
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Copyright Notice

c©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: +49-711-685-68026, Fax: ++49-711-685-67983

email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de



Quick-Start and XCP on a Network Processor:

Implementation Issues and Performance Evaluation

Simon Hauger, Michael Scharf, Jochen Kögel, Chawapong Suriyajan

Institute of Communication Networks and Computer Engineering

University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Email: simon.hauger@ikr.uni-stuttgart.de

Abstract—The Quick-Start extension of the Transmission Con-
trol Protocol (TCP), as well as the Explicit Control Protocol
(XCP), are experimental congestion control schemes that use
router feedback to overcome limitations of TCP’s standard mech-
anisms. Both approaches require additional packet processing in
every router and therefore raise the question whether, and how,
this can be achieved in high-speed routers.
This paper studies the realization complexity of the Quick-

Start and XCP router functions on a network processor. We show
that in both cases synchronization issues among parallel process-
ing entities have to be considered, and that this affects the router
performance. We develop and compare different synchronization
mechanisms for highly parallel packet processing. Our prototype
implementation on an Intel IXP network processor allows to
quantify the impact on throughput and delay caused by the
additional packet processing in the fast path. The measurements
reveal that Quick-Start and XCP processing is feasible at multiple
Gbit/s line speed, with Quick-Start being simpler to scale.

I. INTRODUCTION

Most Internet applications use the Transmission Control

Protocol (TCP) for reliable, best effort transport. The TCP

sending behavior is governed by the congestion control, which

continuously probes the available path capacity and reduces

the sending rate when packet loss occurs. However, the TCP

congestion control is challenged by new broadband network

technologies that result in large bandwidth-delay products.

Recent research has shown that in this case a more expressive

congestion feedback from routers along the path can improve

link utilization, per-flow performance, and inter-flow fairness.

An existing example for router-assisted congestion control

is Explicit Congestion Notification (ECN). Several recent re-

search activities generalize this one-bit congestion occurrence

feedback towards a more expressive in-band notification on

path characteristics. Two proposals considered by the IETF

are Quick-Start TCP [1] and the Explicit Control Protocol

(XCP) [2]. Quick-Start is an experimental TCP extension that

allows connection end-points to ask the routers along the path

for an allowed sending rate, in particular at the beginning of

data transfers. XCP is designed to completely substitute the

TCP congestion control by giving routers a continuous control

of the sending rate of ongoing data transfers.

Since both approaches require not only changes in end-

systems, but also additional packet processing in the network,

This work was partly funded within the EIBONE project KOMMT!flexRN
by the German Bundesministerium für Bildung und Forschung under contract
No. 01BP566.

a key question is whether, and how, such mechanisms could

be integrated in routers with line speeds of multiple Gbit/s.

Several simulation studies such as [3] or [4] show that both

approaches have the potential to overcome short-comings of

TCP’s congestion control. Furthermore, it has been proven that

it requires only limited effort to extend the software stacks

of operation systems to support Quick-Start [5], or XCP [6],

respectively. However, the realization of Quick-Start and XCP

functions in core routers is a rather unexplored field so far.

Network processors are increasingly used in core routers.

They use specialized processor cores to achieve high-speed

packet processing. Due to their programmability, they allow

a flexible realization of new protocol functions, as required

by Quick-Start and XCP. The Intel IXP network processor

series is widely used for experimental purposes. For instance,

[7] uses an Intel IXP2400 for a partial XCP implementation,

and [8] for other related implementation efforts. An alternative

are Field-Programmable Gate Arrays (FPGA), e. g. [9] reports

an FPGA-based implementation of another router-assisted

congestion control scheme. FPGAs require a more complex,

low-level programming and are not further considered here.

In this paper, we study the implementation complexity and

performance of Quick-Start and XCP on a network processor.

We show that in both cases the needed functions lay restric-

tions on parallel packet processing, and we discuss solutions to

circumvent these problems. To the best of our knowledge, this

is the first comprehensive implementation and performance

study of Quick-Start and XCP on a network processor.

The rest of this paper is structured as follows: Sec-

tion II gives an overview of router-assisted congestion control

schemes, in particular Quick-Start and XCP, and also intro-

duces router realization aspects. In Section III, we present our

implementation for the Intel IXP network processor series.

