Institut für Nachrichtenvermittlung und Datenverarbeitung Universität Stuttgart Prof. Dr.-Ing. A. Lotze # Tabellen für die wirtschaftliche Dimensionierung von Fernsprechnetzen mit alternativer Leitweglenkung von Ulrich Herzog Wolfgang Lörcher Alfred Lotze Rudolf Schehrer Institute of Switching and Data Technics University of Stuttgart Prof. Dr.-Ing. A. Lotze # Alternate Routing Tables for the Economic Dimensioning of Telephone Networks by Ulrich Herzog Wolfgang Lörcher Alfred Lotze Rudolf Schehrer #### VORWORT Das Tabellenbuch dient zur wirtschaftlichen Dimensionierung von Leitungsbündeln in Fernsprechwählnetzen mit alternativer Leitweglenkung. Es ist das Ergebnis jahrelanger intensiver Untersuchungen. Dabei wurde besonders großer Wert auf die Vereinfachung der Theorie zu einem in der Praxis leicht anwendbaren und trotzdem hinreichend genauen Verfahren gelegt. Es entstand in engem Kontakt mit der Deutschen Bundespost und der Fernmeldeindustrie der BRD. Dieses Verfahren wird für die Dimensionierung des öffentlichen Fernwählnetzes der BRD angewandt. Die theoretischen Begründungen und Herleitungen, vor allem der Verfahren zur Dimensionierung von Leitungsbündeln mit angebotenem Zufallsverkehr bzw. Überlaufverkehr sowie einer Methode zur wirtschaftlichen Dimensionierung von Fernsprechnetzen mit alternativer Leitweglenkung sind in vielen Arbeiten veröffentlicht (siehe Literaturverzeichnis). Das Tabellenbuch enthält in seinem ersten Teil eine Anleitung zum Gebrauch in englischer und deutscher Sprache. Diese ist auf die Bedürfnisse des in der Planung tätigen Fernmeldeingenieurs ausgerichtet. Der zweite Teil enthält die notwendigen Tabellen Nr. 1-6. Die Tabellen sind auf verschiedenfarbigem Papier gedruckt, um so den Zugriff zur jeweils gewünschten Tabelle zu erleichtern. _____ Die verkehrstheoretischen Arbeiten des Instituts, welche diesem Tabellenbuch zugrunde liegen, sind seit 1962 von der Deutschen Forschungsgemeinschaft (DFG) wesentlich unterstützt worden. Die Verfassen danken der DFG für diese wertvolle Hilfe. #### PREFACE This table book allows the economic dimensioning of trunk groups with alternate routing within telephone networks and is based on the results of extensive investigations lasting for years. Great importance has been attached to simplify theoretical aspects leading to handy but nevertheless sufficiently exact calculation methods in practice. The tables could be established in close contact with the Deutsche Bundespost (Federal German Post Office) and the telecommunications industries of the FRG. This method is applied for the dimensioning of public direct distance dialling networks in the FRG. Various publications deal with the theoretical backgrounds and derivations especially regarding the methods of dimensioning trunk groups with offered random traffic or overflow traffic, respectively, as well as with regard to a method of the economic dimensioning of dialling networks with alternate routing (see list of references). In the first part of the table book instructions in English and German are given meeting the requirements of planning teletraffic engineers. Part II is including the necessary Tables 1-6 printed in different colours in order to facilitate the selection of the desired table. #### Acknowledgement The Institute's traffic theoretical investigations taken as a basis for this table book have been substantially supported by the Deutsche Forschungsgemeinschaft (DFG) (Federal German Research Society) since 1962. The authors wish to thank the Deutsche Forschungsgemeinschaft for this valuable help. Seite | VORWORT | | PREFACE | Page | |---|----------|---|-------------| | Inhaltsverzeichnis | | Contents | | | Anleitung zum Gebrauch des Tabellenbuchs in englischer Sprache | E1-E18 | I. GENERAL | E-1 | | | | I.1 Object of the Tables | E1
E1 | | I. ÜBERSICHT | D1 | I.2 Definition of Terms | E1 | | I.1 Zweck dieses Tabellenbuches | D1 | I.3 Graphical Representation of Networks | El | | I.2 Begriffe | D1 | with Alternate Routing | E1 | | I.3 Graphische Darstellung eines Fernwähl-
vermittlungsnetzes mit alternativer
Leitweglenkung | D1 | I.4 Some Basic Features of the Tabulated Dimensioning Method | E2 | | I.4 Wesentliche Eigenschaften des tabellierten
Bemessungsverfahrens | D2 | I.4.1 Groups without Overflow According to Section I.1 | E2 | | I.4.1 Bündel ohne Überlaufmöglichkeit
nach Abschnitt I.1 | D2 | I.4.2 Groups in Networks with Alternate Routing According to Section I.1 | E2 | | I.4.2 Bündel in Netzen mit alternativer
Leitweglenkung nach Abschnitt I.1 | D3 | I.5 Considerations of Statistical Properties of Overflow Traffic | E3 | | I.5 Berücksichtigung der statistischen | 7.7 | I.6 The Tables | E3 | | Eigenschaften von Überlaufverkehr
I.6 Benötigte Tabellen | D3
D4 | II. DIMENSIONING OF GROUPS WITHOUT OVERFLOW
AND FOR OFFERED RANDOM TRAFFIC | E4 | | II. BEMESSUNG VON BÜNDELN OHNE ÜBERLAUFMÖGLICHKEIT | 2. | II.1 Procedure | E4 | | FUR ANGEBOTENEN ZUFALLSVERKEHR | D5 | II.2 Example | E4 | | II.1 Ablauf der Dimensionierung | D5 | III. DIMENSIONING OF GROUPS IN NETWORKS | 5 .5 | | II.2 Beispiel | D5 | WITH ALTERNATE ROUTING | E5 | | III. BEMESSUNG DER BÜNDEL IN FERNWÄHLNETZEN MIT
ALTERNATIVER LEITWEGLENKUNG | D6 | <pre>III.1 Definition III.2 Selection of Suitable Accessibilities</pre> | E5 | | III.1 Definition | | k_1, k_2, \dots etc., k_f | E5 | | | D6 | III.3 Cost Ratios | Еб | | III.2 Wahl geeigneter Erreichbarkeiten
k ₁ , k ₂ usw., k _f | D6 | III.4 Example | Е6 | | III.3 Kostenverhältnisse | D7 | III.5 Dimensioning of High Usage Groups
of First Order | E7 | | III.4 Beispiel | D7 | III.5.1 Single Overflow: High Usage | | | III.5 Dimensionierung der 1. Ql-Bündel 🌘 | D8 | Group of First Order - Final Group | E7 | | III.5.1 Einfachüberlauf: 1.Ql-Bündel →
Letztweg-Bündel | D8 | III.5.2 Double Overflow: High Usage Group of First Order \longrightarrow Follow | E8 | | III.5.2 Zweifachüberlauf: 1.Ql-Bündel
—— Folge-Bündel —— Letzt-
weg-Bündel | D9 | Groupα → Final Group III.5.3 Triple Overflow: High Usage | | | III.5.3 Dreifachüberlauf: 1.Q1-Bündel
Folge-BündelαFolge- | D10 | Group of First Order → Follow
Groupα→Follow Groupβ→Final
Group | E9 | | Bündelβ → Letztweg-Bündel III.5.4 Mehrfachüberlauf: 1.Ql-Bündel | | III.5.4 Multiple Overflow: High Usage
Group of First Order ──Follow
Group α ──Follow Group ß ──── | E9 | | Folge-Bündel α — Folge-Bündel β — Letztweg-Bündel | D10 | Final Group | | | Dandel - Derziweg-Bundel | | <pre>III.6 Dimensioning of High Usage Groups of
Second Order</pre> | E10 | | | | III.7 Dimensioning of High Usage Groups of
Third Order | E11 | | | Seite | | | Pa | .ge | |------------------|---|----------------|-----------|--|------------------------| | III.6 Dimens: | ionierung der 2. Q1-Bündel D1 | 1 | | | | | | ionierung der 3. Q1-Bündel D1 | | III. | 8 Dimensioning of High Usage Groups of Fourth Order | E11 | | | ionierung der 4. Ql-Bündel D1 | | III. | 9 Dimensioning of Final Groups | E12 | | | ionierung des Letztweg-Bündels D1
1 Bemerkung D1 | - | | | E12 | | _ | | | | III.9.2 Procedure | E12 | | | 2 Ablauf der Dimensionierung D1
3 Beispiel D1 | - | | III.9.3 Example | E12 | | LITERATURVER | ZEICHNIS D1 | .4 | REFERENCE | cs control of the con | E13 | | ANHANG: DAS UBER | KOSTENVERHÄLTNIS P BEI MEHRFACHEM D1 | 6 | ANNEX: TH | ME COST RATIO P IN CASE OF
MULTIPLE OVERFLOW | E15 | | | | | Table In: | structions in German | D1-D19 | | TABELLEN | | | TABLES | | | | a
A | estimmung der Leitungszahl n eines Bündels
ls Funktion des angebotenen Zufallsverkehrs
, der Erreichbarkeit k und der Verlustwahr-
cheinlichkeit B | Tab le
1-01 | | Determination of the Number of Trunks n as a Function of the Offered Random Traffic A, the Accessibility k and the Probability of Loss B | Table
1-01 | | A | estimmung des angebotenen Zufallsverkehrs
als Funktion der Belastung Y, der Erreich-
arkeit k und der Leitungszahl n | Table
2-01 | Table 2: | Determination of the Offered Random Traffic A as a Function of the Carried Traffic Y, the Accessibility k and the Number of Trunks n | Table
2-01 | | B
r
f | estimmung der Leitungszahl n ₁ eines 1. Ql-
Windels und dessen überlaufenden Verkehrs-
estes R ₁ als Funktion des angebotenen Zu-
allsverkehrs A ₁ , des Kostenverhältnisses P
und der Erreichbarkeiten k ₁ des 1. Ql-
Windels und k _f des Letztweg-Bündels | Tab le
3-01 | Table 3: | Determination of the Number of Trunks n_1 of a High Usage Group of First Order and its Overflowing Traffic Rest R_1 as a Function of the Offered Random Traffic A_1 , Cost Ratio P, Accessibilities k_1 of High Usage Group of First Order and k_f of the Final Group | T a ble
3-01 | | A | Bestimmung des angebotenen Überlaufverkehrs
A als Funktion der Belastung Y, der Erreich-
parkeit k und der Leitungszahl n | Table
4-01 | Table 4: | Determination of the Offered Nonrandom Traffi
A as a Function of the Carried Traffic Y, the
Accessibility k and the Number of Trunks n | | | ୍ କ୍
ଫ | Bestimmung der Leitungszahl n für 2,,3
21-Bündel als Funktion des angebotenen
berlaufverkehrs A, der Erreichbarkeit k
und der Überlaufwahrscheinlichkeit B=20% | Table
5-01 | Table 5: | Determination of the Number of Trunks n
for High Usage Groups of Second, Third
Order as a Function of the Offered Nonrandom
Traffic A, the Accessibility k and a Proba-
bility of Overflow B = 20 % | Table
5-01 | | 1
1 | Bestimmung der Leitungszahl n des Letztweg-
Bundels als Funktion des angebotenen Über-
Laufverkehrs A, der Erreichbarkeit k und
Bes Verlustes B | Table
6-01 | Table 6: | Determination of the Number of Trunks n of
the Final Group as a Function of the Offered
Nonrandom Traffic A, the Accessibility k and
the Probability of Loss B | Table
6-01 | | | • | | | |--|---|--|--| | | | | | | | | | | #### I. GENERAL #### I.1 Object of the Tables The present volume of tables allows a simple treatment of the following two dimensioning problems in the field of switching: - 1) Dimensioning of groups without overflow possibility and with offered random traffic (pure chance traffic of type 1 (PCT1), i.e. a Poisson input process). This is dealt with in Chapter II whereby Table 1 is necessary. (Pure chance traffic of type 2 (PCT2), i.e. finite number of traffic sources, see /1,14/). - 2) Economic dimensioning of groups with single or multiple overflow in tandem exchanges of hierarchic or non-hierarchic networks with alternate routing. This is dealt with in Chapter III whereby Tables 2-6 are necessary. In case of 1) all groups are dimensioned independently of each other. Therefore, the structure of the network is assumed to be of no significant influence. In case of 2), however, the economic dimensioning of the individual groups is dependent on each other because of the respective admitted overflow possibilities. Section I.3 gives an example of a network structure. The characteristic values are explained for the outgoing groups of a tandem exchange. #### 1.2 Definition of Terms High Usage Groups: Trunk groups with a comparatively high carried traffic per trunk (Y/n 20.7 Erl) whereby the non-carried part of the offered traffic is overflowing to subsequently hunted high usage groups or directly to a final group. One has to distinguish between the following types of high usage groups: High Usage Group of First Order: A group to which only random traffic ("direct traffic") is offered. High Usage Group of Second Order: A group to which traffic rests (overflowing traffic) are offered not being carried by high usage groups of first order and, furthermore, eventually random traffic. High Usage Group of Third Order: A group to which traffic rests are offered not being carried by preceding high usage groups (first or second order) as well as eventually random traffic. High Usage Groups of Fourth, Fifth ... Order: are defined analogously. <u>Final Groups:</u> Trunk groups without additional overflow possibility. The traffic being offered to those groups (overflow and/or random traffic) and not being carried is lost. #### I.3 Graphical Representation of Networks with Alternate Routing In Fig. 1.1 a part of a direct distance dialling network is drawn. The different tandem exchanges are marked by their code numbers. Fig. 1.1: Part of a direct distance dialling network In order to obtain a better survey, especially in regard to the above mentioned overflow possibilities, a second way of figuring is usual (Fig. 1.2). Only the outgoing groups of a tandem exchange are considered whereby one can notice very clearly which groups belong to high usage groups of first, second or third order or to final groups, respectively. Fig. 1.2: Outgoing groups of the tandem exchange No. 215 in Fig. 1.1 and their overflow 215-315 : Group from tandem exchange No. 215 to tandem exchange No. 315. A₂₁₅₋₃₁₅: Random traffic offered to the high usage group of first order from tandem exchange No. 215 to tandem exchange No. 315. A₂₁₅₋₂₁: Random traffic offered to the final group from tandem exchange No. 215 to tandem exchange No. 21. This traffic includes in our example all the partial traffics to destination exchanges which cannot be reached via the high usage groups. The outgoing groups of a tandem exchange can have either full accessibility (k=n) or limited accessibility (k< n). Section III.2 demonstrates some important basic considerations and therefrom resulting outlines how to chose the accessibilities \mathbf{k}_h of high usage groups and \mathbf{k}_f of the final group. # I.4.1 Groups without Overflow According to Section I.1 - a) Full accessible groups (k=n) with offered random traffic are dimensioned according to "Erlang's Loss Formula" /3/. - b) Limited accessible groups (k<n) with offered random traffic are dimensioned according to the "Modified Palm-Jacobaeus Formula" (MPJ) /8-10,13,17/ being adapted to the grading type in use. This method of adapting the MPJ Formula is analogously valid for all grading types and easily to realize /8,13/. ${\rm A_{ad}}\,{}^{=}{\rm A_{MPJ}}\,{}^{-}$ $\Delta \,{\rm A}$ holds for the admissible offered traffic, where $$\Delta A = F(\frac{n}{k} - 1)^2 \cdot \frac{k-2}{60+4k} \cdot \frac{1-B}{1+kB^2}$$ Thereby, only once a suitable fitting parameter F (found by artificial traffic trials) has to be determined for the respective grading type, e.g.: Simplified Standard Gradings of the Deutsche Bundespost: F = 0.3 O'Dell Gradings: F = 1.1 AT&T Gradings: F = 2.4 The tables of this book hold for the "Simplified Standard Gradings" of the Deutsche Bundespost (Federal German Post Office)/4.8/. # I.4.2 Groups in Networks with Alternate Routing According to Section I.1 - a) Full accessible high usage groups of first order (k=n) are dimensioned according to "Erlang's Loss Formula". - b) Limited accessible high usage groups of first order (k<n) are dimensioned according to the adapted "Modified Palm-Jacobaeus Formula" (MPJ), see Section I.4.1.b). - c) The trunk costs of the first and the subsequently hunted high usage groups as well as of the final group are taken into consideration for the economic dimensioning of high usage groups of first order /14.16.18-23.26/. - d) The traffic is also economically divided into the subsequent high usage groups and the final group /14,16,23/. - e) Dimensioning of high usage groups of second, third ... order as well as final groups, the variance of the offered traffic (overflow traffic) is taken into account /2,5-7,11-16,18-30/, see Section I.5. #### I.5 Considerations of Statistical Properties of Overflow Traffic As shown in Fig. 1.2, "overflow traffic" not being carried by the previously hunted groups, is offered to the high usage groups of second, third ... order as well as to the final group of a tandem exchange and furthermore random traffic (direct traffic) is offered eventually. This offered overflow traffic has, as a rule, very different statistical features than the "pure random traffic" which is directly offered to first hunted groups. In case of such a peaked traffic the momentary number of simultaneously requested connections varies substantially stronger upwards from the mean than in case of random traffic. Therefore, more trunks are necessary for the same prescribed probability of loss B /11,28/ than for offered random traffic with the same mean. A proper standard to simply characterize this "peakedness" of overflow traffic is its variance V / 28/. In case of pure chance (random) traffic the variance V is equal to the mean A (V=A) and in case of overflow traffic V>A. The exact value of V depends on individual situations. It could be determined individually for the overflow traffic of each group by means of comprehensive tables. In /27/ it is suggested for first hunted groups with full accessibility that -- sufficiently accurate in practice -- their overflowing traffic can be characterized by the mean R and a tabulated maximal value $Z_{max} = (V/R)_{max}$. Now, extensive investigations by the Central Telecommunications Department (FTZ) of the Deutsche Bundespost within the public direct distance dialling (DDD) network have shown that, in case of full or limited accessible groups, a sufficiently accurate consideration of the peakedness of offered overflow traffic is guaranteed
if a suitable, constant (not maximal) variance-to-mean ratio Z is applied. Only this simplification ensures a very clear and simple dimensioning procedure by means of a handy table book. Within the public network of the Deutsche Bundespost a preliminary value Z = 1.6 is used, later on Z = 2.0 is provided (increasing accessibilities and therewith increasing Z). Therefore, this table book bases on Z = 2.0. Should measurements in other countries lead to different results for the constant value Z, corresponding tables could be calculated easily by means of existing programs. The calculation of the (tabulated) number of trunks per group with offered overflow traffic has been performed according to the ERT Method for full access /2,28/ and the corresponding RDA Method for limited access /5-7, 11-16,22, 23, 29, 30/. #### I.6 The Tables - Table 1: Determination of the number of trunks n per group as a function of the offered traffic A dependent on the prescribed probability of loss B and the accessibility k. Only random traffic is presumed to be offered. - Table 2: Determination of the offered traffic A as a function of the carried traffic Y dependent on the accessibility k and the number of trunks n per group. Only random traffic is presumed to be offered. - Table 3: Determination of the number of trunks n_1 of a high usage group of first order and its overflowing traffic rest R_1 . These values n_1 and R_1 depend on the offered random traffic A_1 , the group's own accessibility k_1 , the final group's accessibility k_1 and furthermore on a cost ratio P. This cost ratio P is regarding the different costs per trunk in the first hunted and the subsequently hunted groups. It is defined in Section III.3. - Table 4: Determination of the traffic A offered to a high usage group of second, third ... order, final group as a function of the carried traffic Y, dependent on its accessibility k and number of trunks n. Since overflow traffic or a mixture of overflow and random traffic is offered to those groups, this table regards already a constant value Z=2.0 for the total offered traffic. - Table 5: Determination of the number of trunks n for high usage groups of second, third ... order dependent on their offered traffic A and their accessibility k. A value Z = 2.0 of the total offered traffic is already considered in this table (see Section I.5). Furthermore, these tables are based on a probability of overflow B = 20 %. - Table 6: Determination of the number of trunks n_f of the final group as a function of the offered traffic A_f dependent on the accessibility k_f for a prescribed probability of loss B (e.g. B=0.5 %, 1 % etc.). A value Z=2.0 for the total offered traffic A_f is also considered in this table. #### Comment Tables 1-6 are valid for the Simplified Standard Gradings as introduced by the Deutsche Bundespost /4/. For reasons of simplicity, a minimum value for the grading ratio M=2 is taken as a basis for these tables. Should, in reality, the grading ratio M of a given grading be substantially higher than 2, then, the probability of loss can be slightly smaller than calculated. This ensures a certain safety reserve in case of unbalanced load or overload. # II. DIMENSIONING OF GROUPS WITHOUT OVERFLOW AND FOR OFFERED RANDOM TRAFFIC #### II.1 Procedure a) One starts with the measured carried traffic Y of the busy hour /15/. As long as the grade of service is not extremely poor the carried traffic will correspond to the traffic which is actually requested by the telephone subscribers. Under this condition it is reasonable to interpret this measured value Y as the offered traffic $A_{\rm old}$, or one can obtain $A_{\rm old} = \frac{Y}{1-{\rm Bprescr.}}$ where $B_{\rm prescr.}$ is the prescribed value of the probability of loss. If desired, $A_{\rm old}$ can be increased by a growth factor GF for a certain planning period. Then, $A_{\rm new} = A_{\rm old} \cdot {\rm GF.}$ Finally, the number of trunks $n_{new} = f(A_{new}, k, B_{prescr.})$ can be read from Table 1. b) In contrast to a) one could assume that unsuccessful calls do not cause repeated attempts. This would correspond to a model whereby telephone subscribers abandon immediately the originally requested connection in case of "busy". Then, the offered traffic A_{old}=f(k,n_{old},Y) would have to be determined by means of Table 2. However, this assumption is unrealistic in general and yields, in case of traffic measurements of overloaded groups to excessive values A from Table 2. #### II.2 Example Be given: accessibility k=10 number of trunks nold=50 carried traffic Y=42.4 Erl (measured value) prescribed probability of loss growth factor GF = 1.18 #### Case a): By $A_{\text{old}} = Y = 42.4 \text{ Erl}$ (or $A_{\text{old}} = \frac{Y}{1 - B_{\text{prescr.