PR INSTITUT FUR
el Uni itat Stuttaart KOMMUNIKATIONSNETZE
0202086552020 %

R niversitat stuttgar UND RECHNERSYSTEME

1'.’. ::‘.‘o’: Prof. Dr.-Ing. Andreas Kirstidter

L XX R4
Copyright Notice

©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
Universitat Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: +49-711-685-68026, Fax: ++49-711-685-67983
email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

A Novel Architecture for a
High-Performance Network Processing Unit:
Flexibility at Multiple Levels of Abstraction

Simon Hauger
Institute of Communication Networks and Computer Engineering (IKR),
Universitét Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Email: simon.hauger @ikr.uni-stuttgart.de

Abstract—Network processing devices in future, high-speed
network nodes have to be capable of processing several hundred
million packets per second. Additionally, they have to be easily
adaptable to new processing tasks due to the introduction of
new services or protocols. Field programmable gate arrays
(FPGAs) and network processors are suitable devices fulfilling
these requirements: The former offer configurability at register-
transfer level providing fine grain adaptability to unforeseen
processing requirements and a high processing power. The latter
are programmed at the more abstract software level and support
high-speed execution of their fixed set of instructions. In this
paper, we present a novel architecture for an FPGA-based high-
speed network processing unit offering programmable modules
at multiple levels of abstraction: register-transfer level, mi-
crocode level, software level and parameter level. A prototypical
implementation demonstrates its feasibility with today’s field
programmable gate array devices offering a throughput of more
than one hundred million minimum sized packets per second.

I. INTRODUCTION

The outstanding success of the Internet leads to ever in-
creasing data rates in data and telecommunication networks
as well as to a continuously growing number of services and
applications. Therefore, in future 100 Gbit Ethernet networks,
devices like routers and switches have to process more than
one hundred million packets per second—on each single line
card. Yet, these networking devices have to be easily adaptable
to changed requirements due to new services or protocol
extensions.

Application Specific Integrated Circuits (ASICs) provide
the required processing speed, but they cannot be adapted
easily to new requirements. General purpose processors are
very flexible and easy to adapt, however they cannot support
the needed packet throughput. For this reason, Field Pro-
grammable Gate Arrays (FPGAs) and Network Processors
(NPs) are increasingly used in networking devices. They
feature both a high and easy adaptability and the required
processing capacity.

FPGAs are programmable logic devices. They consist
of configurable lookup tables, flip-flops and interconnection
lines [1]. The desired functionality is described in a hardware-
description language at gate level and register-transfer level.
As their capabilities are continuously increasing they are more
and more used for packet processing tasks in high-speed
network nodes [2]-[4].

NPs are integrated circuits containing multiple processors
that are specialized for packet processing tasks as well as co-
processors, on-chip memory and fast interfaces [5], [6]. As the
processors of an NP are programmed like a general purpose
processor, they are easily adaptable to changed requirements.
For this reason, they are increasingly used in routers.

FPGA-based systems and NPs offer configurability or pro-
grammability at different levels of abstraction. The lower level
of abstraction makes designing functions for FPGA-based
systems more complex, however it enables highly efficient
implementations. The more abstract software level of NPs
allows to easily program even complex processing tasks.
However, due to constraints of their instruction set, certain
special functions cannot be implemented efficiently on NPs.

In this paper, a novel architecture for a network processing
unit is presented that combines the advantages of conventional
NPs and that of FPGAs. The presented architecture provides
programmability at multiple levels of abstraction: at register-
transfer level like an FPGA, at software level like an NP, and
at micro-code level, which is a level of abstraction between
those two. Furthermore, due to the modular structure of our
architecture functional blocks can be easily added, removed
or exchanged, depending on the current requirements. The
possibility to configure or parameterize such functional blocks
introduces a fourth level of adaptability. A high-performance
pipeline structure is used to achieve both modularity and a
high packet processing rate. The pipeline deterministically pro-
cesses one minimum sized packet in each clock cycle. Due to
the above features, our novel architecture is called MIXMAP
architecture, as it provides Modularity and flexibility on
Multiple levels of Abstraction mapped on a Pipeline structure.

To provide this modularity and flexibility a network pro-
cessing unit implementing this architecture has to be based
on FPGA technology. Using the proposed architecture, a
throughput of one to two hundred million packets per second
is feasible with current FPGA devices, which is sufficient for
100 Gbit Ethernet.

