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This paper deals with different routing strategies for data transmission as well as different load-
sharing and reliability configurations for computer systems.

Starting from two separate service systems without mutual overflow, a review of different over-
flow systems is given considering three types of overflow strategies applicable to data transmission.
Furthermore, systems of two and more computers are inspected with various configurations and
operating strategies. For reasons of simplicity, all multiqueue models are demonstrated by example
of systems with two (limited) queues.

A comparison between the models of both application areas shows a close similarity with respect
to system structure and operating strategies. Therefore, the models of both areas can be treated by
the same mathematical methods.

The analysis of the different systems with respect to the service quality is carried out on the basis
of the state equations under Markovian assumptions. Finally, the most important models will be
compared with each other with respect to various traffic criteria.

I. INTRODUCTION

During the past few years, many investigations have been published about single-
queue models for data transmission and computer systems under various operating
strategies and traffic properties.

In modern communication networks, special routing strategies are used, such as al-
ternative or adaptive roufing [1-3]. Real-time computers are duplicated or operate in a
load-sharing mode [4]. For such systems single-queue models are often not applicable in
order to investigate their traffic behavior.

Data communication networks with different routing strategies as well as different
reliability configurations are rather described by multiqueue models.

In Section II various configurations of many-server systems with two queues are dis-
cussed under three modes of overflow strategies:

(1) Overflow from primary to a secondary server group
(2) Overflow from a storage in front of a primary server group to a secondary
server group
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(3) Overflow from primary storage to a secondary storage or directly to a second-
ary server group.

All three overflow strategies can be applied to data transmission networks as well as to
load-shared or breakdown-reliable computer systems.

Section I1I gives an outline of the mathematical analysis of such overflow systems to
investigate the capability of the different configurations and strategies. For the analy-
sis Markovian assumptions are assumed. Solutions are given either by exact evaluation
of systems of equations or by approaches using two moments of the overflow traffic.

In Section IV comparisons are made for different system configurations and strat-
egies. Numerical results are presented for probabilities of waiting and loss, mean waiting
times, carried traffic (throughput) as well as the distribution of waiting times.

Il. MULTIQUEUE MODELS FOR DATA TRANSMISSION
AND COMPUTER SYSTEMS

In Figs. 1 and 2 some configurations of multiserver systems with two queues are
reviewed which are able to operate under various overflow and load-sharing strategies.
The models in Fig. 1 are suited for data transmission systems; the models in Fig. 2 are
applicable to systems of computers.

=n
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Fig. 1. Configurations of multiserver systems with two queues and overflow capability for data
transmission systems,
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Fig. 2. Configurations of multiserver systems with two queues and load-sharing capability for
computer systems.

2.1 Multiqueue Server Configurations

The model in Fig. 1.1 shows two (separate) queuing systems for the traffic to direct
routes 1 and 2 with 7, servers (trunks, lines) for route r ( = 1, 2). A call of an incom-
ing group j is allowed to wait in a storage with s; waiting places (j = 1, 2) when the
servers of the corresponding direct route are blocked and if there is at least one waiting
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place available. In Figs. 1.2 and 1.3 two different configurations of multiserver systems
are shown with two queues and “fully accessible” servers. Assuming a sequential hunt-
ing mode, route number 1 of Fig. 1.2 represents a high usage route which carries most of
the traffic while route number 2 takes only the “overflow” traffic. In Fig. 1.3 both
routes number 1 and 2 are working as high usage routes for their own offered traffic; in
addition, the overflow traffic of the other route is offered to servers of each route. In
the model of Fig. 1.4, a part of each high usage route is reserved for its own offered
traffic, the residual servers are allowed to also carry overflow traffic. Finally, the model
in Fig. 1.5 shows a configuration where the traffic for two direct routes can overflow to
a third (“final””) route number 3. Both models in Figs. 1.4 and 1.5 incorporate “limited
accessible” servers.

The configurations of Figs. 2.1 to 2.5 are very similar to the models of Figure 1. The
servers may be considered as computers serving calls (real-time requests or batch jobs)
stored within the queues, respectively. All the different configurations with mutual aid
allow better utilization, load-sharing, and reliability with respect to breakdown.

2.2 Overflow Strategies

The multiqueue server configurations discussed in Section 2.1 (Figs. 1 and 2) may
operate under different overflow strategies. Three main modes will be considered:

e Overflow Strategy 1 (S1):
Overflow from primary (direct) to a secondary (final) server group
Waiting is only allowed if all accessible servers of the primary and secondary
server group are occupied
e Overflow Strategy 2 (S2):
Overflow from a storage in front of a primary server group to a secondary
server group
The accessible servers of the secondary server group are only hunted if both
the primary server group and the primary storage are fully occupied
@ Overflow Strategy 3 (S3):
Overflow from primary storage to a secondary storage or directly to a sec-
ondary server group
The call, which finds the own server group and all accessible servers of other
server groups occupied, queues in the storage of its incoming group. However, if
there is no free waiting place, the call is diverted to the other incoming group and
is treated there like an original call of this group.

