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Abstract. New Internet services and technologies call for higher packet
switching capacities in the core network. Thus, a performance bottleneck
arises at the backbone routers, as forwarding of Internet Protocol (IP)
packets requires to search the most specific entry in a forwarding table
that contains up to several hundred thousand address prefixes. The Tree
Bitmap algorithm provides a well-balanced solution in respect of stor-
age needs as well as of search and update complexity. In this paper, we
present a pipelined lookup module based on this algorithm, which allows
for an easy adaption to diverse protocol and hardware constraints. We
determined the pipelining degree required to achieve the throughput for
a 100 Gbps router line card by analyzing a representative sub-unit for
various configured sizes. The module supports IPv4 and IPv6 configu-
rations providing this throughput, as we determined the performance of
our design to achieve a processing rate of 178 million packets per second.

1 Introduction

The ongoing increase of the Internet traffic necessitates to upgrade the capacity
of the backbone network continuously. As a consequence, 100Gbps Ethernet will
be deployed in 2010 [1] requiring core routers to perform 150 million IP address
lookups per second and ingress port. For each lookup operation, the router’s
forwarding engine (FWE) has to determine the most suitable next-hop router
by using the packet’s destination IP address as a key for searching a forwarding
table. This table lookup is a complex task in software as well as hardware, since
it requires to find the longest matching prefix (LMP) as the most specific entry.
Moreover, the forwarding table holds several hundred thousand entries and grows
even further [2]. The requirements of good scalability regarding 128-bit long IPv6
addresses and of efficient table update processing lead to additional difficulties.

Facing these requirements, today’s high-speed routers typically use special-
ized hardware to implement the FWE. Ternary Content Addressable Memories
(TCAMs) can perform one table lookup per clock cycle. However, TCAMs scale
unfavorably with table and key sizes, and they consume significantly more power
than standard memory. Therefore, algorithmic lookup methods [3,4,5,6,7] are in-
creasingly implemented in specialized hardware modules. Among these methods,
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the Tree Bitmap algorithm [5] implemented in Cisco’s CRS-1 core routers [8]
offers a very smart and balanced trade-off between memory usage, lookup per-
formance, and update complexity.

In this paper, we present the design and prototypical implementation of a
flexible and fully pipelined hardware lookup module based on the Tree Bitmap
algorithm. In order to investigate whether and with what effort algorithmic IP
lookup modules can be realized in hardware for future line speeds of 100Gbps
and beyond, we clearly focused on maximum throughput and resource efficiency,
as opposed to other published Tree Bitmap implementations [5,9]. By processing
all packets in a pipeline, our design effectively performs one IP address lookup
in each clock cycle. Additionally, it supports high-speed, non-blocking updates
of the forwarding table. By adjusting several configuration parameters, one can
also adapt the module to various requirements concerning performance, resource
utilization, and memory parameters.

We tested the module’s functionality on a hardware platform based on a Field
Programmable Gate Array (FPGA). Due to the module’s deterministic behavior,
we can show that the processing logic of our design can be utilized for 100Gbps
line speeds using current FPGA devices. Additionally, we studied how many
pipeline registers are needed per functional block of our lookup module, in order
to achieve a desired throughput with different configurations.

In the following section, we describe a typical high-speed router architecture
and give a short review of the IP address lookup problem as well as different
solutions with a focus on the implemented Tree Bitmap algorithm. In Sect. 3, we
detail on our hardware realization. Finally, we discuss the achieved simulation
and synthesis results in Sect. 4, before we conclude this paper.

2 IP Routing

IP Routing and its underlying specifications determine the constraints for a qual-
ified architecture and IP lookup method of a high-speed FWE. In this section, we
introduce the primary factors that have directly affected our hardware design.

2.1 High-Speed Router Architecture

Routers generally perform two basic functions: (a) Exchanging topology infor-
mation with other routers in order to build a routing table and (b) forwarding
packets from ingress to egress ports based on this table. The former function is
run on the control plane, whose timing requirements allow its implementation
as part of a software-controlled processing entity, commonly termed the router’s
slow path. The latter function belongs to the data plane, which has to fulfill
strict speed constraints. Thus, packet forwarding, as part of the router’s fast
path, is implemented using specialized hardware on core routers.

