
Copyright Notice
c© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Designing High-Speed Packet Processing Tasks
at Arbitrary Levels of Abstraction—

Implementation and Evaluation of a MIXMAP System

Simon Hauger
Institute of Communication Networks and Computer Engineering

Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

simon.hauger@ikr.uni-stuttgart.de

ABSTRACT

Packet processing systems of forthcoming high-speed net-
work nodes demand extremely high processing rates, but
also modularity and easy adaptability due to new or evolv-
ing protocols and services. As the fixed architecture and
instruction set of current network processors sometimes hin-
ders an efficient implementation of processing tasks, we in-
troduced the MIXMAP architecture [4] that is designed to
offer programmability at multiple levels of abstraction. Now
we describe the prototypical realization of this architecture
showing its feasibility. Our results indicate that up to 170
million packets per second can be processed with this archi-
tecture using current FPGAs. By implementing packet pro-
cessing tasks at register-transfer level and at software level,
we validate the architecture’s applicability and the benefits
of implementing at an appropriate level of abstraction.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working—Routers

General Terms

Design, Experimentation

1. INTRODUCTION AND MOTIVATION
Routers and switches in future high-speed networks have

to be adaptable to new processing requirements due to new
or changed protocols or services. Additionally, the explo-
ration and evaluation of new networking ideas for a future
Internet benefits tremendously by highly programmable and
modular network nodes that can be used for testing environ-
ments [2, 1]. Secondly, with the introduction of ever higher
line rates, packet processing systems have to process several
hundred millions of packets per second per ingress port.

Field Programmable Gate Arrays (FPGAs) and network
processors (NPs) feature both the required flexibility and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09 October 19–20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$10.00.

performance. The former offers fine grain configurability at
register-transfer level, while the latter is programmed at the
more abstract software level hiding hardware details from
the programmer. At first glance, NPs seem more suitable to
design complex packet processing functions. However, some-
times tasks need operations that are not directly supported
by the NP’s instruction set. Examples are complex bit op-
erations, atomic load-modify-store operations, or operations
requiring specialized hardware, like small and fast associa-
tive memories. Moreover, the given system architecture of
the NP (e. g. the organization of its processing engines or
memories) may not be suitable to certain operations. Of-
ten, emulating such operations is time-consuming and inef-
ficient, while implementing them at register-transfer level on
an FPGA would be fast and resource-efficient (cf. [5]).

In [4] we presented a novel architecture for a high-per-
formance network processing unit, called MIXMAP. It pro-
vides a framework for modules that are programmed at dif-
ferent levels of abstraction. Yet, its structure guarantees to
comply with the high line rate requirements of future high-
speed packet networks (e. g. a 100Gbps Ethernet network).

In this paper (and on the poster) we give details on the
design and the implementation of a prototypical packet pro-
cessing system featuring the MIXMAP architecture, as well
as new performance results. We built modules for the design
at register-transfer level and at software level. Using these
we implemented several current and future processing tasks.
Thus, this work shows the feasibility and applicability of our
previously proposed architecture.

2. THE MIXMAP ARCHITECTURE
The objectives of the MIXMAP architecture are (1) a very

high processing rate, (2) a modular framework, and (3) pro-
grammability at arbitrary levels of abstraction.

A very high packet processing rate is guaranteed by a high-
performance pipeline structure as the basis of the system, see
Fig. 1 a. The pipeline forwards its data from one stage to
the next each clock cycle. The amount of data processed in
each stage is at least that of a minimum-sized packet.

Modularity is accomplished by defining functional units
with fixed interfaces on top of the pipeline structure, as de-
picted in Fig. 1 b. The interface definition specifies what
data and meta-data has to be transfered from one unit to
the next and that each unit receives and transmits this data
every clock cycle. Obeying these interface specifications a
functional unit may have any arbitrary internal structure.

Finally, each functional unit can be implemented utilizing

ANCS 2009

179

.

clock

functional unit Cfunct. unit A

. . .

fixed interfaces

functional unit B

. . .

funct. unit A functional unit Cfunctional unit B

register-transfer
level module

microcode
level module

software level
module

a)

b)

c)

minimum packet size

Figure 1: a) high - performance pipeline structure,
b) functional units on top of pipeline, c) use of mod-
ules with different levels of abstraction

one of several possible modules, as shown in Fig. 1 c. The
modules offer different hardware infrastructures. Thus, one
can choose a module with the most suitable level of abstrac-
tion when implementing a new functional unit.

