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On Computing the Probability of Loss of Two-stage Link Systems with Presclection

By Ludwig Ilicber

A Report from the Institute of Switching and Data Technics, University of Stuttgart, Germany

1. Introduction

For computing the probabilities of state of link
systems numerical difficulties arise because of the
lirge number of states which have to be considered
in systems with a size of practical interest. Publi-
shed methods (G. Basharin [1], W. Lércher [2]) for
exact calculation of the probability of loss of two-
stage link systems are restricted to small systems.
This is due to the fact that already small systems
give rise to very large sets of linear equations of the
probabilities of state.

For link systems in use methods for computing the
probability of loss are mostly based on' some
assumptions which simplify the computation process
and still describe the statistical behavior of the
system sufficiently accurate. The effects of such
assumptions to the calculation of the probability of
loss have to be carefully checked by artificial traffic
trials. A systematic analysis of methods which imply
such assumptions can be found in a paper by K.
Kimmerle [3]. .

In this paper only two-stage link systems for pre-
selection are considered. The method to be described
for computing the probability of loss uses a formerly
not applied assumption. As the only assumption it

is supposed that the probabilities of occupied lines

of multiples of the first stage are independent from
each other. One can construct special {wo-stage link
systems for which this assumption holds. It is
feasible that for other systems this assumption is a
very close approximation to reality. By using this

- assumption the derivation of the probablhtles of.

state is simplified considerably. From the probabili-
ties of state the probability of loss can easily be
obtained.

2. Notation and Assumptions

The considered two-stage link systems consist of
g1 multiples of the first stage and g» multiples of
the second stage. Each multiple has k; outlets (first
stage) or kp outlets (second stage). The total number
of outlets of the system is n=gz- ke; Fig. 1.

Some further notations:

x number of occupied'outgoihg
trunks,
x; ] number of occupied links of

multiple i stage 1,

probability for z; links of multiple
i busy,

T0 g §
Fig. 1. Two-stage link system

p{x1, x2, ..., Xy,) probability of the state
{x,, Loy oy .I‘”,},

CAy number of calls offered per unit
time to multiple i,

Ai=cyy* tm the traffic offered to multiple i.

For the link systems studied in this paper the
following assumptions are made:

a) Calls originate from infinite sources and offer a
pure chance traffic A (Poisson input) to the multiples
(i=1,2,..., g1) of the first switching stage. The traffic
A is equally distributed to ¢ multiples, such that
A= Algy.

b) Random hunting for free links in all stages
(i=1,2,...,5) and for free outlets is assumed.

¢) The ‘holding times are independent from each
other and exponentially distributed, P(>>t)=e~!/n |
with the mean value of t,,.

d) The probabilities pi(x1), pa(xs), ..., py.(x,) of
occupied lines in the multiples i=1,2,..., g of the
first stage are to be independent from each other.

3. A new Method using Equations of State (ECPL)
(Equations of State for the Calculation of two-
stage Link Systems for Preselection with Loss)

In order to get the probabilities of state for a system
with loss all the transition probabilities from within
a state {xj,x,... 25} into all neighbour states
and the transition probabilities from these neighbour
states into the state {x1, s, ..., &y} have to be

considered; Fig. 2.

3.1. Transistions by which the State {xy, x2, ..., x5}
disappears :

(a) The transition

oy Xf — l,v oy xgl},

{xl, L2500 o5 Liyo .‘,:'Cg,} - {xl,xg,. .

S(i) - S@i—1).

The probability for the state S(i) and the transition
into the state S(i— 1) by termination of a busy trunk
in multiple i during the time (¢, t-+dt) is

PISE) - 25 + 0(dD). M

In Eqgn. (1) the termination probability of an
occuring call during dt is x; dt/t,. In the function
O(dt) all terms of higher order are included.

{r,,x2 ,...,xg,-l}
—

{x,ﬂ, x,,...,r,,} —_— {x,,xz ,..,,xg,vi}

Fié. 2. The neighbour states of {xy, xg, ..., Xp1).
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(b) The transition ‘ ,

{'rlr R R R mm} s {3?], Agye oy WY ““ 1»' o0y mo‘;}l

S(i) =~ S@ I 1).