These different overflow strategies have a significant influence on the traffic criteria,
in particular the probabilities of loss and waiting, as well as the mean waiting times. In
the following sections, the analysis of these queuing systems is outlined and the most im-
portant configurations are compared with each other with respect to the overflow strate-
gies in question.

11i. MATHEMATICAL ANALYSIS

This section gives an outline of the mathematical analysis of multiqueue models
under different overflow strategies. In Section 3.1 the exact calculation of multiqueue
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models is shown for Overflow Strategy 1. Sections 3.2 and 3.3 handle multiqueue models
for Overflow Strategies 2 and 3 based on a method regarding two moments of the over-
flow traffic, respectively. For the mathematical analysis, the Markovian properties are
assumed throughout the paper.

3.1 Analysis of Muitiqueue Models for Overflow Strategy 1
3.1.1 Model

The general multiqueue model with overflow from primary servers (e.g., trunks of
high usage routes, highly used computers, etc.) to secondary servers (e.g., trunks of final
routes, remote computers, etc.) can generally be considered as a service system with full
or limited accessibility. The special assignment of servers to incoming groups and out-
goingroutes is determined by a “grading matrix.” In the most general case, each server
represents a different route; by combination of various servers to outgoing groups all
possible configurations can be obtained from the general case.

The structure of the multiqueue overflow model is laid down by the following
parameters:

g : Number of incoming groups or input queues

n : Number of servers

kj : Accessibility within incoming groupj (j=1,2,3,--- ,8)

s; : Number of waiting places available for calls of incoming groupj (j=1, 2, 3,

”'ghj” . Grading matrix, where gy,; is the number of that server which is hunted at step
(order) & within incoming group; (h=1,2,3, - ki i=1,2,3,--1,8)

@]l : Accessibility matrix, where a,; = 1(0) if incoming group ; has (has no) access
to server number7  (r=1,2,3,---,n;j=1,2,3," - ,¢g).

The operation mode is characterized by the following criteria:

® Sequential hunting of all accessible servers within each incoming group (Overflow
Strategy S1)

@ First-in; first-out (FIFO) service within each queue (queue discipline)

® Arbitrary probability law for service between the queues (interqueue discipline).

The interqueue discipline is fully determined by

[ Pr] : Interqueue discipline matrix, where Dyj is the probability that queue j will be
served when server r finishes service  (r=1,2,3,--- ,n;j=1,2,3,--- L&),

The interqueue discipline matrix is in general state-dependent. By choice of special
matrix elements, however, special cases are obtained; for instance, the case of nonpre-
emptive priorities between the queues.

Input and termination processes are Markovian, i.e., the interarrival times « and
service times b are exponential

Aj(0) = Prig<s] =1 - exp(-N0)  (j=1,2,3,--.g) , (1.1
Bo(t)y =Pr[b,<¢] =1- exp(-¢18) (=1,2,3-"",n). (1.2)

For illustration, Fig. 3 shows a simple 3-server system with two queues.
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Fig. 3. Example of a 3-sexver overflow system with two queues.

3.1.2 Principle of Solution

At first, the occupations of servers and waiting places will be described by a multi-
dimensional state. For the probabilities of state, the linear system of equations
(Kolmogorov forward equation) is derived in Section 3.1.3. By means of the state
probabilities, characteristic traffic values (mean values) are defined in Section 3.1.4.
For the treatment of waiting time distributions, a waiting process is considered which
is constructed from the process of system states. In Section 3.1.5 the linear system of
differential equations (Kolmogorov backward equation) for the conditional distribution
functions (cdfs) of waiting time is discussed. The total probability distribution function
(pdf) of waiting time is found by regarding the probabilities of initial states (where the
waiting process starts) combined with the corresponding cdf of waiting time, cf
Section 3.16.

3.1.3 Stationary Probabilities of State
The system state £ may be defined as
£=(xl,xz,xg,,"',xr,"',xn;21,22,23,'-',zj,"',zg) (EEE) ’ (13)
where
{ 0, serverrisidle ,
x, =
’ 1, serverrisoccupied (r=1,2,3,---,n),

z; : Number of occupied waiting places within queue j,

z; € [0, 5] (7=1,2,3,---,8).

i

In Eq. (1.3) not all possible patterns are physically realizable: a queue j can only be
built up if all accessible k; servers are blocked  (7=1,2,3, -~ ,8)-

The stationary probabilities of states p (£) can be determined by the Kolmogorov
forward equations

Gep® - ) amp(m=0 (t€E), (1.4)

mEE

which are found by considering all states £ in statistical equilibrium with their neighbor
states [5, 6]. In Eq. (1.4) g, means the transition coefficient for transition from state

£ tostate m, and ¢ = Z Gen-
TFE
Application of the statistical equilibrium to the general state Eq. (1.3) results in the
following equation
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where: §; ; is the Kronecker delta; and Kj= Z ay;x, the number of occupied
r=1

servers in group j. In Eq. (1.5) all probabilities of physically not possible states are zero.
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Fig. 4. State space and transitions for a 3-server overflow system with two queues according to
Figure 3. System state (x1,X,,X3;2, Z3).
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To illustrate Eq. (1.5), in Fig. 4 the 5-dimensional state space with transition coef-
ficients is shown for the 3-server system of Figure 3. In Fig. 4, ¢,; = €, p,;isused asan
abbreviation for the service rate of queue j with respect to serverr.

