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‘ABSTRACT

Ip modern data networks variable routing strate-
gies allow to take into account the instanta-
neous traffic situvation of the network.

™ Traffics offered to a direct "primary” route
(;}; can be described realistically by means of Pois-

- son traffic and therefore all characteristic
traffic values can be determined by means of .
well known formulas. However, traffics over-
flowing from a primary to a secondary route pos-
sessquite other stochastic properties than
‘Poisson traffic.

This paver shows, how to dimension store- and
forward networks with alternate routing, taking
into account the special properties of overflow
traffic. Artificial traffic trials show the
good accordance between simulated and calculated
traffic values.
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4. PROBLEM

By reasons of economy, overload and cable-break-
down, networks with variable routing strategies
are superior to networks without these facili~
ties.

This paper deals with such networks operated by
a store- and forward mode and alternate routing,
i.e., traffic is offered at first to a primary
channel: if this direct route is overloaded,
traffic is diverted to a secondary route,per-
haps to further routes.

Such partial traffics rejected by a route possess
quite other stochastic prorerties than "direct
traffic" offered to a primary channel (random
traffic, pure chance traffic, Poisson traffic).
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Fig 1: Probability of waiting W, and overflow
traffic Rp for a secondary system to which
overflow traffic (mean value R4q) is offered.
The secondary route is used only (in this ex~-
ample) if there are waiting already sq = 5
messages in the primary system. The dashed:
curves are obtained when assuming Foisson traf-
fic with the same mean value,

As an examrle fig. 1 demonstrates the influence
of these special rroperties on the traffic flow
of the overflow system: the sclid curves show
values calculaved exactly whereas the dashed
curves are obtained when assuming random traffic

instead of overflow traffic.
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Therefore, neglecting the special stochastic be-

_havior of overflow traffic, both the probability

' waiting W, and the overflow traffic R, are
underestimatéd considerably.This fact holds for
all characteristic traffic values!

This typical property is well known for tele-
phone networks (cf. Bretschneider /1/, Lotze/2/
Wilkinson /3/, etc.) and modern dimensioning
methods - e.g. the design tables of the german
PIT for local and toll networks - are taking
into consideration the special stochastic pro-
perties of overflow traffic.

Now, these special stochastic properties have
to be taken into account for data networks, too.

Various routing strategies for dats networks
have been proposed in the past (cf. Boehm and
NMobley /4/, Fultz and Kleinrock /5/, Silk /6/,
Prosser /7/, see also Butrimenko /8/, Brandt
and Chrétien /9/, Beeforth, Grimsdale, Halsall
and Woollons /10/, Davies /11/, Frank and Chou
/12/, Kahn and Chrowther /13/, Lotze /44/,
Petersen and Fu /15/, etc.).

In many papers comparisons have been done by
means of simulation. For the first time, com-
rarisons between different routing strategies
by means of analytical methods have been made
by Herzog and Kihn /76/. Among others there has
been presented the basic ddea for the dimen-

g ing of daba networks with alternate routing.

This method is now extended, i.e.

o the traffic flow within an individual data
switching center is investigated by means of
a more detailed model of the structur and

etotal flowtimes of messages in networks with
- several nodes are determined.

Besides characteristic mean values and typical
probability values, now also results for the
waiting time distribution functions are pre-
sented. oo

2. MODELLIRG

2.17. Structure and Operating mode of Data Swit- .
cliing Centers.

Fig. 2. shows a simplified model for a modern
data switching center. Messages arrive from
other nodes of the network or from the terminal
area of the considered node. These messages are
stored either in different input-queues or in a
common input-queue, resp.

Lo AT o) S
o\ Binrenhasts o
“—‘Eﬂﬂ\ F g9
o N e &
TN s gy
S

Chsnnels to the
Local Network

Qutrut-

Input- -
queues Frocessor queues
Fig.2.: ¥Yodel of a data switching center. The

dashed arrows indicate overflow traffic (cf.
also section 2).