In order to show the realizability of the MIXMAP architec-
ture we prototypically implemented and evaluated its major
parts. Our prototype system is based on an Altera Stratix II
FPGA that is integrated in a hardware development platform.

The rest of this paper is structured as follows: Section 2

reviews how flexible, high-speed packet processing is achieved
on FPGAs and NPs, and gives an overview about their
different levels of abstraction. Section 3 presents our novel
MIXMAP architecture for network processing units, and sec-
tion 4 gives some details on our prototypical implementation.
Finally, we conclude the paper in section 5.

II. FLEXIBLE, HIGH SPEED PACKET PROCESSING

FPGAs and NPs are commonly used for high-speed packet
processing tasks. Both provide some form of flexibility, and
yet, are capable of supporting a high packet throughput.

A. Field Programmable Gate Arrays

In recent years the capabilities of FPGAs increased to a
large extent. As a result they evolved from simple glue logic
modules to full-featured packet processing devices [2]-[4].
Also their power consumption is decreasing due to the use
of modern manufacturing processes [7].

An FPGA provides fine grain reconfigurability on hardware
level, in particular on gate level and register-transfer level.
It mainly comprises up to several hundred thousands of
small look-up tables, flip-flops and a large interconnection
array. Additionally, more and more specialized components are
integrated onto FPGAs. Examples are on-chip static random
access memory (SRAM) blocks, useful for e. g. packet buffers
or forwarding tables, phase-locked loops for clock signal
generation, and even hard-wired processors. By configuring
all these elements arbitrary digital systems can be realized.

The functionality of FPGA-based modules is described
in a hardware-description language (HDL) like VHDL or
Verilog. Software programmers often face difficulties writing
such hardware descriptions, as these have to represent the
parallel hardware on the chip and not a sequential process.
However, these hardware descriptions do not have to be on
a low level of abstraction: While operations on bit and gate
level are supported also more abstract data types, like integer,
enumeration types or record types, can be used. Furthermore,
control structures like branches and loops can be used to
efficiently describe the hardware structure. Libraries with pre-
built, parameterizable functional units further reduce the com-
plexity of the implementation process. Such libraries contain
e.g. arithmetic and logic units, cryptography units, standard
interface modules and first-in-first-out (FIFO) buffers.

The development process is concluded with tool-supported
synthesis and place & route. These steps map the HDL code to
available elements on the chip, place them, route the connec-
tion lines between them and finally generate a programming
file that is loaded into the FPGA device.

B. Network Processors

Network Processors provide a high flexibility as they are
programmable like general purpose processors. They are often
used in access routers and base stations, but also high-
speed NPs are increasingly deployed on line-cards in high-
performance routers [8].

‘ L PE1]| [PE2 PEN

= > — — 1+ — -+ —
PE 2

R 5 s >

PE1 Ts1 Ts2 TsN

Tiotal = N - max{Tg i}

—

Ttotal
Fig. 1. a) cluster configuration, b) pipeline configuration

An NP usually comprises multiple, rather small, specialized
processors. These processors form a pipeline [9], a symmetri-
cal cluster [10], or a combination of both forms [11], [12].
The principal differences between a pipeline and a cluster
configuration are discussed in the next section.

To increase the processing throughput the internal proces-
sors of an NP are often multi-threaded for hiding memory
latencies. Instruction level parallelism is achieved by super-
scalar or Very-Long-Instruction-Word (VLIW) architectures.
Furthermore, NPs usually feature coprocessors and hardware
accelerators for special processing tasks as well as several
on-chip and off-chip memories for storing lookup tables or
buffering packet data.

For programming NPs one has to use specialized languages
provided by the manufacturer, low level C, or assembly. Any
way, programming NPs is not straightforward and one has
to possess a detailed knowledge about the underlying parallel
hardware in order to write efficient code.

C. Configuration of Processing Elements

To increase their throughput, all current network process-
ing systems, both NP-based and FPGA-based, make use of
parallel processing entities (PEs). In the case of NPs these
are its internal optimized processors', in the case of FPGAs
these are internal processing modules. There are two basic
configurations of the PEs, as depicted in Fig. 1: a cluster and
a pipeline.

In a cluster configuration all PEs are identical. Each PE
performs the entire processing task required for a packet. In a
pipeline configuration the processing task is divided into sub-
tasks of equal completion time and each PE is assigned to one
such sub-task. All packets thus wander synchronously through
all PEs.