}}} = \frac{42.4 \text{ Erl}}{1 - 0.01} = 42.8 \text{ Erl}$ with GF = 1.18 one obtains A_{new}=42.4·1.18 Erl=50 Erl (42.8·1.18=50.5 Erl). Thus, the number of trunks n_{new} =85(86) can be read from Table 1. <u>Case b):</u> By means of Table 2 one obtains with Y=42.4 Erl, k=10 and $n_{\mbox{old}}$ =50 an offered traffic value $A_{\mbox{old}}$ =60 Erl (which would only be true if a share $$\frac{A_{\text{old}}^{-Y}}{A_{\text{old}}} = \frac{60 - 42.4}{60} = 0.3$$ i.e. 30 per cent of all calls were lost without being repeated). By the growth factor GF=1.18 there would be A_{new} =60.1.18 Erl=70.8 Erl. Thus, the number of trunks would get n_{new} =120 (instead of 85 or 86). #### III. DIMENSIONING OF GROUPS IN NETWORKS WITH ALTERNATE ROUTING #### III.1 Definition By the definitions given in Section I.2 for high usage groups and final group one can derive a further definition: Follow Group: Group following the considered high usage group in hunting direction. Therefore, follow groups are high usage groups of a higher order (example see Section III.5.2 b)). It is distinguished between - follow group α , this group is directly hunted subsequently to the considered high usage group; - follow group β if, after a follow group α , a further high usage group is hunted this group is a "follow group β " (example see Section III.5.3 b)). #### III.2 Selection of Suitable Accessibilities k_1, k_2 ... etc., k_f - a) The accessibility of high usage groups of first, second ... order and the final group is set up before dimensioning the number of trunks and selectors (to be possibly changed again if the sum of available outlets of the respective switching stage is too small. - b) In this regard one has to notice that the subsequently hunted high usage groups of first order, furthermore possible high usage groups of second, third ... order and the final group as a whole have the characteristic features of one grading (see Fig. 3.1). Therefore, the smallest necessary total number of outgoing trunks for a given overall grade of service is obtained (similar to an ordinary grading which is sequentially hunted from fixed home position) if the number of inter-connected outlets increases from the first to the last hunting position. Therefore, $2^{4}M_{1}^{4}M_{2}^{4}M_{3}^{4}M_{f}^{4}g$ has to be realized for the grading ratios of the individual groups (whereby g is the number of grading (partial access) groups). c) In case of full accessibility of all groups (high usage groups and final group) M equals g for all individual groups. The crosspoint requirement of this switching stage increases to a maximum. The total trunk requirement decreases to a minimum. However, in case of limited accessibility the trunk requirement for high usage groups increases only slightly. Example: For a high usage group of second order with offered nonrandom traffic A=15.5 Erl, the variance-to-mean ratio Z=2.0 of the offered traffic and a prescribed probability of overflow B=20% one obtains by Table 5: - d) Considering the overload sensitivity of an alternate routing network high usage groups with limited access lead to a comparatively smaller increase of overflow to follow groups than groups with full access. - e) Therefore, full access has to be aimed at in the following sequential order according to the sum of all outlets of the switching stages: - 1. Final group; - 2. Eventually high usage groups of fourth order, then third, then second order; - 3. Only if these groups can get full access the high usage group of first order can also obtain full access. #### III.3 Cost Ratios An economical optimum dimensioning of groups with overflow requires data about trunk costs of the final group (f), in relation to the trunk costs in the respective high usage group (h). Therefore, the cost ratio $P_{f/h}$ has to be determined for each high usage group: The "costs per trunk" include also the costs of selectors etc. which are permanently connected with this trunk. It is sufficiently exact in practice to distinguish the following values: $P_{f/h}$ =1.1, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5, 3.0, 3.5, 4.0. #### III.4 Example The dimensioning of groups in networks with alternate routing is explained in detail in the following chapters by means of the example in Fig. 3.1. Fig. 3.1: Part of a network with alternate routing In any tandem exchange the high usage groups of first order are dimensioned first, then the ones of second order etc. and at least the final group, respectively. #### III.5 Dimensioning of High Usage Groups of First Order # III.5.1 Single Overflow: High Usage Group of First Order — Final Group #### a) Procedure The traffic rest R_1 of the offered random traffic A_1 is directly overflowing from the considered high usage group of first order to the final group. The cost ratio is: P=P_{f/1} = costs per trunk in the final group costs per trunk in the high usage group of first order The following data have to be known: $P=P_{f/1}$ e.g. from cost calculations of the telecommunications administration k₁ accessibility of this high usage group of first order k_f accessibility of the final group
number of trunks Y_{lold} (measured) carried traffic GF growth factor of the traffic during the planning period. The dimensioning includes the following steps: - The offered traffic A_{lold}=f(k₁,n_{lold},Y_{old}) is read from Table 2. - The traffic rest overflowing to the next hunted group is R 101d $^{-A}$ 101d $^{-Y}$ 101d $^{\circ}$ - The new offered traffic to be considered for the planning period is ${\rm A_{1new}}^{=\,A_{1}}{\rm old}^{\,\cdot\,GF}$. - The new number of trunks $n_{1\text{new}} = f(P, k_1, k_f, A_{1\text{new}})$ and the corresponding new overflowing traffic rest $R_{1\text{new}}$ can be read from Table 3. #### b) Example Be considered first Fig. 3.2 as part of the network in Fig. 3.1. The high usage groups of first order 215-4 and 215-5 outgoing from the tandem exchange 215 are to be dimensioned. Fig. 3.2: Part of the network in Fig. 3.1 (simple overflow) The data of the groups be: | group | P _{f/h} | k | n _{old} | Y _{old}
Erl | remarks | |--------|------------------|----|------------------|-------------------------|---------------------------------| | 215-4 | 1.2 | 8 | 20 | 16.7 | high usage group of first order | | 215-5 | 3.0 | 6 | 10 | 7.7 | high usage group of first order | | 215-21 | | =n | 36 | 26.5 | final group | The growth factor for the planning period be GF = 1.15. Now, by means of Tables 2 and 3 the above high usage groups can be dimensioned newly. One obtains: | group | Р | A _{10ld}
Erl | R _{1old}
Erl | A _{1new}
Erl | n
1new | R _{1new}
Erl | |-------|-----|--------------------------|--------------------------|--------------------------|--------------------|--------------------------| | 215-4 | 1.2 | 25 | 8.3 | 29 | 22 | 10.4 | | 215-5 | 3.0 | 11.1 | 3.4 | 13 | 18 | 1.58 | | o | | R _{1c} | d=11.7Erl | | R _{1 new} | 12.0Erl | # III.5.2 Double Overflow: High Usage Group of First Order → Follow Group α → Final Group #### a) Procedure The difference between single (Section III.5.1) and double overflow lies only in the fact that another cost ratio P has to be determined resulting of the trunk costs of the high usage group of first order, the follow group α and the final group. Therefore, $P=f(P_{f/1},P_{f/\alpha})$ is to be read from the Table III.1 below (calculation of P see annex): | P _{f/} α | 1.1 1.2 1.4 | 1.6 1.8 2.0 | 2.2 2.5 3.0 | 3.5 4.0 | |-------------------|-------------|-------------|-------------|---------| | P _{f/1} | | | | | | 1.1 | | | | | | 1.2 | 1.1 | | | | | 1.4 | 1.2 1.2 1.1 | | | | | 1.6 | 1.4 1.4 1.2 | 1.1 | | | | 1.8 | 1.6 1.6 1.4 | 1.2 1.2 1.1 | | | | 2.0 | 1.8 1.8 1.6 | 1.4 1.2 1.2 | 1.1 | | | 2.2 | 2.0 2.0 1.8 | 1.6 1.4 1.4 | 1.2 1.1 | | | 2.5 | 2.2 2.2 2.0 | 1.8 1.6 1.6 | 1.4 1.4 1.2 | 1.1 | | 3.0 | 3.0 2.5 2.2 | 2.0 2.0 1.8 | 1.6 1.6 1.4 | 1.2 1.2 | | 3.5 | 3.0 3.0 2.5 | 2.5 2.2 2.0 | 2.0 1.8 1.6 | 1.6 1.4 | | 4.0 | 3.5 3.5 3.0 | 3.0 2.5 2.5 | 2.2 2.0 1.8 | 1.8 1.6 | Table III.1: cost ratio P in case of double overflow The further dimensioning of high usage groups of first order proceeds now as described in Section III.5.1 a). #### b) Example Be considered the part(Fig. 3.3) of the network shown in Fig.3.1. The high usage groups of first order 215-35 and 215-36 are to be dimensioned. Fig. 3.3 Part of the network in Fig. 3.1 (double overflow) The data of the groups be: | group | P _{f/h} | k | n _{old} | Yold
Erl | remarks | |-----------------|------------------|----|------------------|-------------|--| | 215-35 | 1.8 | 10 | 18 | 14.3 | high usage group of first order | | 215 - 36 | 2.0 | 8 | 12 | 9.3 | high usage group of first order | | 215-3 | 1.6 | 10 | 22 | 17.5 | follow group α (high usage group of third order)cf.Fig.3.1 | | 215-21 | - | =n | 36 | 26.5 | final group | The growth factor for the planning period be GF = 1.15. The cost ratio P can be determined by means of Table III.1. One obtains: | group | P | A _{10ld}
Erl | R _{10ld} Erl | Anew
Erl | n _{1new} | R _{1new}
Erl | |-----------------|-----|--------------------------|-----------------------|-------------------------------|-------------------|--------------------------| | 215 - 35 | 1.2 | 18.3 | 4.0 | 21 | 17 | 6.59 | | 215-36 | 1.4 | 12.3 | 3.0 | 14 | 12 | 4.25 | | | | | | $ar{\mathbb{R}}_{1 ext{new}}$ | =10.8Erl | | # III.5.3 Triple Overflow: High Usage Group of First Order —— Follow Group α —— Follow Group β —— Final Group #### a) Procedure Additionally, trunk costs of the follow group β are considered. In this case, the cost ratio P yields to P = C·P $_{\rm f/1}$. Thereby C=f(P $_{\rm f/\alpha}$,P $_{\rm f/\beta}$) can be read from Table III.2 below (calculation of C see annex): | P _{f/B} | 1.1 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.2 | 2.5 | 3.0 | 3.5 | 4.0 | |------------------|------|------|------|------|------|------|------|--|------|--|--------------------------------| | P _{f/a} | | | | | | | | | | | | | 1.1 | 0.91 | | | | | | | ************************************** | | territoria de la constitución | eres i homore consistence (com | | 1.2 | 0.85 | 0.84 | | | | | | | | | | | 1.4 | 0.76 | 0.75 | 0.73 | | | | | | | | | | 1.6 | 0.69 | 0.67 | 0.65 | 0.64 | | | | WARE A 11 | | | | | 1.8 | 0.63 | 0.62 | 0.60 | 0.58 | 0.57 | | | | | | | | 2.0 | 0.59 | 0.57 | 0.55 | 0.54 | 0.53 | 0.52 | | | | | | | 2.2 | 0.55 | 0.54 | 0.52 | 0.50 | 0.49 | 0.48 | 0.48 | | | | | | 2.5 | 0.51 | 0.49 | 0.47 | 0.46 | 0.45 | 0.44 | 0.43 | 0.42 | | | | | 3.0 | 0.45 | 0.44 | 0.42 | 0.41 | 0.40 | 0.39 | 0.38 | 0.37 | 0.36 | | | | 3.5 | 0.41 | 0.40 | 0.38 | 0.37 | 0.36 | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 | | | 4.0 | 0.39 | 0.37 | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 | 0.30 | 0.29 | 0.29 | 0.28 | Table III.2: Factor C for the determination of the cost ratio P in case of triple overflow The further dimensioning of the high usage groups of first order proceeds now as described in Section III.5.1a): #### b) Example Be considered the part (Fig. 3.4) of the network shown in Fig. 3.1. The high usage groups of first order 215-315 and 215-316 are to be dimensioned. Fig. 3.4: Part of the network in Fig. 3.1 (triple overflow) The data of the groups be: | group | P _{f/h} | k | n _{old} | Yold
Erl | remarks | |---------|------------------|----|------------------|-------------|--| | 215-315 | 2.5 | 6 | 8 | 6.4 | high usage group of first order | | 215-316 | 3.5 | 10 | 16 | 12.8 | high usage group of first order | | 215-31 | 2.0 | 10 | 34 | 26.3 | follow group α (high usage group of second order) | | 215-3 | 1.6 | 10 | 22 | 17.5 | follow group β (high usage group of third order) | | 215-21 | - | =n | 36 | 26.5 | final group | The growth factor for the planning period be GF = 1.15. The Factor C and the cost ratio $P=C\cdot P_{f/1}$ can be determined by means of Table III.2. One obtains: | group | Р | A _{10ld}
Erl | R _{10ld}
Erl | A _{1new}
Erl | n
1new | R _{1new}
Erl | |---------|-----|--------------------------|--------------------------|--------------------------|-----------|--------------------------| | 215-315 | 1.4 | 10.0 | 3.6 | 12 | 9 | 4.66 | | 215-316 | 1.8 | 16.7 | 3.9 | 19 | 21 | 3.04 | | | | R ₁₀ 1 | | R _{1new} | =7.7 Erl | | III.5.4 Multiple Overflow: High Usage Group of First Order — Follow Group α — Follow Group β — Final Group In case of more than three sequential overflows the same cost ratio $P=C\cdot P_{f/1}$ is used as for triple overflow. I.e. dimensioning of high usage groups of first order occurs according to Section III.5.3 leading to the same numbers of trunks n_1 as in case of triple overflow. The reason for this simplification is: The rest R_3 of the traffic A_1 which is still overflowing from a follow group β to further high usage groups and at least to the final group, is - in relation to A_1 - very small. This rest can be
neglected with respect to the calculation of the cost ratio P. #### III.6 Dimensioning of High Usage Groups of Second Order #### a) Procedure The following data of the group are known: k₂ accessibility n_{20ld} number of trunks Y_{20ld} (measured) carried traffic The dimensioning implies the following steps: - The offered traffic A_{20ld}=f(k₂,n_{20ld},Y_{20ld}) is read from Table 4. - The traffic rest overflowing to the next hunted group is R 201d $^{-Y}$ 201d $^{\cdot}$ - The directly offered traffic A_{2dir,old} (random traffic which is first hunting this group and thus "directly" offered) is $$A_{2dir,old} = A_{2old} - \overline{R}_{1old}$$ Thereby, $\overline{R}_{\text{1old}}$ is the sum of traffic rests overflowing from all high usage groups of first order to this one of second order. - The new directly offered random traffic which has to be considered for the planning period is whereby GF is the growth factor of the planning period. - The new total offered traffic A_{2new} is $$A_{2\text{new}} = A_{2\text{dir,new}} + \overline{R}_{1\text{new}}$$ where $\overline{R}_{1\text{new}}$ is the new sum of traffic rests overflowing from all high usage groups of first order to this one of second order. This sum is already known from the preceding steps, dimensioning the high usage groups of first order (cf. Section III.5.3 b), page E9). - The new number of trunks $n_{2\text{new}} = f(k_2, A_{2\text{new}})$ is read from Table 5. - Table 5 is calculated for a uniform overflow probability of 20 per cent. Therefore, $$R_{2\text{new}} = 0.2 \cdot A_{2\text{new}}$$ #### b) Example The high usage group of second order 215-31 (Fig. 3.1) is to be dimensioned. The data of this group are $k_2 = 10$ $n_{201d} = 34$ Y_{201d} = 26.3 Erl (see Section III.5.3 b), page E9). The growth factor be GF = 1.15. In Fig. 3.1 it is shown that the overflowing traffic rests of the first high usage groups 215-315 and 215-316 are offered to the considered group. The sum of these traffic rests is determined in Section III.5.3 b), page E9. $$\overline{R}_{1old} = 7.5 \text{ Erl}$$ $$\overline{R}_{1\text{new}} = 7.7 \text{ Erl}$$ One obtains: $A_{2old} = 37.7 \text{ Erl}$ (Table 4) $R_{201d} = (37.7-26.3) Erl = 11.4 Erl$ A2dir,old = (37.7-7.5) Erl = 30.2 Erl $A_{2dir.new} = 30.2 \cdot 1.15 \text{ Erl} = 34.7 \text{ Erl}$ A_{2new} = (34.7+7.7) Erl = 42.4 Erl $n_{2\text{new}} = 47$ (Table 5) R_{2new} = 0.2 · 42.4 Erl = 8.5 Erl #### III.7 Dimensioning of High Usage Groups of Third Order #### a) Procedure The following data of the group are known: k₃ accessibility n_{3old} number of trunks Y_{30ld} (measured) carried traffic The dimensioning implies the same steps as described for high usage groups of second order (Section III.6 a)). The determination of the directly offered traffic A_{3dir} , old and the new total offered traffic A_{3new} , respectively, has to take into account all offered overflow traffics. Therefore, one gets: $A_{3dir,old} = A_{3old} - \overline{R}_{2old} - \overline{R}_{1old}$ $A_{3\text{new}} = A_{3\text{dir,new}} + \overline{R}_{2\text{new}} + \overline{R}_{1\text{new}}$. This means that the traffic rests $\overline{R}_{1\text{old}}$ ($\overline{R}_{1\text{new}}$), as far as they are directly overflowing to this high usage group of third order, have to be considered in addition to the traffic rests $\overline{R}_{2\text{old}}$ ($\overline{R}_{2\text{new}}$) overflowing to that high usage group of third order. The above traffic rests $\overline{R}_{2\text{old}}$, $\overline{R}_{1\text{old}}$ and $\overline{R}_{2\text{new}}$, $\overline{R}_{1\text{new}}$ are already known from the previous dimensioning steps. #### b) Example High usage group of third order 215-3 (Fig. 3.1) is to be dimensioned. The necessary data of this group are k_3 =10, $n_{3\text{old}}$ =22, $Y_{3\text{old}}$ =17.5 Erl (see Section III.5.2 b),page E8). The growth factor be GF = 1.15. In Fig. 3.1 it is shown that the traffic rests of the first high usage groups 215-35 and 215-36 as well as of the second high usage group 215-31 are overflowing to the considered group. The sum of these traffic rests can be determined with Section III.5.2 b), page E8 and Section III.6 b), page E10 as $\overline{R}_{1old} = 7.0 \text{ Erl}$ $\overline{R}_{2old} = R_{2old} = 11.4 \text{ Erl}$ $\overline{R}_{1\text{new}} = 10.8 \text{ Erl}$ $\overline{R}_{2\text{new}} = R_{2\text{new}} = 8.5 \text{ Erl}.$ Thus one gets: A_{3old} = 28.0 Erl (Table 4) R_{3old} = (28.0-17.5) Erl = 10.5 Erl $A_{3dir.old}$ = (28.0-7.0-11.4) Er1 = 9.6 Er1 A_{3dir.new} = 9.6·1.15 Erl = 11.0 Erl $A_{3\text{new}} = (11.0 + 10.8 + 8.5) \text{ Erl} = 30.3 \text{ Erl}$ $n_{3\text{new}} = 34$ (Table 5) $R_{3new} = 0.2 \cdot 30.3 \text{ Erl} = 6.1 \text{ Erl}$. #### III.8 Dimensioning of High Usage Groups of Fourth Order The dimensioning of high usage groups of fourth or higher order occurs analogously to Sections III.6 and III.7. #### III.9 Dimensioning of the Final Group #### III.9.1 Remark Each final group can only be dimensioned newly if all preceding hunted groups are newly dimensioned which influence the traffic offered to this considered final group. #### III.9.2 Procedure Regarding the final group in a network with alternate routing one has to distinguish between three different types a), b) and c), i.e.: - a) Final groups where the offered traffic consists of - traffic overflowing from high usage groups in the considered exchange plus - directly offered random traffic. They can be dimensioned analogously to the procedure in Section III.6. The number of trunks n_{fnew} for a prescribed loss B_f has to be read from Table 6. (Example: Final group 215-21 in Fig. 3.1, calculation see Section III.9.3). b) Final groups where the offered traffic comes from incoming high usage groups and/or final groups which do not have an overflow possibility in the considered exchange. (Example: Final group 3-31 in Fig. 3.1). They can be dimensioned as follows: - First, the respective incoming groups offering the traffic have to be dimensioned newly. - These new group sizes have to be realized. - Now, the traffic Y_f of the considered final group has to be measured. - The offered traffic is $A_f = \frac{Y_f}{1-B_f, prescr.}$. - Regarding a growth factor GF one obtains $A_{fnew} = A_{f} \cdot GF$. - With A_{fnew} , k_f , B_f , prescr. one obtains from Table 6 the new number n_{fnew} of necessary trunks. - c) Groups to or from final exchanges which carry the total traffic between the considered network and this final exchange are dimensioned according to Chapter II. (Example: Group 2153-215 in Fig. 3.1). #### III.9.3 Example The final group 215-21 (Fig. 3.1) has to be dimensioned for a prescribed probability of loss $B_{f,prescr.}$ =1%. The data of this group be: k_f = n_f $n_{f,old} = 36$ $Y_{f,old}$ = 26.5 Erl (see e.g. Section III.5.1 b), page E7). The traffic offered to this final group is given by the sum of the overflowing traffic rests (Fig. 3.1): \overline{R}_{10ld} =11.7 Erl or \overline{R}_{1new} =12.0 Erl, respectively, (Section III.5.1 b), page E7): \overline{R}_{3old} =10.5 Erl or \overline{R}_{3new} =6.1 Erl, respectively, (Section III.7 b), page E11); and furthermore the directly offered traffic ${\rm A}_{\mbox{fdir,old}}$ or ${\rm A}_{\mbox{fdir,new}}$, respectively. The growth factor be GF = 1.15. #### With these data one obtains: $A_{f,old} = 28.3 \text{ Erl}$ (Table 4) Afdir,old = (28.3-11.7-10.5) Erl = 6.1 Erl Afdir,new = 6.1 · 1.15 Erl = 7.0 Erl Afnew = (7.0+12.0+6.1) Erl = 25.1 Erl n_{fnew} = 41 (Table 6; $B_f = 1\%$). #### REFERENCES: | /1/ | Bazlen, D.: | The dimensioning of trunk groups for standard gradings of the German GPO in case of finite number of traffic sources. Nachrichtentechn. Z. 25 (1972) 1, 50-52. | |------|---|--| | /2/ | Bretschneider,G.: | | | /3/ | Brockmeyer, E.,
Halstrøm, H.L.,
Jensen, A.: | The life and work of A.K. Erlang.
Transact. Danish Acad. Techn. Sci. No.2,
1948, Copenhagen. | | /4/ | Heinrich, G.,
Trautmann, K.: | Vereinfachte Normmischungen hinter einstufigen Koppelanordnungen in der Vermittlungstechnik. Nachrichtentechn. Z. 21 (1968) 3,141-146. | | /5/ | Herzog, U.: | Näherungsverfahren zur Berechnung des
Streuwerts von Überlaufverkehr hinter
Mischungen.
Institute of Switching and Data Technics,
University of Stuttgart, Monograph 1964. | | /6/ | Herzog, U.: | Die exakte Berechnung des Streuwerts von Überlaufverkehr hinter Koppelanordnungen beliebiger Stufenzahl mit vollkommener bzw. unvollkommener Erreichbarkeit. A.E.Ü. 20 (1966) 3, 180-184. | | /7/ | Herzog, U.,
Lotze, A.: | The RDA method, a method regarding the variance coefficient for limited access trunk groups. Nachrichtentechn. Z. (Commun. J.) 7 (1968) 2/3, 47-52. | | /8/ | Herzog, U.,
Lotze, A.,
Schehrer, R.: | Calculation of trunk groups for simplified gradings. Nachrichtentechn. Z. 22 (1969)12,684-689. | | /9/ | Lotze, A.: | Verluste und Gütemerkmale einstufiger
Mischungen.
Nachrichtentechn.Z. 14 (1961) 9,449-453. | | /10/ | Lotze, A.: | Loss formula, artificial traffic checks
and quality standards for characterizing
one stage gradings.
3. ITC Paris (1961), Doc. 28. | | /11/ | Lotze, A.: | A traffic variance method for gradings of arbitrary type. a) 4. ITC London (1964), Doc. 8/80, b) Post Off. Telecommun. J. Special Issue: Report of the Proceedings of the Fourth International Teletraffic Congress, London 1964, p. 50. | | /12/ | Lotze, A.: | Problems of traffic theory in the design of international direct distance dialling networks. | Nachrichtentechn. Z. (Commun. J.) 7 (1968) 2/3, 41-46. | /13/ | Lotze, A.: | History and development of
grading theory. a) Prebook of the 5th ITC New York 1967, p. 148-161, b) A.E.Ü. 25 (1971) 9/10, 402-410. | |------|-----------------------------|---| | /14/ | Lotze, A.: | DDD network optimization in field engineering - from theory to application. Proceedings of the 7th ITC Stockholm 1973, p. 521/1- | | /15/ | Lotze, A.: | Field engineering methods for economic network planning with or without alternate routing. TIMS XX, XX International Meeting. The Institute of Management Sciences, Tel Aviv, 1973. | | /16/ | Lotze, A.,
Schehrer, R.: | The design of alternate routing systems with regard to the variance coefficient. Nachrichtentechn. Z. (Commun. J.) 7 (1968) 2/3, 52-56. | | /17/ | Lotze, A.,
Wagner, W.: | Table of the Modified Palm-Jacobaeus
Loss Formula.
Institute of Switching and Data Technics,
University of Stuttgart, 1962. | | /18/ | Pratt, C.W.: | The concept of marginal overflow in alternate routing. Prebook of the 5th ITC New York 1967, p. 51 - 58. | | /19/ | Rapp, Y.: | Planning of junction network in a multi-
exchange area. I. General principles.
Ericsson Technics 20 (1964) 1, 77-130. | | /20/ | Rapp, Y.: | Planning of junction network in a multi-
exchange area, II. Extensions of the
principles and applications.
Ericsson Technics 21 (1965) 2, 187-240. | | /21/ | Rapp, Y.: | Planning of junction network in a multi-
exchange area. III. Optimum types of
physical and carrier circuits.
Prebook of the 5th ITC New York 1967,
p. 581-586. | | /22/ | Schehrer, R.: | Die Berücksichtigung des Streuwerts bei
der Bemessung von Kennzahlwegen in der
Landesfernwahl.
Institute of Switching and Data Technics,
University of Stuttgart, Monograph 1964. | | /23/ | Schehrer, R.: | Optimal design of alternate routing systems. Prebook of the 5th ITC New York 1967, p. 378-389. | | /24/ | Schehrer, R.: | On the exact calculation of overflow systems in switching networks. 10th Report on studies in congestion theory, Institute of Switching and Data Technics, University of Stuttgart, 1969. | | | | | | /25/ | Schehrer, R.: | On the exact calculation of overflow systems. a) Congressbook of the 6th ITC Munich 1970, p. 147/1-8, b) A.E.U. 25 (1971) 9/10, 426-430. | |------|----------------------------------|---| | /26/ | Wallström, B.: | Methods for optimizing alternative routing networks. Ericsson Technics 25 (1969) 1, 3-28. | | /27/ | Wilkinson, R.I.: | Simplified engineering of single-
stage alternate routing systems.