We detail the challenges that arise from parallel processing,

and discuss possible solutions. The measurements results in

Section IV compare the throughput and delay performance of

Quick-Start and XCP. Finally, Section V concludes the paper.

II. ROUTER-ASSISTED CONGESTION CONTROL

Several research proposals aim at improving the Internet

congestion control by using explicit feedback from routers.

This paper studies the Quick-Start TCP extension and XCP,

which are described in detail in IETF documents [1], [2]. A

survey of other related work can be found in [1], too.



Router Router
SYN

Rate!

Rate?

Echo 

Rate

ACK
SYN,ACK

New ACK

algorithms
Standard

pacing

QS request

QS response

QS report

End−point 1 End−point 2

Fig. 1. Quick-Start (QS) request during the 3-way TCP handshake

A. Quick-Start TCP Extension

The standard TCP congestion control has difficulties to

determine an appropriate sending rate after connection setup,

or e. g. after long idle periods, since the path characteristics

are unknown at this point in time. Traditionally, TCP uses the

slow-start heuristic to probe the available bandwidth in these

cases, but this is time-consuming in high-speed wide-area

networks. The experimental Quick-Start extension addresses

this issue by using feedback from the routers on the path: It

allows hosts to ask for an initial sending rate, e. g., during the

TCP three-way handshake. If the request is approved, avoiding

the slow-start can significantly speed up data transfers, in

particular in large bandwidth-delay product networks.

Fig. 1 illustrates a Quick-Start request during TCP connec-

tion establishment: The originator adds a Quick-Start request

option to the IP header, which indicates a desired sending rate.

This target rate is encoded in 15 coarse-grained steps ranging

from 80 kbit/s to 1.31Gbit/s. The routers along the path can

approve, reduce, or disallow this request. If the request arrives

at the destination, the granted rate is echoed back piggybacked

as a TCP option (Quick-Start response). The originator can

then detect whether all routers along the path have explicitly

approved the request. If not, the default congestion control

(TCP slow-start) is used to ensure backward compatibility.

If the Quick-Start request is successful, the originator can

immediately increase its congestion window and start to send

with the approved rate, using a rate pacing mechanism. After

one round-trip time the default TCP congestion control mecha-

nisms are used for subsequent data transfers. Quick-Start does

not guarantee any data rate, i. e., it is a light-weight speed-up

mechanism for elastic best effort traffic only.

The support of Quick-Start requires two additional functions

in routers: First, a router has to know the available bandwidth

on the outgoing links and must keep track of their utilization.

And second, Quick-Start requests must be processed by an

admission control that decides whether to accept a Quick-Start

request, and which data rate to grant. More details about the

required functions can be found in [1], [3].

B. Explicit Control Protocol (XCP)

XCP is the outcome of research efforts towards a new

congestion control for a Future Internet. Its design principle

is to give routers a fine-grained control over sending rates of

flows. This allows to achieve high link utilization, fast conver-

gence and fairness in high bandwidth-delay product networks.

Unlike Quick-Start, XCP is not a TCP extension, but specifies

a new protocol layer on top of the Internet Protocol (IP).

The sender puts a congestion header in every IP packet,

which carries information about the traffic characteristics of

the flow. Each router processes this XCP header, performs

some mathematical calculations, and adds information whether

to increase or decrease the sending rate of the flow. The

receiver returns the feedback to the sender by piggybacking.

XCP routers must have knowledge of the link capacities

and internal queue statistics. XCP does not require any per-

flow state, but routers must periodically recalculate some local

parameters to ensure fairness. Details about the algorithms, as

well as some remaining open issues, are explained in [2]. The

underlying control theory is introduced in [4].

C. Architecture of Routers

Both, Quick-Start and XCP, require all routers on the path to

be extended beyond basic IP forwarding functionality. This is

especially challenging for core routers, which have to process

up to 125 million packets per second (Mpps) per port in

40 Gbit/s networks. Core routers usually have a modular archi-

tecture, where packets travel from the ingress line card through

the switch fabric to the egress line card. The ingress line card

performs packet classification and modification (e. g. route

lookup, policing), while queue management (e. g. drop tail,

active queue management, scheduling) is typically performed

on the egress line card. Smaller routers, e. g. enterprise routers,

typically perform all functions monolithically. For more details

on router functions and architectures refer to [10], [11].