Under the ideal assumption that the total processing task
of duration T}, can be divided equally into the N sub-
tasks of duration Ts; = Ts = Tjotar/N Vi € {1,2,...,N}
and that the IV PEs of both configurations are identical, both
configurations support the same throughput rate R:

N 1

Cthotal TS

In a pipeline configuration however, it is hardly possible to
define sub-tasks of exactly the same duration. Therefore, the

Rcluster = pipeline (1)

'We do not explicitly consider multiple threads within a processor in this
comparison.

throughput is limited by the processing time of the longest
sub-task. Accordingly, a cluster configuration performs better
than a pipeline made up of the same, identical PEs.

One advantage of the pipeline configuration, however, com-
pensates this drawback by far: its modularity. The modular
structure of a pipeline allows that each PE can be optimized
for its sub-task. Thus the processing times Tg; of the PEs
in the pipeline can be significantly reduced, which increases
the throughput of the pipeline. Additionally, the resource
and power consumption of the PEs decrease due to this
optimization. Furthermore, PEs can be easily added, replaced
or removed, in order to change the system’s functionality or
improve its performance.

A benefit of the cluster configuration is that its throughput
can be easily increased by adding further parallel PEs to the
system. However, the more PEs work in parallel the more
probably it may happen that two or more PEs execute the same
sub-task at the same time. This may provoke access conflicts if
the PEs share resources required for this sub-task. In this case
synchronization or arbitration mechanisms have to be used,
and the advantage of parallelism vanishes [13]. Additionally,
connecting many parallel PEs to shared resources becomes
increasingly complex.

In a pipeline configuration, in contrast, one sub-task is
always executed in only one PE and no resource conflicts
within a sub-task can occur. Additionally, resources can be
more easily confined to one PE either architecturally or by
programming. Due to this, the time a PE needs for each
packet is deterministic. Thus, a pipeline can guarantee a
deterministic throughput, making it ideally suited to high-
performance network processing tasks [9], [11], [14].

Due to these reasons our novel MIXMAP architecture
is based on a pipeline configuration of PEs featuring both
modularity and deterministic throughput.

D. Design at different levels of abstraction

Abstraction hides complex details that we do not have to
be aware of in a certain context. Therefore, designing at a
certain level of abstraction helps building large systems, as the
abstraction hides low-level complexities from the designer.

In the domain of computer engineering several levels of
abstraction are used [1]. At the level of device physics semi-
conductor physicists design ever faster and smaller transistors.
Based on those designers of integrated circuits build basic
logic gates, flip-flops and memory cells. This level is called
transistor (or circuit) level. It is almost impossible to design
entire packet processing systems at these levels of abstraction.
The following levels of abstraction are the gate level, the
register-transfer level, the microcode level, and the software
level. They are commonly used to design digital systems.

Gate level: Basic elements on this level are logic gates, like
AND, OR, and NOT, as well as single-bit flip-flops. They are
used for building e.g. specialized arithmetic units, decoders,
comparators or finite state machines.

Register-Transfer level: On this level operations on bit
vectors are performed. Registers and memory blocks save their

state and combinatorial units (e.g. arithmetic units, logic units,
de-/encoders) process their contents. Elements for transferring
the bit vectors between these elements are busses, multiplex-
ers, and tristate buffers. The behaviour of all elements is
governed by control signals, stemming from e.g. a decode unit.
FPGA-based systems are designed at register-transfer level and
at gate level.

Microcode level: Implementations at this level make use of
a given infrastructure built up by elements of the register-
transfer level. These elements are used for processing, trans-
fering and storing bit-vectors. Their temporal behaviour is
programmed in a very low-level language, called microcode.
Microcode is composed of micro-operations that can define
any basic operation in the system by setting the respective
control signals. Depending on the given infrastructure several
micro-operations may be performed in parallel. Microcode
has been used extensively to emulate complex instructions
with a given simple hardware in Complex Instruction Set
Computers (CISC). Currently it is re-discovered for making
network processing devices adaptable [15], [16].