4. ITC London (1964), Doc. 75. | | /28/ | Wilkinson, R.I.,
Riordan, J.: | Theories for toll traffic engineering in the USA. a) 1. ITC Copenhagen (1955), b) Bell Syst. Techn. J.35 (1956), 421-514. | | /29/ | | Tables for variance coefficient D and overflow traffic R of one stage gradings with limited access. Calculation of secondary routes in case of offered overflow traffic (R,D). Institute of Switching and Data Technics, University of Stuttgart, 1965. | | /30/ | | Tables for overflow variance coefficient and loss of gradings and full available groups. Institute of Switching and Data Technics, University of Stuttgart, 2nd Edition, 1966. | #### Annex THE COST RATIO P IN CASE OF MULTIPLE OVERFLOW by W. Lörcher and R. Schehrer The traffic partition between high usage groups and a final group with regard to a minimum of total network costs has been investigated in many papers, e.g. in /16.18-23.26/. The derivation in /22/ is repeated concisely in Section 1. It will be applied in a similary way to systems with multiple overflow in Section 2. #### 1. Systems with Single Overflow The total costs $c_{\mbox{tot}}$ of a network consisting of m high usage groups and one final group are given by $$c_{tot} = c_f \cdot n_f + \sum_{i=1}^{m} c_{hi} \cdot n_{hi}$$ (1) where cf, chi cost per trunk) of the final group or the high usage group No. i, respectively. The total costs c_{tot} shall become a minimum where the probability of loss B_f of the final group is prescribed. The random traffics A_{hi} offered to the high usage group No. i and A_{fdir} offered to the final group, respectively, be constant. The necessary number of trunks n_f for the final group depends on the number n_{hi} of the high usage groups. The optimum group sizes of the high usage groups are obtained by partial differentiation. In order to get the optimum number of trunks n_{hi} , opt of the high usage group No. i (i=1,..,m), the condition $$\frac{\partial c_{tot}}{\partial n_{hi}} = c_f \cdot \frac{\partial n_f}{\partial n_{hi}} + c_{hi} = 0$$ (2) has to be fulfilled. The total traffic A_f offered to the final group is given by (cf. Section III.9.2, type a)) $$A_{f} = A_{fdir} + \sum_{i=1}^{m} R_{hi}$$ (3) On the other hand, it holds $$A_{f} = \frac{Y_{f}}{1 - B_{f,prescr}}.$$ (4) where $\mathbf{Y}_{\mathbf{f}}$ carried traffic of the final group and the traffic rest $\mathbf{R}_{\mathbf{hi}}$ overflowing from the high usage group No. i is given by $$R_{hi} = A_{hi} - Y_{hi} \tag{5}$$ where Yhi carried traffic of high usage group No.i. Equation (2) can also be formulated $$\frac{\partial c_{tot}}{\partial n_{hi}} = c_{f} \cdot \frac{\partial n_{f}}{\partial A_{f}} \cdot \frac{\partial A_{f}}{\partial n_{hi}} + c_{hi} = 0$$ (6) With equations (3), (4) and (5) one gets from equation (6) $$c_{f} \cdot \frac{\partial n_{f}}{\partial \left(\frac{Y_{f}}{1 - B_{f,prescr.}}\right)} \cdot \frac{\partial \left(A_{fdir} + \sum_{i=1}^{m} R_{hi}\right)}{\partial n_{hi}} + c_{hi} = 0$$ or $$c_{\mathbf{f}} \cdot \frac{\partial n_{\mathbf{f}}}{\partial Y_{\mathbf{f}}} \cdot (1-B_{\mathbf{f},prescr.}) \cdot \left(-\frac{\partial Y_{hi}}{\partial n_{hi}}\right) + c_{hi} = 0$$ $$\frac{\partial Y_{hi}}{\partial n_{hi}} = \frac{c_{hi}}{c_{f}} \cdot \frac{1}{1-B_{f,prescr}} \cdot \frac{\partial Y_{f}}{\partial n_{f}}$$ (7) For single overflow (see Section III.5.1) the cost ratio P holds $$P = P_{f/hi} = \frac{c_f}{c_{hi}}$$ (8) E15 The number of trunks has to be integer. Therefore, one can replace $\partial Y/\partial n$ by $\Delta Y/\Delta n$. Then, one gets from equations (7) and (8) with Δn =1: $$\Delta Y_{\text{hi}} = \frac{\Delta Y_{\text{f}}}{P(1-B_{\text{f,prescr.}})}$$ (9) where $^{\Delta Y}{_{f}}$ marginal capacity, i.e. the increase of the traffic carried by the final group if the number of trunks is increased from n_{f} to $n_{f}\text{+}1~(\text{B}_{f}\text{,prescr.=const}\text{,}$ $k_{f}\text{=const}\text{)}.$ In practice the prescribed probability of loss of the final group $B_{f,prescr.}$ is $\ll 1$ (e.g. $B_{f,prescr.} \leq 1\%$). Thus, one gets as a dimensioning rule from equation (9) $$\Delta Y_{hi} = \frac{\Delta Y_f}{P}$$ (10) In /22/ it is demonstrated how this dimensioning rule can implicitely be regarded in a table for the dimensioning of high usage groups of first order (see Table 3 of this book). #### 2. Systems with Multiple Overflow For the optimization of systems with multiple overflow one regards all groups which are subsequently hunted behind one certain high usage group of first order. A resulting cost ratio P is determined which takes into account the costs of these subsequently hunted groups. By means of this cost ratio P the high usage group of first order can be dimensioned with the same table (Table 3) similar to that case of single overflow. The derivation be explained for systems with triple overflow. Double overflow is then obtained as "special case". #### 2.1 Triple Overflow For systems with triple overflow (cf. Section III.5.3) the subsequently hunted groups are a follow group α , furthermore, a follow group β and the final group (Fig. A.1). Fig. A.1: Structure of the groups to be regarded in case of triple overflow. A_{1i} offered traffic to) Y_{1i} carried traffic of } the considered high usage group of first order No. i R_1^* sum of overflowing traffic rests from other high usage groups of first order (\pm i) offered to the considered follow group α No.j The traffics and numbers of trunks of the other considered groups (follow group α No.j, follow group β No.k and final group) are defined analogously. The costs of the subsequently hunted follow groups and the final group are $$c_{\alpha j} \cdot n_{\alpha j} + c_{\beta k} \cdot n_{\beta k} + c_{f} \cdot n_{f}$$ (11) Analogously to single overflow (equation (2)) one obtains $$c_{\alpha j} \frac{\partial n_{\alpha j}}{\partial n_{1j}} + c_{\beta k} \frac{\partial n_{\beta k}}{\partial n_{1j}} + c_{f} \frac{\partial n_{f}}{\partial n_{1j}} + c_{1j} = 0$$ (12) and therewith analogously to equation (6) $$c_{\alpha j} \cdot \frac{\partial n_{\alpha j}}{\partial A_{\alpha j}} \cdot \frac{\partial A_{\alpha j}}{\partial n_{1i}} + c_{\beta k} \cdot \frac{\partial n_{\beta k}}{\partial A_{\beta k}} \cdot \frac{\partial A_{\beta k}}{\partial n_{1i}} + c_{f} \cdot \frac{\partial n_{f}}{\partial A_{f}} \cdot \frac{\partial A_{f}}{\partial n_{1i}} + c_{1i} = 0$$ (13) The traffics offered to the follow groups and to the final group are (according to equations (3), (4) and (5)): $$A_{\alpha j} = \frac{Y_{\alpha j}}{1 - B_{\alpha j}} = A_{\alpha j, \text{dir}} + R_{1i} + R_{1}^{*} = A_{\alpha j, \text{dir}} + A_{1i} - Y_{1i} + R_{1}^{*}$$ (14a) $$A_{\beta k} = \frac{Y_{\beta k}}{1 - B_{\beta k}} = A_{\beta k, \text{dir}} + R_{\alpha j} + R_{\alpha}^* = A_{\beta k, \text{dir}} + A_{\alpha j} \cdot B_{\alpha j} + R_{\alpha}^* \quad (14b)$$ $$A_{f} = \frac{Y_{f}}{1 - B_{f,prescr.}} = A_{f,dir} + R_{\beta k} + R_{\beta}^{*} = A_{f,dir} + A_{\beta k} +
R_{\beta}^{*}$$ (14c) Thus, one gets the partial derivatives with respect to $n_{4;}$ $$\frac{\partial^{A}_{\alpha j}}{\partial n_{1j}} = -\frac{\partial^{Y}_{1j}}{\partial n_{1j}} \tag{15a}$$ $$\frac{\partial A_{\beta k}}{\partial n_{1i}} = -B_{\alpha j} \frac{\partial Y_{1i}}{\partial n_{1i}}$$ (15b) $$\frac{\partial A_{f}}{\partial n_{1i}} = -B_{\beta k}B_{\infty j}\frac{\partial Y_{1i}}{\partial n_{1i}}$$ (15c) With equations (14) and (15) one obtains from equation (13) $$\frac{\partial Y_{1i}}{\partial n_{1i}} \cdot \left[c_{\alpha j} \frac{1 - B_{\alpha j}}{\frac{\partial Y_{\alpha j}}{\partial n_{\alpha j}}} + c_{\beta k} \frac{B_{\alpha j} (1 - B_{\beta k})}{\frac{\partial Y_{\beta k}}{\partial n_{\beta k}}} + c_{f} \frac{B_{\alpha j} B_{\beta k} (1 - B_{f,prescr.})}{\frac{\partial Y_{f}}{\partial n_{f}}} \right] = c_{1i}$$ (16) Now, the partial derivatives $\partial Y/\partial n$ can be replaced by the difference quotients $\Delta Y/\Delta n$. It be normalized to $\Delta n=1$. Furthermore the cost ratios are defined (according to Section III.5) as $$P_{f/1i} = \frac{c_f}{c_{1i}}; \quad P_{f/\alpha j} = \frac{c_f}{c_{\alpha j}}; \quad P_{f/\beta k} = \frac{c_f}{c_{\beta k}}$$ (17) Thus, one gets from equations (16) and (17) $$\Delta Y_{1i} = \frac{\Delta Y_{f}}{P_{f/1i} \left[\frac{1 - B_{\alpha j}}{P_{f/\alpha j}} + \frac{B_{\alpha j} (1 - B_{\beta k})}{P_{f/\beta k}} + B_{\alpha j} B_{\beta k} (1 - B_{f}) \right]}$$ (18) In practice, the prescribed probability of loss $B_{f,prescr}$ is << 1, e.g. $B_{f,prescr}$ = 1%. Thus, one obtains from equations (18) and (10) the resulting cost ratio P between the considered high usage group of first order No. i and the subsequently hunted groups as $$P = P_{f/1i} \left[\frac{1 - B_{\alpha j}}{P_{f/\alpha j} \frac{\Delta Y_{\alpha j}}{\Delta Y_{f}}} + \frac{B_{\alpha j} (1 - B_{\beta k})}{P_{f/\beta k} \frac{\Delta Y_{\beta k}}{\Delta Y_{f}}} + B_{\alpha j} B_{\beta k} \right]$$ (19) In order to avoid an iterative determination of the exact optimal probabilities of overflow $B_{\alpha j}$ and $B_{\beta k}$ but to ensure, nevertheless a high and economic occupancy of the follow groups one prescribes a constant probability of overflow $B_{\alpha j} = B_{\beta k} = 20\%$. Thus one obtains from equation (19) $$P = P_{f/1i} \left[\frac{0.8}{P_{f/\alpha j} \frac{\Delta Y_{\alpha j}}{\Delta Y_{f}}} + \frac{0.16}{P_{f/\beta k} \frac{\Delta Y_{\beta k}}{\Delta Y_{f}}} + 0.04 \right]$$ (20) Because $\frac{\Delta Y_{\alpha}j}{\Delta Y_{\mathbf{f}}} \approx \frac{\Delta Y_{\beta k}}{\Delta Y_{\mathbf{f}}} \approx 1$ is a tolerable approximation one obtains finally $$P \approx P_{f/1i} \left[\frac{0.8}{P_{f/\alpha j}} + \frac{0.16}{P_{f/\beta k}} + 0.04 \right] = P_{f/1i} \cdot C$$ (21) Equation (21) is used in Section III.5.3; the values for $C=f(P_{f/c}, P_{f/b})$ can be read from Table III.2. #### 2.2 Double Overflow This case is already implied in the general case of triple overflow, if one introduces $n_{\beta k}$ =0 and therefore $B_{\beta k}$ =1. Thus, only high usage groups of first order, follow groups α and the final group are existing. By equation (19) one obtains $$P = P_{f/1i} \left[\frac{1 - B_{\alpha j}}{P_{f/\alpha j} \frac{\Delta Y_{\alpha j}}{\Delta Y_{f}}} + B_{\alpha j} \right]$$ (22) Under the same presuppositions as for triple overflow one obtains from equation (22) the cost ratio P for double overflow $$P = P_{f/1i} \left[\frac{0.8}{P_{f/\alpha j}} + 0.2 \right]$$ (23) The values of $P=f(P_{f/1},P_{f/\alpha})$ can be read from Table III.1 in Section III.5.2. #### 3. Remarks to the Marginal Capacity ΔY_f The calculation of Table 3 (high usage groups of first order) is based on these marginal capacities $\Delta Y_{\hat{1}}$ which are valid for a probability of loss $B_{\hat{1}} = 1\%$ of the final group. Prescribing another probability of loss B_f (e.g. B_f =0.5%) one obtains different values ΔY_f . For these values an extra table could be calculated. This table would yield group sizes n_1 slightly greater. Accordingly, the number of trunks of the follow groups and of the final group would become slightly smaller. However, extensive numerical investigations have shown that the total costs of the trunk groups to be dimensioned are practically not influenced by such variations of $B_{\hat{f}}$. The influence of $B_{\hat{f}}$ is obviously smaller than the unavoidable inaccuracy of the cost ratios $P_{\hat{f}/h}$. Therefore, Table 3 is also applicable for $B_f \neq 1$ %. #### I. ÜBERSICHT #### I.1 Zweck dieses Tabellenbuches Das vorliegende Tabellenbuch gestattet die einfache Behandlung folgender zwei Dimensionierungsaufgaben der Nachrichtenvermittlungstechnik: - 1) Die Dimensionierung von Bündeln ohne Überlaufmöglichkeit mit angebotenem Zufallsverkehr (Zufallsverkehr 1. Art, d.h. Poisson-Anrufprozeß). Dies wird in Kapitel II behandelt; hierzu wird die Tabelle 1 benötigt. (Zufallsverkehr 2. Art, d.h. endliche Zahl von Verkehrsquellen, siehe /1.14/). - 2) Die wirtschaftliche Bemessung von Bündeln bei ein- oder mehrfachem Überlauf in hierarchischen oder nicht-hierarchischen Fernwählvermittlungsnetzen mit alternativer Leitweglenkung. Dies wird in Kapitel III behandelt; hierzu sind die Tabellen 2 bis 6 notwendig. - Bei 1) werden alle Bündel unabhängig voneinander dimensioniert. Die Struktur des Netzes ist dabei ohne Bedeutung. - Bei 2) dagegen hängt die wirtschaftliche Dimensionierung der einzelnen Bündel voneinander ab, bedingt durch die jeweils zugelassenen Überlaufmöglichkeiten. In Abschnitt I.3 wird das Beispiel einer Netzstruktur gezeigt. An den abgehenden Bündeln einer Fernwählvermittlungsstelle (Fern-VSt) werden deren kennzeichnende Größen erläutert. #### I.2 Begriffe Querleitungsbündel (High Usage Groups) sind Leitungsbündel mit einer relativ hohen Belastung je Leitung (Y/n \gtrsim 0,7 Erl), bei denen der nicht aufgenommene Teil des angebotenen Verkehrs auf weitere Ql-Bündel oder direkt auf ein Letztweg-Bündel überläuft. Man unterscheidet dabei zwischen : - 1. Ql-Bündel: Bündel, dem nur Zufallsverkehr (Direkt-verkehr) angeboten wird. - 2. Ql-Bündel: Bündel, dem die von 1. Ql-Bündeln nicht aufgenommenen Verkehrsreste (überlaufender Verkehr) sowie eventuell zusätzlich noch Zufallsverkehr angeboten werden. - 3. Ql-Bündel: Bündel, dem die von vorgeschalteten Ql-Bündeln (1. oder 2. Ql-Bündel) nicht aufgenommenen Verkehrsreste sowie eventuell zusätzlich noch Zufallsverkehr angeboten werden. - 4., 5. ... sind entsprechend definiert. Q1-Bündel: Letztwegbündel (Final Groups) sind Leitungsbündel ohne weitere Überlaufmöglichkeit. Der diesen Bündeln angebotene Verkehr (Überlauf und/oder Zufallsverkehr) der nicht aufgenommen werden kann, geht verloren. # I.3 Graphische Darstellung eines Fernwählvermittlungsnetzes mit alternativer Leitweglenkung Bild 1.1 zeigt einen Ausschnitt aus einem Fernwählnetz. Die einzelnen Vermittlungsstellen sind durch Kennzahlen bezeichnet. Bild 1.1: Ausschnitt aus einem Fernwählnetz Zur besseren Übersicht, vor allem bezüglich der in diesem Fall gegebenen Überlaufmöglichkeiten, ist eine zweite Darstellungsart üblich (Bild 1.2). Es werden nur die abgehenden Bündel einer Fern-VSt betrachtet. Bei dieser Darstellung erkennt man besonders deutlich, welche Bündel 1. Ql-Bündel, 2. Ql-Bündel, 3. Ql-Bündel oder Letztweg-Bündel sind. Bild 1.2: Abgehende Bündel der Fern-VSt 215 aus Bild 1.1 und deren Überlaufmöglichkeiten 215-315 : Bündel von Fern-VSt 215 zur Fern-VSt 315. Zufallsverkehrs-Angebot an das 1.Ql-A₂₁₅₋₃₁₅: Bündel von der Fern-VSt 215 zur Fern- VSt 315. A₂₁₅₋₂₁: Zufallsverkehrs-Angebot an das Letztweg-Bündel von der Fern-VSt 215 zur Fern-VSt 21. Dieser Verkehr umfasst in diesem Beispiel alle Teilverkehre zu Ziel-VSt. die nicht über Q1-Bündel erreicht werden. Die einzelnen abgehenden Bündel einer Fern-VSt können entweder vollkommen erreichbar (k=n) oder unvollkommen erreichbar (k < n) sein. Einige wesentliche grundsätzliche Überlegungen und daraus resultierende Vorschriften zur Wahl der Erreichbarkeiten $\mathbf{k}_{\mathbf{h}}$ der Q1-Bündel und $\mathbf{k}_{\mathbf{f}}$ des Letztweg-Bündels sind in Abschnitt III.2 dargestellt. #### I.4 Wesentliche Eigenschaften des tabellierten Bemessungsverfahrens #### I.4.1 Bündel ohne Überlaufmöglichkeit nach Abschnitt I.1 - a) Vollkommen erreichbare Bündel (k=n) werden bei angebotenem Zufallsverkehr nach der "Erlang'schen Verlustformel" /3/ dimensioniert. - b) Unvollkommen erreichbare Bündel (k<n) werden bei angebotenem Zufallsverkehr mit der "Modifizierten Palm-Jacobaeus-Formel" (MPJ) /8-10,13,17/ dimensioniert. Dabei ist die MPJ-Formel an den entsprechenden Mischungstyp anzupassen. Diese Methode der Anpassung der MPJ-Formel ist analog für alle Mischungstypen anwendbar und leicht durchführbar /8,13/. Für das zulässige Angebot gilt $A_{zul} = A_{MP,I} - \Delta A$, wobei $$\Delta A = F\left(\frac{n}{k} - 1\right)^2 \cdot \frac{k-2}{60+4k} \cdot \frac{1-B}{1+kB^2}$$ Dazu ist für den jeweiligen Mischungstyp nur einmalig (mit Hilfe von Verkehrstests) der geeignete Anpassungsfaktor F zu bestimmen: z.B.: Vereinfachte Normmischungen F = 0.3der Deutschen Bundespost: O'Dell-Mischungen: F = 1.1F = 2.4.AT&T-Mischungen: Die Tabellen in diesem Buch gelten für die "Vereinfachten Normmischungen" der Deutschen Bundespost /4.8/. ### I.4.2 Bündel in Netzen mit alternativer Leitweglenkung nach Abschnitt I.1 - a) Vollkommen erreichbare 1. Ql-Bündel (k=n) werden nach der "Erlang'schen Verlustformel" dimensioniert. - b) Unvollkommen erreichbare 1. Ql-Bündel (k<n) werden mit der angepassten "Modifizierten Palm-Jacobaeus-Formel" (MPJ) dimensioniert, siehe Abschnitt I.4.1 b). - c) Für die wirtschaftliche Dimensionierung des 1. Q1-Bündels werden die Leitungskosten der nachfolgenden Q1-Bündel sowie des Letztweg-Bündels mitberücksichtigt /14,16,18-23,26/. - d) Auch auf die nachfolgenden Ql-Bündel und das Letztweg-Bündel wird der Verkehr wirtschaftlich aufgeteilt /14.16.23/. - e) Bei der
Dimensionierung der 2. Ql-Bündel, 3. Ql-Bündel usw., sowie des Letztweg-Bündels wird die Varianz des angebotenen Verkehrs (Überlaufverkehr) berücksichtigt /2,5-7,11-16,18-30/, siehe Abschnitt I.5. ## I.5 Berücksichtigung der statistischen Eigenschaften von Überlaufverkehr Wie in Bild 1.2 gezeigt wurde, wird den 2. Ql-Bündeln, 3.Ql-Bündeln usw. sowie dem Letztweg-Bündel einer Fern-VSt der von den zuvor abgesuchten Bündeln nicht aufgenommene "Überlaufverkehr" angeboten, außerdem eventuell noch Zufallsverkehr (Direktverkehr). Dieser angebotene überlaufverkehr hat wesentlich andere statistische Eigenschaften als der "reine Zufallsverkehr", der den 1. Ql-Bündeln angeboten wird. Die momentane Anzahl gleichzeitig gewünschter Verbindungen streut bei derartig "spitzigem Verkehr" wesentlich stärker "nach oben" um den Mittelwert als bei Zufallsverkehr. Deshalb benötigt man bei demselben vorgeschriebenen Verlust B mehr Leitungen /11,28/ als für einen angebotenen Zufallsverkehr mit demselben Mittelwert. Ein zweckmäßiges Maß, um die "Spitzigkeit" von Überlaufverkehr einfach zu charakterisieren, ist seine Varianz V /28/. (In der BRD ist auch der Begriff des Streuwerts (\underline{D} ifferenz) D=Varianz-Mittelwert gebräuchlich). Für "reinen Zufallsverkehr" ist die Varianz V gleich dem Mittelwert A (V=A). Für Überlaufverkehr ist V>A. Der genaue Wert von V hängt vom Einzelfall ab. Er könnte mit umfangreichen Tabellen individuell für den Überlaufverkehr jedes Bündels bestimmt werden. In /27/ wurde für 1. Q1-Bündel mit vollkommener Erreichbarkeit gezeigt, daß mit einer für die Praxis ausreichenden Genauigkeit der Überlaufende Verkehr durch den Mittelwert R und einen tabellierten maximalen Wert $Z_{\text{max}}=(V/R)_{\text{max}}$ charakterisiert werden kann. Eingehende Untersuchungen des Fernmeldetechnischen Zentralamtes (FTZ) der Deutschen Bundespost im öffentlichen Fernwahlnetz der Deutschen Bundespost haben nun gezeigt, daß für Bündel mit vollkommener oder unvollkommener Erreichbarkeit eine ausreichend genaue Berücksichtigung der Spitzigkeit des Überlaufverkehrs gewährleistet wird, wenn ein zweckmässig angenommenes konstantes (nicht maximales) Verhältnis Z angewendet wird. Nur diese Vereinfachung ermöglicht einen sehr übersichtlichen und einfachen Ablauf der Dimensionierung mit Hilfe eines handlichen Tabellenbuches. Im öffentlichen Fernwahlnetz der Deutschen Bundespost ist ein vorläufiger Wert von Z=1,60 im Gebrauch, später wird Z=2,0 festgesetzt (ansteigende Werte für die Erreichbarkeiten und damit ansteigende Werte für Z). Deshalb liegt diesem Tabellenbuch der Wert Z=2.0 zugrunde. Wenn Messungen in anderen Ländern andere Ergebnisse für den konstanten Wert Z ergeben sollten, so könnten entsprechende Tabellen leicht mit Hilfe vorhandener Programme berechnet werden. Die Berechnung der (tabellierten) Werte der benötigten Leitungszahlen bei angebotenem Überlaufverkehr erfolgte für Bündel mit vollkommener Erreichbarkeit nach dem ERT-Verfahren /2,28/ und für Bündel mit unvollkommener Erreichbarkeit nach dem RDA-Verfahren /5-7,11-16,22,23,29,30/. #### I.6 Benötigte Tabellen - Tabelle 1: Bestimmung der Leitungszahl n eines Bündels als Funktion des Angebots A in Abhängigkeit vom vorgeschriebenen Verlust B und der Erreichbarkeit k. Dabei wird vorausgesetzt, daß diesem Bündel nur Zufallsverkehr angeboten wird. - Tabelle 2: Bestimmung des Verkehrsangebots A als Funktion der Belastung Y, in Abhängigkeit von der Erreichbarkeit k und der Leitungszahl n des Bündels. Dabei wird vorausgesetzt, daß diesem Bündel nur Zufallsverkehr angeboten wird. - Tabelle 3: Bestimmung der Leitungszahl n_1 eines 1. Ql-Bündels und dessen überlaufenden Verkehrsrestes R_1 . Die Werte von n_1 und R_1 hängen ab vom angebotenen Zufallsverkehr A_1 , der Erreichbarkeit k_1 dieses Bündels, der Erreichbarkeit k_1 des Letztweg-Bündels sowie dem Kostenverhältnis P. Das Kostenverhältnis P berücksichtigt die unterschiedlichen Leitungskosten der verschiedenen alternativen Wege. Es wird in Abschnitt III.3 definiert. Tabelle 4: Bestimmung des Verkehrsangebots A an 2. Q1-Bündel, 3. Q1-Bündel usw., Letztweg-Bündel als Funktion der Belastung Y, in Abhängigkeit von seiner Erreichbarkeit k und der Leitungszahl n. Weil diesen Bündeln Überlaufverkehr oder ein Gemisch von Überlauf- und Zufallsverkehr angeboten wird, ist in dieser Tabelle für den gesamten angebotenen Verkehr ein konstanter Wert Z=2,0 bereits eingerechnet. - Tabelle 5: Bestimmung der Leitungszahlen n für 2. Ql-Bündel, 3. Ql-Bündel usw. in Abhängigkeit von deren Angeboten A und der Erreichbarkeit k. In dieser Tabelle ist ebenfalls ein Wert Z=2,0 des gesamten angebotenen Verkehrs bereits vorausgesetzt (s. Abschnitt I.5). Ferner ist diesen Tabellen eine Überlaufwahrscheinlichkeit von B = 20 % zugrunde gelegt. - Tabelle 6: Bestimmung der Leitungszahl n $_{\rm f}$ des Letztweg-Bündels als Funktion des Angebots A $_{\rm f}$ in Abhängigkeit von der Erreichbarkeit k $_{\rm f}$ für einen vorgeschriebenen Verlust B (z.B. B = 0,5 %, 1 % etc.). In dieser Tabelle ist ebenfalls ein Wert Z = 2,0 des gesamten angebotenen Verkehrs A $_{\rm f}$ vorausgesetzt. #### Bemerkung: Die Tabellen 1 bis 6 gelten für die Vereinfachten Normmischungen, wie sie von der Deutschen Bundespost eingeführt sind /4/. Dabei ist aus Gründen der Einfachheit ein Minimalwert des Mischungsverhältnisses M = 2 den Tabellen zugrunde gelegt. Ist in Wirklichkeit bei einer gegebenen Mischung das Mischungsverhältnis M wesentlich größer als 2, so kann der Verlust etwas kleiner als der berechnete Wert sein. Dies bedeutet eine gewisse Sicherheitsreserve bei schiefer Last oder Überlastung. ## II. BEMESSUNG VON BÜNDELN OHNE ÜBERLAUFMÖGLICHKEIT FÜR ANGEBOTENEN ZUFALLSVERKEHR #### II.1 Ablauf der Dimensionierung a) Man geht von der gemessenen Belastung Y der Hauptverkehrsstunde aus /15/. Solange die Verkehrsgüte nicht extrem nieder ist, wird die Belastung Y dem tatsächlich von den Teilnehmern gewünschten Verkehr entsprechen. Unter dieser Annahme ist es berechtigt, den gemessenen Wert Y als Angebot $A_{\rm alt}$ zu interpretieren oder man kann $A_{\rm alt} = \frac{Y}{1-B_{\rm Soll}}$ setzen, dabei ist $B_{\rm soll}$ der vorgeschriebene Wert des Verlustes. Falls gewünscht, kann $A_{\rm alt}$ um einen Zuwachsfaktor GF (growth factor) für einen bestimmten Planungszeitraum erhöht werden. Dann ist $A_{\rm neu} = A_{\rm alt} \cdot {\rm GF}$. Dann kann die Leitungszahl $n_{\rm neu} = f(A_{\rm neu}, k, B_{\rm soll})$ aus Tabelle 1 abgelesen werden. b) Im Gegensatz zu a) könnte man auch annehmen, daß erfolglose Rufe keine wiederholten Anrufe verursachen. Dies entspräche einem Modell, bei dem die Teilnehmer im Falle "besetzt" sofort auf die ursprünglich gewünschte Verbindung verzichten. Dann müßte das Verkehrsangebot Aalt=f(k,nalt,Y) aus Tabelle 2 bestimmt werden. Im allgemeinen ist jedoch diese Voraussetzung unrealistisch und liefert bei Verkehrsmessungen an überlasteten Bündeln überhöhte Angebotswerte. #### II.2 Beispiel Gegeben: Erreichbarkeit k=10 Leitungszahl n_{alt}=50 Belastung Y = 42.4 Erl (Meßwert) Vorgeschriebener Verlust $B_{soll} = 1 \%$ Zuwachsfaktor GF = 1,18 Fall a): Mit $$A_{alt} = Y = 42,4 \text{ Erl (oder }$$ $$A_{alt} = \frac{Y}{1 - B_{soll}} = \frac{42.4 \text{ Erl}}{1 - 0.01} = 42.8 \text{ Erl}) \text{ und } GF = 1.18$$ erhält man $A_{\text{neu}} = 42, 4 \cdot 1,18 \text{ Erl} = 50 \text{ Erl}$ $(42,8 \cdot 1,18 = 50,5 \text{ Erl}).