The state S@) will change into the state S(i+1) if
an offered call to multiple i can find a free trunk.
The transition probability during (t, t+dt) is given
by the following expression:

PIS())  pua(S() * ea, - dt + 0(d) . (2)

The function ;(S(i)) is defined as the passage
probability that an incoming call of multiple i in
the state S(i) can find a free trunk. If the call is
successfull sy =1 otherwise u;=0.

3.2. Transitions by which the State {x1, X, ... Lot}
originates . L

(a) The transition
{1, X2ye v ey T +1,..., xgl} = {@1, B2y o0y Thyi ooy x,,}, ‘

S(i+1) = S(i).

A link of multiple i becomes free by a termination
of a busy trunk during (t,t-+dt). The transition
probability can be derived similarly, to Eqn. (1):

M&HJWWHJr%+OW% (3)

(b) The transition
{1, 2,0 ooy 20 — Loy g} = {21, X250 03 Ttye e oy Zg}s

S(i— 1) = S(i). ’ ‘
An offered call to multiple i will find a free trunk
with the probability ui(S(i—1)). Similar to Eqn: (2)
the transition probability becomes

PS(i — 1)) m(SGE — 1) *cq, - dt + 0(dE).  (4)

3.3. The Equations of State

If the system is in the state of statistical equilibrium
the sum of the transition probabilities from within
the state S(i) is equal to the sum of the transition
probabilities into the state S(i). :

In Eqns. (1, 2, 3, 4) only multiple i was considered.
To get all the transitions of the neighbour states the

transition probabilities of Eqns. (1, 52, 3, 4) have to be

" summed up from i=1 to i=gi."

A

o Loodt
S o

+ 5 B | (S0 - oa i + 0l

h

o dt
= 5 P86+ 1) (e 1) -+ 0@ )
4§ == .
- oo : -
+ .ZL p(S(E — 1)) * pa(S(E — 1)) - 4, - db.
§= L
With the already made assumption 'of independence -
of all pi(x) the following equation holds ‘
PE1, T2pe v vr Bg,) = P1(%1) * P2(@2) .+ Pa(Fg)) =

= pw).  ®

Sl

" For infinite small time intervalls dt— o the function
O(dt) = 0. If Kqn. (6) is applied to Egn. (5) and with

A¢=1€4,* tw one can show that Eqn. (5) can be split

into two parts

e

% 28 -

71

=;y®u~nrm@u~nrm;,mw
3 PG+ ) 1)
g1
(7b)

= 3 p(S6) " (S - A

XS]

" From Eqn.(7a) it may be observed that the transition
probabilities of Eqn. (1) and Eqgn. (4) are equal. The

" same applies to Eqn. (2) and (3).

Both Eqns. (7a) and (7b) give a set of linear equations
from each of which the probabilities of state can be
calculated. The number of unknowns can be consi-
derably reduced by using conditions of symmetry to-
gether with the effect of Eqn. (6).

Knowing the.probabilities of state p(xi, Xz, ... Zn1)
the probability of loss can be calculated by .

s ki ki k1 71 )
B=3 X ... % 2pB@ 1—mB6n 8)
23m=0 25=0 Zg, =0 i=1
together with the limiting condition
71
nZx= 2 . (9)
i=1 ,

4. A new Iterative Method (ICPL)

(Iteration Method for the Calculation of two-

stage Link Systems for Preselection with Loss)
In this section an interative method will be shown
for calculating the probabilities of state and the call

congestion. For a system with n outgoing trunks in
this method only (n+1) unknowns occur. From - )

Eqn. (7a) or (7b) the probability for

1
= 2

: RN =

outgoing trunks busy, p(x), may be obtained from
k1 k1

pley= 2 X

ki
cer 2 play, way. .., Tgy) -
. #1=0 za=0 :

xm= 3

(10)

‘Again Eqn. ‘(9) has to be considered. If the sum-

‘mation of Eqn. (10) is applied to Egn. (7a) one gets.

kR

pleyrx="3% 2 ...