Software level: This level of abstraction further hides the
complexity of the underlying hardware. Systems on this level
are implemented using assembly language or a higher level
language like C or Java. On assembly level still a very
limited view of the underlying hardware is given, consisting
of a register file, a memory model and a set of supported
instructions. An assembly program is a sequence of such
instructions performing operations on the data in registers and
memory. Higher level languages build up on the assembly
language. Programming is simplified by abstracting even more
from the underlying hardware and providing abstract data
types and control structures. These are finally mapped to the
assembly language by a compiler. Applications on NPs are
implemented in either assembly or a higher level language.

A further abstraction that can be applied to any of these lev-
els is to define parameterizable functional units. The behaviour
or structure of these units can then be defined by setting its
parameters accordingly. In the following, we call this level of
abstraction parameter level.

Usually, one is fixed to a certain level of abstraction by the
choice of a certain device. NPs are programmed at software
level, while FPGAs are described at register-transfer level (and
partly also at gate level). However, when designing at a certain
level of abstraction, one sometimes misses features that are
concealed by the used abstraction. Furthermore, the elements
or the given infrastructure at a certain level of abstraction
may be inadequate for certain functionalities. Emulating the
missing feature can be awkward, more complex, less efficient
or even impossible. Then, switching to a lower level of
abstraction would evade this obstacle, as the missing feature
could be implemented according to one’s needs. There are
several examples for this: bit level operations are cumber-
some and inefficient in assembly but easy to describe and
fast at register-transfer level; also, at software level certain
unsupported atomic operations on shared resources can only
be emulated by complex locking mechanisms, however, are

easily described at register-transfer level.

Our novel MIXMAP architecture for an FPGA-based net-
work processing unit therefore provides the possibility to
design functions at register-transfer level, at microcode level,
at software level, and at parameter level.

E. Related work

Several proposals exist for NPs that make use of the
reconfigurability of FPGAs: [17] proposes FPGA-based recon-
figurable coprocessors, [18] presents an NP architecture with
reconfigurable data paths. In [19] a reconfigurable network
processing platform is described, and [20] proposes to use
soft multiprocessor systems on FPGAs for network processing
tasks. All these architectures, however, are designed for access
and enterprise networks and do not support high-performance
packet processing as needed in core networks.

TPACK offers adaptable FPGA-based high-speed network
processing units [4], but does not provide the source code of its
implementations to its customers for adaptation. NetFPGA [2]
is an open platform for science and education to build FPGA-
based high-performance networking systems. Its four Gigabit
Ethernet interfaces as well as the used FPGA confines its use
to lower speed networks. With 10 Gigabit Ethernet interfaces
and high-speed FPGAs, however, it could be used as a platform
for our architecture.

III. ARCHITECTURE WITH MULTIPLE DESIGN LEVELS

In this section we present our novel MIXMAP architecture
for a network processing unit. First, we introduce our design
objectives, then we describe the architecture’s basic pipeline
structure and its modularity, before we detail on the different
modules supporting the design of functions at several levels
of abstraction.

A. Objectives

Three main objectives have led us to our novel MIXMAP
architecture:

o High packet throughput: The architecture of our network
processing unit shall be capable to process packets at very
high rates.

o Modularity: The architecture shall be modular, so that
functional units can be added, replaced or removed inde-
pendently from each other.

o Design at different levels of abstraction: Various modules
shall be provided, that can be adapted, programmed or
configured at different levels of abstraction.

To achieve these objectives we chose a pipeline as the
basic structure of our MIXMAP architecture. We dimensioned
the pipeline such that the highest possible packet throughput
can be achieved for minimum sized packets. Modularity is
achieved by supporting modular, functional units. The func-
tionality of each of these units can be designed or adapted
in modules of different levels of abstraction. The following
sections go into more detail about all of these topics.

B. Pipeline Architecture

The basic structure of our architecture is a pipeline, because
this structure can provide modularity and a deterministic
throughput, as we detailed in section II-C. We dimensioned
the pipeline such that a maximum packet throughput can be
achieved. Therefore we minimized the processing time T's per
stage and maximized the number of bytes that are processed
within a stage.

The minimum processing time is one clock cycle within
a digital system, thus we set Ts = Tp = 1/fer. So, the
pipeline resembles a pipeline of a classic RISC processor,
forwarding its data each clock cycle to the next stage.