For packet throughput at speeds of several Gbit/s it is

essential that time critical tasks that apply to every packet are

performed very fast. These functions of the fast path are there-

fore handled by specialized hardware, namely ASICs and/or

network processors. The more flexible network processors

integrate several (some models > 100) specialized processing
cores for pipelined and/or parallel processing and other spe-

cialized hardware units. More details on network processors

can be found in [11]. Tasks that have to be performed for a

small fraction of packets only, and tasks that demand for more

complex processing (e. g. route calculation) are performed on

the slow path using General Purpose Processors (GPP).

III. IMPLEMENTATION ON A NETWORK PROCESSOR

Realizing router-assisted congestion control with Quick-

Start or XCP implies additional functionality of the routers.

We identify issues that have to be solved when implementing

these functions on network processors, and we describe our

implementation on the Intel IXP2400.

A. Required Additional Router Functions

Router functions are divided into fast path and slow path

functions. As the XCP protocol is intended to be used in all

packets, the corresponding processing has to be performed

in the fast path. In contrast, the Quick-Start option is only

contained in few packets. As a consequence, routers might be



able to handle Quick-Start options in the slow path. However

this induces additional delays and packet reordering. So, a

superior solution is to process the Quick-Start option in the

fast path as well. For both XCP and Quick-Start, functions

that have to be executed at regular intervals independent of

incoming packets are best performed in the slow path.

In the fast path, the additional protocol fields have to be

processed. For Quick-Start these are located in an IP option,

otherwise normally treated in the slow path. For XCP they

are placed in a separate protocol above IP. XCP requires that

some global counters are updated initially, according to the

fields of the received packet. For both protocols, the field

containing the bandwidth request has to be modified depending

on global state variables, such as the total granted bandwidth

for Quick-Start or the positive and negative capacity for XCP.

Accordingly, some of these variables have to be changed, too.

In the slow path, per output port several global variables

have to be updated periodically. For Quick-Start the spare

bandwidth has to be calculated. The update interval is con-

figurable. For XCP a total of seven global variables need to

be changed every average round-trip time.

In modular routers, the utilization of the output ports is

measured on the egress line cards. As a consequence, Quick-

Start or XCP processing is likely to be implemented there.

B. Synchronization

Fast path hardware in high speed routers, especially in

network processors, often processes several packets in parallel.

Basic IP forwarding is performed independently on each

packet, not leading to any synchronization problems. However,

advanced protocol mechanisms such as Quick-Start or XCP

violate this property of packet independence, since they require

read and write operations to global variables, as described in

the previous section. As a result, a synchronization mechanism

has to be employed. Otherwise more bandwidth than being

actually available would be granted to incoming requests.

An effective and well-known mechanism is to use locks, as

depicted in Fig. 2a. Only the process that obtains the lock is

allowed to enter the critical section and to access the shared

variables. After changing the shared variables, it releases the

lock so that other processes can access the shared data.

This kind of synchronization mechanism has significant im-

pacts on throughput and delay of the system. The throughput

of an unsynchronized pool of n parallel processes with a
processing delay of Td is n ·T−1

d
. However, if we use locking

for the synchronization of a critical section of duration Tcrit,

the throughput is limited to T−1

crit
, respectively, because only

one process can complete the critical section at a time. Also

the processing delay increases by up to (n − 1) · Tcrit due to

the waiting time to obtain the lock. Thus, if critical sections

are longer than Td/n, the throughput is reduced. Furthermore,
increasing the parallelism of the system will not increase its

throughput but will increase its delay. These effects can be

later seen in Section IV, even though we minimized the length

of the critical sections in our implementations.

107memory

release lock

try to
obtain lock

release lock

a)

time

read
ß 7 grant(3) write(10) normal operation

grant(7)
read
ß 0 write(7) normal operation

process 2

process 1

0
total granted bandwidth (max.=10)

obtain lock

time

normal operation

10147

process 1

total granted bandwidth (max.=10)
memory

b)

read &
sub(4)

read &
add(7)

atomic operations:
not separable!