2y =0 xg=0

k1 1
Y X pBE—1)x

: wm—o [
. X (S — 1)) - Aq.
Now, Eqn. (11) is extended on the right hand side

by A*p(x—1) and the global passage probability is

introduced by

ki Kk k1 s
F5 LY S s mEe): 4
: Zym=0 23=0 x,‘-o [ 5 )
F(x) = k1 ki k1 i
A3 X ... > plei, 22,. .0 Xgs)

£1=0 ZymQ 25, =0

(lé)

(11)
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Fig. 3. Probability of loss of a two-stage link system

N

S0 that one gets
p@) x=A-pe—1) u—1) (13)

Recurrence relation (13) has the same form as the
relation for statistical ethbnum of a smgle—stage
system. .
From Eqgn. (6) the followmg senes can be denved

i

With the algorithm given below an iteration cycle is

started off with an approximate solution for the

probabilities of state. They are improved successively

until a given limit of change between two iteration

cyeles is reached.

(1) The starting distribution of p(x) is assumed.

(2) Using Eqn. (14) all py(x) are calculated.

(3) With pi(x)) and Iign. (6) the passage probability
y(x) can be evaluated.

(4) Rccurrence relation (13) allows to calcu}ate all

p(x).

(5) The steps (2)-(4) are executed until in the v-th

cycle a given limit ¢ e.g.
P5(0) — po-1(0)| < &
holds.

Having got approximate values for p(x) and u(x)
the probability of loss can be evaluated:

B~ Z p(@) -

‘x=k1

5. Numérical Results

*'The methods ECPL anc ICPL were used to compute

the probability of loss for a number of systems. For
both methods the numerical results are almost
identical. A comparison with exact solutions accord-

ing to G. Basharin [1] for small systems proved " ’

agreement of three significant figures. For bigger
systems results of artificial trials show unusually
close agreement with values obtained by ECPL and
ICPL.

As an example Fig. 3 shows curves computed by

" ECPL and ICPL for a two-stage link system together

with results of simulation. The confidence mtervall

. of all tests is 95 %b.
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Zur Wellenausbreitung in Glasfaser-Lichtwellenleitern,
Von O. Krumpholz Dissertation TH Karlsruhe (20. 1.
1971). Berichter: Prof. Dr. techn. G. K. Grau; Mitberich-
ter: Prof. Dr. rer. nat. H. Friedburg.

In der Arbeit wird gezeigt, dafl bei der Herstellung von
ummantelten  Glasfaser-Lichtwellenleitern Kern- und
Mantelglas teilweise ineinander diffundieren., Dies be-
wirkt eine Verbreiterung der Intensititsverteilung des
HE;;-Grundmodus in der Faser. Durch eine nochmalige
Erwirmung der Faser bis in die Nihe des Transforma-
tionspunkties kann das Ineinanderdiffundieren der beiden
Gliser weiter vorangetrieben werden, wodurch sich das
Intensititsprofil der HE{1-Grundwelle abermals verbrei-
tert. Die verbreiterte Leistungsverteilung der Welle in
“der Faser hat, wie theoretisch und experimentell gezeigt

wird, eine Verschmilerung der Strahlungskeule und eine -

Erhohung des Einkoppelwirkungsgrades zur Folge.

Harmonische Balance fiir eine Klasse von Systemen mit
ortlich verteilten Parametern. Von Dieter Franke.

Dissertation Universitit (TH) Karlsruhe, 1971. Berichter:
Professor Dr. rer. nat. O. Féllinger; Mitberichter: Pro- -

fessor Dr. phil. nat. G. Schneider.

Zahlreiche Systeme mit oOrtlich verteilten Parametern
weisen eine dem nichtlinearen Standardregelkreis mit
konzentrierten Parametern édhnliche Struktur auf. Das
linéare Teilsystem wird durch eine lincare particlle Dif-
ferentialgleichung beschrieben, die Riickkopplung erfolgt
iiber einen nichtlinearen Operator. Liilt sich die Green-
sche Funktion des linearen Teilsystems in eine geniligend
rasch konvergierende bilineare Reihe nach Eigenfunk-
tionen entwickeln, so kann man die Ruhezustiinde des
Systems n#herungsweise durch Balance der ersten
rdumlichen Harmonischen (Eigenfunktion) ermitteln, die
Schwmgungszustande durch Balance der ersten =zeit-

lichen und. ridumlichen Harmonischen. Die hierzu er-

forderlichen Gleichungen der zeit- und ortsharmonischen
Balance erhilt man durch eine Erweiterung des Begriffs
der Besc.hreibungsfunkﬁon. (1534)
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