Operating of the input-queues will be done
(e.g. in a cyclic mode) by the central proces-
sor. The processor interprets the header-infor-
mation and determines the route to be chosen:

if the direct rcute is overloaded, i.e. if there
is waiting a distinct (but arbitrarily selec~-

t. ) number of messages, traffic is diverted
to a secondary route (overflow traffics are in-
dicated by dashed arrows in fig. 2).
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According to this routing strategy, messages
are put into an output-queue waiting for trans-
mission to the next node.

All input-queues are assumed to be unlimited,
i.e. no messages are rejected by the data
switching center. Within one distinct gqueue
messages are handled in the order of their
arrivals (FIFO).

2.2. Traffic.

Messages arriving from the different directions
are assumed to be distributed according to a
Poisson-process, i.e. the distribution function
of the interarrival times is given by

. - ~Aoe b
Alet) = 1-e Bz = 4 -¢ ™

with the mean interarrival time ag,, or the mean
arrival rate 2,,, respectively for each direc-
tion z (z = 1,2,..,.23.

This assumption apprroximates very close the
actual interarrival times of messages, genera-
ted by the terminals. In addition, simulation
results show clearly, that - assuming also
negativ exponentially distributed message
lengths - this holds true also for messages
received from the neighbour nodes.

Frocessing times in the central processor are
assumed to be negativeexponentially distributed
and uniform for each direction:

Boz(éi) =

with the mean processing time bg.
If M,4 indicates the probability, that an in-

,1__.& fro

-coming message of direction z should be trans-

mitted in the outgoing direction j (primary
route!), the total arrival rate for "direct"

traffic is 7

Aas Doz M xj

14 ;é; oz M xyg

The transmission speed may be arbitrarily cho-
sen for each outgoing channel. Hence for mes-
sages with negativeexponentially distributed
holding times, the distribution function of the
transmission times (for channel %3 is:

N — — - 1
B4j(é‘{.) = 41 - e Fj
with the mean transmission time bqj per message

in direction ne. J.
The dombination of both negativeexponentially

distributed interarrival and holding times

(processing or transmission) is designated
commonly as Poisson traffic, random traffic or
pure chance traffic.

%. FRINCIPLE OF SOLUTION .

~3.1. General remarks.

In principle, an exact investigation of the
traffic flow in data networks is possible:
multi-dimensional state-probabilities are in-
troduced, the Chapman-Kolmogoroff equations
have to be determined and the evaluation has to
be done with the aid of a relaxation method
(cf. Schehrer /13%/). However, for network struc-
tures of practical interest, these systems of
equations are so large that their evaluation is
not possible, even on the largest digital com-
puters. .

In this paper an approximate method is ‘sugge-
sted, which allows to determine the traffic
flow even in large networks. Firstly, the
traffic flow through an individual data swit-
ching center is investigated and secondly, net-
works with several nodes are considered.

3.2. Traffic flow through a single data swit-
ching center.

When investigating the traffic flow the follow-
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ing four subsystems of a data switching center
may be distinguished (cf. fig. 2):

¢« the input-system with the input-queues and the
central processor,

e the primary-systems; each primary-system con-
sists of one output-queue and one transmission
channel to which direct Poisson traffic is of-
fered only,

ethe secondary-systems; each secondary-system
consists of one output-queue and one trans-
mission channel to which both offered overflow
and direct traffic or overflow traffic only is
directed and

ethe terminal-system, connecting the data
switching center with the local network and
" the terminals.

3.2.1. The input system.

The input-system corresponds to a single-server
queuing system with a common or several paral-
lel inputqueues, respectively, Poisson arrivals
and negative exponentially distributed holding
times (¥/#/1). Such systems have been investi-
gated and mathematically treated in numerous
publications. Hence, formulas for all charac-
teristic traffic values are available.

~Burke /18/ proved with his famous theorem, that
the output process of such an input-system is
Poissonian, i.e. the interarrival times of mes-
sages offered to the transmission area of the
data switching center (primary-, secondary-,
terminal-systems) are also negativeexponential-
ly distributed.