$ Aus Tabelle 1 kann man damit die Leitungszahl n_{new} = 85 (86) ablesen. Fall b): Aus Tabelle 2 erhält man mit Y=42,4 Erl, k=10 und $n_{\rm alt}$ =50 den Angebotswert A $_{\rm alt}$ = 60 Erl (der nur dann richtig wäre, wenn $$\frac{A_{alt}^{-Y}}{A_{alt}} = \frac{60-42,4}{60} = 0,3$$ gilt, d.h. wenn 30 % aller Anrufe "besetzt" erhalten und nicht wiederholt würden). Mit dem Zuwachsfaktor GF = 1,18 würde dann A_{neu} =60·1,18 Erl = 70,8 Erl. Auf diese Weise würde man dann die Leitungszahl n_{neu} = 120 (statt 85 (86)) erhalten. # III. BEMESSUNG DER BÜNDEL IN FERNWÄHLNETZEN MIT ALTERNATIVER LEITWEGLENKUNG #### III.1 Definition D6 Mit den im Abschnitt I.2 gegebenen Definitionen für die Ql-Bündel und das Letztweg-Bündel kann ein weiterer Begriff definiert werden: Folge-Bündel: Bündel, das in Absuchrichtung auf das betrachtete Ql-Bündel folgt. Folge-Bündel sind damit Ql-Bündel höherer Ordnung. (Beispiel siehe Abschnitt III.5.2 b)). Es wird unterschieden zwischen: - Folge-Bündel α , dieses Bündel wird direkt nach dem betrachteten Ql-Bündel abgesucht. - Folge-Bündel β , wenn nach dem Folge-Bündel α ein weiteres Ql-Bündel abgesucht wird, handelt es sich bei diesem Bündel um ein Folge-Bündel β (Bsp. siehe Abschnitt III.5.3 b)). #### III.2 Wahl geeigneter Erreichbarkeiten k1, k2 usw., kf - a) Die Erreichbarkeit der 1. Ql-Bündel, 2. Ql-Bündel usw. und des Letztweg-Bündels wird vor der Bemessung der Schaltglieder- und Leitungszahlen festgelegt (u.U. nochmals geändert, wenn die Anzahl der verfügbaren Ausgänge der betreffenden Wahlstufe nicht ausreicht). - b) Dabei ist zu beachten, daß die nacheinander abgesuchten 1. Ql-Bündel, ferner evtl. 2. Ql-Bündel, 3. Ql-Bündel usw. und schließlich das Letztweg-Bündel <u>als Ganzes</u> den Charakter <u>einer Gesamtmischung</u> haben. (Siehe Bild 3.1). Deshalb ist, wie bei einer üblichen, von fester Nullstellung aus geordnet abgesuchten Mischung, die benötigte Gesamtleitungszahl für eine vorgegebene Verkehrsgüte dann am kleinsten, wenn die Zahl der vielfachgeschalteten Ausgänge von der ersten bis zur letzten Suchstellung schrittweise zunimmt. Das bedeutet, daß für die Mischungsverhältnisse der einzelnen Bündel gelten muß $2 \le M_1 \le M_2 \le M_5 \le M_f \le g$ (wobei g die Zahl der Zubringer-Teilgruppen ist). c) Bei vollkommener Erreichbarkeit aller Bündel (Ql-Bündel und Letztweg-Bündel) ist für alle einzelnen Bündel stets M = g. Der Bedarf dieser Wahlstufe an Koppelpunkten erreicht dann ein Maximum. Der Gesamtleitungsbedarf erreicht ein Minimum. Für hochbelastete
Ql-Bündel steigt der Leitungsbedarf aber im Falle unvollkommener Erreichbarkeit nur wenig an. <u>Beispiel:</u> Für ein 2. Q1-Bündel mit angebotenem Überlaufverkehr A=15,5 Erl, einem Verhältnis Z = 2,0 von Varianz/Mittelwert des angebotenen Verkehrs und einer vorgeschriebenen Überlaufwahrscheinlichkeit B = 20 %, ergibt sich aus Tabelle 5: - d) Betrachtet man die Überlastungsempfindlichkeit eines Fernwählnetzes mit alternativer Leitweglenkung so zeigt sich, daß Ql-Bündel mit unvollkommener Erreichbarkeit einen schwächeren Anstieg des Überlaufverkehrs auf die Folge-Bündel haben als Bündel mit vollkommener Erreichbarkeit. - e) Vollkommene Erreichbarkeit ist deshalb nach Maßgabe der verfügbaren Ausgänge der Wahlstufen stets in folgender Reihenfolge anzustreben: - 1. Für das Letztweg-Bündel; - 2. Für ein evtl. 4. Ql-Bündel, dann 3. Ql-Bündel, dann 2. Ql-Bündel; - 3. Können alle diese Bündel vollkommen erreicht werden, dann erst kann auch das 1. Ql-Bündel vollkommene Erreichbarkeit erhalten. #### III.3 Kostenverhältnisse Zur wirtschaftlich optimalen Dimensionierung der Bündel mit Überlaufmöglichkeit ist es erforderlich, die Kosten einer Leitung des Letztweg-Bündels (f), bezogen auf die Kosten einer Leitung im jeweiligen Ql-Bündel (h), zu kennen. Für jedes Bündel ist deshalb das Kostenverhältnis $P_{f/h}$ zu bestimmen: $${\rm P_{f/h}} \; = \; \frac{{\rm Kosten} \; {\rm einer} \; {\rm Leitung} \; {\rm im} \; {\rm Letztweg-B\"undel}}{{\rm Kosten} \; {\rm einer} \; {\rm Leitung} \; {\rm im} \; {\rm Ql-B\"undel}}$$ Dabei schließen die "Kosten einer Leitung" die Kosten der Wähler usw., die mit dieser Leitung ständig verbunden sind, mit ein. Für die Praxis genügt es, die folgenden Werte zu unterscheiden: $P_{f/h} = 1,1; 1,2; 1,4; 1,6; 1,8; 2,0; 2,2; 2,5; 3,0; 3,5; 4,0.$ #### III.4 Beispiel Die Bemessung der Bündel in Fernwählvermittlungen mit Leitweglenkung wird in den folgenden Abschnitten anhand des Beispiels nach Bild 3.1 im einzelnen erläutert. Bild 3.1: Ausschnitt aus einem Fernwählnetz In jeder Fern-VSt werden jeweils zuerst die 1. Ql-Bündel, dann die 2. Ql-Bündel usw. und schließlich das Letztweg-Bündel dimensioniert. #### III.5 Dimensionierung der 1. Q1-Bündel #### III.5.1 Einfachüberlauf: 1. Q1-Bündel → Letztweg-Bündel #### a) Ablauf der Dimensionierung Der Verkehrsrest R_1 des Zufallsverkehrsangebots A_1 läuft in diesem Fall vom betrachteten 1. Ql-Bündel unmittelbar auf das Letztweg-Bündel über. Damit wird das Kostenverhältnis: Es sind also folgende Daten bekannt: Die Dimensionierung umfasst folgende Schritte: - Das Angebot A_{1alt}=f(k₁,n_{1alt},Y_{1alt}) wird aus Tabelle 2 bestimmt. - Der auf das nachfolgend abgesuchte Bündel überlaufende Verkehrsrest ist R_{1alt} = A_{1alt} Y_{1alt} . - Das für den Planungszeitraum zu berücksichtigende neue Angebot wird ${\rm A_{1neu}}^{=A_{1alt}}\cdot{\rm GF}$. - Die neue Leitungszahl n_{1neu}=f(P,k₁,k_f,A_{1neu}) sowie der entsprechende neue überlaufende Verkehrsrest R_{1neu} werden aus Tabelle 3 abgelesen. #### b) Beispiel Es sei das in Bild 3.2 dargestellte Netz als Ausschnitt aus dem Netz nach Bild 3.1 gegeben. Die von der Fern-VSt 215 abgehenden 1. Ql-Bündel 215-4 und 215-5 seien zu dimensionieren. Bild 3.2: Ausschnitt aus dem Fernwählnetz in Bild 3.1 (Einfachüberlauf) Die Daten der Bündel seien: | Bündel | P _{f/h} | k | n _{alt} | Y _{alt}
Erl | Bemerkung | |--------|------------------|----|------------------|-------------------------|-----------------| | 215-4 | 1,2 | 8 | 20 | 16,7 | 1. Ql-Bündel | | 215-5 | 3,0 | 6 | 10 | 7,7 | 1. Ql-Bündel | | 215-21 | - | =n | 36 | 26 , 5 | Letztweg-Bündel | Der Zuwachsfaktor betrage für den Planungszeitraum GF=1,15. Damit können mit Hilfe der Tabellen 2 und 3 die obigen 1. Ql-Bündel neu dimensioniert werden. Man erhält: | Bündel | P | A _{1alt}
Erl | $\frac{R_{1alt}}{Erl}$ | A _{1neu}
Erl | ⁿ 1neu | R _{1neu}
Erl | |--------|-----|--------------------------|------------------------|--------------------------|-------------------|--------------------------| | 215-4 | 1,2 | 25 | 8,3 | 29 | 22 | 10,4 | | 215-5 | 3,0 | 11,1 | 3,4 | 13 | 18 | 1,58 | | | | R _{1a} | | R _{1ne} | =12,0Erl | | # III.5.2 Zweifachüberlauf: 1.Ql-Bündel — Folge-Bündel α — Letztweg-Bündel #### a) Ablauf der Dimensionierung Der Unterschied gegenüber Einfachüberlauf (Abschnitt III.5.1) besteht lediglich darin, daß ein anderes Kostenverhältnis P bestimmt werden muß. Es resultiert aus den Leitungskosten des 1. Ql-Bündels, des Folge-Bündels α , und des Letztweg-Bündels. Dazu ist $P=f(P_{f/1},P_{f/\alpha})$ aus nachstehender Tabelle III.1 zu entnehmen (Berechnung von P siehe Anhang): | P _{f/x} | 1.1 1.2 1.4 | 1.6 1.8 2.0 | 2.2 2.5 3.0 | 3.5 4.0 | |------------------|-------------|-------------|-------------|---------| | P _{f/1} | | | | | | 1.1 | | | | | | 1.2 | 1.1 | | | | | 1.4 | 1.2 1.2 1.1 | | | | | 1.6 | 1.4 1.4 1.2 | 1.1 | | | | 1.8 | 1.6 1.6 1.4 | 1.2 1.2 1.1 | | | | 2.0 | 1.8 1.8 1.6 | 1.4 1.2 1.2 | 1.1 | | | 2.2 | 2.0 2.0 1.8 | 1.6 1.4 1.4 | 1.2 1.1 | | | 2.5 | 2.2 2.2 2.0 | 1.8 1.6 1.6 | 1.4 1.4 1.2 | 1.1 | | 3.0 | 3.0 2.5 2.2 | 2.0 2.0 1.8 | 1.6 1.6 1.4 | 1.2 1.2 | | 3.5 | 3.0 3.0 2.5 | 2.5 2.2 2.0 | 2.0 1.8 1.6 | 1.6 1.4 | | 4.0 | 3.5 3.5 3.0 | 3.0 2.5 2.5 | 2.2 2.0 1.8 | 1.8 1.6 | Tabelle III.1: Kostenverhältnis P bei Zweifachüberlauf Die weitere Dimensionierung des 1. Ql-Bündels verläuft nun wie in Abschnitt III.5.1 a) beschrieben. #### b) Beispiel Es sei der in Bild 3.3 dargestellte Ausschnitt des Netzes nach Bild 3.1 gegeben. Die 1. Ql-Bündel 215-35 und 215-36 seien zu dimensionieren. Bild 3.3: Ausschnitt aus dem Fernwählnetz nach Bild 3.1 (Zweifachüberlauf) Die Daten der Bündel seien: | Fündel | P _{f/h} | k | nalt | Yalt
Erl | Bemerkungen | |--------|------------------|----|------|-------------|--| | 215-35 | 1,8 | 10 | 18 | 14,3 | 1. Ql-Bündel | | 215-36 | 2,0 | 8 | 12 | 9,3 | 1. Ql-Bündel | | 215-3 | 1,6 | 10 | 22 | 17,5 | Folge-Bündela (3.Ql-Bündel (vgl. Bild 3.1) | | 215-21 | - | =n | 36 | 26,5 | Letztweg-Bündel | Der Zuwachsfaktor betrage für den Planungszeitraum GF=1,15. Aus Tabelle III.1 kann jeweils das Kostenverhältnis P bestimmt werden. Damit erhält man: | Bündel | P | A _{1alt}
Erl | R _{1alt} Erl | A _{1neu}
Erl | n
1neu | R _{1neu}
Erl | |--------|-----|--------------------------|-----------------------|--------------------------|-----------|--------------------------| | 215-35 | 1,2 | 18,3 | 4,0 | 21 | 17 | 6,59 | | 215-36 | 1,4 | 12,3 | 3,0 | 14 | 12 | 4,25 | | | | R _{1a} | | Rane | =10,8Erl | | # III.5.3 Dreifachüberlauf: 1. Ql-Bündel \longrightarrow Folge-Bündel α \longrightarrow Folge-Bündel β \longrightarrow Letztweg-Bündel #### a) Ablauf der Dimensionierung Hier werden auch noch die Leitungskosten des Folgebündels β berücksichtigt. Für das Kostenverhältnis P ergibt sich hier: $$P = C \cdot P_{f/1} .$$ Dabei ist $C=f(P_{f/k}, P_{f/\beta})$ der nachfolgenden Tabelle III.2 zu entnehmen (Berechnung von C siehe Anhang): | P _{f/B} | 1.1 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.2 | 2.5 | 3.0 | 3.5 | 4.0 | |------------------|------|------|------|------|------|------|------|------|------|------|------| | P _{f/a} | | | | | | | | | | | | | 1.1 | 0.91 | | | | | | | | | | | | 1.2 | 0.85 | 0.84 | | | | | | | | | | | 1.4 | 0,76 | 0.75 | 0.73 | | | | | | | | | | 1.6 | 0.69 | 0.67 | 0.65 | 0.64 | | | | **** | | | | | 1.8 | 0.63 | 0.62 | 0.60 | 0.58 | 0.57 | | | | | | | | 2.0 | 0.59 | 0.57 | 0.55 | 0.54 | 0.53 | 0.52 | | | | | | | 2.2 | 0.55 | 0.54 | 0.52 | 0.50 | 0.49 | 0.48 | 0.48 | | | | | | 2.5 | 0.51 | 0.49 | 0.47 | 0.46 | 0.45 | 0.44 | 0.43 | 0.42 | | | | | 3.0 | 0.45 | 0.44 | 0.42 | 0.41 | 0.40 | 0.39 | 0.38 | 0.37 | 0.36 | | | | 3.5 | 0.41 | 0.40 | 0.38 | 0.37 | 0.36 | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 | | | 4.0 | 0.39 | 0.37 | 0.35 | 0.34 | 0.33 | 0.32 | 0.31 | 0.30 | 0.29 | 0.29 | 0.28 | Tabelle III.2: Faktor C zum Bestimmen des Kostenverhältnisses P bei Dreifachüberlauf Die weitere Dimensionierung der 1. Ql-Bündel erfolgt nun wie in Abschnitt III.5.1 a) beschrieben. #### b) Beispiel Es sei der in Bild 3.4 dargestellte Ausschnitt des Netzes nach Bild 3.1 gegeben. Die 1. Ql-Bündel 215-315 und 215-316 seien zu dimensionieren. Die Daten der Bündel seien: | Bündel | P _{f/h} | k | n _{alt} | Yalt
 Erl | Bemerkungen | |---------|------------------|----|------------------|---------------|------------------------------| | 215-315 | 2,5 | 6 | 8 | 6,4 | 1. Ql-Bündel | | 215-316 | 3,5 | 10 | 16 | 12,8 | 1. Ql-Bündel | | 215-31 | 2,0 | 10 | 34 | 26,3 | Folge-Bündel ∝ (2.Q1-Bündel) | | 215-3 | 1,6 | 10 | 22 | 17,5 | Folge-Bündel ß (3.Q1-Bündel) | | 215-21 | - | =n | 36 | 26,5 | Letztweg-Bündel | <u>Bild 3.4:</u> Ausschnitt aus dem Fernwählnetz nach Bild 3.1 (Dreifachüberlauf) Der Zuwachsfaktor betrage für den Planungszeitraum GF=1,15. Mit Hilfe der Tabelle III.2 kann jetzt der Faktor C und das Kostenverhältnis $P=C\cdot P_{f/1}$ bestimmt werden. Damit erhält man: | Bündel | P | Alalt
Erl | R _{1alt} Erl | Aneu
Erl | ⁿ 1neu | R _{1neu}
Erl | |---------|------------------|-----------------|-----------------------|------------------|-------------------|--------------------------| | 215-315 | 1,4 | 10,0 | 3,6 | 12 | 9 | 4,66 | | 215-316 | 215-316 1,8 16,7 | | 3,9 | 19 | 21 | 3,04 | | | | R _{1a} | | R _{1ne} | =7,7 Erl | | # III.5.4 Mehrfachüberlauf: 1. Ql-Bündel — Folge-Bündel α — Folge-Bündel β — Letztweg-Bündel Bei mehr als dreifachem Überlauf wird das gleiche Kostenverhältnis $P=C\cdot P_{f/1}$ verwendet wie bei Dreifachüberlauf. D.h. die Dimensionierung der 1. Ql-Bündel erfolgt nach Abschnitt III.5.3 und liefert dieselben Leitungszahlen n_1 wie bei Dreifachüberlauf. Der Grund für diese Vereinfachung ist: Jener Rest R $_3$ des Verkehrsangebots A $_1$, welcher von einem Folge-Bündel β noch überfließt auf weitere Ql-Bündel und schließlich auf das Letztweg-Bündel, ist im Verhältnis zu A $_1$ sehr klein. Er kann bei
der Berechnung des Kostenverhältnisses P vernachlässigt werden. #### III.6 Dimensionierung der 2. Q1-Bündel #### a) Ablauf der Dimensionierung Die folgenden Daten des Bündels sind bekannt: k₂ Erreichbarkeit n_{2alt} Leitungszahl Y_{2alt} (gemessene) Belastung Die Dimensionierung umfasst folgende Schritte: - Das Angebot A_{2alt}=f(k₂,n_{2alt},Y_{2alt}) wird aus Tabelle 4 bestimmt. - Der auf das nachfolgend abgesuchte Bündel überlaufende Verkehrsrest ist R_{2alt} = A_{2alt} - Y_{2alt}. - Das Direktverkehrsangebot A_{2dir,alt} (Zufallsverkehr,der dieses Bündel zuerst absucht, ihm also "direkt" angeboten wird) ist A2dir,alt = A 2alt $^{-\overline{R}}$ 1alt Dabei ist \overline{R}_{1alt} die Summe aller von 1. Ql - Bündeln auf dieses 2. Ql-Bündel überlaufenden Verkehrsreste. - Der für den Planungszeitraum zu berücksichtigende neue, unmittelbar angebotene, Zufallsverkehr wird wobei GF der Zuwachsfaktor für den Planungszeitraum ist. - Das neue Gesamtangebot A_{2neu} wird $$A_{2\text{neu}} = A_{2\text{dir,neu}} + \overline{R}_{1\text{neu}}$$. Dabei ist $\overline{R}_{1 \text{neu}}$ die neue Summe der Verkehrsreste, die von allen 1. Ql-Bündeln auf dieses 2. Ql-Bündel überlaufen. Diese Summe ist bereits vom vorherigen Schritt der Dimensionierung der 1. Ql-Bündel bekannt, vgl. Abschnitt III.5.3 b), Seite D10 . - Die neue Leitungszahl n_{2neu}=f(k₂,A_{2neu}) wird aus Tabelle 5 abgelesen. - Die Tabelle 5 ist für einen einheitlichen Überlaufanteil von 20 % berechnet. Deshalb wird $$R_{2\text{neu}} = 0,2 \cdot A_{2\text{neu}}$$. #### b) Beispiel Das 2. Ql-Bündel 215-31 (Bild 3.1) ist zu dimensionieren. Die Daten des Bündels sind: $k_2 = 10$ $n_{2alt} = 34$ Y_{2alt} = 26,3 Erl (siehe Abschnitt III.5.3 b), Seite D10). Der Zuwachsfaktor betrage GF = 1,15. Wie aus Bild 3.1 ersichtlich ist, werden die überlaufenden Verkehrsreste der 1. Ql-Bündel 215-315 und 215-316 dem betrachteten Bündel angeboten. Die Summe dieser Verkehrsreste ist in Abschnitt III.5.3 b) bestimmt worden: $$\overline{R}_{1alt} = 7,5 \text{ Erl}$$ $\overline{R}_{1neu} = 7,7 \text{ Erl}$ Man erhält: $A_{2alt} = 37,7 \text{ Erl}$ (Tabelle 4) $R_{2alt} = (37,7-26,3) \text{ Erl} = 11,4 \text{ Erl}$ $A_{2dir,alt} = (37,7-7,5) \text{ Erl} = 30,2 \text{ Erl}$ A_{2dir,neu} = 30,2·1,15 Erl = 34,7 Erl $A_{2neu} = (34,7+7,7) \text{ Erl} = 42,4 \text{ Erl}$ $n_{2neu} = 47$ (Tabelle 5) $R_{2\text{neu}} = 0,2.42,4 \text{ Erl} = 8,5 \text{ Erl}$ #### III.7 Dimensionierung der 3. Q1-Bündel #### a) Ablauf der Dimensionierung Die folgenden Daten des Bündels sind bekannt: k_z Erreichbarkeit n_{3alt} Leitungszahl Y_{3alt} (gemessene) Belastung Die Dimensionierung umfasst die gleichen Hauptschritte wie bei den 2. Ql-Bündeln (Abschnitt III.6 a)). Beim Bestimmen des Direktverkehrsangebots Azdir, alt und des neuen Gesamtverkehrsangebots Azneu müssen alle angebotenen Überlaufverkehre berücksichtigt werden. Deshalb erhält man: $$A_{3dir,alt} = A_{3alt} - \overline{R}_{2alt} - \overline{R}_{1alt}$$ $$A_{3\text{neu}} = A_{3\text{dir,neu}} + \overline{R}_{2\text{neu}} + \overline{R}_{1\text{neu}}$$ In diesen beiden Fällen ist zusätzlich zu dem von den 2. Ql-Bündeln auf dieses 3. Ql-Bündel überlaufenden Gesamtverkehrsrest $\overline{\mathbb{R}}_{2\mathrm{alt}}$ ($\overline{\mathbb{R}}_{2\mathrm{neu}}$) auch noch der gegebenenfalls von 1. Ql-Bündeln direkt auf dieses 3. Ql-Bündel überlaufende Gesamtverkehrsrest $\overline{\mathbb{R}}_{1\mathrm{alt}}$ ($\overline{\mathbb{R}}_{1\mathrm{neu}}$) zu berücksichtigen. Die obigen Verkehrsreste \overline{R}_{2alt} , \overline{R}_{1alt} und \overline{R}_{2neu} , \overline{R}_{1neu} sind schon aus den vorhergehenden Dimensionierungsschritten bekannt. #### b) Beispiel Das 3. Q1-Bündel 215-3 (Bild 3.1) ist zu dimensionieren. Die Daten des Bündels sind k_3 =10, n_{3alt} =22, Y_{3alt} =17,5 Erl (siehe Abschnitt III.5.2 b), Seite D9). Ferner sei ein Zuwachsfaktor GF = 1,15 zugrunde gelegt. Wie aus Bild 3.1 ersichtlich ist, laufen auf dieses Bündel die Verkehrsreste der 1. Ql-Bündel 215-35 und 215-36 sowie des 2. Ql-Bündels 215-31 über. Die Summe dieser Verkehrsreste ergibt sich aus Abschnitt III.5.2 b) (Seite D9) und Abschnitt III.6 b) (Seite D11) zu $$\overline{R}_{1alt} = 7.0 \text{ Erl}$$ $\overline{R}_{2alt} = R_{2alt} = 11.4 \text{ Erl}$ $\overline{R}_{1neu} = 10.8 \text{ Erl}$ $\overline{R}_{2neu} = R_{2neu} = 8.5 \text{ Erl}$ #### Damit wird: #### III.8 Dimensionierung der 4. Q1-Bündel Die Dimensionierung von 4. Ql-Bündeln und Ql-Bündeln höherer Ordnung verläuft analog zu den Abschnitten III.6 und III.7. #### III.9 Dimensionierung des Letztweg-Bündels #### III.9.1 Bemerkung Jedes Letztweg-Bündel kann nur dann neu dimensioniert werden, wenn alle vorhergehend abgesuchten Bündel neu dimensioniert wurden, welche den Verkehr beeinflussen, der diesem betrachteten Bündel angeboten wird. ### III.9.2 Ablauf der Dimensionierung Wenn man Letztweg-Bündel in einem Fernsprechnetz mit alternativer Leitweglenkung betrachtet, muß man zwischen den drei Arten a), b) und c) unterscheiden, d.h.: - a) Letztweg-Bündel, wobei der angebotene Verkehr besteht aus: - überlaufendem Verkehr in der betrachteten Vermittlungsstelle von Q1-Bündeln plus - direkt angebotenem Zufallsverkehr. Diese können in analoger Weise wie in Abschnitt III.6 dimensioniert werden. Die Anzahl der Leitungen \mathbf{n}_{fneu} für einen vorgeschriebenen Verlust $\mathbf{B}_{\hat{\mathbf{f}}}$ wird aus Tabelle 6 entnommen. (Beispiel: Letztweg-Bündel 215-21 in Bild 3.1, Berechnung siehe Abschnitt III.9.3). b) Letztweg-Bündel, wobei der angebotene Verkehr von ankommenden Ql-Bündeln und/oder Letztweg-Bündeln kommt, die keine Überlaufmöglichkeit in der betrachteten Vermittlungsstelle besitzen. (Beispiel: Letztweg-Bündel 3-31 in Bild 3.1). Diese können wie folgt dimensioniert werden: - Zuerst müssen die entsprechenden ankommenden Bündel, die den Verkehr anbieten, neu dimensioniert werden. - Diese neuen Bündelgrößen müssen realisiert werden. - Dann muß der Verkehr $\mathbf{Y}_{\hat{\mathbf{f}}}$ des betrachteten Letztweg-Bündels gemessen werden. - Der angebotene Verkehr ist $A_f = \frac{Y_f}{1-B_f, soll}$. - Bei Berücksichtigung des Zuwachsfaktors erhält man ${\rm A_{fneu}} = {\rm A_f \cdot GF.}$ - Mit A_{fneu} , k_f , B_{fsoll} erhält man aus Tabelle 6 die neue Anzahl der notwendigen Leitungen n_{fneu} . - c) Bündel zu oder von End-Vermittlungsstellen, die den Gesamt-Verkehr zwischen dem betrachteten Netz und dieser Endvermittlungsstelle führen, werden nach Abschnitt II dimensioniert. (Beispiel: Bündel 2153-215 in Bild 3.1). #### III.9.3 Beispiel Das Letztweg-Bündel 215-21 (Bild 3.1) soll für einen vorgeschriebenen Wert des Verlustes $B_{\mbox{soll}}$ =1% dimensioniert werden. Die Daten dieses Bündels seien: $$k_f = n_f$$ $$n_{f,alt} = 36$$ $$Y_{f,alt}$$ = 26,5 Erl (siehe z.B. Abschnitt III.5.1 b), Seite D8). Der diesem Bündel angebotene Verkehr setzt sich zusammen aus der Summe der überlaufenden Verkehrsreste (Bild 3.1): $$\overline{R}_{1alt}$$ =11,7 Erl oder \overline{R}_{1neu} =12,0 Erl $$\overline{R}_{3alt}$$ =10,5 Erl oder \overline{R}_{3neu} =6,1 Erl (Abschnitt III.7 b), Seite D12): und dem direkt angebotenen Verkehr Afdir, alt bzw. Afdir, neu Der Zuwachsfaktor betrage GF = 1,15. ## Damit ergibt sich: = 28,3 Erl (Tabelle 4) A_{f,alt} = (28,3-11,7-10,5) Erl = 6,1 Erl Afdir,alt = 6,1.1,15 Erl = 7,0 Erl ^Afdir,neu = (7,0+12,0+6,1) Erl = 25,1 Erl A_{fneu} = 41 (Tabelle 6; $B_f = 1\%$). n fneu D14 | LITER. | ATURVERZEICHNIS: | | |--------|---|--| | /1/ | Bazlen, D.: | The dimensioning of trunk groups for standard gradings of the German GPO in case of finite number of traffic sources. Nachrichtentechn. Z. 25 (1972) 1, 50-52. | | /2/ | Bretschneider,G.: | Die Berechnung von Leitungsgruppen für überfließenden Verkehr in Fernsprech-wählanlagen. Nachrichtentechn.Z. 9 (1956),533-540. | | /3/ | Brockmeyer, E.,
Halstrøm, H.L.,
Jensen, A.: | The life and work of A.K. Erlang.