ß 14ß 7
grant(3)

normal operationgrant(7)
read &
add(7)
ß 0

process 2

0

Fig. 2. a) Synchronization with locks, b) Synchr. using atomic operations

Another mechanism for accessing shared variables is the

use of atomic operations. An atomic operation cannot be

interrupted by another process. For instance, by using the

atomic operation ’read & add’, a variable is read from memory,

subsequently increased by an addend and written back to mem-

ory without interrupt by concurrent processes. These atomic

operations can be used for implementing Quick-Start: When

processing the requested bandwidth, each process atomically

adds the complete requested bandwidth to the shared variable

holding the total granted bandwidth, as shown in Fig. 2b. If

this exceeds the maximum allowable bandwidth, the surplus

amount has to be atomically subtracted again.

Only simple arithmetic or logic operations can be performed

atomically on the memory. This is why the rather sophisticated

processing of the shared variables for XCP packet processing

cannot be implemented efficiently with this method.

C. The Intel IXP Network Processor Family

All network processors in Intel’s IXP2XXX series comprise

the same type of processing cores for fast path processing,

the so called microengines (MEs). However, they differ in the

number of MEs as well as in clock frequency and interface

bandwidth. MEs are simple RISC processors that provide

eight hardware-supported threads for hiding memory latency.

Exchange of data among MEs and the also embedded GPP

can be performed via fast on-chip memory or external SRAM,

while external DRAM is mainly used as packet buffer. On-

chip and SRAM memory controllers offer atomic operations

for realizing synchronization mechanisms and FIFO buffers.

The IXP communication infrastructure allows to map the

processing tasks flexibly onto the MEs: distributed as a func-

tional pipeline, as a parallel cluster or in a combined way.

Sample mappings are given by the software framework [12]

of the manufacturer. Furthermore, it provides building blocks

for common processing tasks as well as data structure and

interface definitions. For more information about the IXP

network processor series refer to [11].



Fig. 3. Realization of Quick-Start/XCP fast path functions on Microengines (ME) and slow path functions on the GPP of an IXP2400

D. Implementation of Quick-Start and XCP

Our implementation is based on the Intel IXP2400 network

processor, which contains eight MEs. It was configured as a

monolithic router, i. e. ingress and egress line interfaces are

directly attached. We extended the standard router application

provided by the software framework [12], as shown in Fig. 3.

The standard router works as follows: The RX block

transfers incoming packets to DRAM and forwards respective

handles to the packet processing stage, consisting of three

parallel MEs. Here, each packet header is loaded and several

header classification and modification tasks are performed,

before the modified headers are written back to DRAM. The

handles are delivered in-order to the Queue Manager that

cooperates with the Scheduler block. This block decides from

which queue to forward a packet handle to the TX block,

which finally transfers the packets from DRAM to the egress

line interface. Slow path functions are handled in the GPP.

For implementing Quick-Start and XCP, the required fast

path functions stated in Section III-A were implemented in

the packet processing MEs, as shown in Fig. 3. Here also the

synchronized access to the shared variables is performed. Our

Quick-Start implementation can be configured to operate using

synchronization either by locking or by atomic operations. For

the XCP implementation only locking is possible. The slow

path functions like the calculation of the egress link utilization

were added to the GPP. In Table I the implementation effort

for Quick-Start and XCP is compared.

Our implementation of Quick-Start is fully working and

has already been used to build up simple network topologies

TABLE I
COMPARISON OF IMPLEMENTATION EFFORT

Quick-Start XCP

Fast
path

processing of
- few packets (e. g. SYN)
- IP option

processing of
- all packets
- new protocol fields

modification of global variables

no per-flow state

Slow
path

calculation of used output bandwidth

periodic update of global variables

Synchro-

nization

locking/atomic operations only locking possible

1 variable per port 7 variables per port

short critical section long critical section

with Quick-Start enabled Linux endpoints. To the best of our

knowledge, this is the first comprehensive implementation of

Quick-Start on a network processor platform. For XCP we

implemented only the fast path functions so far, since these are

sufficient to compare the performance of the routers. Neither

implementation requires any additional (expensive) DRAM

operations compared to the standard router. Neither keeps per-

flow state. For further implementation details refer to [13].