Typically, a decentralized architecture as shown in Fig. 1 is used to achieve
high scalability in terms of the number of interfaces. Several line cards are con-
nected to a switch fabric, each accommodating one or more physical interfaces
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Fig. 1. Architecture of a typical core router

(PHY), packet buffers, a slow path interface, and a network processing unit
(NPU). The slow path interface hands routing protocol messages over to the
route controller (RC) within the control and management unit (CMU) and down-
loads the updated forwarding table entries from there. The NPU performs the
fast path functions including packet classification, table lookup, and the asso-
ciated packet modifications. The IP lookup module we present in this paper is
intended to be part of such an NPU and leverages the common approach to
increase the throughput by pipelining the processing tasks within the NPU.

2.2 IP Address Lookup

IP addresses consist of a prefix identifying a particular network and a host part
indicating the destination within the respective network. To mitigate the in-
creasing address shortage, Classless Inter-Domain Routing (CIDR) has been
introduced, which allows prefixes to take any number of IP address bits in or-
der to flexibly aggregate contiguous prefixes to a single entry in the forwarding
table. As IP addresses are not strictly hierarchically distributed, the resulting
address space fragmentation leads to exception entries—also denoted as more
specifics—which account for 40–60% of the total forwarding table size in the
Internet backbone [2]. It is thus necessary to find the longest matching prefix
(LMP) for a precise forwarding decision. The large sizes of backbone forwarding
tables in combination with CIDR make the LMP search a complex task that,
moreover, has to be performed at a high frequency in core routers. Therefore,
specialized hardware implementations are the method of choice.

Generally, two solutions exist: (a) TCAMs that accomplish a parallel LMP
search effectively in only one clock cycle and (b) numerous algorithmic lookup
methods. Although TCAMs are often applied in commercial routers, [10] shows
that algorithmic solutions based on multibit tries allow to store larger tables
on a given chip size. Furthermore, TCAMs have a high power dissipation per
memory bit, which finally makes algorithmic lookup methods the best candidate
to meet the future demand on fast IP address lookups.

Apart from hash-based methods, most algorithmic solutions are based on a
binary search tree, which is referred to as trie in this context. Using a trie, the
search space is significantly reduced in each step, but storing the trie structure
causes a certain memory overhead. To address this issue, some solutions [7,3,5]
propose to use a compression method to pack several trie nodes in one compacted
multibit node that can be processed in a single search step. The LC-trie [7] and
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the Lulea algorithm [3] achieve a very good scalability of memory demand against
table size but do not support incremental table updates. The Tree Bitmap al-
gorithm, which we have implemented, uses a different compression scheme that
results in short and deterministic update times while preserving the properties
of fast prefix search and memory efficient table storage.

2.3 Tree Bitmap Algorithm

Like other trie-based methods, the Tree Bitmap algorithm utilizes multibit nodes
that each cover, as illustrated in Fig. 2(a), a subset of the search trie according
to the defined stride size t. During a lookup operation, the trie is hence traversed
multibit node by multibit node. For each visited multibit node, a t-bit fragment
of the destination IP address is used to check whether a more specific prefix
(filled gray circle) than the currently known exists in this node, and whether
a respective child node exists to continue the lookup. If no suitable child node
exists, the last found prefix is the LMP.
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(a) Trie structure

M1
→r1 | 1011010

→c1 | 11000010

M2
< null> | 0000000

→c2 | 00001000

M3
→r3 | 1000000
< null> | 00000000

M4
→r4 | 1101010

→c4 | 01000010

M6
→r6 | 1000000
< null> | 00000000

Stage 1 RAM

Stage 2 RAM

Stage 3 RAM

M1
→r1 | 1011010

→c1 | 11000010

M2
< null> | 0000000

→c2 | 00001000

M3
→r3 | 1000000
< null> | 00000000

M4
→r4 | 1101010

→c4 | 01000010

M6
→r6 | 1000000
< null> | 00000000

Result array
...