The linear system of equations (Eq. (1.5)) is generally solved by an iterative method
(successive overrelaxation) and normalized by the condition that the sum of all state
probabilities equals unity. In some special cases of fully accessible servers, an explicit
solution or recursion algorithms can be derived [7].

3.1.4 Characteristic Traffic Values

The most important mean values are the probabilities of waiting and loss, the carried
traffics, the mean queue lengths, and mean waiting times. All these values can be de-
rived from the probabilities of state.

(a) Probability of waiting W;

1 1 s, 8§i—1 s, k;
W=D ) Zt Y Ii(xgh,.)p(s). (1.6)
X ,=0 Xp=0 2z,=0 z;=0 Zg=0 n=1

(b) Probability of loss B;

1 1 s, Sg
Bp= ) o ) 3 ) bygp(® (L7
X, =0 Xp=0 z,=0 2g=0

(¢) Carried traffic Y,

Yr i XZLO le=0 ZSZ;0 zZiro x"p(g) ' (18)
' n N -

(d) Mean queue length €;

Q= 21: Zl: i Zg zip (&) . (1.9)
X,20 X=0 2,50 Zg=0

(¢) Mean waiting time ¢,,; referred to all waitingj-calls

Q:
t LI, 1.10
TR, (1.10)

3.1.5 Conditional Distribution Functions of Waiting Time

For the exact calculation of waiting time distributions, the waiting process for a test
call will be considered withii the ™ queue. A j-call enters the j-queue and starts a wait-
ing process; this process is being “‘alive” as long as the j-call is waiting and “dies” at the
moment the j-call is selected for service. The waiting process can be constructed from
the process of system states by neglecting all those transitions which do not influence
the “life-time” of the j-call under consideration.

To describe the waiting process of j-calls, a waiting state {; is introduced. The waiting
state {; is built from the occupation states x, of all those servers, which have no access
to group j, and the states i, of all queues. When the interqueue discipline does not de-
pend on the actual length of the queues, the waiting time of the j-test call is not in-
fluenced by subsequent arriving j-calls (FIFO). In such cases, the waiting state {; can be
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defined by a (n - k; + g)-dimensional variable

§] = (...,xr’...;...’l'v’.“) (r$ghj;h:1,2,3,"',k]

p=1,2,3,8.G€Z) . (11D
where
{O, server 7 is idle ,
X, =

1,  serverris occupied ,
i, : Number of waiting calls within queue v (¥ #7)

i; © Number of calls waiting in front of the j-test call.
For the waiting time w; of a j-test call, which met an arbitrary state {; at arrival, a
conditional complementary distribution function is defined

PP(t| &) = Pr w;> 1|5} (EZ (1.12)

For the cdf of waiting time a linear system of differential equations (Kolmogorov
backward equation) holds [7-9]

dprfe|sy)
’“]Et“l—/ = T a4y Pf (] &) + Z dgj,my P (tln) Gy € Z),
nj # &
(1.13)

with initial conditions Pf (O]i‘, =1 (§€Zy). InEq.(1.13) qgj,n; Means the transi-
tion coefficient for transztlon of waiting state {; to waiting state n,,q; is the coefficient
for leaving the state {;, including the “death” of the waiting process.

To illustrate Eq. (1.13), the state space of the waiting process is given in Fig. 5 for
the 3-server system of Fig. 3 with respect to 1-calls.

START OF WAITING PROCESS

(140 == . === (111;24) 2 m,|2).—2_>.(u,bm == == (ls)

b bR ke e

4.,10) = aﬁﬁﬁb-") iy Uy M) === - -m—= (li4s)

i A R

©i10)

1 (110 === == (11:21)8-% (11»2) 2= (1) === ()

. €32

| % 18"53 l€1 §1 2 l ‘5 151*531 151*531

¢ (100) =—= . =—= (10:2—1)"2’ (10@—2— (0pd) 3===- .. === (10s,)
©10) €2+€32 €832

£+€

11/2/ u&’ga u‘gm uﬁ‘?—m uﬁrﬁm Usvsm
0,00) -

|

e END OF WAITING PROCESS is

7 (SERVICE) 2
2

Fig. 5. State space and transitions for the waiting process of 1-calls for a 3-server system with two
queues according to Figure 3. Waiting state {; = (x,;iy,{,). Initial state (example) {; = (1;iy,ip)
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For the example of Fig. 5, the differential equation for the initial state {; =
(x23i1,02) (xg = 1;0; >0;,0<i, <s;), reads as follows

dPf (t|1iy,15) _

dr - (N te tey tey) Py (] 1in,ip) + N P (t] V505,05 + 1)

+ (e +e3y) P (t]l;il - 1,4)
t(ex te3) PE (] 15iy 00 - 1) (1.14)

At the bottom of Fig. 5, the coefficients for termination (“death”) of the waiting process
are also shown.