IV. PERFORMANCE EVALUATION

To evaluate the performance impact of the additional pro-

tocol processing, we measured throughput and delay of the

Quick-Start and XCP routers in different scenarios.

A. Router Variants

We used three different router variants in our measurements:

• The unmodified ‘normal router’ without any Quick-Start

or XCP support, as provided by the manufacturer’s soft-

ware framework [12] with only minor changes.

• The enhanced router with Quick-Start support (‘QS’) in

both variants with synchronization by locking and by

atomic operations (‘AOp’). The threshold up to which

Quick-Start requests were granted was set to 1 Gbit/s.

• The enhanced router with fast path XCP support. Here

all packets were processed as XCP packets.

B. Measurement Methodology

We tested the routers under load by using several traffic

generators: Three FPGA-based traffic generators [14] and

several Linux PCs. The FPGA-based traffic sources generated

Ethernet frames containing simple IP packets. These hardware

traffic generators were capable to send the maximum possible

packet rate on each Gigabit Ethernet line without any jitter.

Ethernet/IP packets with Quick-Start requests were gen-

erated by a C program on Linux PCs. For the Quick-Start

measurements two traffic mixes were used: one with a ratio

of 1% and one with a ratio of 50% Quick-Start packets. The

requested rate was always set to 10.24 Mbit/s. The generated

data rate is constant and pre-defined, i. e., the traffic generators

do not use our Quick-Start endpoint implementation [5]. This

allowed to test the routers in permanent overload.

We coded our XCP router implementation in a way that

all packets are processed as XCP packets independent of

their content. By this we could use simple IP packets for the



PC

Traffic
Generator
(FPGA)

IXP2400

Network
Analyzer

internal throughput
measurement

internal delay

(write to L2 src

from L2 src address

Switch

extract internal delay

PC

Eth/IP packets
standard 64B

measurement

address)

PC
PC

tap

QS requests

Traffic
Generator
(FPGA)

Traffic
Generator
(FPGA)

Fig. 4. Measurement setup

measurements with the XCP router, as the processing time of

the XCP header fields is independent of their numeric values.

As only the packet headers are processed, we generated

minimum-sized Ethernet frames of 64 Bytes length. Thus,

we achieved the highest possible packet rates of up to

(1 Gbit/s)/[(64 + 20) · 8 bit)] = 1.488 million packets
per second (Mpps) per Gigabit Ethernet line (taking also the

20 Bytes of inter-framing gap and preamble into account).

Our measurement setup is depicted in Fig. 4. All traffic

sources were connected to a gigabit switch that switched the

traffic to the three Gigabit Ethernet interfaces of our network

processor board ENP-2611 from Radisys [15], which contains

the Intel IXP2400 network processor running at 600 MHz.

For our evaluation we used the internal throughput measure-

ments that were taken by the considered router applications

anyway for deciding about bandwidth requests. So we only

needed to output them by the GPP. In order to overcome the

1 Gbit/s limitation of one port, we summed up the throughput

of all three ports as one virtual 3 Gbit/s port and synchronized

the access to the shared variables, as if they were one single

port. Synchronizing each port individually would obviously

result in better throughput and delay values.

The delay measurements were also taken internally. At the

beginning of the packet processing stage a time-stamp was put

to an unused field of the internal meta-data. At the last ME

before the packet is put to the output buffer, the difference

to the current time was calculated and written to the Ethernet

source address of the packet. This did not change the system

significantly, as neither the number of memory accesses nor the

size of the meta-data was increased. We recorded the outgoing

packets of one Ethernet interface with a wiretapped network

analyzer and extracted the measured delay values.

C. Throughput Measurement

The throughput of the different router variants in packets

per second (pps) is shown in Fig. 5. The egress packet rate

is plotted over the ingress packet rate. In the given setup, the

unmodified ‘normal’ router can process packet rates of up to

almost 4 Mpps. For higher ingress rates, packets are dropped.