Transact. Danish Acad. Techn. Sci. No.2,
1948, Copenhagen. | | /4/ | Heinrich, G.,
Trautmann, K.: | Vereinfachte Normmischungen hinter einstufigen Koppelanordnungen in der Vermittlungstechnik. Nachrichtentechn.Z. 21 (1968) 3,141-146. | | /5/ | Herzog, U.: | Näherungsverfahren zur Berechnung des
Streuwerts von Überlaufverkehr hinter
Mischungen.
Institut für Nachrichtenvermittlung und
Datenverarbeitung, Universität Stuttgart,
Monographie 1964. | | /6/ | Herzog, U.: | Die exakte Berechnung des Streuwerts von Überlaufverkehr hinter Koppelanordnungen beliebiger Stufenzahl mit vollkommener bzw. unvollkommener Erreichbarkeit. A.E.Ü. 20 (1966) 3, 180-184. | | /7/ | Herzog, U.,
Lotze, A.: | Das RDA-Verfahren, ein Streuwertverfahren für unvollkommene Bündel.
Nachrichtentechn.Z. 19 (1966) 11,640-646. | | /8/ | Herzog, U.,
Lotze, A.,
Schehrer, R.: | Die Berechnung von Leitungsbündeln hinter
vereinfachten Mischungstypen.
Nachrichtentechn.Z. 22 (1969) 12,684-689. | | /9/ | Lotze, A.: | Verluste und Gütemerkmale einstufiger
Mischungen.
Nachrichtentechn.Z. 14 (1961) 9,449-453. | | /10/ | Lotze, A.: | Loss formula, artificial traffic checks
and quality standards for characterizing
one stage gradings.
3. ITC Paris (1961), Doc. 28. | | /11/ | Lotze, A.: | A traffic variance method for gradings of arbitrary type. a) 4. ITC London (1964), Doc. 8/80, b) Post Off. Telecommun. J. Special Issue: Report of the Proceedings of the Fourth International Teletraffic Congress, London 1964, p. 50. | | /12/ | Lotze, A.: | Verkehrstheoretische Fragen bei der Gestaltung internationaler Fernwählnetze. Nachrichtentechn.Z 19 (1966) 11,633-639. | | /13/ | Lotze, A.: | History and development of grading
theory. a) Prebook of the 5th ITC New York 1967, p. 148-161, b) A.E.Ü. 25 (1971) 9/10, 402-410. | | /14/ | Lotze, A.: | DDD network optimization in field engineering - from theory to application. Proceedings of the 7th ITC Stockholm 1973, pp. 521. | |------|-----------------------------|---| | /15/ | Lotze, A.: | Field engineering methods for economic network planning with or without alternate routing. TIMS XX, XX International Meeting. The Institute of Management Sciences, Tel Aviv, 1973. | | /16/ | Lotze, A.,
Schehrer, R.: | Die streuwertgerechte Bemessung von
Leitungsbündeln in Wählnetzen mit Leit-
weglenkung.
Nachrichtentechn.Z. 19 (1966) 12,719-724. | | /17/ | Lotze, A.,
Wagner, W.: | Tafel der Modifizierten Palm-Jacobaeus-
Verlustformel.
Institut für Nachrichtenvermittlung und
Datenverarbeitung, Universität Stuttgart,
1962. | | /18/ | Pratt, C.W.: | The concept of marginal overflow in alternate routing. Prebook of the 5th ITC New York 1967, p. 51 - 58. | | /19/ | Rapp, Y.: | Planning of junction network in a multi-
exchange area. I. General principles.
Ericsson Technics 20 (1964) 1, 77-130. | | /20/ | Rapp, Y.: | Planning of junction network in a multi-
exchange area. II. Extensions of the
principles and applications.
Ericsson Technics 21 (1965) 2, 187-240. | | /21/ | Rapp, Y.: | Planning of junction network in a multi-
exchange area. III. Optimum types of
physical and carrier circuits.
Prebook of the 5th ITC New York 1967,
p. 581-586. | | /22/ | Schehrer, R.: | Die Berücksichtigung des Streuwerts bei
der Bemessung von Kennzahlwegen in der
Landesfernwahl.
Institut für Nachrichtenvermittlung und
Datenverarbeitung, Universität Stuttgart,
Monographie 1964. | | /23/ | Schehrer, R.: | Optimal design of alternate routing systems. Prebook of the 5th ITC New York 1967, p. 378-389. | | /24/ | Schehrer, R.: | Über die exakte Berechnung von Überlaufsystemen der Wählvermittlungstechnik. 10. Bericht Über verkehrstheoretische Arbeiten, Institut für Nachrichtenvermittlung und Datenverarbeitung, Universität Stuttgart, 1969. | | /25/ | Schehrer, R.: | On the exact calculation of overflow systems. a) Congressbook of the 6th ITC Munich 1970, p. 147/1-8, b) A.E.U. 25 (1971) 9/10, 426-430. | | /26/ | Wallström, B.: | Methods for optimizing alternative routing networks. Ericsson Technics 25 (1969) 1, 3-28. | |------|-------------------------------|---| | 127/ | Wilkinson, R.I.: | Simplified engineering of single-
stage alternate routing systems.
4. ITC London (1964), Doc. 75. | | /28/ | Wilkinson, R.I., Riordan, J.: | Theories for toll traffic engineering in the USA. a) 1. ITC Copenhagen (1955), b) Bell Syst. Techn. J.35 (1956), 421-514. | | /25/ | | Tabellen für Streuwert D und Überlaufverkehr R von einstufigen Koppelanordnungen mit unvollkommener Erreichbarkeit. Berechnung von Sekundärbündeln für angebotenen Überlaufverkehr (R,D). Institut für Nachrichtenvermittlung und Datenverarbeitung, Universität Stuttgart, 1965. | | /30/ | | Tabellen für Streuwert und Verlust von
einstufigen Koppelanordnungen mit unvoll-
kommener und vollkommener Erreichbarkeit.
Institut für Nachrichtenvermittlung und
Datenverarbeitung, Universität Stuttgart,
2. Auflage, 1966. | #### Anhang #### DAS KOSTENVERHÄLTNIS P BEI MEHRFACHEM ÜBERLAUF von W. Lörcher und R. Schehrer Untersuchungen über die kostenminimale Aufteilung des Verkehrs auf Querleitungsbündel (Q1-Bündel) und ein Letztweg-Bündel wurden in zahlreichen Arbeiten veröffentlicht, z.B. in /16, 18-23.26/. Die in /22/ durchgeführte Ableitung wird in Abschnitt 1 kurz wiederholt. Sie wird dann in Abschnitt 2 in ähnlicher Weise auf Systeme mit mehrfachem Überlauf ausgeweitet. #### 1. Systeme mit einfachem Überlauf Die Gesamtkosten c_{tot} eines Netzwerks aus m Ql-Bündeln (high usage group) und einem Letztweg-Bündel (final group) betragen $$c_{tot} = c_f \cdot n_f + \sum_{i=1}^{m} c_{hi} \cdot n_{hi}$$ (1) mit Die Gesamtkosten c $_{ m tot}$ sind für einen vorgeschriebenen Verlust ${\rm B_{fsoll}}$ des Letztweg-Bündels zu minimisieren. Dabei sind die angebotenen Zufallsverkehre ${\rm A_{hi}}$ an das Ql-Bündel Nr. i und ${\rm A_{fdir}}$ an das Letztweg-Bündel jeweils konstant. Die erforderliche Leitungszahl n $_{\rm f}$ des Letztweg-Bündels hängt von den Leitungszahlen n $_{\rm hi}$ der Ql-Bündel ab. Die optimalen Leitungszahlen der Ql-Bündel erhält man durch partielle Differentiation. Für die optimale Zahl von Leitungen n $_{\rm hi}$,opt des Ql-Bündels Nr. i (i=1,...,m) muß $$\frac{\partial c_{\text{tot}}}{\partial n_{\text{hi}}} = c_{\text{f}} \cdot \frac{\partial n_{\text{f}}}{\partial n_{\text{hi}}} + c_{\text{hi}} = 0$$ (2) erfüllt sein. Das Gesamtangebot A_f an das Letztweg-Bündel beträgt (vgl. Abschnitt III.9.2, Typ a)) $$A_{f} = A_{fdir} + \sum_{i=1}^{m} R_{hi}$$ (3) Andererseits ist $$A_{f} = \frac{Y_{f}}{1 - B_{f,soll}} \tag{4}$$ mit Y_f Belastung des Letztwegbündels und der Verkehrsrest \mathbf{R}_{hi} , welcher vom Ql-Bündel Nr.i auf das Letztweg-Bündel überläuft ist $$R_{hi} = A_{hi} - Y_{hi}$$ (5) mit Y_{hi} Belastung des Ql-Bündels Nr. i . Gleichung (2) kann auch geschrieben werden als $$\frac{\partial c_{\text{tot}}}{\partial n_{\text{hi}}} = c_{\text{f}} \cdot \frac{\partial n_{\text{f}}}{\partial A_{\text{f}}} \cdot \frac{\partial A_{\text{f}}}{\partial n_{\text{hi}}} + c_{\text{hi}} = 0$$ (6) Mit den Gleichungen (3), (4) und (5) erhält man aus Gleichung (6) $$c_{f} \cdot \frac{\partial n_{f}}{\partial \left(\frac{Y_{f}}{1-B_{fsoll}}\right)} \cdot \frac{\partial (A_{fdir} + \sum_{i=1}^{m} R_{hi})}{\partial n_{hi}} + c_{hi} = 0$$ ode $$c_f \cdot \frac{\partial n_f}{\partial Y_f} \cdot (1-B_{f,soll}) \cdot \left(-\frac{\partial Y_{hi}}{\partial n_{hi}}\right) + c_{hi} = 0$$ und $$\frac{\partial Y_{hi}}{\partial n_{hi}} = \frac{c_{hi}}{c_{f}} \cdot \frac{1}{1 - B_{fsoll}} \cdot \frac{\partial Y_{f}}{\partial n_{f}}$$ (7) Bei Einfachüberlauf (Abschnitt III.5.1) gilt für das Kostenverhältnis P $$P = P_{f/hi} = \frac{c_f}{c_{hi}}$$ (8) Leitungszahlen können nur ganzzahlige Werte annehmen. Deshalb können die Differentialquotienten $\partial Y/\partial n$ durch die Differenzenquotienten $\Delta Y/\Delta n$ ersetzt werden . Damit erhält man aus Gleichung (7) mit Gleichung (8) für Δn =1: $$\Delta Y_{hi} = \frac{\Delta Y_{f}}{P(1-B_{f,soll})}$$ (9) Dabei ist Zunahme der Belastung des Letztweg-Bündels bei Vergrößern der Leitungszahl von n_f auf n_f +1 $(B_{f,soll}=const, k_f=const)$. In der Praxis ist der vorgeschriebene Wert $B_{f,soll} \ll 1$ (z.B. $B_{f,soll} \le 1$ %). Damit ergibt sich aus Gleichung (9) $$\Delta Y_{hi} = \frac{\Delta Y_f}{P} \tag{10}$$ In /22/ wurde gezeigt, wie diese Bemessungsvorschrift implizit in einer Tabelle für die Dimensionierung von 1. Ql-Bündeln berücksichtigt werden kann (siehe Tabelle 3 dieses Buches). #### 2. Systeme mit mehrfachem Überlauf Bei der Optimierung von Systemen mit mehrfachem Überlauf betrachtet man alle Bündel, welche nach dem betrachteten 1. Ql-Bündel abgesucht werden. Es wird ein resultierendes Kostenverhältnis P bestimmt, welches die Kosten dieser nachgeschalteten Bündel mitberücksichtigt. Mit Hilfe des so gewonnenen Kosten- verhältnisses P kann dann das 1. Ql-Bündel mit derselben Tabelle (Tabelle 3) dimensioniert werden wie bei Einfach-überlauf. Die Herleitung wird zunächst für Systeme mit Dreifachüberlauf durchgeführt. Zweifachüberlauf erhält man daraus als "Spezial-Fall". #### 2.1 Dreifachüberlauf Bei Systemen mit Dreifachüberlauf (vgl. Abschnitt III.5.3) werden nach dem 1. Ql-Bündel ein Folge-Bündel α , ein Folge-Bündel β und das Letztweg-Bündel abgesucht (Bild A1). Bild A.1: Anordnung der Bündel, die bei Dreifachüberlauf berücksichtigt werden müssen. | A 1i | Verkehrsangebot an das) | | |-----------------|--|---------------| | Y _{1i} | Belastung des | 1. Ql-Bündels | | R _{1i} | überlaufender Verkehrsrest des) | | | n _{1i} | Leitungszahl des | | | R*1 | Summe der überlaufenden Verkehr
anderen 1. Ql-Bündeln (* j) der
trachteten Folge-Bündel « Nr.j | dem be- | Die Verkehre, Belastungen und Leitungszahlen der anderen betrachteten Bündel (Folge-Bündel α Nr. j, Folge-Bündel β Nr. k und Letztweg-Bündel) sind analog definiert. Die Kosten der nachgeschalteten Folge-Bündel und des Letztweg-Bündels betragen $$c_{\alpha j} \cdot n_{\alpha j} + c_{\beta k} \cdot n_{\beta k} + c_{f} \cdot n_{f} \tag{11}$$ Analog zu einfachem Überlauf (Gleichung (2)) erhält man $$c_{\alpha j} \frac{\partial n_{\alpha j}}{\partial n_{1i}} + c_{\beta k} \cdot \frac{\partial n_{\beta k}}{\partial n_{1i}} + c_{f} \cdot \frac{\partial n_{f}}{\partial n_{1i}} + c_{1i} = 0$$ (12) und daraus analog zu Gleichung (6) $$c_{\alpha j} \cdot \frac{\partial n_{\alpha j}}{\partial A_{\alpha j}} \cdot \frac{\partial A_{\alpha j}}{\partial n_{1i}} + c_{\beta k} \cdot \frac{\partial n_{\beta k}}{\partial A_{\beta k}} \cdot \frac{\partial A_{\beta k}}{\partial n_{1i}} + c_{f} \cdot \frac{\partial n_{f}}{\partial A_{f}} \cdot \frac{\partial A_{f}}{\partial n_{1i}} + c_{1i} = 0 \quad (13)$$ Entsprechend zu den Gleichungen (3), (4) und (5) ergeben sich die Angebote an die Folge-Bündel und an das Letztweg-Bündel zu: $$A_{\alpha j} = \frac{Y_{\alpha j}}{1 - B_{\alpha j}} = A_{\alpha j, dir} + R_{1i} + R_{1}^{\alpha} = A_{\alpha j, dir} + A_{1i} - Y_{1i} + R_{1}^{\alpha}$$
(14a) $$A_{\beta k} = \frac{Y_{\beta k}}{1 - B_{\beta k}} = A_{\beta k, \text{dir}} + R_{\alpha j} + R_{\alpha}^* = A_{\beta k, \text{dir}} + A_{\alpha j} \cdot B_{\alpha j} + R_{\alpha}^* \quad (14b)$$ $$A_{f} = \frac{Y_{f}}{1 - B_{f,soll}} = A_{f,dir} + R_{\beta k} + R_{\beta}^{*} = A_{f,dir} + A_{\beta k} + R_{\beta}^{*}$$ (14c) Damit erhält man die partiellen Ableitungen der Angebote nach \mathbf{n}_{1i} zu $$\frac{\partial A_{\alpha j}}{\partial n_{1i}} = -\frac{\partial Y_{1i}}{\partial n_{1j}} \tag{15a}$$ $$\frac{\partial A_{\beta k}}{\partial n_{1i}} = -B_{\alpha j} \cdot \frac{\partial Y_{1i}}{\partial n_{1i}}$$ (15b) $$\frac{\partial A_{f}}{\partial n_{1i}} = -B_{\alpha j} \cdot B_{\beta k} \frac{\partial Y_{1i}}{\partial n_{1i}}$$ (15c) (16) Mit den Gleichungen (14) und (15) erhält man aus Gleichung (13) $$\frac{\partial Y_{1i}}{\partial n_{1i}} \cdot \left[c_{\alpha j} \frac{1 - B_{\alpha j}}{\partial Y_{\alpha j}} + c_{\beta k} \frac{B_{\alpha j} (1 - B_{\beta k})}{\partial R_{\beta k}} + c_{f} \frac{B_{\alpha j} B_{\beta k} (1 - B_{f,soll})}{\partial R_{f}} \right] = c_{1i}$$ Nun können die Differentialquotienten $\partial Y/\partial n$ wieder durch die Differenzenquotienten $\Delta Y/\Delta n$ ersetzt werden. Weiter wird auf Δn =1 normiert. Mit den nach Abschnitt III.5 definierten Kostenverhältnissen $$P_{f/1i} = \frac{c_f}{c_{1i}}; \quad P_{f/\alpha j} = \frac{c_f}{c_{\alpha j}}; \quad P_{f/\beta k} = \frac{c_f}{c_{\beta k}}$$ (17) ergibt sich dann aus Gleichungen (16) und (17) $$\Delta Y_{1i} = \frac{\Delta Y_{f}}{P_{f/1i} \left[\frac{1 - B_{\alpha j}}{P_{f/\alpha j} \frac{\Delta Y_{\alpha j}}{\Delta Y_{f}}} + \frac{B_{\alpha j} (1 - B_{\beta k})}{P_{f/\beta k} \frac{\Delta Y_{\beta k}}{\Delta Y_{f}}} + B_{\alpha j} B_{\beta k} (1 - B_{f}) \right]}$$ (18) In der Praxis ist der vorgeschriebene Verlust B $_{f,soll} \ll 1$, z.B. B $_{f,soll} = 1\%$. Damit ergibt sich aus Gleichung (18) mit Gleichung (10) das resultierende Kostenverhältnis P zwischen dem betrachteten 1. Ql-Bündel Nr. i und den nachfolgend abgesuchten Bündeln zu $$P = P_{f/1i} \left[\frac{1 - B_{\alpha j}}{P_{f/\alpha j} \frac{\Delta Y_{\alpha j}}{\Delta Y_{f}}} + \frac{B_{\alpha j} (1 - B_{\beta k})}{P_{f/\beta k} \frac{\Delta Y_{\beta k}}{\Delta Y_{f}}} + B_{\alpha j} B_{\beta k} \right]$$ (19) Um eine iterative Ermittlung der genauen optimalen Werte der Überlaufwahrscheinlichkeiten $B_{\alpha,j}$ und $B_{\beta k}$ zu vermeiden, aber dennoch eine hohe und wirtschaftliche Ausnutzung der Folge-Bündel sicherzustellen, schreibt man eine konstante Überlaufwahrscheinlichkeit $B_{\alpha,j}$ = $B_{\beta k}$ = 20% vor. Damit ergibt sich aus Gleichung (19) $$P = P_{f/1i} \left[\frac{0,8}{P_{f/\alpha,j}} + \frac{0,16}{\frac{\Delta Y_{\alpha,j}}{\Delta Y_{f}}} + \frac{0,04}{\frac{\Delta Y_{\beta k}}{\Delta Y_{f}}} + 0,04 \right]$$ (20) Da $\frac{\Delta Y_{\alpha,j}}{\Delta Y_{f}} \approx \frac{\Delta Y_{\beta k}}{\Delta Y_{f}} \approx 1$ eine zulässige Näherung darstellt, erhält man schließlich $$P \approx P_{f/1i} \left[\frac{0.8}{P_{f/\alpha j}} + \frac{0.16}{P_{f/\beta k}} + 0.04 \right] = P_{f/1i} \cdot C$$ (21) Die Gleichung (21) wurde in Abschnitt III.5.3 angegeben; die Werte von C = $f(P_{f/\alpha}, P_{f/\beta})$ können dort aus Tabelle III.2 entnommen werden. #### 2.2 Zweifachüberlauf Dieser Fall ist bereits im allgemeinem Fall des Dreifachüberlaufs enthalten, falls man $n_{\beta k}$ =0 setzt und damit $B_{\beta k}$ = 1 erhält. Hier besteht das System also nur aus 1. Ql-Bündeln, Folge-Bündeln α und dem Letztweg-Bündel. Aus Gleichung (19) erhält man $$P = P_{f/1i} \left[\frac{1 - B_{\alpha j}}{P_{f/\alpha j} \Delta Y_{\alpha j}} + B_{\alpha j} \right]$$ (22) Mit denselben Voraussetzungen wie bei Dreifachüberlauf erhält man aus Gleichung (22) das Kostenverhältnis P für Zweifachüberlauf zu $$P = P_{f/1i} \left[\frac{0.8}{P_{f/\alpha,i}} + 0.2 \right]$$ (23) Die Werte von P = $f(P_{f/1}, P_{f/\alpha})$ können der Tabelle III.1 in Abschnitt III.5.2 entnommen werden. ## 3. Bemerkungen zur Belastungszunahme ΔY_{f} Der Berechnung der Tabelle 3 (1. Ql-Bündel) liegen die Belastungszunahmen $\Delta Y_{\hat{\Gamma}}$ des Letztweg-Bündels zugrunde, die sich bei einem vorgeschriebenen Verlust $B_{\hat{\Gamma}}$ ergeben. Schreibt man einen anderen Wert $B_{f,soll}$ vor (z.B. $B_{f,soll}$ =0,5%) dann ergeben sich andere Werte für ΔY_f . Für diese Werte könnte man eine besondere Tabelle berechnen. Diese Tabelle würde dann Bündelgrößen n_1 ergeben, welche z.B. für $B_{f,soll}$ =0,5% etwas größer sind. Die Leitungszahlen der Folge-Bündel und des Letztweg-Bündels würden damit etwas kleiner. Umfangreiche numerische Untersuchungen haben jedoch gezeigt, daß sich die Gesamtkosten der zu bemessenden Leitungsbündel durch derartige Änderungen von $\mathbf{B_{f,soll}}$ praktisch nicht ändern. Der Einfluß von $\mathbf{B_{f}}$ ist sicher kleiner als die unvermeidbare Ungenauigkeit der Kostenverhältnisse $\mathbf{P_{f/h}}$. Deshalb darf Tabelle 3 auch bei $B_{f,soll} + 1$ % verwendet werden. ## TABELLE 1 Bestimmung der Leitungszahl n eines Bündels als Funktion des angebotenen Zufallsverkehrs A, der Erreichbarkeit k und der Verlustwahrscheinlichkeit B ## TABLE 1 Determination of the number of trunks n as a function of the offered random traffic A, the accessibility k and the probability of loss B ## Parameter: - a) Probability of Loss Verlustwahrscheinlichkeit - b) Accessibility Erreichbarkeit - c) Number of Trunks Leitungszahl - How to use the table - Ablesemethode | | A in Erl B = 2.0 | 0% | |------|--------------------|----| | n k | 4 · · k · · · · · | n | | 1 | | 1 | | | | ۰ | | | ↓ | • | | n | A | • | | | , | • | | | | • | | | | • | | 1100 | | • | - B = 0.1 %, 0.2 %, 0.5 %, 1.0 %, 2.0 %, 3.0 % 5.0 %, 10.0 %, 20.0 %, 30.0 %. 