A detailed discussion of waiting processes for various queue and interqueue disci-
plines has been reported by Kithn [7]. The linear systems of differential equations can
be suitably solved by a method of successive power series expansions even for a high
order of the differential equation system and prescribed accuracy [7]. By integration
of Eq. (1.13), the corresponding linear equations for the conditional mean waiting times
and higher moments can be obtained as well [7, 8].

3.1.6 Total Distribution Function of Waiting Time

The pdf of waiting time can be obtained by averaging over all cdfs combined with
the probabilities of initial states (conditions)

PE>0 = Prlw> = ) pGPF Q) (1.15)

§jEZ/‘

The probabilities of initial states p ({;) are identical with the corresponding prob-
abilities of state p (£); the difference between the states £ and §; 0r1g1nates from the k;
(occupied) servers accessible from incoming group /.

3.2 Analysis of Multiqueue Models for Overflow Strategy 2

3.2.1 Model

Given a structure as shown in Fig. 6: at first, the traffic4;  (j =1, 2) is offered to
a primary arrangement consisting of »; servers and s; waiting places. If there is blocking,
i.e., all primary servers and all waiting places are occupied, calls will be diverted to a
secondary group (overflow group) with n; servers. Calls waiting for service in a queue
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Fig. 6. The model.
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are served in the order of their arrival (FIFO). The service rates in the different server
groups may be different.

3.2.2 Principle of Solution

In principle, an exact solution for the characteristic traffic values is possible: intro-
ducing three-dimensional state probabilities, the equations of state can be found relatively
easily and the evaluation may be done by a relaxation method [10]. However, for ar-
rangements with a large number of trunks and waiting places as well as for structures with
more than two primary arrangements, this evaluation is not possible, even on the largest
digital computers. Therefore, a handy approximate method is suggested, using the fund-
amental idea of the so-called “substitute primary arrangements” [11-15}:

(a) All overflow traffics are characterized by their first and second moment (mean
value R and variance V or variance coefficient D = V' - R, respectively). Mo-
ments of third and higher order are neglected. The exact calculation of over-
flow traffic moments is outlined later on in Section 3.2.3

(b) Because all traffics overflowing from different primary arrangements are in-
dependent of each other, the total overflow traffic, offered to the common
secondary group, can be described by the sum of all mean values R; and the
sum of all variance coefficients D;. Therefore, one gets in case of two primary
arrangements as shown in Fig. 6 )

R =R, +R, ,
5 = D1 + D2
(c) In order to calculate the traffic characteristics of the secondary group, a
“substitute primary arrangement” and a “‘generating traffic’’ A * are determined

such that an overflow traffic is generated with mean value R and variance coef:
ficient D (cf. Figure 7). In other words: all actual traffics overflowing from the

(2.1)

Substitute
Primary
Arrangement

ﬁ*ﬁ

Actual
Secondary
Arrangement

v
Total Arrangement

Fig. 7. Replacement of the real traffic by an equivalent traffic.

various primary arrangements are described approximately by one substitute
overflow traffic with the same mean R and variance V. Then all character-
istic values of the actual secondary group are calculated, taking into account
the structure of the substitute primary arrangement as well as the generating
traffic A *.
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Artificial traffic trials performed on a digital computer have shown that for
practical applications it is unimportant whether the substitute arrangement is a
fully available group with or without waiting places. Therefore, by reason of
simple evaluations, a fully available group with n* servers, offered traffic A%,
and termination rate €* = ¢; is chosen as substitute primary arrangement
(n* and A* have to be determined by iteration such that the overflow traffic
(R, D) is generated). .

Now, obviously, the traffic (Rs, D) rejected also by the secondary group
is given by [11-13, 15]

R3 = A*El,n“%—n3 (A*) 5
D =R 1 (2.2)
D; = R% - , :
} 3{E,,,,*+n3 A*) {n* +ns +1- A* +R3} ]
where
An
“n!
Eyn(4) = ;
n i
I
i=0

3.2.3 Calculation of the moments of overflow traffic

Given a fully available primary arrangement with n; servers and s; waiting places
(j =1, 2) and an infinite secondary arrangement (3 — °°). If there is offered random
traffic (Poisson input and negative exponential service times, cf. Eqgs. (1.1) and (1.2)) to
the primary arrangement, the mean value R; of the traffic overflowing to the secondary
group with termination rate €3 is given by the well known formula [16]

a7 (4
R; =76_\l3 — n! n,1 : <,_4l>i“ ) 2.3)
£ x! n;! - ﬁ
7y
where
A; = Ne; .

