncorre-
lation or only slight correlation in the observed time scale range. On the other hand,
if there are a large number of dense flows, characterized by small packet interarrival
time, strong correlation arises.

This paper aims to theoretically explain the reported small time scale behavior
and inspect its indication for queueing performance. On the basis of infinite source
Poisson traffic model [14] it is shown that the lack of correlation is an intrinsic
small time scale property due to the multiplexing of independent sources. The
uncorrelation characteristic is constrained within a time scale range, the upper
bound of which is determined by the access bandwidth of individual users. If this
bound is located at a very small time scale, the uncorrelation structure cannot be
captured in practical measurement due to the limitation in the time granularity, so
only the correlation property is recorded. Furthermore, it is demonstrated by simula-
tion that the time-scale-dependent traffic behavior leads to queueing-length-depend-
ent queueing behavior and the uncorrelation structure at small time scales can
increase the buffer efficiency considerably.

The remainder of the paper is structured as follows. In Section 2 the character-
istic of synthetic traffic is presented and analysed. The indication of small time
scale traffic behavior for queueing performance is inspected in Section 3. The paper
is concluded in Section 4.

2. UNCORRELATION BEHAVIOR AND ACCESS BANDWIDTHS

In this section, by simulation we demonstrate the existence of the uncorrelation
structure in the aggregated LRD traffic and figure out the time scale bounding the
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uncorrelation and strong correlation behavior. The role of the access bandwidth is
identified.

2.1 Simulation scenario

The simulation scenario is illustrated in Fig. 1. Here n independent identical
LRD traffic flows are aggregated on to one 622Mbps backbone link. Servers s1~sn
are identical and used to model access links of limited capacity C,. Server B is to
model the backbone link with capacity C,=622Mbps. Unbounded FIFO queues are
applied so that there are no packet losses. The aggregated traffic rate X, is meas-
ured at point P with a time interval of 7 = 100s.

LRD flow
E—
backbone link rate:
622Mbps
T—®

LRD flow
— [}

Figure 1: Simulation scenario

For each individual LRD flow the infinite source Poisson traffic model [14]
(also known as M/ G/ model) is applied. Data sessions are generated according
to Poisson process. The size of a session follows the Pareto distribution with a mean
value of 10 Kbytes and parameter o =1.6. The resulting LRD flow thus has a Hurst
parameter equal to 0.7. Data sessions are segmented into packets for transmission
with maximal packet size of 1500 bytes.

2.2 Simulation results

To observe the possible influence of different system parameters on the traffic
characteristic, different access bandwidths, backbone and access link utilization are
taken into consideration. The simulation results are drawn in variance-time plot.
The y-axis represents log,0 j2 where O j2 denotes the variance of traffic rate X,
observed in a time interval of ¢ = 2/T, j = 0,1,2,.... The x-axis corresponds the
parameter j . For ideal LRD traffic it can be derived from Equation (1) that log,0 j2
has a linear relation to j and the Hurst parameter H can be estimated from the slope
of the fitted line.

Fig. 2 shows the impact of the different access link utilization p, on the traffic
characteristic. p, is set to 0.2, 0.5, 0.8 and p, — 0 respectively. Note p, — 0
means each flow contains only one data session and # — oo is required to reach the
given backbone link utilization. In this case the aggregated traffic degrades to traffic



Guogiang Hu

generated by a single infinite source Poisson model. The access bandwidth C, is
fixed to 10Mbps and the backbone link utilization p, is 0.8. For comparison, the
variance-time relation of a single packet flow arriving according to Poisson process
and having constant packet size of 1500 bytes is also plotted.

It can be seen that the curve of each aggregated LRD traffic has a knee area
around Scale 3 and 4. At scales lower than and equal to 3, the variance of the traffic
rate decreases as fast as, or in case of large access link utilization even faster than
that of the Poisson traffic, which precludes the existence of strong correlation in this
time scale range. At scales larger than 4, LRD traffic curves deviate from the Pois-
son traffic curve drastically and the variance decreases slowly with the increasing
time scale, which is a sign of LRD as indicated in Equation (1). In general, the LRD
traffic behaves differently in two time scale ranges and the boundary between these
two ranges, i.e., the location of the knee, is independent of the access link utiliza-
tion. This will be referred to as boundary time scale t, in this paper. The curve cor-
responding to larger access link utilization has however lower variance everywhere
since the traffic flows experience more intensive “shaping” on the access link and
also because less number of flows is required to reach the given backbone link utili-
zation.
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Figure 2: Variance-time plot wrt. different Figure 3: Variance-time plot wrt. different
access link utilizations access bandwidths