50.0 % - k = 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 19, 20, 22, 25, 30, 35, 40, 50, 60, 70, 90, 110, k=n - n = 1, 2, ... 100, 102, ... 250, 300, 350, 400, 500, ... 900, 1100 # Contents: Inhalt: | В | | Table | |------|---|-------| | 0.1 | % | 1-02 | | 0.2 | % | 06 | | 0.5 | % | 10 | | 1.0 | % | 14 | | 2.0 | % | 18 | | 3.0 | % | 22 | | 5.0 | % | 26 | | 10.0 | % | 30 | | 20.0 | % | 34 | | 30.0 | % | 38 | | 50.0 | % | 42 | A in Erl B = 0.1 % | Ľ
K | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 36 | 35 | 46 | 56 | 65 | 76 | 98 | 110 | k=n | n | |----------------------------|-----------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|----|----|----|-----|--------------------------------------|----------------------------| | 1
2
3
4
5 | 0,44
0,61 | 0, 76 | 0,00
0,05
0,19
0,44
0,76 | 1
2
3
4
5 | | 6
7
8
9 | 0.78
0.96
1.1
1.3
1,5 | 1,0
1,2
1,5
1,7
2,0 | 1,1
1,4
1,7
2,0
2,3 | 1,6
1,9
2,3
2,6 | 2,1
2,4
2,8 | 2,6 | 3,1 | | | | | | | | | | | | | | | | 1,1
1,6
2,1
2,6
3,1 | 6
7
8
9
10 | | 11
12
13
14
15 | 1,7
1,8
2,0
2,2
2,3 | 2,2
2,5
2,7
3,0
3,2 | 2,6
3,5
3,3
3,6
3,9 | 3,0
3,3
3,7
4,1
4,4 | 3,2
3,6
4,0
4,4
4,8 | 3,4
3,8
4,2
4,7
5,1 | 3,5
4,6
4,4
4,9
5,4 | 4,2
4,7
5,2
5,7 | 6,1 | | | | | | | | | | | | | | 3,7
4,2
4,8
5,4
6,1 | 11
12
13
14
15 | | 16
17
18
19
20 | 2,5
2,7
2,8
3,0
3,1 | 3,4
3,7
3,9
4,2
4,4 | 4.2
4.5
4.8
5.1
5.4 | 4,8
5,1
5,5
5,9
6,2 | 5,2
5,6
6,5
6,9 | 5,6
6,0
6,5
6,9
7,4 | 5,8
6,8
7,3
7,8 | 6,2
6,7
7,3
7,8
8,3 | 6,6
7,2
7,7
8,3
8,9 | 7,4
8,6
8,5
9,1 | 8,7 | 9,4 | | | | | | | | | | | 6,7
7,4
8,0
8,7
9,4 | 16
17
18
19
20 | | 21
22
23
24
25 | 3,3
3,4
3,6
3,8
3,9 | 4,6
4,9
5,1
5,4
5,6 | 5,7
6,0
6,4
6,7
7,0 | 6,6
7,0
7,3
7,7
8,1 | 7,3
7,7
8,1
8,5
8,9 | 7,8
8,3
8,7
9,2
9,6 | 8,2
8,7
9,2
9,7
10,2 | 8,8
9,4
9,9
10,5
11,0 | 9,4
10,0
15,6
11,2
11,8 | 9,7
10,3
10,9
11,5
12,1 | 9,9
10,5
11,1
11,8
12,4 | 11,3
11,9 | 10.8
11.4
12.1
12.7 | 13.0 | | | | | | | | | 10,1
10,8
11,5
12,2
13,6 | 21
22
23
24
25 | | 26
27
28
29
30 | 4:1
4:2
4:4
4:5
4:7 | 5,8
6,0
6,3
6,5
6,7 | 7.3
7.6
7.9
8.2
8.5 | 8,4
8,8
9,1
9,5
9,9 | 9,4
9,8
15,2
15,6
11,5 | 10,1
10,5
11,0
11,5
11,9 | 10,7
11,2
11,7
12,2
12,6 | 12,6 | 13,5
14,1 | 13,3 | 13,6
13,6
14,3
14,9
15,5 | 13,1
13,8
14,4
15,1
15,7 | 13,4
14,0
14,7
15,3
16,0 | 13,6
14,3
14,9
15,6
16,3 | 16,7 | | | | | | | | 13,7
14,4
15,2
15,9
16,7 | 26
27
28
29
30 | | 31
32
33
34
35 | 4,8
5,0
5,2
5,3
5,5 | 6,9
7,2
7,4
7,6
7,8 | | 10,2
10,6
10,9
11,3
11,6 | 11,4
11,8
12,2
12,6
13,6 | 12,4
12,8
13,3
13,7
14,2 | 13,1
13,6
14,1
14,6
15,1 | 14,8
14,8
15,4
15,9
16,5 | 17,1 | | 16,2
16,8
17,5
18,1
18,8 | 17,6
17,7 | 16,6
17,3
17,9
18,6
19,3 | 17,6
17,6
18,3
19,6 |
17,4
18,1
18,8
19,5
20,2 | 20,5 | | | | | | | 17,4
18,2
19,6
19,7
26,5 | 31
32
33
34
35 | | 36
37
38
39
40 | 5,6
5,8
5,9
6,1
6,3 | | 10,5
10,8 | 12,0
12,4
12,7
13,1
13,4 | 13,4
13,9
14,3
14,7
15,1 | 14,6
15,1
15,5
16,0
16,4 | 15,6
16,1
16,6
17,1
17,5 | | 18,4
19,0
19,6
20,2
20,8 | 19.6
19.6
20.2
20.9
21.5 | 19,4
20,1
20,7
21,4
22,1 | 19,6
20,3
20,9
21,6
22,3 | 20,0
20,6
21,3
22,0
22,7 | 20,4
21,0
21,7
22,4
23,1 | 20,9
21,6
22,3
23,6
23,7 | 21,2
21,9
22,7
23,4
24,1 | 24,4 | | | | | | 21,3
22,1
22,9
23,7
24,4 | 36
37
38
39
40 | | 41
42
43
44
45 | 6,4
6,6
6,7
6,9
7,0 | 9,4 | 11.7
11.9
12.2
12.5
12.8 | 14.1 | 15,5
15,9
16,3
16,7 | 16.9
17.3
17.8
18.2
18.7 | 18,5
19,5
19,5
20,5 | 19,8
20,3
25,9
21,4
22,0 | 21,4
22,0
22,6
23,3
23,9 | 22,2
22,8
23,4
24,1
24,7 | 22,7
23,4
24,6
24,7
25,4 | 22,9
23,6
24,3
25,6 | 23,3
24,6
24,7
25,4
26,1 | 23,8
24,5
25,2
25,9
26,6 | 24,4
25,1
25,8
26,6
27,3 | 24,8
25,6
26,3
27,6
27,8 | 25,2
25,9
26,7
27,4
28,1 | | | | | | 25,2
26,0
26,8
27,6
28,4 | 41
42
43
44
45 | | 46
47
48
49
50 | 7:4
7:5
7:7 | 11,0 | 13,4
13,6
13,9 | 16,5 | 17,5
17,9
18.3
18,7 | 26,4 | 20,5
20,9
21,4
21,9
22,4 | | 25,1
25,7
26,3 | 27.3 | 26,7
27,4
28,0 | 27,7
28,3 | | 27,3
28,0
28,7
29,4
30,2 | | | 28,9
29,6
30,4
31,1
31,9 | 32,5 | | | | | 29,3
30,1
30,9
31,7
32,5 | 46
47
48
49
50 | | U K | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 66 | 76 | 96 | Ĩ16 | k=n | n | |-----------------------------|-------------|--------------------------------------|-----------------------------| | 50 | 7,8 | 11.2 | 14,2 | 16,9 | 19,1 | 26,9 | 22,4 | 24,7 | 27.0 | 27,9 | 28,7 | 29,0 | 29,5 | 30,2 | 30,9 | 31,4 | 31,9 | 32,5 | | | | | 32,5 | 50 | | 51
52
53
54
55 | 8,5
3,1
8,3
9,4
8,6 | | 14,5
14,8
15,1
15,4
15,6 | 17,5
17,9
18,2 | 19,5
19,9
20,3
20,6
21,0 | 21,8
22,2
22,7 | 22,9
23,4
23,8
24,3
24,8 | 25,3
25,8
26,4
26,9
27,4 | 28,2
28,8
29,4 | 28,6
29,2
29,9
30,5
31,2 | 29,4
30,0
30,7
31,4
32,1 | 30,4
31,1 | 30,2
30,9
31,6
32,3
33,0 | 30,9
31,6
32,3
33,0
33,7 | 31,6
32,4
33,1
33,8
34,6 | 32,9
33,7
34,4 | 32,6
33,4
34,1
34,9
35,7 | 34,0 | | | | | 33,3
34,2
35,6
35,8
36,6 | 51
52
53
54
55 | | 56
57
58
59
60 | 8,8
8,9
9,1
9,2
9,4 | 12,5
12,8
13,0
13,2
13,4 | 16,2
16,5
16,8 | 19,6 | 21,4
21,8
22,2
22,6
23,0 | 23,5
24,0
24,4
24,9
25,3 | 25,3
25,8
26,2
26,7
27,2 | 29,6
28,5
29,1
29,6
30,2 | 31,9
32,5 | 31,8
32,5
33,1
33,8
34,4 | | 33,1
33,8
34,5
35,2
35,8 | 33,7
34,4
35,1
35,8
36,5 | 34,4
35,2
35,9
36,6
37,3 | 35,3
36,1
36,8
37,5
38,3 | 35,9
36,7
37,4
38,2
38,9 | 36,4
37,2
37,9
38,7
39,5 | 37,1
37,9
38,7
39,5
40,2 | 40,8 | | | | 37,5
38,3
39,1
40,0
40,8 | 56
57
58
59
60 | | 61
62
63
64
65 | | 13,6
13,9
14,1
14,3
14,5 | 17,3
17,6
17,9
18,2
18,5 | 20,6
20,9
21,3
21,6
21,9 | 23,4
23,8
24,2
24,6
24,9 | 25,7
26,2
26,6
27,0
27,5 | 27,7
28,2
28,6
29,1
29,6 | 31,3
31,3
31,8
32,4
32,9 | 33,7
34,4
35,0
35,6
36,2 | 35,1
35,7
36,4
37,6
37,7 | 36,1
36,8
37,5
38,1
38,8 | 37,2
37,9 | 37,2
37,9
38,6
39,3
40,1 | 38,0
38,8
39,5
40,2
45,9 | 39,6
39,8
40,5
41,3
42,6 | 39,7
46,5
41,2
42,6
42,7 | 40,2
41,0
41,8
42,5
43,3 | 41,0
41,8
42,6
43,4
44,1 | 41,6
42,4
43,2
44,0
44,7 | | | | 41,6
42,5
43,3
44,2
45,0 | 61
62
63
64
65 | | 66
67
68
69
70 | 10,5
10,6
10,8 | 15.0 | 18,8
19,6
19,3
19,6
19,9 | 22,6
22,9
23,3 | 26,1 | 27,9
28,3
28,8
29,2
29,6 | 30,1
30,5
31,0
31,5
32,0 | 33,4
34,0
34,5
35,1
35,6 | 36,8
37,4
38,1
38,7
39,3 | 39,6 | 40,8
41,5 | 40,0
40,7
41,3
42,0
42,7 | 40,8
41,5
42,2
42,9
43,6 | 41,7
42,4
43,1
43,9
44,6 | 42,7
43,5
44,2
45,0
45,7 | 45,6 | 44,1
44,9
45,6
46,4
47,2 | 44,9
45,7
46,5
47,3
48,1 | 45,5
46,3
47,1
47,9
48,7 | 49,2 | | | 45,8
46,7
47,5
48,4
49,2 | 66
67
68
69
70 | | 71
72
73
74
75 | 11.3 | 15,9
16,1
16,3
16,6
16,8 | 20.2
20.5
20.8
21.0
21.3 | 24,0
24,3
24,6
25,0
25,3 | 27,6
28,5
28,4 | 36,1
36,5
36,9
31,4
31,8 | 32,4
32,9
33,4
33,9
34,3 | 36,1
36,7
37,2
37,8
38,3 | 39,9
40,5
41,1
41,7
42,4 | 41,6
42,2
42,9
43,6
44,2 | | 45,5 | 44,3
45,0
45,7
46,4
47,1 | 45,3
46,6
46,8
47.5
48,2 | 46,5
47,3
48,0
48,8
49,5 | 47,3
48,1
48,9
49,6
56,4 | | 48,9
49,7
50,5
51,2
52,0 | 49,5
50,3
51,1
51,9
52,7 | 50,0
50,9
51,7
52,5
53,3 | | | 50,1
50,9
51,8
52,7
53,5 | 71
72
73
74
75 | | 76
77
78
79
80 | 12.0
12.2 | 17,0
17,2
17,4
17,7
17,9 | 21,6
21,9
22,2
22,5
22,7 | 25,6
26,0
26,3
26,7
27,0 | 29,6
29,9
30,3 | 32,6 | 34,8
35,3
35,7
36,2
36,7 | 38,8
39,4
39,9
45,5
41,0 | | 44,9
45,5
46,2
46,8
47,5 | 47,0
47,6
48,3 | 46,9
47,6
48,2
48,9
49,6 | 49,3
50,0 | 49.7
50.4
51.2 | 50,3
51,0
51,8
52,5
53,3 | 52,0
52,7
53,5 | | 52,8
53,6
54,4
55,2
56,0 | 53,5
54,3
55,1
56,0
56,8 | 54,1
54,9
55,7
56,5
57,3 | | | 54,4
55,2
56,1
56,9
57,8 | 76
77
78
79
86 | | 81
82
83
84
85 | 13.0
13.1 | 18,3 | 23,6
23,6
23,9
24,2 | 27,3
27,7
28,0
28,3
28,7 | 31,5
31,9
32,2 | 35,6 | | 41,5
42,1
42,6
43,1
43,7 | 46,0
46,7
47,3
47,9
48,5 | 48,1
48,8
49,4
50,1
50,7 | 50,4
51,0
51,7 | 50,3
51,0
51,7
52,4
53,1 | 52,1
52,8
53,5 | 53,4
54,1
54,8 | 54,1
54,8
55,6
56,3
57,1 | 56,6 | 56,6
57,3
58,1 | 56,8
57,6
58,4
59,2
60,0 | 58,4
59,2 | 58,2
59,0
59,8
60,6
61,4 | | | 58,7
59,5
60,4
61,3
62,1 | 81
82
83
84
85 | | 86
87
88
89
90 | 13,6
13,8
13,9 | 19,2
19,5
19,7
19,9
20,1 | 24,4
24,7
25,0
25,3
25,6 | 29,0
29,4
29,7
30,0
30,4 | 33,4
33,8
34,2 | 36,5
36,9
37,3
37,8
38,2 | 40,4
40,9 | 44,2
44,8
45,3
45,8
46,4 | 49,1
49,7
50,3
50,9
51,5 | 52,0
52,7
53,3 | 53,1
53,7
54,4
55,1
55,8 | 54,5
55,2
55,9 | 55,0
55,7
56,4
57,1
57,8 | | 57,9
58,6
59,4
60,2
60,9 | 58,9
59,7
60,5
61,3
62,0 | 60,5
61,3
62,1 | 60,8
61,6
62,4
63,3
64,1 | 62,4
63,3
64,1 | 63,9 | 66,5 | | 63,6
63,9
64,7
65,6
66,5 | 86
87
88
89
96 | | 91
92
93
94
95 | 14,2
14,4
14,5
14,7
14,9 | 20,6
25,8 | 26,4
26,7 | 31,4
31,7 | 35,3
35,7 | 38,6
39,0
39,4
39,9
40,3 | 42,3
42,7
43,2 | 46,9
47,4
48,0
48,5
49,0 | 52,2
52,8
53,4
54,0
54,6 | 54,6
55,2
55,9
56,5
57,2 | 57,8
58,5 | 57,9 | | 61.5
62.2 | 61,7
62,4
63,2
64,0
64,7 | 62,8
63,6
64,4
65,2
66,5 | 65,3 | 64,9
65,7
66,5
67,3
68,1 | | 66,3
67,2
68,0
68,8
69,6 | 67,3
68,1
69,0
69,8
70,6 | | 67,4
68,2
69,1
70,0
70,9 | 91
92
93
94
95 | | 96
97
98
99
100 | 15,0
15,2
15,3
15,5
15,6 | 21,7
21,9
22,1 | 27,6
27,9
28,1 | 32,7
33,1
33,4 | 37,2
37,6 | 41,6
42,0 | 44,1
44,6
45,0
45,5
45,9 | 59,1
58,6
51,1 | 56,4
57,0 | 58,5
59,1
59,8 | 60,5
61,2
61,9 | 60,7
61,4
62,1
62,8
63,5 | 62,8
63,5
64,2 | 64,4
65,2
65,9 | 65,5
66,3
67,6
67,8
68,6 | | 68,4
69,2
70,0 | 70,5
71,3 | 70,6
71,4 | 70,5
71,3
72,1
73,0
73,8 | 71,5
72,3
73,2
74,6
74,8 | | 71.7
72.6
73.5
74.4
75.2 | 96
97
98
99
100 | | | | One or second desired | | | | | | | | CONTRACTOR OF THE PARTY P | T | | | | History) Activities | T | | | | The second se | · | Čarovino (1918
11900) | | 1 | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|--------------------------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|---|---|--------------------------------------|--|---------------------------------| | n k | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 36 | 35 | 46 | 50 | 65 | 76 | 96 | 116 | k = n | U | | 100 | 15,6 | 22,4 | 28.4 | 33,7 | 38,4 | 42,4 | 45,9 | 51,7 | 57,6 | 60,4 | 62,6 | 63,5 | 64,9 | 66,6 | 68,6 | 69,9 | 75,8 | 72,2 | 73,1 | 73,8 | 74.8 | | 75,2 | 100 | | 102
104
106
108
110 | 16,3
16,6
16,9 | 22,8
23,3
23,7
24,2
24,6 | 29.0
29.6
30.1
30.7
31.3 | 34,4
35,1
35,8
36,4
37,1 | 39,1
39,9
46,7
41,4
42,2 | 1 | 46,9
47,8
48,7
49,6
50,5 | 52,7
53,8
54,8
55,9
56,9 | | 63,5
64,3
65,6 | 65,3
66,6
68,6 | 67,6 | 67.8
69.2
75.7 | 69.6
71.1 | 71,6
73,2 | 73,0
74,6
76,2 | 74,0
75.6
77.2 | 77,6
78,7 | 78.0
79.7 | 75.4
77.5
78.8
80.4
82.1 | | 84,1 | 77,6
78,8
86,5
82,3
84,1 | 102
104
106
108
110 | | 112
114
116
118
120 | 17:5
17:8
18:1
18:5
18:8 | 25,1
25,5
25,9
26,4
26,8 | 31,8
32,4
33,0
33,5
34,1 | 37.8
38,5
39,1
39,8
40,5 | 43,0
43,8
44,5
45,3
46,1 | | | 58,0
59,0
60,1
61,1
62,2 | 66,1
67,3
68,5 | 69,5
70,7
72,6 | 72:1
73:4
74:8 | 71:7
73:1
74:5
75:9
77:3 | 74.9
76.4
77.8 | 77.6
78.5
80.0 | 77.8
79.3
80.9
82.4
84.0 | 79,3
85,9
82,5
84,1
85,7 | 82,0
83,6
85,3 | 83,6
85,2
86,9 | 86,3
88,5 | 83,8
85,4
87,1
88,8
90,5 | 84,9
86,6
88,3
90,0
91,7 | 85,8
87,5
89,2
90,9
92,6 | 87,6
89,4
91,2 | 112
114
116
118
120 | | 122
124
126
128
130 | 19.1
19.4
19.7
20.0
20.3 | 27,3
27,7
28,2
28,6
29,1 | 34,7
35,2
35,8
36,4
37,6 | 41,2
41,8
42,5
43,2
43,9 | 46,8
47,6
48,4
49,1
49,9 | 54,3 | 56,1
57,0
57,9
58,8
59,7 | 63,2
64,2
65,3
66,3
67,4 | 72.1
73.3
74.5 | 78,4 | 77,5
78,8
80,2
81,5
82,8 | 81.4
82.8 | 82:1
83,5
84,9 | 84,4
85,9
87,4 | 85,5
87,1
88,6
90,2
91,7 | 87,2
88,8
90,4
92,0
93,6 | 96,1
91,7
93,3 | 91.8
93.5
95.1 | 93,0 | 92,1
93,8
95,5
97,2
98,9 | 93,4
95,1
96,8
98,5
100,2 | 96,6
97,7
99,4 | 94,7
96,5
98,3
100,1
101,9 | 122
124
126
128
130 | | 132
134
136
138
140 | 20,6
21,0
21,3
21,6
21,9 | 29,5
30,0
30,4
30,9
31,3 | 37,5
38,1
38,7
39,2
39,8 | 44,5
45,2
45,9
46,6
47,2 | 50,7
51,4
52,2
53,0
53,7 | | 60,7
61,6
62,5
63,4
64,3 | 68,4
69,4
75,5
71,5
72,5 | 76,9
78,1
79,3
80,5
81,7 | 82,3
83,6
84,8 | 85,5
86,9
88,2 | 85,5
86,9
88,3
89,6
91,0 | 87.8
89.2
90.6
92.0
93.5 | 91.8
93.3 | 93,3
94,8
96,3
97,9
99,4 | 96,8
98,4
100,0 | 98,2
99,8
101,4 | 160,1
161,7
163,4 | 101:3
103:0
104:7 | 102.3
104.0
105.6 | 101.9
103.6
105.3
107.0
108.7 | 104,6
106,3
108,0 | 105,5
107,3
109,1 | 132
134
136
138
140 | | 142
144
146
148
150 | 22,2
22,5
22,8
23,1
23,5 | 32,2 | 40,4
40,9
41,5
42,1
42,6 | 47.9
48.6
49.3
49.9
50.6 | 54,5
55,3
56,6
56,8
57,6 | 65,2
61,1
61,9
62,8
63,6 | 65,2
66,2
67,1
68,0
68,9 | 73,6
74,6
75,6
76,7
77,7 | | 89,9 | 93,6 | 93,8
95,1
96,5 | 96,3
97,7
99,1 | 99.2
100.7
102.2 | 102.5
104.1
105.6 | 104,7
106,3
107,9 | 106,3
107,9
109,5 | 168,4
110.6
111.7 | 109.7
111.4
113.1 | 110,7
112,4
114,1 | 110.5
112.2
113.9
115.6
117.3 | 113,2
114,9 | 114.5
116.3 | 142
144
146
148
150 | | 152
154
156
158
160 | 23,8
24,1
24,4
24,7
25,5 | 34,0
34,4
34,9
35,3
35,8 | 43,2
43,8
44,3
44,9
45,5 | 51,3
52,6
52,6
53,3
54,6 | 58,3
59,1
59,9
65,6
61,4 | 64.5
65.3
66.2
67.0
67.9 | 69,8
70,8
71,7
72,6
73,5 | 78,8
79,8
85,8
81,9
82,9 | 88,8
95,5
91,2
92,3
93,5 | 97,5 | 98,9
100,3
101,6 | 100,6 | 103,4
104,8
106,2 | 106.6
108.1
109.6 | 110,3
111,9
113,4 | 112,7
114,3
115,9 | 114.4
116.0
117.7 | 116.7
118.4
120.0 | 118.2
119.9
121.5 | 119,2
120,9 | 119,1
120,8
122,5
124,2
126,0 | 121,9
123,6
125,3 | 123,6
125,4
127.2 | 152
154
156
158
160 | | 162
164
166
168
170 | 25,3
25,6
26,0
26,3
26,6 | 36,2
36,7
37,1
37,6
38,0 | 46:1
46:6
47:2
47:8
48:3 | 54,7
55,3
56,5
56,7
57,4 | 62,2
62,9
63,7
64,5
65,2 | 68,7
69,6
70,4
71,3
72,1 | 74,4
75,4
76,3
77,2
78,1 | 83,9
85,0
86,0
87,0
88,1 | 95.8
97.6
98.2 | 101,3
102,6
103,9 | 105,6
106,9
108,3 | 107.4
108.8
110.1 | 110,5