Basharin [17] seems to be the first dealing with the variance of overflow traffic in
delay-loss systems: recurrent formulae are presented for the computation of the mo-
ments of overflow traffic if there are s; > 1 waiting places and uniform termination
rate ¢; = €; = e for both primary and (infinite) secondary arrangement.

In the following it is concisely outlined how to calculate recursively all overflow
traffic moments even if there are different termination rates ¢; and €3. For uniform
termination rates also an explicit solution is presented for the variance V; or variance
coefficient D;, respectively.

The calculation has been performed following a way of solution which is similar to
that one successfully applied for overflow systems without waiting places [18, 19]:
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(a)

(b)

(©

Defining with {i;, u3} the state that there are simultaneously u; demands being
served or waiting for service in the primary arrangement and u; demands in the
secondary system, it is possible to find the following equations of state for the
state probabilities p (u;, u3)
uj; < nj .
Np (- 1us) + (uz + 1) €3 p (uj,us + 1)

it Dep(uy+ lus) = (us e3 + up €+ N) p (uy, us) (2.4a)
n,-Suj<nj+sj:
No(uj- Tus) + (us + D e3 p (uj,us +1)

tonjep(uptlug) = (uz e3+nje+N)p(uj,us) ,  (2.4b)

M] = l’l]' + Sj .
Np(mj+si- Lug) + N (g +s,uz - 1)
t (st Desp(ni+sius+1) = (uz €3 +n6+N)p (n+5,us) (240
Solving this system of linear equations, the basic idea is to introduce factorial

moments My, (u3), conditional factorial moments My, (i3 [ u;), and conditional
moment generating functions F (u3 { uj, t) for the overflow traffic

n]'+S]' ni*S]' oo

M) =3 Ml = Y Y k() pwu . @9
uj=0 ‘

Uj=0 uy=0

F(us|uy, 1) = Z My (ua ) 7 = Z (1+0% pujus) . (2.6)
k=0 ! '

U,=0
All normal moments my, (u3) of the overflow traffic can be expressed by
factorial moments, especially
k=20:mo(us) =M (us) = 1,
k=1:m(us) = My (u3) = R; , 2.7)
k=2:my(us) =M us) + my (us) ,

1

it

and the variance coefficient
Dj = M, (u3) - R} . (2.8)

Therefore, in order to determine the variance coefficient Dj we have to calcu-
late the factorial moment of second order

By analogy to the Laplace transform [20] it is possible to transform Eqgs.
(2.4, b, ¢) into corresponding equations for the generating function. Then
using Eq. (2.6) it is possible to find, by comparing coefficients, the following
equations for the conditional factorial moments

uj < nj ol
= N My (us|uj- 1)+ (e +k ey + N) My (us |uy)
- (it D) g M (us|uj+1) = 0, (2.92)
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n <y <mjts

- N Mg (u3lu,-‘ 1) + (nje+ke; +>\]-)Mk(u3]u,-)
- nje My (u3]ui+ )=0, (29b)

Lll =n; + S]' :
- >\]Mk (u3{n,-+s,-— 1) + (n,-ej+ke3)Mk(u3ln]-+s/)
= k}\ij..l (u3|ni+s]~) . (290)

Summing up Egs. (2.9a, b, ¢} over all possible values of u; we find directly the
following equation

nj+sj

e ) My (ualy) = €3 My (43) = NMioy (us|my+s) - (210)

u]'=0

Equation (2.10) shows that factorial moments of arbitrary order k may be
obtained if only the conditional factorial moment of order (k - 1) is known.
Therefore, all factorial and conditional factorial moments of arbitrary

order can be determined by the following procedure:

® By means of Eqgs. (2.9a, b) with k = 1 and the relation

nl-+sl-

Z My (us|uy) = My (u3) = R; (2.11)

u]-=0

it is possible to determine all conditional factorial moments M, (us l u;)
(iteration of the values of the moments such that Eq. (2.11) is fulfilled).
Then, Eq. (2.10) allows (with & = 2) us to determine the factorial moment
M, (u3) and hence Eq. (2.8), the variance coefficient D;

® Fork = 2 asecond iteration allows to determine all conditional factorial
moments M, (U3 ] u;) and hence the calculation of the third factorial mo-
ment M (us) by means of Eq. (2.10) withk = 3

® Adequate procedures allow to determine factorial and normal moments of
arbitrary order.