E IF5 | IP5 r3

L IF10 | IP10 r5

N IF11 | IP11 r6

O IF12 | IP12 r7

...
A IF1 | IP1

B IF2 | IP2

C IF3 | IP3

D IF4 | IP4
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F IF6 | IP6

G IF7 | IP7
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(b) Memory mapping

Fig. 2. IP lookup table in Tree Bitmap representation

For the given example of stride size t = 3 in Fig. 2 and the IP address 195.•.•.•

(= 110000112 . . .), the most specific existing prefix in the first multibit node is
B (1*), and the suitable child node is M4 (going right (1), right (1), left (0)
through root node M1). Within multibit node M4, the most specific existing
prefix is now H (= 11000*). As no further suitable child node exists (when
going left (0), left (0), left (0) through M4), H is the LMP.

To store the trie structure efficiently, the Tree Bitmap algorithm uses two
bitmaps and two pointers for each multibit node. The Internal Bitmap (cf.
Fig. 2(b)) represents all 2t − 1 possible prefixes associated with the internal
trie nodes of the multibit node. A set bit corresponds to an existing prefix in
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the forwarding table. The address of the actual next-hop entry, which is saved
in a dedicated memory, is the sum of the result pointer r and an offset. This
offset can be easily determined by counting the number of set bits left of the
bit position that corresponds to the found prefix. In our example, B is the most
specific existing prefix in M1, which is associated with the third bit from left in
the Internal Bitmap. As there is only one set bit in the lower-order positions, the
offset is 1. The External Bitmap similarly represents all 2t possible child nodes.
Again, a set bit corresponds to an existing child node, and an offset is computed
by the number of set lower-order bits.

Beyond this basic algorithm, [5] proposed several optimizations which predom-
inantly aim for smaller memory word widths and a higher memory utilization:
One option is the use of an Initial Array to process some of the multibit trie’s
relatively small top levels in a single memory access. Besides this optimization,
we also implemented End Node handling, which eliminates a large number of
almost empty nodes by using an otherwise unused External Bitmap as an ex-
tension of the Internal Bitmap. The third optimization that has been adopted
in our design is called Split Tree Bitmap and nearly halves the memory demand
of the multibit nodes.

Previously published hardware implementations based on the Tree Bitmap
algorithm are the reference implementation of [5] and the low-cost oriented so-
lution of [9]. The former implementation achieves 25 million lookups per second
using a four times replicated forwarding table stored in external DRAM and an
Application-Specific Integrated Circuit (ASIC) to implement the required logic.
The latter takes a more economic approach utilizing a single external SRAM and
a commodity FPGA, which results in a maximum of 9 million lookups per second
at 100MHz system clock rate. Implementations of other algorithmic solutions,
such as [11], have achieved lookup rates up to 250 million lookups per second
but either have a higher memory demand or do not score an update performance
comparable to that of the Tree Bitmap algorithm.

3 Design and Implementation

In view of the future core router requirements, we designed an IP address lookup
module implementing the Tree Bitmap (TBMP) algorithm to check the suitabil-
ity of trie-based lookup solutions for 100Gbps line rates. In the following, we
identify our design objectives and present details of the module structure.

3.1 Design Objectives

The key objective of our design is the capability to perform lookups with a
throughput sufficient for a 100Gbps Ethernet line card. This shall be achieved
by a pipeline design that allows to process effectively one datagram per clock
cycle. Thus, a minimum pipeline clock frequency of 150MHz is required.

Secondly, the module shall support several thousand forwarding table updates
per second—as needed in the Internet backbone—without interrupting the fast
path.
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Finally, our design aims to provide high adaptability to different hardware
platforms by means of comprehensive configuration options. These do also allow
for statistical research of different setups and enhancements by providing the
freedom to partition the trie using arbitrarily sized strides. Easy modifiability
of the multibit node encoding with respect to pointer lengths and its internal
layout is therefore intended.