The router enhanced with Quick-Start support has the same

performance as the ‘normal’ router for a traffic mix with 1%

Quick-Start requests, which can be assumed to be a realistic

0 1 2 3 4 5
ingress packet rate [Mpps]

0

1

2

3

4

e
g

re
s
s
 p

a
c
k
e

t 
ra

te
 [

M
p

p
s
]

0
0

XCP

QS 50% Locking

QS 50% AOp
QS 1% AOp
QS 1% Locking
normal Router

Fig. 5. Router egress packet rate as a function of the load

scenario. In this case, there is also no difference between the

synchronization by locks and by atomic operations. However,

when the ratio of Quick-Start requests is increased to 50%,

synchronization by locking becomes a bottleneck, and packets

are dropped for ingress rates above 3 Mpps. In contrast,

the router using synchronization by atomic operations shows

almost the same behavior as the unmodified router. A Quick-

Start ratio of 50% should never occur in normal usage, but it

might be observed e. g. in certain Denial-of-Service attacks.

Our experimental measurement results reveal that the router

performance is not significantly affected even in such an

extreme case if synchronization by atomic operations is used.

Our router supporting XCP, however, shows a significantly

lower maximum throughput of only about 1.4 Mpps. Here the

access to global variables must be synchronized for 100% of

the packets. Furthermore, the critical section is longer than that

of the Quick-Start router. This is why the measured maximum

throughput is much lower than that of the Quick-Start routers.

D. Delay Impact

The additional processing delay in the routers caused by

the new protocol functions is another important performance

metric. Table II lists the measured internal delays of the

different router variants for a low and a high traffic load

scenario. For the Quick-Start routers, both the delay of Quick-

Start requests and of normal IP packets is shown.

Apparently, the Quick-Start routers do not impose any

additional delay to normal IP packets. Also, the Quick-Start

requests do not experience any significant additional latency

in both Quick-Start router variants if their relative number is

small. This indicates again that Quick-Start support can be

added to routers without significant impact on performance.

TABLE II
COMPARISON OF INTERNAL DELAY

Load 33% (1.5 Mpps) 100% (4.5 Mpps)

Standard router 6.6 µs 12.2 µs

QS router – AOp (1% QS)
normal packets / QS requests 6.6 µs / 7.0 µs 12.1 µs / 12.3 µs

QS router – Locking (1% QS)
normal packets / QS requests 6.6 µs / 7.0 µs 12.2 µs / 12.3 µs

XCP router (XCP packets) 19.4 µs 19.8 µs



1 3 5 7
0

2

4

6

8

10
e
g
r.

 p
a
c
k
e
t 
ra

te
 [
M

p
p
s
]

1 3 5 7

number of parallel microengines

0

10

20

30

d
e
la

y
 [
µ
s
]

XCP

QS 50% Locking

normal & other QS

XCP

QS 50% Locking

normal & other QS

Fig. 6. Egress packet rate and delay for different degrees of parallelism

The XCP router, however, delays packets significantly

longer compared to the ‘normal’ router. Note that the XCP

router is already at its capacity limit at 33% load. Here, all

packets have to wait about 23 times ((3MEs · 8 threads) − 1)
the duration of the critical section before they can access the

shared variables. As a consequence, synchronization becomes

a major contributor to the total delay.

E. Increasing Parallelism

In Section III it was shown that using locks for synchro-

nization may decrease the maximum possible packet rate and

enlarges the internal delay of the packets. In order to further

study this effect we performed simulations using the Intel

IXP2800 model. This network processor has basically the

same architecture as the IXP2400, but it features 16 MEs.

As a result, one can use more parallel MEs to execute the IP

processing stage, including the Quick-Start or XCP processing.

Fig. 6 shows both the packet rate and the internal delay as a

function of the number of MEs, i. e., the degree of parallelism.

6 Gbit/s line interfaces were used in the simulations. The

obtained results cannot be compared directly to our previous

measurements, as the IXP2800 works with a higher clock rate.

The results of the Quick-Start router using atomic operations

for accessing the shared variables are again almost identical

to the results of the ‘normal’ router. The throughput increases

from 1 to 3 MEs from about 3.5Mpps to the maximum rate of

almost 9Mpps, since 3 or more MEs are required for packet

processing at full load. The internal delay is approximately

constant at 4µs, independent of the degree of parallelism.
The Quick-Start router using locking has a comparable per-

formance if only 1% of the packets are Quick-Start requests.