When dimensioning the number of bytes that the pipeline
processes in each stage, several aspects were taken into consid-
eration: Firstly, in order to achieve a maximum packet through-
put, the pipeline should allow to process packets of maximum
size in each stage. In an Ethernet network the maximum frame
length is 1500 bytes. With current technology, however, that
large data words cannot efficiently be processed and forwarded
in parallel within an integrated circuit. Secondly, about half of
all packets of the Internet traffic are minimum sized packets.
So, dimensioning the pipeline for maximum sized packets,
leads to an inefficient use of large parts of the pipeline.
Thirdly, high-performance network nodes usually process only
the header fields lying within the first twenty to sixty bytes of
a packet. Therefore, not the entire packet has to be transfered
through the pipeline.

Considering these aspects we decided to dimension the
number of bytes processed in each stage to the minimum
supported packet size, i.e. 64 bytes for an Ethernet network.
We call this amount of data in the following one (data) word.
Additionally, we give two architectural options: With option
FP (full packet) the complete packet traverses the pipeline and
operations on any part of the packet can be performed. With
option /W (1 word) only the first (large) word of each packet
traverses the pipeline and the rest is buffered within a small
internal memory. This option offers the maximum possible
throughput and is preferable if only operations on the header
fields have to be performed.

The uniform behavior of the pipeline allows to specify the
packet throughput deterministically. For option /W the packet
rate is always equal to the clock rate of the system, i.e. with
a clock rate of 200 MHz the packet rate equals 200 million
packets per second. For option FP this throughput is only valid
for minimum sized packets and decreases for larger packets.

The supported line data rate of the architecture is at least
Dy = fo - w for architectural option /W, with f.; being the
clock rate and w the word width of the pipeline. For option
FP the internal bit rate varies between D and D /2, due to
partialy filled last data words.

C. Modularity by Functional Units

On top of the basic pipeline structure, the architecture
is structured into functional units, as depicted in Fig. 2. A
functional unit contains one or several pipeline stages and

3 To

|;/fix interfaces \J »
L i ing
A

functional unit A

- -] fix iff
i [
M » 3 Tek - ™
HHL S

-
b

\" -
PLe=D
l‘ ¥
]
P]
2=
T

functional unit B
» 3 Teik

functional unit C

Fig. 2. The MIXMAP architecture is structured into functional units that
can be arbitrarily added, exchanged or removed.

performs a certain packet processing function, e.g. a checksum
computation, or an address lookup.

It shall be possible to easily add arbitrary functional units
to a system, replace or remove units, in order to change the
functionality of the network processing unit. Therefore, all
functional units have to fulfill strict interface specifications.

The interface of a functional unit is defined by its input
and output signals and their temporal behaviour. The interface
signals are the data word containing the bytes of the processed
packet, some control signals and meta-data.

The meta-data carries additional information from external
devices and internal functional units that might be needed by
other functional units. Each piece of meta-information has to
be at a fix position, so that all functional units can properly
access this data. Examples of meta-information are the ingress
port of the current packet, the packet size, classification results,
the next-hop address, and the egress port. The size of the meta-
data should be large enough to allow the definition of fields
with additional information.

All interface signals have to obey the temporal requirements
given by the pipeline: In each clock cycle one data word has
to be accepted and one processed data word has to be sent out.
The way how each functional unit is organized internally is
irrelevant. A functional unit can be organized as a pipeline or a
cluster of processing entities, as long as the temporal interface
requirements are fulfilled (cf. Fig. 2).

Each functional unit can be based on any of various module
types: Modules whose functionality is designed at register-
transfer level, modules that are micro-programmed, modules
that are implemented at software level, and modules that only
have to be parameterized. These module types are described
in the following sub-sections.

In order to provide this modularity, the technology for a
network processing unit implementing this architecture has to
support a fine grain reconfigurability like an FPGA. Recon-
figurability is required on gate and register-transfer level to
support the design of functional units at this level, and on
module level to support adding and removing of functional
units. We therefore intend an FPGA as the base technology
for implementing the MIXMAP architecture.

Functional units are implemented independently of other
units using one of the provided modules. After that, the module
is embedded into the pipeline structure. Then, the synthesis
and place & route processes are performed to map the entire

network processing unit on the FPGA device. Optionally, also
partial reconfiguration might be used.

D. Register-Transfer Level Module

Register-transfer level modules allow to design functional
units at the lowest level of abstraction possible within the
MIXMAP architecture. Such modules offer the highest free-
dom to design specialized functions and are the most efficient
in terms of chip area consumption. On the downside, designing
a functional unit at this level requires hardware design knowl-
edge in order to exploit the benefits of the inherent parallelism.
Furthermore, one has to take care that the temporal interface
requirements are met.