3.2 Overall Architecture

Our design extensively utilizes pipelining to efficiently employ the on-chip re-
sources. By contrast, the TBMP implementation introduced by [9] uses time-
division multiplexing of several TBMP automata to increase the processable
lookup rate. Fig. 3 depicts the basic pipeline structure on block level. On this
level, we simply segmented the search trie by assigning each trie level a separate
pipeline stage with dedicated memory and processing logic. Due to the flexible
module configuration, the overall pipeline structure can incorporate a variable
number of these basic TBMP Lookup Stages realizing the algorithmic core func-
tionality. Besides these, an optional Initial Array Stage, an optional Internal
Node (iNode) Stage—required for the Split Tree Bitmap optimization—and the
final Result Stage, holding the array of next-hop IP addresses, are part of the
pipeline. The last two stages in the figure map the next-hop IP address to the
corresponding layer 2 address and egress port ID (EPID), and thus avoid redun-
dancy in the result array. The Update Interface assigns accesses of the slow path
to the individual memories of the pipeline stages. To achieve a high throughput,
all stages themselves are internally pipelined, too.
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Fig. 3. Block diagram of the Tree Bitmap Lookup Module

3.3 Basic TBMP Stage

The structure of a TBMP Stage is shown in Fig. 4. Via the depicted RAM
Interface Module, update and lookup operations access the on-chip memory,
which holds the multibit nodes of one trie level. External memory can not be
used due to the bandwidth constraints of a single RAM component and the pin
count limitations of available chips. As a consequence, we accepted a limited
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forwarding table size of our prototype implementation, since even cutting-edge
FPGAs do not offer enough memory to support on-chip table storage for core
router FWEs—despite the efficient table compression of the TBMP algorithm.
Besides the rather pricey option of an ASIC with larger on-chip memories, we
discuss different solutions to this problem in Sect. 4.

For deterministic update access times, we have employed true dual-port RAM
blocks, which allow update and lookup operations to access the node memory
simultaneously. The easy realizability of dual-port RAM is a further advantage
of on-chip memories. Thus, non-blocking updates are supported, making table
inserts a fast operation that only depends on the slow path processing speed.
Based on the formula in [5], the achievable update rate can thus be roughly
estimated as hupd = fmax

2t+C with 0 < C < (w
t + 3), w as the IP address length,

and fmax as the maximum supported clock rate.
After the memory access cycle, in which a full multibit node structure is re-

trieved, the data is split into its node components and processed by separate
units evaluating the Internal and External Bitmap. According to the TBMP al-
gorithm, the logic of these units determines an index in the corresponding bitmap
that yields the current LMP and the subsequent child node, respectively. Start-
ing with these indexes, the units count all set bits in the lower-order positions to
calculate the offsets within the memory block of the next-hop entries and accord-
ingly within that of the multibit child nodes. The lower-order bits are extracted
from the bitmap by means of a barrel shifter, and the set bits are then counted
by a wide adder unit. Since the barrel shifter and the adder have to process fairly
large vectors of 2t − 1 and 2t bits, they take most of the combinatorics of the
bitmap processing units. Therefore, we designed them in a way so that both can
be mapped to an arbitrary number of pipeline registers m to adjust the length
of the critical combinatorial path according to the stride size t and the desired
throughput. In Sect. 4, we present the results of an empirical study investigating
how many pipeline registers are required to achieve a desired performance with
a given stride size.
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If the optional Split Tree Bitmap optimization is employed, the Internal
Bitmap unit is removed from the TBMP Stages, and a special iNode Stage
is attached to the pipeline (cf. Fig. 3). With few different stride sizes, this saves
combinatorics along with benefits in memory utilization and word widths. In
the iNode Stage, zero, one or two simultaneous memory accesses are required
for each lookup. To avoid memory duplication, such dual accesses can use both
ports of the internal RAM. Possible conflicts with update accesses are resolved
by an arbiter prioritizing lookups over updates. The statistical frequency of these
cases, however, should not affect the update performance significantly.

4 Evaluation

The functional correctness of the TBMP Lookup Module has been validated
by simulating multiple test cases. The design has been subsequently synthe-
sized and transferred to an Altera Stratix II EP2S60 FPGA embedded in the
Universal Hardware Platform (UHP) of the IKR [12]. In our test setup, a com-
puter connected to three 1Gbps line interfaces of the UHP has successfully
shown the correct execution of lookups with different stride and optimization
configurations.