It should be mentioned at this point that, if there exists the same termination
rate for both primary and secondary arrangement, an explicit solution is also avail-
able for all conditional factorial moments M (u3 ‘ u;) and therefore an explicit
solution for the variance coefficient D;. This explicit solution can be found when
determining all moments M, (u; ] u;) as a function of M, (u3 l 0) by means of
Egs. (2.9a, b) (linear homogeneous difference equations of second order). Then,
taking into account Eq. (2.11), the explicit solution for the variance coefficient D;

is given by
ciA;
Df=R}[ ’ ]-1} (2.12)

CzR]‘

where
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3.2.4 Probability of Waiting, Mean Waiting Time, and Waiting Time Distribution

Remember that waiting is allowed only in the primary arrangements (cf. Section
3.2.1) and not for calls overflowing to the secondary route. Therefore, the probability of
waiting, the mean waiting time, and the waiting time distribution can be obtained im-
mediately when using Stérmers [16] well-known formulaes for delay-loss systems.

3.2.5 Comparison with Simulation Results

As shown before, all moments of the overflow traffic distribution (section 3.2.3)
and all waiting characteristics (Section 3.2.4) can be determined exactly.

Using the method of “substitute primary arrangements” (see Section 3.2.2) also the
moments of its lost traffic (R, D3) and, therefore, the probability of Joss By = Rs/R
can be determined in close approximation. This approximate method has been checked
by a large number of simulation runs using a digital computer [21]. Figure 8 presents a
typical example. Comparison shows the very good accordance between simulated and
calculated values.

3.3 Analysis of Multiqueue Models for Overflow Strategy 3
3.3.1 Model

Given two delay-loss systems as shown in Fig. 9. New calls of class one and two are
offered at first to the cotresponding arrangement numbet one (primary) or two (secon-
dary). If the primary arrangement is blocked, i.e., the server and all waiting places s,
are occupied, new arriving demands of class one are overflowing to the secondary
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Fig. 9. The model.

arrangement (one server and s, waiting places). This secondary arrangement accepts all
arriving demands of class one or two if there is at least one free waiting place. Calls of
both class one and two are served without priorities in the order of their arrival (FIFO).
If there is blocking, arriving calls are rejected.

3.3.2 Principle of Solution

Calculating all characteristic traffic values, the basic idea is the same as shown in Sec-
tion 3.2. However, the investigation of the secondary arrangement with offered random
plus overflow traffic is more complicated: ’

(a) Traffic, overflowing from the primary to the secondary arrangement, is de-
scribed by the first and second overflow traffic moment (mean value R, and
variance V, or variance coefficient D; = V; - Ry, respectively). Exact
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formulas for these moments are also included in the solutions presented in Sec-
tion 3.2.3

(b) The total traffic offered to the secondary group is described by the sum of both
overflow traffic (R, D,) and direct traffic (4,, 0)

R=R1+Az,
D=D,+0

(c) In order to investigate the traffic characteristics of the secondary arrangement,
a “substitute” primary arrangement (one server and s* waiting places) and
a “generating” random traffic A* are determined such that an overflow traffic
is generated with the exact mean value R and the exact variance coefficient D
(cf. Fig. 10. Contrary to Section 3.2.2, the substitute primary arrangement has
also waiting places; this generalization allows us to investigate special structures
and service strategies to be published later on).

@
= N Generating
A= 9‘ Traffic
» Substitute
° Primary
o- € Arrangement
R|D
R N Actual
2 % 2 Secondary

O~ &  Arrangement

Fig. 10. Replacement of the real traffic by an equivalent traffic.

Describing the traffic flow in the substitute primary and the actual secondary arrange-
ment by a two-dimensional Markovian process, characteristic traffic values for the secon-
dary arrangement are determined in the following sections.

3.3.3 Calculation of the State Probabilities pluy, uy)

Defining with {u,;,u,} the state that there are at the same time u, calls in the pri-
mary arrangement and u, in the secondary system, the following equations of state are
found for the state probabilities:

uy < 1+ s5,uy =1+ 5,

ep(l,1+s;) - (92+7\1)P(0,1+52) =0,

3.1a
ep(u+2,1+s,) - (1t e +A)p(u+1,1+s,) + Aip(up, L+sy) = 0. } G193

This equation is a system of (n; + 1) linear homogeneous difference equations of sec-
ond order with constant coefficients. Using the Z-Transformation [20] itis possible to
express all probabilities p (uy, 1 +,) as a function of p (0, 1 + $3)

pu, 1+s) = p(0,1+s,) S+ A1) By, ~ A1 Bu,—1) s (3.29)
with
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¥t - o €, At
= ———f= "4 = —
Bu, - f -
(L+f+4,) £ JO+fHA) - 44,
Oy, 0 =
2
By analogy, we also find
uy <51,0 < up <osyt
u, -1
pun,uz) = p(0,un) (F+AD By~ Arbur} = ) pEwt Dhug . (3:20)
£=0
up <osp,up = 0
u, -1
P, 0) = p(0,0) U B~ Al i} — ) pPE DB, (20
E =
with
o (aD - @) . e (frA) VA - 44,
Bul = * #* s Uy, Gy = 5
o - O, 2

uy =1+ 5,0 <uy <5yt

fo(L+s,u+2) - (1 +f+‘A1)P(1+Sl,“2+1)
+ Ayp (L+sy,up) = —Arp (s1,uzt 1) . (3.2d)