For realizing a functional unit based on such a module, one
starts with an “empty” HDL-file containing only the declara-
tion of the required input and output signals. Based on this, one
implements the functionality using the respective hardware-
description language. The functionality can be validated using
common HDL-simulation tools (e.g. Modelsim).

E. Microcode Level Module

Functional units can be also implemented using microcode.
Microcode level modules provide a pre-defined infrastructure
that ideally suits the pipeline structure. By this the programmer
of the module neither has to think about observing the tempo-
ral interface requirements nor any internal timing constraints.
Instead, one can concentrate on the actual functionality.

The pre-defined infrastructure is built up by a sequence of
multi-purpose pipeline stages containing multiple multiplexers
and arithmetic and logic units. These are controlled by user-
programmed microcode that is saved locally in each stage.
The user, i.e. the programmer, can describe the functionality
of the module by micro-operations. In each pipeline stage
several micro-operations can be executed in parallel. Possible
micro-operations are arithmetic, logic and shift operations that
work on almost arbitrarily-sized slices of bit-vectors. Also
conditional operations are supported.

The microcode is saved in on-chip memory and can be
loaded on the system during operation.

E Software Level Modules

The third group of modules is software-controlled. Programs
can be either written in low-level assembly language in order
to use the underlying hardware the most efficiently, or in a
language like C to be able to use the benefits of a high level
programming language.

All functional units have to accept and send one data word
in every clock cycle, so one single processor in a module could
process each data word for one clock cycle only. Therefore
multiple processors have to be within such a module. There
are two variants, how to implement this kind of module:

The first variant is to place a cluster of N processors that
work in parallel into the module as illustrated in Fig. 3.
These processors can be highly optimized (possibly even hard-
wired), so a higher clock frequency than in the system pipeline
may be supported. Thus, having N processor cores working

Software Level

F-fo Module
processor 1
processor 2 L,
o >

processor N

Fig. 3. A software level module of variant 1 contains a cluster of N parallel
processors with an F times faster clock rate than the system pipeline.

with an F' times faster clock frequency, a program is allowed
to execute N - F' clock cycles. E.g. with N=16 processors
with an F'=4 times faster clock, programs with up to 64 clock
cycles are possible.

This small number still seems to be too less for reasonable
programs. However our analysis of existing program code for
the Intel IXP2400 NP [12] showed, that many functions can
be performed that quickly by using an optimized instruction
set and internal memory accesses only.

The second variant is to implement a system with a
synchronous data-flow architecture [21] comparable to the
Xelerated NPs [9]. Such a system consists of a pipeline of
processing units through which the packet- and meta-data
flows together with an instruction pointer. Here, too, the
number of instructions is limited to the number of processing
stages multiplied by a possible speed-up factor, if a higher
clock rate is used.

G. Parameter Level Modules

Finally, readily-build functional units that provide editable
parameters are a fourth way to adapt the functionality of
the network processing unit to new or changed requirements.
Obviously only small adaptations that are thought of a priori
can be made.

IV. PROTOTYPICAL IMPLEMENTATION AND EVALUATION

In order to check the feasibility of the MIXMAP archi-
tecture, we designed and implemented a prototypical system
featuring our novel architecture. For this system we realized
several functional units based on modules of different levels of
abstraction. Finally, we performed several tests on our FPGA-
based Universal Hardware Platform [22].

Our prototypical system possesses the pipeline structure
as described in the previous section. The complete packet
traverses the pipeline (option FP), so there is no need for
a packet buffer. To show the design of functional units at
different levels of abstraction we implemented modules for the
design at register-transfer level and at software level. (Modules
for the design at microcode level are going to be implemented
soon.)

As described in the previous section, the register-transfer
level modules do not provide any fix infrastructure except for
the standardized interface signals on ingress and egress side.

Our software-level modules are realized as a cluster of NV
processors (i.e. variant 1) that offer an optimized instruction
set for packet processing tasks. The processors are clocked
with an F' times higher rate than the system pipeline (N and
F' can be parameterized according to the requirements). A
control unit distributes the incoming data in a round-robin
fashion each system clock cycle to one of the N processors,
and re-collects it respectively IV system clock cycles later.
Within the processors this data is stored in the upper half of
the register file.