3.2.2. The primary systems.

Only direct Poissonian traffic is offered to
the primary systems -~ (M/M/1) with limited
waiting room -. Therefore, formulas for many
characteristic traffic valuss are available,
such as mean waiting times, probability of wait-
ing, waiting time distribution function etc.
Traffics rejected by a primary system and of-
fered to a secondary system (overflow traffics)
are characterized in this paper not only by the
first moment (mean value R4y but also by the
second moment (variance 0@ or variance coeffi-
cient Dy= % - R). By doing so the special
stochastic character of overflow traffic can be
taken into account in close approximation.

hY
3.2.3. The secondary systems.

In the meost general case, both

e direct traffics (mean A1j = Aq3- byj, variance
G4j = Aqj and therefore the varience coeffi-
cient Dqj = 0) and

kS
eoverflow traffics (mean Rqji, variance Gj;> Rqy,
variance coefficient Dqj > O)

are offered to a secondary system. Therefore,
the total traffic offered to the secondary
system no. J is described now not only by the
sum of all mean values but also by the sum of
all variance coefficients:

Rj - A,lj L}i:qu

D,lj = Z‘;Dﬁ

_

In order to calculate the characteristic traffic
values of the secondary system, a "substitute
primary arrangement” and a "generating traffic"
A* are determined such that an overflow traffic
is generated with the_mean value R4, and the
variance coefficient Dqj (cf., fig. %). In other
words: all actual traffics offered to the con-
sidered secondary system are prescribed approxi-
mately by one substitute overflow traffic with
the exact mean value R, and the exact variance
coefficient B}- (and of“course the exact va-
riance?ﬂg). Moﬁents of higher order are neglec-
ted.
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Then this total arrangement - one substitute
rimary system offering overflow traffic (?&j,
13) to the actual secondary system - is trea-

teg exactly by means of mathematical methods.

Having determined the probabilities of state

for this total arrangement all characteristic

traffic values of the actual secondary system
are calculated; too.
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Fig.%.: Total arrangement for the calculation
of the characteristic traffic values of secon-
dary systems (cf. section 3.2.3.).

3.2.4. The terminal-system.

The terminal-system connects the data switching
center with the local network and the terminals.
Different types of local networks are available,
su-ch as individual subscriber lines, comion
bus-lines, concentrators, loop-networks etc.

The main characteristic of all structures and
operating modes is, that in general, there
exists only one fixed route between an indivi-
dual subscriber and the data switching center,
i.e. there is no variable routing. Therefore,
all traffics can be assumed to be Foissonian
and there is no overflow traffic with special
stochastic properties. Detailed studies on the
traffic flow in local networks have been pub-
lished (a sumnary of many publications is given
by Herzog in /19/). '

3.%3. Traffic flow in a network with several
nodes. '

By means of the method, outlined in the preced-
ing sections it 1s possible to investigate the
traffic flow in each data switching center for
given traffics. In data networks with several
nodes the traffics are interdependent because
of overflow. Therefore, the traffics offered
actually to a specific route have to be deter-
mined often by iteration.

Having determined all characteristic traffic
values for each connection between two nodes
the total flow times for messages (sum of all
waiting-, processing-, and transmission times)
can be determined. The total flow times from the
"originating" node to the destination are com-
posed of the sum of flow times through the in-
dividual nodes, weighted with the probability,
that a specific route has been chosen.

Fig. 4 shows as an example a small network with
four nodes only. liessages from node I to the
destination node II are send either on the pri-
mary route ( I —II) or on the secondary route
(I+III%II).

\TC 7



Fig.4.: Example of a small network demonstra-
tTing the calculation of total flow times (cf.
section %.%.).

At first we define by

dk 1 the mean flow time for all messages
' transmitted on the channel from node
i k to node 1 and :
Py l(u,z) the probability, that when a message
4

- from originating node u to the
destination z ~ has reached the
transit node k, it is transmitted

. via node 1.