Equations (3.2a, b, c) allow us to describe all probabiliites p (u1,u,) as a function of
the “basic state” p (0, 1,) and “higher” valuesp (§,u,+1)  (§=0,1,2,---,uy - 1.
Therefore, when starting with the highest possible value u, = s + 1 and systematic re-
placement of unknown values it is possible to express all state probabilities p (uy, u,) by
the marginal values p (0, u,), - -+ ,p (0, s, + 1), i.e., the two-dimensional state relations
can be reduced to a one-dimensional system [10]. Finally, Eq. (3.2d) and the normal-
izing condition allow us to find an explicit solution for all state probabilities.

1+8,

Z Cuyyuzp Dp
(u ) A'i‘l P=Uy
p Uy, Uz) = - >
Lo, LA s e
1 - 4, Z Z Cuy0 bp
v=0 p=v
-1
Cujup = 7 Z Ctuy+1,p0 Bu[—i UaF psus 0,02 up)
£=0
u,-1
*
Cu0,p = 7 Z Ct 1,0 ﬁul—z (U2 # psu=0)

ore

=0
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Cuupp = (f+A1)ﬁu‘ - Afy, o (2= psuy#0)
Cuiuy0 = Alﬁ;jl - Alﬁ:,—x (“2:p;u2=0) s
Cuyuy,p 0 (u>p),

it

1+5, 1+5, 1+5, 1+5,
U, : : a“z:zl Z : aznzz Z : a22,23 Z azw—pzw;
Z,=u,+ 1 Z,=2,+1 Zy=2,+1 Zyy=Zy, g+ 1
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(’Alcl+sl,uz,p+(l +f+U.A1)Cl+S1,u2+l,p )

T VCes w1, T Alcs,,u2+1,p

a
Uz 0 4. ¢
1 1 31’12’ 2

{1 s 0 S Uy < 8,
0, otherwise .

3.3.4 Characteristic Traffic Values

As already mentioned, all characteristic traffic values for the primary arrangement
are independent of the secondary arrangement and given by well-known formulas [16].
In addition, all overflow traffic moments are determined in Section 3.2.3.
] All'state probabilities p (u, , u,) for a substitute primary and the actual secondary
arrangement are determined explicitly in Section 3.3.3. Therefore, it is easy to find the
following characteristic values for the secondary arrangement:

Carried traffic

1+s, 1+32 )\
V2= ) )0 plw) = pea st Dop+Ln+D)] (.4)
U, =0 u,=1
Lost traffic
Ay
R, = — p(1+S1,1+g2)‘ (3.5)
€2

Probability of waiting (probability that an arriving call has to wait under the con-
dition that it is offered to the secondary arrangement)

52
p(l+sy,uy)
W, = 2=t . (3.6)

§,+1

p(l+s;,uy)

;=0
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Mean number of calls waiting for service

=3 Y Do) a7

im0 Ur=1
Mean waiting time for waiting calls

Q
s = 2 . (3.8)

Ay Z p(1+sy,up)

u, =1

In addition, it is possible to determine explicitly the waiting time distribution for the
total system as well as for the secondary arrangement only. These results will be pub-
lished at some future time.

3.3.5 Comparison with Simulation Results

As shown before, all characteristic traffic values referring to the primary arrangement
(such as waiting times and overflow traffic) can be determined exactly.

All characteristic traffic values referring to the secondary arrangement are approxi-
mate values because the actually offered overflow traffics are replaced by a ficticious
traffic generating exactly only the first two moments of the actual traffics.

Therefore, a large number of simulation runs using a digital computer have been
performed [22]. Comparison of both simulated and calculated values shows the ac-
curacy of this approach (cf Figure 11).

1.0
Ml A o
Wa l/“ 2
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z
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> '
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[ae] Ve
L 04 =
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o e
0 02 04 ——= 06
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Fig. 11. Probability of waiting for (directly offered and overflowing) calls waiting in the secondary
arrangement for service, Comparison between calculation and simulation (simulation results with
95% confidence intervals within the circles; assuming Poisson behavior for the overflow traffic the
dashed line is obtained).
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IV. COMPARISON OF DIFFERENT MULTIQUEUE MODELS WIiTH
RESPECT TO UNBALANCED LOAD

In this section, three numerical examples are given for demonstration of the effects
of unbalanced load, different server configurations, as well as different overflow strate-
gies on the characteristic traffic values (grade of service). By means of such numerical
evaluations, suitable server configurations and operation strategies can be found, which
meet the requirements of overflow, load-sharing, and reliability with respect to break-
downs in data transmission networks and computer systems.