We exemplarily implemented functional units of all basic
fast-path router functions using register-transfer level modules
and some using software level modules: Ethernet header
processing, IP (Internet Protocol) header validation, IP route
lookup, IP header update, Ethernet header update. Further-
more, we also realized several router-assisted congestion con-
trol functions possibly needed in future Internet routers at both
levels of abstraction. This shows the easy adaptability to new
requirements. Parameters for configuring the functional units
add some adaptability at parameter level, too.

We synthesized several configurations of our prototype
system and put it into operation on our Universal Hardware
Platform [22]. This platform features an Altera Stratix II
EP2S60F1020C3ES FPGA, up to six Gigabit Ethernet inter-
faces as well as mezzanine cards that offer additional memory
or ternary content addressable memory (TCAM).

Due to the rather small FPGA used in our tests, we could
only place nine processors in our software module and had
to clock the system pipeline with a lower clock frequency in
order to be able to execute our programs. However, modern
FPGAs have a much higher capacity, so that more than one
hundred processors should fit into one device.

Other configurations, which were solely based on register-
transfer level modules, used a clock rate of 115 MHz. There-
fore, such a system could process up to 115 million minimum
sized Ethernet packets per second. This corresponds to a
pipeline throughput of almost 60 Gbit/s (option F'P)—achieved
on our four year old FPGA. If only the first word of each
packet is processed by the pipeline (option /W) and assuming
an average frame length of 200 bytes, a line rate of 200 Gbit/s
could be achieved—given a fast enough packet buffer.

Obviously we could not test the full throughput using the
Gigabit Ethernet interfaces. Therefore, we validated the correct
functionality by tests under full load using packets that were
both generated and, after processing, verified on chip.

V. CONCLUSION

In this paper we proposed a novel architecture for an FPGA-
based high-performance network processing unit. Network
nodes in future high-speed packet networks, e.g. in a 100 Gbit
Ethernet network, have to process more than one hundred
million packets per second. Additionally, the processing units

have to provide a certain degree of flexibility to be easily
adaptable to upcoming new services or protocols.

We reviewed FPGAs and NPs, which are adaptable devices
currently used for network processing on high-performance
router line-cards. We discussed the principal differences in
the organization of processing entities as a pipeline or in a
cluster and compared the different levels of abstraction that
are used when implementing functions on FPGAs and NPs.
Implementing certain functions at a lower level of abstraction
may be more efficient, while a higher level of abstraction
simplifies the design process.

Therefore we designed our MIXMAP architecture with the
objective to provide the possibility to design functions at dif-
ferent levels of abstraction, featuring functional units based on
modules on register-transfer level, microcode level, software
level, and parameter level. The strict interface requirements
and the architecture’s modular structure allows to easily add,
replace or remove functional units. To achieve the objective
of a very high packet throughput suitable for core network
nodes, the architecture is based on a high-performance pipeline
structure. This pipeline is capable of processing one minimum
sized packet in each clock cycle. This is achieved by the
use of extremely large pipeline registers in each stage and
a processing time of only one clock cycle per stage.

Finally, we presented a prototype implementation featuring
our novel MIXMAP architecture. Our exemplary implementa-
tion of functional units providing both functions of current and
of future Internet routers validated the usability and flexibility
of our modular architecture. Synthesis results as well as
functional and performance tests showed that today a high-
performance MIXMAP network processing system capable
to process more than hundred million packets per second is
technologically feasible, and even higher packet rates will
become possible with future FPGA devices.

ACKNOWLEDGMENT

The author would like to thank his colleagues Oswin Hor-
vath and Arthur Mutter for valuable discussions, and Florian
Miick, Micha Klingler and Domenic Teuchert for their help in
implementing the MIXMAP architecture.

REFERENCES

[11 J. E. Wakerly, Digital Design: Principles and Practices, 4th ed. Upper
Saddle River, NJ, USA: Pearson Education, Inc., 2006.

[2] G. Gibb, J. Lockwood, J. Naous, P. Hartke, and N. McKeown, “Net-
FPGA - an open platform for teaching how to build gigabit-rate network
switches and routers,” IEEE Transactions on Education, vol. 51, no. 3,
pp. 364-369, Aug. 2008.