Then, the total mean flow time A(I,II) for all
messages from node I to node II is given in our
example by

a(I,II) = pi’II(I,II).dI,II +
o ¥ PI,IH(I’II)iéx,III *

g pIII,II(I’II)'dIII,II}
(where here pyrp 1p(I,II) = 1). Analogously,
’

the corresponding equations can be found for
all other traffics.

4. CALCULATION OF THE CHARACTERISTIC TRAFFIC
VALUES OF A SINGLE DATA SWITCHING CENTER

This section shows in brief some well known
formulas for systems with offered Poissonian
traffic as well as new results for systems to
which overflow traffic is offered.

4.1, The input-system.

Tue input-system corresponds to a single-server
queuing system to which. traffic is offered with
markovian character (:/¥/7). Therefore, formu-
las for all characteristic traffic values are
available. E.g. for the most simple case - one
common queue and arbitrary arrival rates

Poz(z = 1....2) or Z cyclically processed
queues with unique arrival rates - the mean
waiting time of all messages is given by

2
Mo = A A
where 2o A= Ao
7
Po0= > Doz
E2
Ao: 9‘0'/6”0

Various queuing desciplines also for different
arrival rates and varallel queues have been
studied in detail by Kuhn /20/.

4.2. The rrimary systems.
Frimary systems are also pure markovian systems

- (N/%/1) with sq %00 waiting places. Therefore,
formulas which characterize the walting process

such a system are well known from literature.

s particular, the mean waiting time for all
messages carried by a primary system is given
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by:

0 St
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prg = o2 t-Ay (4-agt)™’
/{):{'c--—*—(f?f 5 Ay=1

If there is a limited waiting room in front of
a channel (s413i4® waiting places) some messages
are rejected, This overflow traffic (which is
offered to a secondary system, cf. section 3)
is characterized by the first two moments, the
mean va%pe R1i and the variance coefficient
D4i = 0%¢ - Rqi. Arbitrary moments of overflow
traffic have been studied formerly /16/ by
means of a two dimensional markovian process.
The most interesting results for us, mean
value and variance coefficient are given by
(ef. fig. 5.);
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FPig.5.: Primary system with offered Poisson
traffic. v

4.,%. The secondary systems.

As shown before, overflow traffic has quite
other statistical properties than Poissonian
traffic. However, when assuming a Uyo dimen-
sional Markovian process, it is possible to de-
termine all characteristic traffic values, in-
cluding the waiting time distribution.

The exact mathematical trcatment is outlined
for "substitute arrangements" to which all ac-—
tual systems can be itraced back: one primary
and one secondary system (cf. section 3.2.3.

~and fig. 3.).

4.%.1, Probabilities of state.

At first we define by {uq,ug} the state that
there are uq messages 1n the primary system

and us in the secondary system simultaneously
(waiting or being served). Then, the two-di-
mensional Chapmasn-Kolmogoroff equations for the
probabilities p(ui,up) of {u,,up§ can be found,
When introducing the Z-transform snd systematic
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replacement of unknown probability-values by
the "basic" states p(o,us) it is possible to
express all probabilitieS of state p(u,,up) by
the marginal values p(o,uz), plo,ups4)y ... ,
p(o0,8541) (sp: number of waiting places in the
secongary system). In other words: the two
dimensional state relations can be reduced to a
one dimensional system (u-=0). The solution of
such a one dimensional system can be easily
found. It is given by (ef. alsc /16,79/):

T e
. AU“‘( ’ Z Sy, @ ,2)3
[ A Soiy 03
Plis, ) = A- ASAM ' A5 445,
A+ Ayt lP#CunPg'(’g
4- A" Y=0 g:?‘ 2
where et . N
= - . . Myt 0 0> L
C"U“'\)U‘Z)g = ;L’_ Cé)uz-ﬁ)g (SM“E 5 Mg % g > 2% )g 2
=0
Laa-4 ’ i
Cuneg T L Cpng Puct s ute
§=o