111,9
113,3 | 114.0
115.5
117.0 | 118,1
119,6
121,2 | 125,7
122,3
123,9 | 122,6
124,2
125,8 | 125.0
126.7
128.4 | 126.6
128.3
130.6 | 127,8
129,5
131,2 | 127,7
129,4
131,1
132,9
134,6 | 130.6
132.3
134.1 | 132.7
134.5
136.3 | 162
164
166
168
170 | | 172
174
176
178
180 | 26:9
27:2
27:5
27:8
28:2 | | 48,9
49,5
50,0
50,6
51,2 | 58,0
58,7
59,4
60,1
60,7 | 66,0
66,8
67,5
68,3
69,1 | 73.8
74.7
75.5 | 79,0
79,9
80,9
81,8
82,7 | 95,2
91,2
92,2 | 101.7 | 107.6
108.8
110.1 | 112,3
113,6
114,9 | 114,2
115,6
116,9 | 117,5
119,0
120,4 | 121.4
122.9
124.4 | 125,8
127,4
128,9 | 128,7
130,3
131,9 | 130,7
132.4
134.0 | 133,4
135,1
136,8 | 135,1
136,8
138,5 | 136,3
138,1
139,8 | 136,3
138,1
139,8
141,5
143,3 | 139,3
141,6
142,8 | 141,8
143,6
145,4 | 172
174
176
178
186 | | 182
184
186
188
190 | 28,5
28,8
29,1
29,4
29,7 | 40,7
41,2
41,6
42,1
42,5 | 51,7
52:3
52:9
53:4
54:0 | 61,4
62,1
62,8
63,4
64,1 | 69,8
76,6
71,4
72,2
72,9 | 77,2
78,6
78,9
79,7
86,6 | 83,6
84,5
85,5
86,4
87,3 | 95,3
96,4
97,4 | 107.5
108.7
109.8 | 113.8
115.0
116.2 | 118,9
125,2
121,5 | 121:0
122:4
123:7 | 124.6
126.0
127.4 | 128,8
130,3
131,7 | 133,6
135,1
136,7 | 136,7
138,3
139,9 | 138,9
140,6
142,2 | 141,8
143.5
145.2 | 143,6
145,3
147,6 | 144,9 | 145.0
146.8
148.5
150.2
152.0 | 148.0
149.8
151.5 | 156,9
152,8
154,6 | 182
184
186
188
190 | | 192
194
196
198
200 | 30.0
30.3
30.7
31.0
31.3 | 42,9
43,4
43.8
44,3
44,7 | 54,6
55:1
55,7
56,3
56,9 | 65,5
66,1
66,8 | 73,7
74,5
75,2
76,0
76,8 | 83,1 | 89,1
90,1
91,0 | 100,5
101,6
102,6 | 113.4
114.5
115.7 | 120.5
121.2
122.4 | 125,5
126,7
128,0 | 127.8
129.1
130.5 | 131,6
133,0
134,4 | 136.1
137.6
139.1 | 141.3 | 144,7
146,3
147,9 | 147.1
148.8
150.4 | 150,2
151,9
153,6 | 152,2
153,9
155,6 | 153,6
155,3
157,0 | 153,7
155,5
157,2
159,0
160,7 | 156,8
158,6
166,3 | 160,1
161,9
163,8 | 192
194
196
198
200 | A = offered random traffic B = probability of loss | | | · | | . Children and the control of co | | 7 | | Marie Ma | *************************************** | AND THE PARTY OF T | - | Commence of the second | | | Name of the last o | | and an extension of the second | | | | | | | | | |--------------------------------------|----------------------|--------------------------------------|------------------------------
--|--------------------------------------|----------------------------------|----------------------------------|--|---|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|---------------------------------|-------| | n k | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 36 | 35 | 40 | 56 | 68 | 76 | 96 | 110 | k=n | n | • | | 200 | 31,3 | 44,7 | 56,9 | 67,5 | 76,8 | 84,8 | 91,9 | 103,6 | 116.9 | 123.7 | 129.3 | 131,8 | 135,8 | 140,6 | 146,5 | 149,6 | 152,0 | 155,3 | 157:3 | 158.7 | 166.7 | 162.5 | 165,6 | 200 | - | | 202
204
206
208
210 | 31,9
32,2
32,5 | 45,2
45,6
46,1
46,5
47,0 | 58,6
58,6
59,1 | 68,8
69,5
70,2 | 78,3
79,1
79,8 | 86,5
87,4
88,2 | 94,7 | 106,7 | 120.4 | 127.4 | 133,2 | 134,5 | 140,1 | 145.5 | 149,1 | 152,8 | 155.3 | 158.6 | 160.7 | 162.2 | 164,2 | 165.6 | 3 167,5
5 169,3
4 171,2
1 173,6
9 174,8 | 252
254
256
258
215 | | | 212
214
216
218
220 | 33,5
33,8
34,1 | 47,4
47,9
48,3
48,8
49,2 | 60,8
61,4
62,0 | 71,5
72,2
72,9
73,6
74,2 | 82,1
82,9
83,7 | 91,6 | 99,2 | 111,9 | 126,2 | 133,6 | 139,7 | 142,4 | 147,1 | 152,3 | 158,4 | 162.4 | 165,2 | 167.1 | 169.3 | 170.8 | 173.0 | 176,2 | 7 176,7
178,5
2 180,4
3 182,2
7 184,1 | 212
214
216
218
220 | | | 222
224
226
228
230 | 35,0
35,3
35,7 | 49,7
50,1
50,6
51,0
51,4 | 63.7
64.2
64.8 | 74,9
75,6
76,3
76,9
77,6 | 86,0
86,7
87,5 | 95,9 | 103,8 | 117.1 | 132,1 | 139.7 | 146,1 | 149,0 | 153,9 | 159,6 | 166,1 | 170.4 | 171.7 | 175.5 | 177.9 | 179,5 | 181.7 | 183.3 | 3 185,9
3 187,8
5 189,6
3 191,5
5 193,3 | 222
224
226
228
236 | - | | 232
234
236
238
240 | 36,6
36,9 | 51,9
52,3
52,8
53,2
53,7 | 66.5
67.1
67.7 | | 89,8
96,6
91.3 | 100,1 | 108,4 | 122,3 | 137,9 | 145,9 | 152,6 | 155.5 | 100,7 | 166,9 | 172,3 | 176,8 | 180,0 | 184.0 | 186.5 | 188.2 | 190.5 | 192,5 | 195,2
197,1
198,9
200,8 | 232
234
236
238
240 | | | 242
244
246
248
250
1 | 38,5
38,8
39,1 | 55.0
55.5
55.9 | 68,8
69,4
69,9
70,5 | 81,7
82,3
83,0
83,7 | 92,9
93,6
94,4
95,2
95,9 | 102,6
103,5
104,3
105,2 | 111,2
112,1
113,0
113,9 | 125,4
126,4
127,5
128,5 | 141,4
142,6
143,7
144,9 | 149.6
150.9
152.1
153.4 | 156,5
157,8
159,1
160,4 | 159,5
160,8
162,1
163,5 | 164,8
166,2
167,6
168,9 | 171,3
172,8
174,2
175,7 | 178,5
180,6
181,6
183,1 | 183,2
184,8
186,4
188,0 | 186,5
188,2
189,8
191,5 | 195,7
192,4
194,1
195,8 | 193,4
195,1
196,8
198,3 | 195,2
196,9
198,6
200,4 | 197.6
199.3
201.1
202.9 | 199;2
201;6
202;6
204;5 | 2 204,5
5 206,3
6 208,2
7 210,1
8 211,9
8 0,935 | 242
244
246
248
250 | - | | 300
1 | 46,9 | 67,1 | 85,3 | 101.2 | 115.1 | 127.2 | 137.8 | 155.4 | 475.3 | 185.5 | 194.8 | 107.7 | 284 7 | 212 4 | 227 4 | 226 7 | | | | | | | 258,6 | 300 | | | 350
1 | 54,7 | 78,3 | 99,5 | 118.1 | 134.3 | 148.5 | 166.8 | 184.3 | 264.5 | 216.4 | 226.3 | 978 7 | 270 4 | 240 6 | 046 7 | 240 5 | | | | | | |
305.7 | 350
1 | | | 400
1 | 62,6 | 89,5 | 113.7 | 135.6 | 153.5 | 169.7 | 183.8 | 267.3 | 233.7 | 247.3 | 258.7 | 267 6 | 272 5 | 283 4 | 207 5 | 700 4 | | | | | + | | 353,6 | 400 | - | | 500
1 | 78,2 | 111.8 | 142,1 | 168,7 | 191,9 | 212.1 | 229.7 | 259.1 | 292.2 | 369.9 | 323.3 | 320.5 | 74m.6 | 354.3 | 771 0 | 30E 4 | 705 7 | 445 0 | | | | | 3 448,2 | 500
1 | | | 600
1 | 93,8 | 134,2 | 170,6 | 202,5 | 230,3 | 254.5 | 275.7 | 316.9 | 356.6 | 371.6 | 388.6 | 305.4 | 468.7 | 425.2 | 446 7 | 460 4 | 474 4 | 400 = | | | | | 543.9 | 600 | | | 700
1 | 109,5 | 156,6 | 199,0 | 236,2 | 268,6 | 296.9 | 321,6 | 362.7 | 469.6 | 432.8 | 452.7 | 461.4 | 476.8 | 496.6 | E25 7 | 530 4 | E E T 1 | E 74 9 | ECO 0 | F00 F | | | 640,1 | 760 | | | 800
1 | 1,25,1 | 179.0 | 227.4 | 270,0 | 307.0 | 339.3 | 367.6 | 414.5 | 467.4 | 494.7 | 517.3 | E27.5 | 544.0 | 566 O | EOE 4 | 644 4 | | | | | | | 736,6 | 800 | - | | 966
1 | 140,8 | 201,3 | 255,8 | 303,7 | 345,4 | 381,7 | 413,5 | 466.3 | 525.9 | 556.5 | 582.6 | FQ7.9 | 613.4 | 637.8 | 660 4 | 60T 4 | 744 6 | 770 4 | | | | | 833,3 | 900 | | | 1100 | 172.0 | 246,1 | 312.7 | 371.2 | 422,2 | 466.6 | 565.4 | 569.9 | 649.7 | 688.9 | 711.3 | 725.4 | 740 0 | 770 E | 040 0 | 0 4 77 4 | 0.40 | | | . | | | 1028 | 1
1100
1 | Table | B = 0.2 % A = offered random trafficB = probability of lossk = accessibilityn = number of trunks A in Erl B = 0.2 % | | u k | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 35 | 35 | 4 🗇 | 50 | 65 | 76 | 90 | 110 | k=n | neuropous supposed | |-------------|----------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|--------------------------------------|------|----|----|--|-----|--------------------------------------|--------------------| | | 1
2
3
4
5 | 0,54
0,73 | 0,90 | 0,00
0,07
0,25
0,54
0,90 | | | | 6
7
8
9 | 0,94
1:1
1:4
1:6
1:8 | 1,2
1,4
1,7
2,0
2,3 | 1,3
1,6
2,0
2,3
2,6 | 1,8
2,2
2,5
2,9 | 2,3
2,7
3,1 | 2,9 | 3,4 | | | | | | | | | | | | | | And or or the community state of communit | | 1,3
1,8
2,3
2,9
3,4 | | | 1
1
1 | 12
13
14 | 2,0
2,2
2,4
2,6
2,8 | 2,6
2,8
3,1
3,4
3,7 | 3,8
3,3
3,7
4,8
4,4 | 3,3
3,7
4,1
4,5
4,9 | 3,6
4,0
4,4
4,9
5,3 | 3,7
4,2
4,7
5,1
5,6 | 3,9
4,4
4,9
5,3
5,8 | 4,6
5,2
5,7
6,2 | 6,6 | | | | | | | | | | | | | | 4,6
5,3
5,9
6,6 | | | 1
1
1 | 16
17
18
19 | 3,0
3,2
3,4
3,6
3,7 | 4,0
4,3
4,5
4,8
5,1 | 4.7
5.1
5.4
5.8
6.1 | 5,3
5,7
6,1
6,5
6,9 | 5,7
6,2
6,6
7,1
7,5 | 6,1
6,6
7,0
7,5
8,0 | 6,3
6,8
7,4
7,9
8,4 | 6,7
7,3
7,8
8,4
8,9 | 7,2
7,7
8,3
8,9
9,5 | 7,9
8,5
9,1
9,8 | 9,4 | 10.1 | | | | | | | | | | | 7,3
7,9
8,6
9,4
10,1 | | | 2
2
2 | 21
22
23
24
25 | 3,9
4,1
4,3
4,5
4,7 | 5,4
5,6
5,9
6,2
6,5 | 6,5
6,8
7,2
7,5
7,8 | 7,3
7,7
8,1
8,5
8,9 | 8,5
8,4
8,9
9,3
9,8 | 8,5
9,0
9,5
16,0
15,4 | 8,9
9,4
9,9
10,5
11,0 | 11,2 | | 11.6
12.2 | 11,2
11,9
12,5 | 12,6 | 12,2
12,8 | 13,8 | | | | | | | | | 10,8
11,5
12,3
13,0
13,8 | | | 2
2
2 | 26
27
28
29 | 4,9
5,0
5,2
5,4
5,6 | 6,7
7,0
7,2
7,5
7,7 | 9,2 | 9,3
9,7
10,1
10,5
10,9 | 10,2
10,7
11,1
11,6
12,0 | 11.4
11.9
12.4 | 12,0
12,5
13,1 | 12,9
13,5
14,6 | 13,1
13,7
14,4
15,6 | 14,1
14,8
15,4 | 14,5
15,1
15,8 | 14,6
15,2
15,9 | 14,8
15,5
16,2 | 15,1
15,8 | 17.6 | | | | | | | | 14,5
15,3
16,1
16,8
17,6 | | | 3
3
3 | 31
32
33
34
35 | 5,8
6,0
6,2
6,4
6,5 | 8,0
8,3
8,5
3,8
9,0 | 10,2
10,5
10,9 | 11,3
11,7
12,1
12,5
12,9 | 12,9 | 13,9
14,4
14,9 | 14,1
14,6
15,2
15,7
16,2 | 15,8
16,4
16,9 | 16,9
17,5
18,1 | 17.4
18.0
18.7 | 17,8
18,4
19,1 | 17,9
18,6
19,3 | 18,2
18,9 | 17,9
18,6
19,3
20,0
20,7 | 19,5
19,7
20,5 | 21,6 | | | | | | | 18,4
19,2
20,6
20,8
21,6 | | | 3
3
3 | 36
37
38
39
40 | | 9,6
9,8
10,1 | 11,9
12,2
12,5 | 14,5 | | 16,3
16,8
17,3 | | 18,7
19,3
19,8 | 20,0
20,7
21,3 | 21.3 | 21,1
21,8
22,5 | 21,3
22,0 | 22,4 | 22,8
23,5 | 22,6
23,3 | 23,0
23,8
24,5 | 25,6 | | | | Color and | | 22,4
23,2
24,0
24,8
25,6 | | | 4
4 | 41
42
43
44
45 | 8.0
8.2 | 11,4 | 13,5
13,8
14,1 | 15,2
15,6
16,0
16,4
16,8 | 17,4
17,8
18,2 | 18,8
19,2
19,7 | 19,4
19,9
20,4
20,9
21,5 | 21,6
22,2
22,7 | 23,2
23,8
24,5 | 23,3
23,9
24,6
25,3
25,9 | 24,5
25,2
25,9 | 26,1 | 25,2
25,9
26,6 | 25,6 | 26,3
27,0
27,7 | 26,7
27,5
28,2 | 26,4
27,1
27,9
28,6
29,4 | | | | | | 26,4
27,2
28,1
28,9
29,7 | | | 4
4
4 | 46
47
48
49 | 8,8
9,0
9,2 | 12.1
12.4
12.7 | 15,1
15,4
15,7 | 17,6
18,0
18,3 | 19,1
19,6
20,0
20,4
20,4 | 21,2 | 22,0
22,5
23,0
23,5 | 24,5
25,1
25,7 | 26,4
27,1
27,7 | 27,3
27,9
28,6 | 27,9
28,6
29,3 | 28,9
29,6 | 28,7
29,4
30,1 | 29,3
30,0
30,7 | 30,5
30,7
31,4 | 31,2
32,0 | 30,9
31,7
32,4 | 33,9 | | | | | 30,5
31,4
32,2
33,0
33,9 | | | nk | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 1.7 | 19 | 20 | 22 | 25 | 36 | 35 | 40 | 50 | 68 | 76 | 96 | 110 | k=n | | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------
--|--------------------------------------|-----|--------------------------------------|-----------------------------| | 5 g | 9,4 | 12,9 | 16,9 | 18,7 | 25,9 | 22,6 | 24,1 | 26,2 | 28,3 | 29,3 | 30,0 | 30.3 | 30,8 | 31,4 | 32,2 | 32,8 | 33,2 | 33,9 | | Constant de la consta | | | 33,9 | <u>n</u>
56 | | 51
52
54
55 | | 13,4
13,7
13,9 | 16.7
17.0 | 19,8 | 21,3
21,7
22,2
22,6
23,0 | 23,6
24,1
24,5 | | 26,8
27,4
28,0
28,6
29,1 | 29,6
36,3
36,9
31,6 | 30,0
30,6
31,3
32,0
32,6 | 36,7
31,4
32,1
32,8
33,5 | 31,7
31,7
32,4
33,1
33,8 | 31,5
32,3
33,0
33,7
34,4 | 32,2
32,9
33,6
34,4
35,1 | 32,9
33,7
34,4
35,2
35,9 | | 34,0
34,7
35,5
36,3
37,1 | 35,4
36,2
37,0 | | | | | 34,7
35,6
36,4
37,2
38,1 | 51
52
53
54
55 | | 56
57
58
59
60 | 10,7
10,8
11,0 | 14.7
15.0 | 18,0
18,3
18,6
18,9 | 21,3
21,7 | 23,9
24,3 | 25,5
26,0
26,4
26,9
27,4 | 27,2
27,7
28,2
28,7
29,2 | 29,7
35,3
35,9
31,5
32,0 | 32,8
33,5
34,1 | 33,3
34,0
34,7
35,3
36,0 | 34,2
34,9
35,6
36,3
37,0 | 34,5
35,2
35,9
36,6
37,3 | 35,1
35,8
36,6
37,3
38,0 | 35,8
36,6
37,3
38,6
38,8 | 36,7
37,5
38,2
39,0
39,7 | 37,3
38,1
38,9
39,6
40,4 | | 39,4 | 42,4 | | | | 38,9
39,8
40,6
41,5
42,4 | 56
57
58
59
60 | | 61
62
63
64
65 | 11.6
11.8
12.0 | 15,8
16,0
16,3
16,5
16,8 | 19.6
19.9
20.2
20.5
20.8 | 22,8
23,2
23,6
24,0
24,3 | 25,6
26,6
26,5
26,9
27,3 | 27,9
28,3
28,8
29,3
29,8 | 29,7
30,3
30,8
31,3
31,8 | 32,6
33,2
33,8
34,3
34,9 | 35,4
36,1
36,7
37,4
38,6 | 37,4
38.6 | | 38,1
38,8
39,5
40,2
40,9 | 38,7
39,5
40,2
40,9
41,6 | 39,5
40,3
41,0
41.8
42.5 | 40,5
41,3
42,0
42,8
43,5 | 41,2
42,0
42,7
43,5
44,3 | 41,7
42,5
43,3
44,1
44,9 | 42,5
43,3
44,1
44,9
45,7 | 43,2
44,6
44,8
45,6
46,4 | | | | 43,2
44,1
44,9
45,8
46,6 | 61
62
63
64
65 | | 66
67
68
69
70 | 12,5
12,7
12,9 | 17,0
17,3
17,6
17,8
18,1 | | 24,7
25,1
25,5
25,8
26,2 | 28,2
28,6
29,0 | 30,7
31,2
31,7 | 33,3 | 35,5
36,1
36,7
37,2
37,8 | 38,7
39,3
39,9
40,6
41,2 | 40,1
40,7
41,4
42,1
42,8 | 41,9 | 41,6
42,3
43,0
43,7
44,4 | 42,4
43,1
43,8
44,5
45,3 | 43,2
44,0
44,7
45,5
46,2 | 44,3
45,1
45,8
46,6
47,4 | 45,8
46,6 | 45,7
46,4
47,2
48,0
48,8 | 46,5
47,3
48,1
48,9
49,7 | 47,2
48,0
48,8
49,6
50,4 | 51,0 | | | 47,5
48,4
49,2
50,1
51,0 | 66
67
68
69
70 | | 71
72
73
74
75 | 13,5
13,7 | 18,3
18,6
18,9
19,1
19,4 | 22,8
23,1
23,4
23,7
24,0 | 26,6
26,9
27,3
27,7
28,1 | 29,8
30,3
30,7
31,1
31,5 | 32,6
33,1
33,5
34,0
34,5 | 34,9
35,4
35,9
36,4
36,9 | 38,4
39,6
39,5
46,1
46,7 | 41,9
42,5
43,2
43,8
44,5 | 43,5
44,1
44,8
45,5
46,2 | 44,7
45,4
46,1
46,8
47,5 | 45,2
45,9
46,6
47,3
48,0 | 46,0
46,7
47,4
48,2
48,9 | 47,0
47,7
48,5
49,2
50,0 | 48,1
48,9
49,7
50,4
51,2 | 49,8
50,5
51,3
52,1 | 49,6
50,4
51,2
52,0
52,8 | 50,6
51,4
52,2
53,0
53,8 | 51,2
52,1
52,9
53,7
54,5 | 51,8
52,6
53,4
54,3
55,1 | | | 51,8
52,7
53,6
54,5
55,3 | 71
72
73
74
75 | | 76
77
78
79
80 | 14,2
14,4
14,6
14,8
15,0 | 19,6
19,9
20,1
20,4
20,7 | 24,4
24,7
25,0
25,3
25,7 | 28,4
28,8
29,2
29,6
29,9 | 31,9
32,4
32,8
33,2
33,6 | 34,9
35,4
35,9
36,3
36,8 | 37,4
37,9
38,4
38,9
39,4 | 41,2
41,8
42,4
43,6
43,5 | 45,1
45,7
46,4
47,0
47,7 | 47.5
48.2 | 48,9 | 49,4 | 50,4 | 50,7
51,5
52,2
53,0
53,7 | 52,5
52,8
53,5
54,3
55,1 | 52,9
53,7
54,5
55,3
56,0 | 53,6
54,4
55,2
56,0
56,8 | 55,4
56,2 | 56,1 | 55,9
56,7
57,6
58,4
59,2 | | | 56,2
57,1
58,0
58,8
59,7 | 76
77
78
79
80 | | 81
82
83
84
85 | 15,1
15,3
15,5
15,7
15,9 | 20,9
21,2
21,4
21,7
22,0 | 26,0
26,3
26,6
26,9
27,3 | | 35,3 | | 39,9
40,4
40,9
41.5
42,0 | 44,1
44,7
45,3
45,8
46,4 | 48,3
49,6
50,2
50,9 | 50,2
50,9
51,6
52,3
52,9 | 53,8 | 52,3
53,0
53,7
54,4
55,1 | | 54,5
55,2
56,6
56,7
57,5 | 55,9
56,6
57,4
58,2
59,6 | 56,8
57,6
58,4
59,2
66,0 | 57,6
58,4
59,2
60,0
60,8 | 58,6
59,5
60,3
61,1
61,9 | | 60,0
60,9
61,7
62,5
63,4 | | | 60,6
61,5
62,4
63,2
64,1 | 81
82
83
84
85 | | 86
87
88
89
90 | 16,1
16,3
16,5
16,6
16,8 | 22,5
22,7 | 27,6
27,9
28,2
28,5
28,9 | | 36,6 | 39,6
40,0
40,5
40,9
41,4 | 42,5
43,5
44,0
44,5 | 47,6
47,5
48,1
48,7
49,2 | 51,5
52,2
52,8
53,4
54,1 | 54,3
55,0
55,6 | 55,9
56,6
57,3 | | 57,0
57,7
58,4
59,2
59,9 | 58,2
59,0
59,7
60,5
61,3 | 59,7
60,5
61,3
62,1
62,8 | 61,6 | 61,6
62,4
63,2
64,0
64,8 | 62,7
63,5
64,4
65,2
66,0 | 64,4 | 64,2
65,0
65,9
66,7
67,5 | 68,6 | | 65,0
65,9
66,8
67,7
68,6 | 86
87
88
89
90 | | 91
92
93
94
95 | 17,2
17,4
17,6 | 23,5
23,8
24,0
24,3
24,5 | 29,2
29,5
29,8
30,1
30,5 | | 38,2
38,7
39,1
39,5
39,9 | 41,9
42,3
42,8
43,2
43,7 | 45,0
45,5
46,0
46,5
47,0 | 49,8
56,4
56,9
51,5
52,1 | 54,7
55,4
56,6
56,6
57,3 | 57,0
57,7
58,3
59,0
59,7 | 58,7
59,4
60,1
60,8
61,5 | 59,4
60,1
60,9
61,6
62,3 | 60,6
61,4
62,1
62,8
63,6 | 62,0
62,8
63,5
64,3
65,0 | 63,6
64,4
65,2
66,0
66,7 | 64,8
65,6
66,3
67,1
67,9 | 65,6
66,4
67,2
68,0
68,8 | 66,8
67,6
68,5
69,3
70,1 | 67,7
68,5
69,4
70,2
71,0 | 68,4
69,2
70,0
70,9
71,7 | 69,4
70,2
71,1
71,9
72,8 | | 69,4
70,3
71,2
72,1
73,0 | 91
92
93
94
95 | | 96
97
98
99
100 | 18,1
18,3
18,5 | 25,3 | 30,8
31,1
31,4
31,7
32,1 | 36,3
36,7
37,1 | 40,4
40,8
41,2
41,6
42,0 | 44,6
45,1
45.5 | 47,5
47,9
48,4
48,9
49,4 | 53,2
53,8 | 50.8 | 61,7 | 62,9 | 63,0
63,7
64,4
65,1
65,9 | 65,8 | 67.3 | 67,5
68,3
69,1
69,9
70,7 | 1 | 76,4
71,3 | 70,9
71,8
72,6
73,4
74,2 | 72.7
73.5 | 72,6
73,4
74,2
75,1
75,9 | | | 73,9
74,8
75,7
76,6
77,5 | 96
97
98
99