[3] A. Mutter, M. Kohn, and M. Sund, “A generic 10 Gbps assembly
edge node and testbed for frame switching networks,” in Conference on
Testbeds and Research Infrastructures for the Development of Networks
and Communities (TridentCom2009), 2009.

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

TPACK A/S, “SOFTSILICON for flexible packet transport,” Jan. 2008.
[Online]. Available: http://www.tpack.com/fileadmin/user_upload/Public
_Attachment/SOFTSILICON_for_Flexible_Packet_Transport_web
_vl.l.pdf

D. Comer, Network Systems Design Using Network Processors.
Saddle River, NJ, USA: Pearson Education, Inc., 2006.

N. Shah, “Understanding network processors,” Master’s thesis, Univer-
sity of California, Berkeley, Sep. 2001.

Altera Corporation, “Power-optimized solutions for telecom
applications,” White Paper WP-01089-1.0, Jan. 2009. [On-
line]. Available: http://www.altera.com/literature/wp/wp-01089-power-
optimized-telecom.pdf

Cisco Systems, Inc., “Cisco CRS-1 Carrier Routing System,”
2006. [Online]. Available: http://www.cisco.com/en/US/prod/collateral
/routers/ps5763/prod_brochure0900aecd800£8118.pdf

Xelerated AB. (2009) Xelerated HX300 family. [Online]. Available:
http://www.xelerated.com/templates/page.aspx ?page_id=329

Hi/fn, Inc., “HIFN 5NP4G network processor,” product
brief, 2008. [Online]. Available: http://www.hifn.com/uploadedFiles
/Library/Product_Briefs/SNPAG_pb_v1.pdf

EZchip Technologies, Inc., “Np-3,” product brief, 2007. [Online]. Avail-
able: http://www.ezchip.com/Images/pdf/NP-3_Short_Brief_online.pdf
Intel Corporation, “Intel IXP2400 network processor,” data
sheet, Feb. 2004. [Online]. Available: http://download.intel.com/
design/network/datashts/30116411.pdf

S. Hauger, M. Scharf, J. Kogel, and C. Suriyajan, “Quick-Start and
XCP on a network processor: Implementation issues and performance
evaluation,” in Proceedings of IEEE High Performance Switching and
Routing (HPSR), May 2008.

S. Hauger, T. Wild, A. Mutter, A. Kirstddter, K. Karras, R. Ohlendorf,
F. Feller, and J. Scharf, “Packet processing at 100 Gbps and beyond—
challenges and perspectives,” in Proceedings of the 10. ITG Symposium
on Photonic Networks, May 2009.

S. Vassiliadis, S. Wong, and S. Cotofana, “Microcode processing:
Positioning and directions,” vol. 23, no. 4, pp. 21-30, 2003.

D. SaB, S. Hauger, and M. Kohn, “Architecture and scalability of a
high-speed traffic measurement platform with a highly flexible packet
classification,” Computer Networks, vol. In Press, Corrected Proof,
pp. — 2008. [Online]. Available: http://www.sciencedirect.com/science/
article/B6VRG-4V2NP6F-1/2/9d39¢95cefff3940bb67a104 1bc1cd36

C. Albrecht, R. Koch, and E. Maehle, “Dynacore — a dynamically
reconfigurable coprocessor architecture for network processors,” in Pro-
ceedings of the 14th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP ’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 101-108.

M. Meitinger, R. Ohlendorf, T. Wild, and A. Herkersdorf, “FlexPath
NP - a network processor architecture with flexible processing paths,”
System-on-Chip, 2008. SOC 2008. International Symposium on, pp. 1-6,
Nov. 2008.

C. Kachris, “Reconfigurable network processing platforms,” Ph.D. dis-
sertation, Technische Universiteit Delft, Dec. 2007.

K. Ravindran, N. R. Satish, Y. Jin, and K. Keutzer, “An FPGA-based soft
multiprocessor system for IPv4 packet forwarding,” in 15th International
Conference on Field Programmable Logic and Applications (FPL-05),
Aug. 2005, pp. pp 487-492.

J. Carlstrom and T. Boden, “Synchronous dataflow architecture for
network processors,” IEEE Micro, vol. 24, no. 5, pp. 10-18, Sept.-Oct.
2004.

Institute of Communication Networks and Computer Engineering, Uni-
versitdt Stuttgart, “The Universal Hardware Platform (UHP),” 2005,
http://www.ikr.uni-stuttgart.de/Content/UHP/.

Upper