CM"“'Z)S = ({.f AA)‘pNA-A‘.ﬂMWi j Me= SBMH’:O

! ! = . =0
C“Li)uilg = A1'{5U1 "‘ A1 ‘[S/u{"( 3 My g) Uy

- fe) . v Mg >
C“'D‘*‘?.)(S 5 M8
A4 5, A+sy At Se 4452
- ANy R L we 448,-4
J‘r,uz_—" Zo“uvh LO“Z‘;'KQ szﬁg v O‘Zw-uzw ) Ll

Zishgth Tyeled 2t Zw =Tyt

Q = —A“.C“s““i 3+(4+f“?“éﬂ?ﬁéﬂ)“z"‘)gﬁU.Cz"s‘:“1‘413"A4.c54xu7”'1q
Tl T B A,

0y = 4 when 0k, <5,
0 otherwise

C’l*S,g)LLz)UZ

ﬁ :.q?”¢#1- ﬁ'z @”u"bﬁ)
My o s ~d\2 P4

-
ooy = VAEHAVULLA A 1 (A ey ey
) B T

4.%.2, Characteristic mean values for secondary-
systems.

411 state probabilities p(uq,up) have been de-
termined in the previous section. Therefore, it
is easy to find the characteristic mean values
for the secondary system, as there are:

Carried traffic

4+, A+Sy
Yo = 2 3 pluai) = 24 [ptagssed)- plsi sy0)
My=0 Uy &y
Lost traffic .
Py

Ry~ % Pli+ sS4, 1+ 5y)
¥Mean number of messages waiting for service
54 145,

Qu= 2> > (Ma-4) plus,ug)
1

ilean waiting time for all messages, not re-
jected by the system i

- »O-z ._ [)‘l
N '>\4[P(u4384+4)‘P(54*4)52”)J Y2 . 82

My
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Mean waiting time for all messages, which have

- to wait in the system

4.%.3, Probability of waiting for secondary-
systems. ’

The probability that an incoming message has
to wait under the condition, that it is offered
to the secondary system is given by

S . -
> (A+Se,0,)
T
S Pl + S u)
=0

4.%.4. The waiting time distribution function
(w.d.f.) for secondary systems.

The w.d.f. Fo(£t) is the probability that an
arbitrary message has to wait at most the time
t under the condition that the considered mes-
sage was offered to the secondary system.

When determining the w.d.f., a test-call is
considered. This test-call is offered to the
secondary system, if there are up messages in
the secondary system (up=0,71, .. sp+1),

The probability that the. considered test-call
has to wait at most the time interval t is de~
fined as Py, (£%).

Therefore, the total w.d.f. is given by

Sa+1
DAt pSeit, ) B, (1)
FQ(é{) = ,\AZEOSzM -
Z 9\4'&‘[}(51'*4)“2)
Uyz0
) 4 D241
Fp(st) = ﬁ(@’sﬁ*) : %:_5 P(%M)Mz)‘ &2(‘:{)

The complementary w.d.f. (complement of the
waiting time distribution function) is Fy,(>t),
i.e. the probability, that the considered test-
call has to wait longer than the time . When
calculating this probability, the following
three cases have to be distinguished:

us = 0:

the test-call will be transmitted immediately,
i.e.

F,Ot) =0
o>up syt

the test-call has to wait. This waiting time
is longer than the time t, if in this time
interval no, one, etc. or at most (up~-1) mes-
sages, walting before the test-call can be
transmitted. In the latter case, the test-~call
is "sitting" at the first waiting place, i.e.
transmission can start not before the instant

(t+dt): u
Mg -1 \g +
X ‘(EZ"{)A - €2
4D = o e

(The probability, that exactly v;messages can
be transmitted in a fixed time interval is
given by the well known Poisson-distribution).