For the evaluation of the potential maximum performance, we investigated a
single TBMP stage. Since the throughput of the module pipeline is determin-
istic, a fix relationship exists between clock frequency and lookup rate. To find
out the optimum pipelining degree for a given stride size t, we determined the
maximum clock frequency fmax for different stride sizes and a varied number
of registers m inside the bitmap processing unit. Fig. 5 shows the results ob-
tained from the timing analysis of the synthesis tool used. As expected, large
stride sizes require more registers to shorten the critical path so that a clock
frequency of over 200MHz is supported. Considering stride sizes in ascending
order, the achievable absolute maximum performance is increasingly bounded by
the growing interconnect delay between the Update Interface and the individual
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RAM Interface Modules. Though, clock rates of more than 200MHz have been
achieved up to a stride size of 8.

If the complete lookup module is integrated on the FPGA used, performance
degrades, as larger interconnect delays are unavoidable if the utilization of the
on-chip resources increases. The timing analysis nevertheless resulted in 178MHz
for fmax in a configuration with an 8-bit wide Initial Array and three TBMP
stages of stride size 8. With this frequency, the lookup module is capable to fulfill
the requirements for 100Gbps Ethernet to process more than 150 million packets
per second and to handle an update rate of several ten thousand messages per
second, according to the equation in Sect. 3.3.

The above mentioned implementation requires about 15,000 registers and
12,000 adaptive lookup tables, which equals to 43% logic utilization of the
deployed Stratix II FPGA. Using the largest high-end FPGA of the 40-nm
Stratix IV family, the processing logic of the lookup module utilizes only 4%
of the available logic cells for an IPv4 implementation and 17% for an IPv6
implementation of the developed design. However, since FPGA manufacturers
seek for a chip area split between logic and memory blocks that is suitable for
the average application, even the above mentioned leading-edge FPGA offers
not enough memory resources for a full backbone forwarding table—despite the
efficient TBMP coding scheme. With 23Mbit of embedded memory, the FPGA
allows to store only about 180,000 prefixes on-chip assuming a perfectly balanced
memory utilization and an average memory demand of 128bit per prefix [5].

A solution to the memory problem could be efforts to manufacture FPGAs
providing larger on-chip SRAM blocks by an adjusted logic-to-memory area split.
A second approach is the use of external SRAM or DRAM components, which
leads to the problem that current FPGAs offer too few IO pins to connect a ded-
icated memory for each trie level stage. Sharing memories between stages based
on recurrent time slots does not solve the problem either, since the available
memory timings do not allow to achieve the total bandwidth required for the
100Gbps Ethernet processing performance. With today’s FPGAs, only a multi-
chip solution is viable. An option in a commercial scope might be an ASIC-based
lookup module that can be used comparably to a TCAM device.

5 Conclusions

Increasing traffic together with the introduction of 100Gbps Ethernet in the In-
ternet backbone requires routers to process up to 150 million IP address lookups
per second and line interface. Considering also power consumption as well as
scalability with respect to growing forwarding tables and IPv6 addresses, algo-
rithmic hardware solutions appear to be most suitable to meet these demands.

In this paper, we presented an extensively pipelined Tree Bitmap Lookup
Module, which is capable to effectively process one packet per clock cycle. Ad-
ditionally, it features a high-speed update interface. By offering multiple con-
figuration parameters, one can adjust the design to different requirements. The
lookup module passed several functional tests both in simulations and in a setup
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using our FPGA-based hardware platform. Synthesis results for an IPv4 con-
figuration placed on an Altera Stratix II FPGA yield a maximum clock rate of
178MHz. This allows to process up to 178 million lookups and several ten thou-
sand updates per second being ample for 100Gbps core router line cards. On
today’s high-end FPGAs, even IPv6 implementations and higher lookup rates
are possible. Our prototypical lookup module utilizes the FPGA’s on-chip mem-
ory, which does not suffice for large backbone forwarding tables. Thus, possi-
ble future FPGAs offering larger memories, multi-chip solutions, or ASIC-based
lookup modules replacing power demanding TCAM devices are needed for com-
mercial deployment.
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