With 50% Quick-Start requests the throughput is limited to

only 6Mpps with 3 parallel processors, and it does not improve

by further increasing the parallelism. However the internal

delay goes up approximately linearly with the number of MEs.

The XCP router shows a similar behavior. The maximum

throughput is much less than the theoretical maximum of

the architecture. The throughput even slightly decreases for

more than 3 parallel processors. Furthermore, the internal

delay gets significantly larger with increasing parallelism. This

reveals that it might be difficult to implement XCP on router

architectures with a high degree of parallel packet processing.

The linear increase of delay and the bounded throughput

can be very well explained by the theoretical predictions

from Section III-B. This shows that synchronization becomes

a performance bottleneck. The more than linear increase in

particular of the XCP delay can be caused by further effects,

such as contention on internal buses of the network processor.

V. CONCLUSION

Both Quick-Start and XCP are recent proposals for new

congestion control schemes using fine-grained router feedback.

While the performance benefit of both schemes has been

studied extensively by means of simulation, the actual im-

plementation in routers has hardly been addressed so far. This

paper shows that Quick-Start and XCP can be implemented

in the fast path of network processor based routers. A key

issue is the synchronization of the access to global variables

from parallel processing entities. We introduce and compare

different synchronization schemes to solve this problem. Our

implementations of both Quick-Start and XCP on an Intel

IXP2400 network processor show a comparable complexity.

The measurements reveal that Quick-Start and XCP processing

is feasible at multiple Gbit/s line speed. However, synchroniza-

tion may limit their performance, in particular for XCP.

REFERENCES

[1] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” IETF RFC 4782 (experimental), 2007.

[2] A. Falk, Y. Pryadkin, and D. Katabi, “Specification for the Explicit
Control Protocol (XCP),” IETF Internet Draft, work in progress, 2007.

[3] P. Sarolahti, M. Allman, and S. Floyd, “Determining an appropriate
sending rate over an underutilized network path,” Computer Networks,
vol. 51, no. 7, pp. 1815–1832, May 2007.

[4] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proc. ACM SIGCOMM, 2002.

[5] M. Scharf and H. Strotbek, “Performance evaluation of Quick-Start TCP
with a Linux kernel implementation,” in Proc. IFIP Networking 2008,
Springer LNCS 4982, May 2008, pp. 703–714.

[6] Y. Zhang and T. R. Henderson, “An implementation and experimental
study of the Explicit Control Protocol (XCP),” in Proc. IEEE Infocom,
Mar. 2005, pp. 1037–1048.

[7] T. Faber and E. Coe, “Congestion control with explicit feedback,”
Presentation at IRTF ICCRG meeting, Feb. 2007.

[8] K. Nakauchi and K. Kobayashi, “An explicit router feedback frame-
work for high bandwidth-delay product networks,” Computer Networks,
vol. 51, no. 7, pp. 1833–1846, 2007.

[9] N. Dukkipati, G. Gibb, N. McKeown, and J. Zhu, “Building a RCP
(rate control protocol) test network,” in Proc. IEEE Symposium on High-
Performance Interconnects (HOTI 2007), Aug. 2007, pp. 91–98.

[10] J. Aweya, “On the design of IP routers Part 1: Router architectures,”
Journal of Systems Architecture, vol. 46, no. 6, pp. 483–511, Apr. 2000.

[11] D. Comer, Network Systems Design Using Network Processors. Pearson
Education, Inc., Upper Saddle River, NJ, USA, 2006.

[12] Intel, Intel Internet Exchange Architecture Portability Framework De-
velopers Manual, SDK 3.5 Release, Intel corporation, Nov. 2003.

[13] C. Suriyajan, “Design and implementation of Quick-Start and XCP
router functions on a network processor,” Master Thesis, University of
Stuttgart, IKR, Oct. 2007.

[14] P. Schrem, “Design and realization of a generic traffic generator in
VHDL,” Student Thesis (in German), University of Stuttgart, IKR, 2006.

[15] Radisys Corporation. (2006) ENP-2611 datasheet. ENP-2611.pdf.
[Online]. Available: http://www.radisys.com/products/datasheets/