\12 = 8244 :

the test-call is offered to the secondary sy-
stem. However, becmuse there is no free waiting
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place, 1t is rejected. In other words: the test-

~call is not allowed to wait

F52$1(>t) = 0

The waiting~time distribution function Fyn(gt)
is given in each case by the complement o% the
probability Fu,(>t).

Substituting tgis quantities into the funda-~
mental equation the w.d.f. for an arbitrarily
chogen message is given by

So My-4 %
kgit ( Y
e ) Ez't)
< = e e Sard U ATE
Flet) = . 4 Pliam s 1) PEA,U) ;“ N
Lip=4 Ye O

5. NUMERICAL RESULIS, COMPARISON WITH SIMU-
LATION RESULTS

As shown before, all characteristic traffic
values for the input-system and also for pri-
nary systems can be determined exactly.

All characteristic traffic values referring to
secondary systems are approximations because
the actually offered overflow traffics are sub-
stituded by a ficticious traffic generating

{ 2tl¥y only the most important moments of the
actual traffics.

Therefore, a large number of simulation runs
have been performed by means of two simulation
programs. Comparison of both simulated and
calculated values shows the accuracy of the new
method (c¢f. fig. 6 to™M).

6. CONCLUDING REMARKS AND FUTURE PLANS

By reasons of economy and reliability networks
with flexible routing strategies are superior
to networks without this capability. Then how-
ever, overflow traffics occur with special
stochastic properties.

In order to avoid wrong estimates of traffic
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Fig.6.: Frobability of waiting Wy, for a secon-
dary system, to which overflow traffic and di-
rect traffic (with call ratefxg) is offered.
The mean transmission time per message is 7?1 se-
cond for both primary and secondary channel.
Comparison between calculation (——) and simu-
7 ion (I; 95 % - confidence intervals). Ne-
¢.ccting the special character of the overflow
traffic, the dashed line is obtained.
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capacity and flow times this special stochastic
behaviour has to be taken into consideration
when planning such networks.

Today, the exact mathematical treatment of com-
rlex networks is not possible even on the lar-
gest digital computers. Therefore a handy
approximate method has been proposed which
allows to determine important traffic charac-
teristics for individual data switching centers
as well as for complex store~ and forward net-
works with alternate routing. Comparisons show
the good accordance between calculated val es
and simulation results.

The above presented investigations dealt with
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which have to wait in the se

ilean waiting time twg for messages
ondary system.

Comparison between calculation and simulation
(cf. fig.6.).
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Fig.8,: Complementary w.d.f. for all messages

offered to the secondary system. Comparison bet-
ween calculation and simulation (cf.fig.6.).
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networks with at most a single overflow for
. each direction. It could be advantageous for
g ) some networks to have unore than one overflow i

-
N

possibility or to allow mutual overflow. In-
‘vestigations are planned to include such pos-
sibilities in the new method.
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04 ! I ' Fig.11.: Total flow time for all messages from
0 01 02 03 e 05 "originating" node I to the destination II.
! o ' A2/§1 ‘ Example of a network with four nodes. Comparison
between calculation ( and simulation (¥;
. o . 95%-confidence intervals). Neglecting the spe-
Figp.9.: Probability of waiting Wp for a secon~ cial character of overflow traffic the dashed
dary system, to which five overflow traffics curve is obtained.

and direct traffic are offered. Comparison bet-
ween calculation ( ) and simulation (I; 95 %- '
confidence intervals). Neclecting the special In the last few years store- and forward net-

character of overflow traffic, the dashed line ©  works with packet-switching became more ium-
is obtained. portant For such networks, with constant

transumission time for each packet an analogouo
solution seems to be possible.

: The above investigated routing strategy is only
& . 1 i -one flexible routing strategy which can be
% ' / realized most easily and without great expendi-
) xﬁ_ ture. Numerous other strategies have been pro-
! l i posed and can be investigated only by means of
, {] simulation programs. If one could find for
dsis
S

\
~

b, A such strategies also good approximate calcula-
- 2 byus ma E tion methods, it would be possible to compare
different routing strategies analytically to a
great extend.
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