In Fig. 3, the influence of different access bandwidths C,: 512Kbps, 1Mbps,
SMbps and 10Mbps is illustrated. The backbone link utilization is again 0.8 and
only the case p, — 0 is shown for clarity. The boundary time scale is now located
at different time scales depending on access bandwidths. The values of the bound-
ary time scale #, as well as the correspondent absolute time are tabulated in Table 1.
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It is seen that the boundary time scale 7, is always close to the maximal packet
transmission time 7', on the access link:

_ 8 bits/byte * 1500 bytes

T . (2)
Table 1: boundary time scale vs. access bandwidth
C, t, (absolute time) T ot
512Kbps 7~8 (12.8~25.6 ms) 234 ms
1Mbps 6~7 (6.4~12.8 ms) 12 ms
SMbps 4~5 (1.6~3.2 ms) 2.4 ms
10Mbps 3~4 (0.8~1.6 ms) 1.2 ms

2.3 Explanation

To explain the simulation results, first note that more than 90% of the synthetic
traffic is composed of packets of 1500 bytes due to the segmentation mechanism.
So approximately the packet length can be regarded as constant. The number of
packets transmitted on one access link within time interval 7" < T pkt is either O or 1,
which can be described with a Bernoulli model. Let the probability of one packet
being transmitted is p, then the probability of no packet being sent is 1 —p. p
equals the mean number of transmitted packet within 7", and is proportional to 7"
and access link utilization. The number of aggregated packet arrival Y, from total
n flows within 7" < T pkt follows a Binomial distribution:

PLYp=m} = JEp"(1-p)""". 3)
Then the mean and variance of Y, are E[Y,] =np and
VAR[Y ] = np(1 — p). The packet arrival process of the aggregated traffic within
I" <T,y 1s independent because of the independence between n flows. So the
uncorrelation property is a natural consequence of the statistical multiplexing.
When the backbone link utilization is fixed, E[Y ] = np keeps constant.
With very small access link utilization there are p — 0 and n — o so that the
counting process {Y,} becomes Poisson process (Poisson theorem) and
VAR[Y ] = E[Y,] = np. This is reflected from the overlapping of LRD traffic
curves with Poisson traffic curve at the small time scales in Fig. 3. Larger access
link utilization leads to smaller value of 1 —p and VAR[Y ;] . However, if T" is
tiny, p becomes so small that VAR[Y -] =np, again similar to Poisson process.
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This explains the dips of those LRD traffic curves with access link utilization
greater than 0 in Fig. 2.

When the time interval exceeds 7', the temporal correlation of each flow
must be taken into consideration and the Bernoulli model is not valid any more. The
heavy tailedness of the session size distribution begins to affect and leads to LRD.
Thus T pkt acts as a boundary between uncorrelation and strong correlation charac-
teristic of aggregated LRD traffic.

It is necessary to point out here that the study of the uncorrelation property of
aggregated traffic with the Bernoulli model is not new. For example, it is applied in
[8] for the assembled burst traffic in optical burst switching (OBS) networks and in
[12] for the study of the variance-mean relation at small time scales of traffic traces.
Also in [2] the Poisson characteristic due to the multiplexing is discussed for Inter-
net traffic. Our contribution here is that we identify the boundary time scale explic-
itly for the aggregated LRD traffic and disclose its relation to the access bandwidth.

2.4 Indication for real IP traffic

In real IP networks, about half of the traffic volume is composed of packets of
1500 bytes [16]. It was also found that packet interarrival time of traffic flows is
closely coupled with access bandwidth [1]. So, the dense/sparse flows characterized
in [15] indeed represent traffic flows from access links of different link capacities,
which is also indicated in [15]. The current network access link bandwidths cover a
large spectrum, from 56Kbps modem to 10/100Mbps Ethernet link. The boundary
time scale of the aggregated traffic therefore depends on the statistical distribution
of the access bandwidth of terminals. If the aggregated traffic contains a large
amount of high rate flows like 10Mbps, the correspondent boundary time scale is in
the order of one millisecond. In this case, the uncorrelation structure is invisible due
to the limitation of the time granularity in measurement and only the strong correla-
tion is captured at small time scales. This illuminates the observation in [15] as
mentioned in Section 1.

To further justify our argument quantitatively, we note that in the case of strong
correlation in time scale of 1ms~100ms, the dense flows, most of the packet interar-
rival time of which is less than 2 ms, amount to 15~20% of total traffic according to
[15]. We simulate the aggregated traffic by adopting heterogeneous access link
capacities. In Fig. 4 the variance-time plot for synthetic traffic aggregated from
access links of different rates (1Mbps and 10Mbps) is presented. It can be seen that
in case the traffic from 10Mbps links takes a slight portion (2%), the location of the
boundary time scale is still decided by the transmission time on the 1Mbps link.
However, it is clearly shifted to the smaller time scale provided that the contribution
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of high speed access links goes up to 20%, matching well with the measurement
results.
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Figure 4: Variance-time plot wrt. traffic of different combinations