The architecture therefore allows e. g. to quickly add a
new processing task to a router by programming a software-
level module. Later, one can replace this by a more resource-
efficient unit designed at a lower level of abstraction. Sim-
ilarly, a task that is not efficiently realizable at software
level due to processor constraints, can be implemented fully
or partly at register-transfer level. Furthermore, due to its
fixed interface specifications, new functionality can also be
acquired from other parties and “plugged” into the system.

3. PROTOTYPE AND EVALUATION
We implemented a prototypical MIXMAP packet process-

ing system in order to show the architecture’s feasibility
and the achievable performance with current FPGAs. The
structure of the system is depicted in Fig. 2. It supports
up to 15 Gigabit Ethernet ingress and egress interfaces (we
used three). To be able to perform full load tests also in-
ternal packet generators can be used, together with valida-
tion modules at the egress side. The packets are forwarded
back to back into the actual processing pipeline consisting of
register-transfer-level (RTL) modules and software modules.
A slow path general-purpose processor, located on a second
FPGA, performs control and management tasks.

RTL
512 bit

GEth-IF/
Generator

GEth-IF/
Generator

RTL RTL Software

GEth-IF/
Sink+Valid

L2-
Check

L3-
Check

IP-
Lookup RCP

GEth-IF/
Sink+Valid

NIOS II
ProcessorDMA

UARTSRAM

FPGA 1

FPGA 2

meta-
data

Figure 2: Prototypical MIXMAP system

Table 1: Software-implemented processing tasks
Processing task Execution time (max.)
IP (w/o lookup) 43 cycles
TCP Quick-Start (non-critical) 55 cycles
Rate Control Protocol (RCP) 26 cycles

As stated in [4], software-level modules can only process a
packet for N ·F clock cycles, with N parallel processors with
an F times higher clock frequency than the system pipeline.
Hence, we designed small, specialized RISC-cores with an
instruction set similar to that of the Intel (now Netronome)
IXP2xxx microengines [6]. A multiplexer distributes the in-
coming data sequentially to the N processors writing it di-
rectly into the register set to save clock cycles. Place& route
results show that more than 100 such processors can be ac-
commodated on a current FPGA. Currently we achieve a
maximum clock frequency of 90MHz, optimizations should
increase the possible rate. Also, modules with even smaller
processors may be possible, or a module using a dataflow
pipeline [3] as in the Xelerated NPs.

To evaluate the applicability of the MIXMAP architecture
we implemented several functional units executing different
packet processing tasks. Table 1 lists the processing tasks
we implemented using software-level modules. N =16 pro-
cessors with F = 4 suffice to execute the required number of
clock cycles. [5] shows that the parallel architecture of NPs
is not suitable for the sequential bandwidth assignment steps
of some future explicit congestion control schemes. Hence,
we implemented the respective critical functions at register-
transfer level and the non-critical part in a software-level
module. This nicely shows the benefit of designing at a
suitable level of abstraction. Using RTL-modules we imple-
mented basic IP processing functions as well as an algorith-
mic and a TCAM-based IP address lookup module. They
support clock rates up to 170MHz, thus the system can pro-
cess 170 million minimum-sized packets per second.

4. CONCLUSION
We implemented a prototypical MIXMAP system to show

the architecture’s feasibility as well as the achievable through-
put. We further demonstrated its applicability to typical
current and future packet processing tasks.

5. REFERENCES
[1] GENI – exploring networks of the future.

http://www.geni.net, Aug. 2009.

[2] NetFPGA. http://www.netfpga.org, Aug. 2009.

[3] J. Carlstrom and T. Boden. Synchronous dataflow
architecture for network processors. IEEE Micro,
24(5):10–18, Sept.-Oct. 2004.

[4] S. Hauger. A novel architecture for a high-performance
network processing unit: Flexibility at multiple levels of
abstraction. In IEEE International Conference on High

Performance Switching and Routing, June 2009.

[5] S. Hauger, M. Scharf, J. Kögel, and C. Suriyajan.
Evaluation of router implementations for explicit
congestion control schemes. Journal of Communi-

cations, Academy Publisher. (to be published end 2009).

[6] Intel Corp.. IXP2400 network processor. data sheet.
http://download.intel.com/design/network/datashts/
30116411.pdf, Feb. 2004.

180