4.1 Comparison of Single-server Systems with Overflow Strategies S1 and S3

In the upper left of Fig. 12(a), three different models are shown each having two
servers and two queues. Model (2) represents two separated single-server, single-queue
systems without any mutual aid; Model (b) works under overflow strategy S1, and
Model (c) under overflow strategy S3. The arrival rate to the second input remains
constant \, = 0.6 sec™, while \, varies. The service rates of the servers are identical
€; = e; = 1sec™'. The second server of Model (b) serves the second queue according
to a nonpreemptive priority mode.

Figure 12(a) shows the probabilities of loss B, and B,, Fig. 12(b) shows the mean
waiting times t,,; and t,,, referred to waiting calls, dependent on the arrival rate X, .
The comparison of Model (a), Model (b), and Model (c) results in lower loss probabilities
B, at the expense of B,. Model (b) reduces the mean waiting times ¢,,,, drastically,
while #,,, is not influenced. Model (¢) guarantees a maximum throughput of 1-calls at
the expense of increasing mean waiting times f,,,. In Figure 12(c) the pdf of waiting
times are shown for the case of A; = 1.0sec™,\, = 0.6sec™ .

4.2 Comparison of Multiserver Systems with Overflow Strategies S1 and S2

In the lower right of Fig. 13(a), two overflow models are shown each having two
primary routes and a common secondary route. Model (a) works under overflow strategy
S1, Model (b) operates according to overflow strategy S2. Again, \, remains constant,
A, = 2sec”!, while \, varies. The service rates of the different servers are identical

= lsect.

Figure 13(a) shows the probabilities of loss By and B;. Model (b) results in greater
loss probabilities compared with Model (a). However, Model (b) yields a greater utiliza-
tion for the primary routes by decreasing the load of the common secondary route

simultaneously, cf Figure 13(b).

4.3 Comparison of Different Overflow Server Configurations with
Overflow Strategy S1

In Fig. 14 four different models are shown with two routes each having different
service rates (transmission speeds) e, = 2sec™ €, = 1sec”™, as previously discussed
in Section 2.1. As before, the arrival rate A, remains constant X, = 2sec™ ', while X,
assumes different values (cf. Table I). Commion servers serve their own queue according
to a nonpreemptive priority rule.

The characteristic traffic values B, W, t,,;,and Y; (j=1,2)are given in Table I
for comparison of the efficiency of the different models (Figures 14.1 to 14.4).
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Table I. Comparison of different overflow server configurations, overflow strategy S1 (server con-
figurations, cf. Fig. 14). Interqueue discipline: nonpreemptive priority. Parameters:ny = ng = 3,
§;1 =8, = 4,6 = 2 sec’t, €, = 1sec™l.

CHARAC- ARRIVAL RATES
TERISTIC [sec™1]
VALUES X .
M A2 Fig. 14.1 Fig. 14.2 Fig. 14.3 Fig. 14.4
By 2 2 0.000748 0.000196 0.000281 0.000337
[3 2 0.145161 0.074883 0.076463 0.086445
10 2 0.413106 0.315564 0.315921 0.331694
B, 2 2 0.031083 0.000373 0.000535 0.000877
6 2 0.031083 0.020303 0.020731 0.020871
10 2 0.031083 0.053768 0.053828 0.047899
Wi 2 2 0.089820 0.049255 0.070659 0.073504
6 2 0.580645 0.487385 0.497666 0.519068
10 2 0.539351 0.587893 0.588558 0.584370
W, 2 2 0.378825 0.049078 0.070405 0.090133
6 2 0.378825 0.541965 0.553398 0.503555
10 2 0.378825 0.849689 0.850651 0.720658
tywt 2 2 0.241667 0.175295 0.175295 0.188719
[sec] 6 2 0.416667 0.307951 0.307951 0.325327
10 2 0.515931 0.401491 0.401491 0418531
twa 2 2 0.671795 0.213105 0.213105 0.246009
[sec] 6 2 0.671795 0.430525 0.430525 0.460312
10 2 0.671795 0.577314 0.577314 0.596066
Yy 2 2 0.999251 1.610001 1.156481 1.154515
6 2 2.564516 2.554727 2.483971 2.498991
10 2 2.934469 2.914542 2.907159 2911325
Y, 2 2 1.937834 0.778860 1.685407 1.688537
6 2 1.937834 2.400645 2.531818 2441604
10 2 1.937834 2.907733 2.918808 2.764607

V. CONCLUSION

Multiqueue models were investigated working under three types of overflow strate-
gies. The overflow strategies are applicable to the control of data networks for reasons
of message routing, and various configurations of computers for reasons of reliability and
loadsharing, as well. The analysis was carried out by exact and approximate calculations
using methods of state equations and equivalent random traffic. The influence of the
overflow strategies on the main traffic criteria was demonstrated by various examples
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showing the interdependency between computer and line utilization, waiting time, and
loss probabilities. The results can also be used for the optimal design of data networks
and computer systems taking into-account the costs for waiting times and service equip-
ment. :
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