3. QUEUEING PERFORMANCE

The LRD characterizes the slow decay of variance with the increasing time
scale. However, it alone does not decide the absolute value of the variance, which
can be more important for queueing performance. It is pointed out in [10] that the
buffer overflow probability is considerably affected by the absolute traffic variabil-
ity on a so-called relevant time scale which denotes the time scale most relevant for
the formation of the concerned queueing length. In [7] it is shown that for finite
buffer only the correlation within a specific time scale (cutoff lag) influences the
queueing performance. In these papers, it is also derived that the relevant time scale
(or cutoff lag) is proportional to the queueing length (or buffer size). However, the
traffic model studied in [10] is the classical fractional brownian motion (FBM) only
for the large time scale LRD characteristic. In [7] uncorrelation at small time scales
is inspected, but the adopted traffic model behaves like on-off source model after
specialization, which is not suitable for the aggregated traffic. In this section the
impact of the uncorrelation structure of M/ G/ model will be studied. Fig. 3
already illustrates that smaller access bandwidth makes the variance of traffic rate
smaller at time scales beyond the boundary time scale. It is natural to expect some
performance gain from it.

The same simulation scenario in Fig. 1 is applied and the performance of the
buffer in front of Server B (the backbone link) is looked at. p, — 0 is taken since it
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leads to the largest traffic variability in comparison to p, >0 (cf. Fig. 2) so repre-
sents the worst performance case. In Fig. 5 the mean waiting time is plotted with
respect to p,. The complementary cumulative distribution function (CCDF) of
queueing length under the condition p,= 0.9 is shown in Fig. 6.
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Figure 5: Mean packet waiting time vs. uti- Figure 6: CCDF of queueing length wrt.
lization, wrt. LRD traffic of different bound-  LRD traffic of different boundary time scales
ary time scales

In both diagrams the performance gain due to lower access bandwidth can be
figured out. Especially, with the access bandwidth of 512 Kbps the performance
curves overlap with those of the Poisson packet traffic. In Fig. 6, particularly, break-
point can be identified in CCDF curve for the aggregated LRD traffic, correspond-
ing to the observed time-scale-dependent traffic behavior in Section 2. At small
queueing lengths, the CCDF is analogous to that of Poisson traffic and decreases
exponentially fast with the increase of queueing length. When the queueing length
gets further larger, the CCDF begins to decline slowly, consistent with the known
queueing behavior of LRD traffic [4]. The location of breakpoint, which corre-
sponds to the efficient queueing area, again depends on the access bandwidth. Small
access bandwidth results in the occurrence of breakpoint at a large queueing length.

This phenomenon can be well explained by the concept of relevant time scale
(or cutoff lag). For small queueing length whose correspondent relevant time scale
is smaller than the boundary time scale, the queueing performance is mainly deter-
mined by the traffic characteristic below this time scale, i.e., the uncorrelation traf-
fic behavior. That leads to the exponential decay of the CCDF curve. For large
queueing length, the relevant time scale of which lies above the boundary time
scale, the LRD traffic characteristic plays a crucial role in affecting the queueing
performance and the buffer efficiency decreases significantly. As a result, the
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queueing length at which the breakpoint is located increases with the boundary time
scale.

Since large boundary time scale corresponds to the small access bandwidth, the
performance gain presented above can be also thought of as a kind of multiplexing
gain, in the sense that with given backbone bandwidth it is more beneficial to aggre-
gate more users and for each user allocate a relative small access bandwidth. It actu-
ally highlights that by keeping a sufficient multiplexing degree the negative impact
from the LRD property on the queueing performance is limited, although it is
known that the LRD characteristic itself is not alleviated by the multiplexing. This
is a significant indication for practical traffic engineering, which is also implied in
[2][4], however, from other perspectives.

4. CONCLUSION

Motivated by the new measurement results of Internet traffic, we review the
well-known infinite source Poisson traffic model and inspect the cause of the uncor-
relation structure of backbone IP traffic observed at the small time scales. It is
shown by simulation and analysis that the uncorrelation is directly related to the
multiplexing of a large number of independent traffic flows and it dominates in a
time scale range upper-bounded by the maximal packet transmission time on the
access link.

Corresponding to the boundary time scale distinguishing the different traffic
behaviors over different ranges of time scales, the resulting queueing behavior also
turns out to be different with respect to different queueing length. A large boundary
time scale, or equivalently small access bandwidth, leads to a larger degree of buffer
efficiency which brings substantial performance improvements.

Our future work will aim to build explicit mathematical relation between the
boundary time scale and the location of the breakpoint (cf. Fig. 6) of queueing per-
formance with respect to CCDF, which will be quite instructive for the resource
allocation of network devices.
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