100 | B = 0.2 % Table 1 - 08 A = offered random traffic B = probability of loss k = accessibility n = number of trunks A in Erl B = 0.2 % | | | 12.000 (SQUILLE VILLE) | | | and or have been all anothers to be | rana and College and Balance | | | | | | | | | #1534041404444 | _ | | - Witnesday | | - | March Control of the | | J. G. | Name of Street S | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------
--------------------------------------|--------------------------------------|-------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|---|-------------------------|---|--| | L
K | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 36 | 35 | 46 | 50 | 60 | 76 | 90 | 115 | k=n | U | | 100 | 18,7 | 25,8 | 32,1 | 37,4 | 42,0 | 46,0 | 49,4 | 54,9 | 66,5 | 63.1 | 65,5 | 65,9 | 67,2 | 68.8 | 70.7 | 71,9 | 72.9 | 74,2 | 75:2 | 75.9 | 77.6 | | 77,5 | 100 | | 102
104
106
108
110 | 19,5
19,8
20,2 | 26,3
26,9
27,4
27,9
28,4 | 32,7
33,3
34,6
34,6
35,3 | 38,2
38,9
39,7
40,4
41,2 | 42,9
43,7
44,6
45,4
46,2 | 46,9
47,8
48,8
49,7
56,6 | 50,4
51,4
52,4
53,4
54,4 | 56.0
57.1
58.3
59.4
60.5 | 61,8
63,0
64,3
65,6
66,8 | 64,4
65,8
67,1
68,5
69,8 | 67,9
69,3
75,7 | 68.7
75.1 | 73.1 | 70,3
71,8
73,4
74,9
76,4 | 72,2
73,8
75,4
76,9
78,5 | 73,5
75,1
76,7
78,3
79,9 | 74,5
76.1
77.7
79.4
81.0 | | 76,8
78,5
85,2
81,9
83,6 | 77,6
79,3
81,0
82,7
84,4 | 78,7
80,4
82,1
83,8
85,6 | 86,4 | 79,3
81,1
82,8
84,6
86,4 | 102
104
106
108
110 | | 112
114
116
118
120 | 20,9
21,3
21,7
22,1
22,4 | | 35,9
36,6
37,2
37,8
38,5 | 41,9
42,7
43,4
44,2
44,9 | 47,1
47,9
48,8
49,6
55,4 | 51,5
52,4
53,4
54,3
55,2 | 55,4
56,4
57,3
58,3
59,3 | 61,6
62,7
63,9
65,0
66,1 | 68:1
69:4
70:6
71:9
73:2 | | 77.7 | 75.9
77.3 | 76,1
77,5
79,0
80,5
81,9 | 77.9
79.4
81.0
82.5
84.0 | 80,1
81,7
83,2
84,8
86,4 | 81,6
83,2
84,8
86,4
88,0 | | 84,2
85,8
87,5
89,2
90,8 | 86,9
88,6 | 86,0
87,7
89,4
91,1
92,8 | 87.3
89.0
90.7
92.4
94.1 | 89,9 | | 112
114
116
118
120 | | 122
124
126
128
135 | 23,9 | 31,5
32,5
32,5
33,1
33,6 | 39,1
39,8
40,4
41,5
41,7 | 45.7
46.4
47.2
47.9
48.7 | 51,3
52,1
53,0
53,8
54,6 | 56,1
57,0
58,0
58,9
59,8 | 61,3 | 67,2
68,3
69,4
70,5
71,6 | 74,4
75,7
77,6
78,2
79,5 | 77,9
79,2
80,5
81,9
83,2 | 84,7 | 83,6 | 84.9
86.4
87.8 | 85.5
87.0
88.6
90.1
91.6 | 88,6
89,5
91,1
92,7
94,3 | 89,6
91,2
92,8
94,5
96,1 | 94,1 | 97,5 | 93,7
95,3
97,6
98,7
1,66,4 | | 97:6
99:3
101:0 | 100.3 | 102,7 | 122
124
126
128
130 | | 132
134
136
138
140 | 25,4
25,8 | 34,1
34,6
35,1
35,6
36,2 | 42.3
43.6
43.6
44.2
44.9 | 49,4
56,2
56,9
51,6
52,4 | 55,5
56,3
57,2
58,0
58,8 | 60,7
61,6
62,6
63,5
64,4 | 65,3
66,2
67,2
68,2
69,2 | 72,7
73,8
74,9
76,0
77,1 | 85,7
82,0
83,3
84,5
85,8 | 84,5
85,9
87,2
88,5
89,9 | 90,3 | 95,1 | 93,7
95,2 | 96.2
97.7 | 97,4
99,5
150,6 | 99,3
100,9
102,5 | 100,7
102,3
104.0 | 102,5
104.2
105.9 | 162,1
163,8
165,5
167,2
168,9 | 104,8
106,5
108,2 | 106.2
107.9
109.7 | 107,2
109,0
116,7 | 108,2
110,6
111,9 | 132
134
136
138
140 | | 142
144
146
148
150 | 26,6
26,9
27,3
27,7
28,1 | 37,2
37,7 | 45,5
46,2
46,8
47,5
48,1 | 53,1
53,9
54,6
55,4
56,1 | 59,7
60,5
61,4
62,2
63,0 | 65,3
66,2
67,2
68,1
69,0 | 71,2
72,2
73,2 | 78,2
79,3
85,4
81,5
82,6 | 87,0
88,3
89,5
90,8
92,0 | 91,2
92,5
93,9
95,2
96,5 | 95,8
97,2
98,6 | 95,8
97,2
98,7
100,1
101,5 | 99,6
101,0
102,5 | 102,3
103,8
105,3 | 105,3
106,9
108,5 | 107,4
109,0
110,7 | 108,9
110,6
112,2 | 110,9
112,6
114,3 | 114.6
115.7 | 113,4
115,1
116,8 | 114.9
116.6
118.4 | 116,0
117,7
119,5 | 117.4
119.2
121.0 | 142
144
146
148
150 | | 152
154
156
158
160 | 28,4
28,8
29,2
29,6
29,9 | 39,3
39,8
40,3
40,8
41,3 | 48.7
49.4
50.0
50.7
51.3 | 56,9
57,6
58,4
59,1
59,9 | 63,9
64,7
65,6
66,4
67,3 | | 75,1
76,1
77,1
78,1
79,1 | | 94.5
95.7
96.9 | 99,2
100,5
101,8 | 102.8
104.2
105.6 | 102.9
104.3
105.7
107.2
108.6 | 106,9
108,4
109,8 | 109.9
111.4
112.9 | 113,3
114,8
116,4 | 115,5
117,2
118,8 | 117.2
118.8
120.5 | 119.4
121.1
122.8 | 120,9
122,6
124,3 | 122,0
123,7
125,4 | 123,6
125,3
127,1 | 124,7
126,5
128,2 | 126,5
128,4
136,2 | 152
154
156
158
160 | | 162
164
166
168
170 | 35,3
35,7
31,5
31,4
31,8 | 41,8
42,4
42,9
43,4
43,9 | 51.9
52.6
53.2
53.9
54.5 | 65,6
61,4
62,1
62,9
63,6 | 68,1
68,9
69,8
70,6
71,5 | | 80:1
81:1
82:1
83:1
84:0 | 95.3
91.4
92.5 | 100,6
101,8
103,1 | 105,8
107,1
108,4 | 109,7
111:1
112:5 | 110.0
111.4
112.8
114.2
115.6 | 114.2
115.7
117.1 | 117.5
119.0
120.5 | 121,2
122,8
124,4 | 123,7
125,3
126,9 | 125,4
127,1
128,8 | 127.8
129.5
131.2 | 129.4
131.2
132.9 | 130,6
132,4
134,1 | 132,3
134,1
135,8 | 133,5
135,3
137,1 | 135,8
137,6
139,4 |
162
164
166
168
170 | | 172
174
176
178
180 | 32,5 | 45,5 | 55,1
55,8
56,4
57,1
57,7 | | 72,3
73,1
74,0
74,8
75,7 | | 85,0
86,0
87,0
88,0
89,0 | 95.8
96.9
98.0 | 106,7
108,0
109,2 | 112.3
113.6
114.9 | 116.7
118.5
119.4 | 117.6
118.5
119.9
121.3
122.7 | 121,5
123,0
124,4 | 125.1
126.6
128.1 | 129,1
130,7
132,3 | 131,8
133,4
135,1 | 133.7
135.4
137.1 | 136,3
138,0
139,7 | 138,6
139,8
141,5 | 139,3
141,0
142,8 | 141,1
142,8
144,6 | 142.3
144.1
145.9 | 145.5
146.9
148.7 | 172
174
176
178
180 | | 182
184
186
188
190 | 34,0
34,4
34,8
35,2
35,5 | 47,5
47,5
48,5
48,6
49,1 | 58,4
59,6
59,6
66,3
66,9 | 68,1
68,9
69,6
70,4
71,1 | 76,5
77,3
78,2
79,0
79,9 | | 91,0
92,0
92,9 | 101.3
102.4
103.5 | 112.9
114.1
115.3 | 118,8
120,1
121,3 | 123,6
124,9
126,3 | 124.1 125.5 126.9 128.3 129.7 | 128,8
130,3
131,7 | 132.6
134.2
135.7 | 137.6
138.6
140.2 | 140.0
141,6
143,2 | 142.0
143.7
145.4 | 144,8
146,5
148,2 | 146.6
148.4
150.1 | 148,0
149,7
151,5 | 149,9
151,6
153,4 | 151,2
153,6
154,7 | 154,3
156,1
158,0 | 182
184
186
188
190 | | 192
194
196
198
200 | 35,9
36,3
36,7
37,0
37,4 | | 61,6
62,2
62,8
63,5
64,1 | 74.1 | 80,7
81,5
82,4
83,2
84,1 | 89,2
90,2
91,1 | 95,9
96,9
97,9 | 106,8
107,9
109,0 | 119.0
120.2
121.5 | 125.2
126.5
127.8 | 130,4
131,7
133,1 | 131,1
132,5
133,9
135,3
136,7 | 136:1
137:5
139:0 | 140,2
141,7
143,2 | 145,0
146,6
148,1 | 148,1
149,8
151,4 | 150.4
152.0
153.7 | 153,3
155,0
156,8 | 155,3
157,6
158,7 | 156.7
158.4
160.2 | 158,7
166,4
162,2 | 160,1
161,8
163.6 | 163.6
165.4
167.3 | 192
194
196
198
200 | A = offered random traffic B = probability of loss k = accessibility n = number of trunks | E K | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 65 | 76 | 90 | 110 | k=n | n | |---------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--|---------------------------------| | 200 | 37,4 | 51,7 | 64,1 | 74,9 | 84,1 | 92,0 | 98,9 | 116,1 | 122,7 | 129,1 | 134,4 | 136,7 | 140,4 | 144,8 | 149,7 | 153,6 | 155,4 | 158,5 | 160,5 | 161.9 | 164.0 | 165,4 | 169,2 | 200 | | 202
204
206
208
210 | 38,2
38,5
38,9 | 52,7
53,2
53,7 | 64,8
65,4
66,1
66,7
67,3 | 76,4
77,1
77,8 | 85,7
86,6
87,4 | 93,8
94,8
95,7 | 100,9 | 112,3
113,4
114,5 | 125,1
126,4
127,6 | 131,7
133,0
134,3 | 137,1
138,4
139,8 | 139,5
140,8
142,2 | 143,3
144,8
146,2 | 147.8
149.3
156.8 | 152,9
154,5 | 156,3
157,9
159,6 | 158,7
160,4 | 161,9
163,6
165.3 | 163.9
165.7 | 165,4
167,2 | 167,5 | 167,2
168,9
170,7
172,5
174,3 | 1 ⁷ 2,9
1 ⁷ 4,8 | 202
204
206
208
210 | | 212
214
216
218
220 | 40,0
40,4
40,8 | 55,3
55,8
56,3 | 69,9 | 85.1
85.8
81.6 | 89,9
90,8
91.6 | 98,4
99,4
100,3 | 105,8
106,8 | 117,8
118,9
125.5 | 131,3
132,5
133,7 | 138,1
139,4
146,7 | 143,8 | 146,3
147,7 | 150,6
152,0
153,5 | 155,3
156,8
158,4 | 160,8 | 164,5 | 167,0
168,7 | 170,4
172,1 | 172,6 | 174:2
175:9 | 176,3 | 176,1
177,8
179,6
181,4
183,2 | 182,2
184,1 | 212
214
216
218
220 | | 222
224
226
228
230 | 41,9
42,3
42,6 | 57,9
58,4
58,9 | 71,8
72,5
73,1 | 83,8
84,6
85,3 | 94,2
95,0
95,8 | 103,0 | 110,7
111,7
112,7 | 123,3
124,4
125,5 | 137,4
138,6
139,9 | 144,6
145,9
147,2 | 150,5
151,9
153,2 | 153,1
154,5
155,9 | 157,7
159,1 | 162,9
164,4
165,9 | 168,7
170,3 | 172,6 | 175.4
177.0 | 179,0
180,7 | 181,3 | 182.9 | 185,2 | 185,0
186,8
188,6
190,3
192,1 | 191,6
193,5 | 222
224
226
228
230 | | 232
234
236
238
240 | 43,8
44,1
44,5 | 61,6 | 75.0
75.7
76.3 | 87,6
88,3
89,1 | 98,4
99,2
100,0 | 107,6 | 115,7
116,7
117,7 | 128,9
134,6
131.1 | 143,5 | 151,0
152,3
153,6 | 157,2
158,6
159,9 | 161,3 | 164.8 | 170.4
171.9 | 176,7
178,2 | 185,8 | 183,7
185,4 | 187.5 | 190,0 | 191.7 | 194:1 | 193,9
195,7
197,5
199,3
201,1 | 201,0 | 232
234
236
238
240 | | 242
244
246
248
250 | 45,6
46,6
46,4
46,8 | 63,0
63,5
64,1
64,6 | 78,2
78,9
79,5
80,2 | 91,3
92,1
92,8
93,6 | 102,6
103,4
104,2
105,1 | 112,2
113,2
114,1
115,0 | 120,6
121,6
122,6
123,6 | 134,4
135,5
136,6
137.7 | 149,7
156,9
152,1
153,4 | 157,5
158,8
160,1
161,4 | 164,0 | 166,8
168,2
169,5 | 171.8
173.2
174.6 | 177,9
179,4
180,9 | 184,6
186,2
187,7 | 189,0
190,6
192,2 | 192.1
193.7
195.4 | 196,1
197,8
199,5 | 198,7
200,4
202,2 | 200,5
202,2
204,0 | 203,0
204,7
206,5 | 202,9
204,7
206,5
208,3
213,1
0,901 | 210.4 212.2 214.1 | 242
244
246
248
250 | | 300
1 | 56.1 | 77,5 | 96.2 | 112,3 | 126,1 | 138,0 | 148,3 | 165,2 | 184,0 | 193,6 | 201.6 | 205.1 | 211,3 | 218,9 | 228.7 | 234.7 | 238.9 | 244.3 | 247.6 | 249.9 | 253.6 | 255,1 | 263.2 | 300
1 | | 350
1 | 65,5 | 90,4 | 112.2 | 131,0 | 147,1 | 161,0 | 173,0 | 192,7 | 214.7 | 225,9 | 235,2 | 239,3 | 246,5 | 255,4 | 266.8 | 275.4 | 280.6 | 287.4 | 291.5 | 294.3 | 298.6 | 366,4 | 31A.A | 356
1 | | 400
1 | 74,8 | 103.3 | 128,3 | 149,7 | 168,1 | 184,0 | 197,8 | 225,3 | 245,4 | 258,2 | 268,8 | 273,4 | 281,7 | 291,9 | 305.0 | 314.7 | 322.3 | 330.5 | 335.5 | 338.8 | 343.1 | 345.9 | 358.5 | 400 | | 500
1 | 93,5
0,187 | 129,1 | 160,3 | 187,1
0,374 | 210,2 | 230,0 | 247,2
0,494 | 275,3
0,551 | 306,7
0,613 | 322,7 | 336,0 | 341,8 | 352,1
0,704 | 364,9 | 381,2 | 393,4 | 402,9
0.806 | 416,7 | 423,6 | 428.1 | 433,8 | 437,3 | 454,5 | 500
1 | | 600
1 | 112,2
0,187 | 155,0
0,258 | 192,4
5,321 | 224,6
0,374 | 252,2
5,420 | 276,0 | 296,6
0,494 | 338,4
8,551 | 368,1
3,613 | 387,3
0,645 | 403,2 | 410,2 | 422.5 | 437,8 | 457,4 | 472.1
0.787 | 483,4 | 500,1
0,833 | 511,7 | 517,6 | 524,8 | 529.2 | 5 ⁵ 1,0 | 655
1 | | 700
1 | 130,9
0,187 | 180.8
0.258 | 224,4 | 262,0
0,374 | 294,2
5,425 | 322,0 | 346,1
0,494 | 385,4
5,551 | 429,4 | 451.8 | 470,4 | 478,5 | 492,9 | 510,8 | 533,7 | 550,8
0,787 | 564.0
0.806 | 583,4
0,833 | 597.0 | 607,1 | 616,1 | 621.4 | 647,9 | 700
1 | | 80 0
1 | 149,6
0,187 | 206,6
0,258 | 256,5
0,321 | 299,4
6,374 | 336,3
0,420 | 368,0 | 395,5
0,494 | 440,5 | 490,7 | 516,4 | 537,6
0,672 | 546,9 | 563,3 | 583.8 | 609,9 | 629,4 | 644,6 | 666,7 | 682,3 | 693,8 | 767,4 | 713.8 | 745.1 | 800
1 | | 900
1 | 168,3
0,187 | 232,5
0,258 | 288,6
0,321 | 336,8
0,374 | 378.3
0.420 | 414.0 | 444,9 | 495,6
0,551 | 552,1
0,613 | 580,9
0,645 | 604,8 | 615.2 | 633,8 | 656,8 | 686,2 | 758,1
0,787 | 725,2
0,806 | 750,1
0,833 | 767:6 | 785.6
5 5.867 | 798.9 | 806,3 | 842,5 | 900
1 | | 1100 | 205,7
0,187 | 284,1
0,258 | 352,7
0,321 | 411,7
0,374 | 462,4
0,420 | 506,0 | 543,8
0,494 | 605,7
0,551 | 674,8
5,613 | 715,0
0,645 | 739,2 | 752,6
0,684 | 774,6 | 802.7 | 838,6 | 865,5 | 886,3
0,806 | 916,8
0,833 | 938.1 | 954,6 | 976,4 | 991.6 | 1038 | 1105 | B = probability of loss | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 30 | 35 | 46 | 56 | 6 ტ | 76 | 90 | 115 | k = n | n | |----------------------------|--------------------------------------|--------------------------------------|----------------------|----------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|-----|----|----
--|--------------------------------------|-----------------------| | 1
2
3
4
5 | 0,70
0,95 | j
5 1,1 | 0.01
0,11
0,35
0,70
1,1 | 1
2
3
4
5 | | 6
7
8
9
10 | 1,2
1,5
1,7
2,0
2,2 | 1,4
1,8
2,1
2,4
2,6 | 2,5
2,4
2,8 | 2,2
2,6
3,0 | 2,7
3,2 | 3,3 | 4,0 | | | | | | | | | | | | | | | | 1,6
2,2
2,7
3,3 | | | 11
12
13
14
15 | 2,5
2,8
3,0
3,3
3,5 | 3,1
3,4
3,8
4,1
4,5 | 3,9
4,3
4,7 | 4,3
4,8
5,2 | 4,6
5,1
5,6 | 4,3
4,8
5,3
5,8
6,3 | 4,5
5,5
6,1
6,6 | 5,3
5,8
6,4
7,6 | 7,4 | | ~ | | | | | | | | | | | | 4,6
5,3
6,0
6,7
7,4 | 1:11 | | 16
17
18
19
20 | 3,8
4,0
4,3
4,5
4,7 | 4,8
5,1
5,5
5,8
6,2 | 6,0
6,4
6,8 | 6,6
7,0
7,5 | 7,5
7,5
8,0 | 6,9
7,4
7,9
8,5
9,0 | 7,1
7,7
8,2
8,8
9,4 | 7,6
8,1
8,7
9,3
9,9 | 8,0
8,6
9,2
9,8
10,5 | 8,8
9,5
10,1
10,8 | 10,3 | 11.1 | | | | | | | | | | | 8,1
8,8
9,6
10,3 | 1 1 1 1 2 | | 21
22
23
24
25 | 5, 0
5, 2
5, 5
5, 7
5, 9 | 6,5
6,8
7,2
7,5
7,8 | 8,5
8,4
8,8 | 8,9
9,3
9,8 | 9,5
10,0
10,5 | 13,6 | 9,9
10,5
11,0
11,6
12,2 | 11,7
12,3 | | 12:1
12:7
13:4 | 12,3
13.0
13,7 | 11,8
12,4
13,1
13,8
14,5 | 13,3
14,6 | 15,0 | | | | | | | | | 11,9
12,6
13,4
14,2
15,0 | 2 2 2 2 2 | | 26
27
28
29
30 | 6,2
6,4
6,6
6,9
7,1 | 8,1
8,4
8,8
9,1
9,4 | 10,0
10,4
10,8 | 11,1
11,6
12,1 | 12,5
13,1 | 12,7 | 12,7
13,3
13,9
14,5
15,0 | 14,1
14,8
15,4 | 15,6
15,6
16,3 | 15,4
16,1 | 15,7
16,4
17,1 | 15,2
15,9
16,5
17,2
17,9 | 16,1 | | 19,6 | | | | | | | | 15,8
16,6
17,4
18,2
19,6 | 2223 | | 31
32
33
34
35 | | | 12,0
12,4
12,8 | 13,4
13,9
14,3 | 14,1
14,6
15,1
15,6
16,1 | 15,5
16,0
16,5 | 15,6
16,2
16,7
17,3
17,9 | 17,2
17,9
18,5 | 19,6 | 18,8
19,5 | 19,2
19,9
20,6 | 19,3 | 25.4
21.1 | 20,0
20,7 | 22,5 | 23,2 | | | | | | ette de la companya d | 19,9
20,7
21,5
22,3
23,2 | 3
3
3
3
3 | | 36
37
38
39
40 | 9.0 | 11,3
11,6
11,9
12,2
12,5 | 13,9
14.3
14,7 | 15,7
16,1
16,6 | 16,6
17,1
17,6
18,1
18,6 | 18,2
18,7
19,2 | 18,5
19,0
19,6
20,2
20,8 | 20,3
21,0
21,6 | 20,9
21,6
22,3
23,0
23,6 | 22,2
22,9
23,6 | 22,7
23,4
24,1 | 22,2
22,9
23,6
24,3
25,0 | 23,2
24,0 | 22,9
23,7
24,4
25,2
25,9 | 23,5
24,3
25,0
25,8
26,5 | 23,9
24,7
25,5
26,2
27,0 | 27,4 | | | | | | 24,0
24,8
25,7
26,5
27,4 | 3
3
3
4 | | 41
42
43
44
45 | 15,4 | 12,8
13,1
13,4
13,8
14,1 | 15,8
16,2 | 17,9
18,4
18,8 | 20,1 | 20,9
21,4
21,9 | 21,3
21,9
22,5
23,1
23,6 | 23,5
24,1
24,7 | | 25.7
26.4 | 27,0 | 25,8
26,5
27,2
27,9
28,6 | 26,2
26,9
27,6
28,4
29,1 | 26,6
27,4
28,1
28,9
29,6 | 27,3
28,0
28,8
29,6
30,3 | 27,8
28,5
29,3
36,1
36,9 | 28,2
28,9
29,7
30,5
31,3 | | | | | | 28,2
29,1
29,9
30,8
31,7 | 4 4 4 | | 46
47
48
49
50 | 11:1
11:4
11:6 | 14,7
15,0
15,3 | 18,1
18,4 | 20,2
20,6
21,1 | 22.1 | 23,6 | 25,9 | 26,6
27,2
27,9 | 27,7
28,4
29,1
29,7
36,4 | 29,2
29,9
35,6 | 29,8
30,5
31,3 | 31,6 | 31,3
32,0 | 32,6 | 32,6 | 34,6 | 34.5 | 36,0 | | | | | 32,5
33,4
34,2
35,1
36,6 | 4:
4:
4:
5: | | D K | 4 | ő | 6 | 7 | 8 | 9 | 10 | 12 | 1.5 | 17 | 19 | 20 | 22 | 25 | 35 | 35 | 46 | 50 | 65 | 70 | 96 | 110 k=n | n | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------| | 50 | 11,9 | 15,6 | 18,8 | 21,5 | 23,5 | 25,2 | 26,5 | 28,5 | 36,4 | 31,3 | 32,0 | 32,3 | 32,8 | 33,4 | 34,2 | 34,8 | 35,2 | 36,0 | | 1972 TITLE TO CONTROL | uin ou eus cognesse | 36,6 | 50 | | 51
52
53
55
55 | 12,3
12,6
12,8 | 15,9
16,3
16,6
16,9
17,2 | 19,2
19,6
19,9
20,3
20,7 | 22,3 22,8 23,2 | 24.5
25.0
25.5 | 26,2
26,8
27,3 | 27,1
27,6
28,2
28,8
29,4 | 29,1
29,7
30,4
31,0
31,6 | | 32.7
33.4 | 33,4
34,2
34,9 | 33,0
33,7
34,5
35,2
35,9 | | 34,2
34,9
35,7
36,4
37,2 | 35,0
35,7
36,5
37,3
38,1 | 37,1
37,9 | 36,8
37,6
38,4 | | | : | | 36,9
37,7
38,6
39,5
40,4 | 51
52
53
54
55 | | 56
57
58
59
60 | 13,5
13,7
14,0 | 17,5
17,8
13,1
13,4
13,8 | 21,1
21,5
21,8
22,2
22,6 | 24,1
24,5
24,9
25,4
25,8 | 26,5
27,0
27,5
27,9
28,4 | 28,9
29,4 | 30,5 | 32,2
32,9
33,5
34,1
34,8 | | 36,2
37,0 | 37,1
37,8
38,5 | 36,7
37,4
38,1
38,9
39,6 | 37,3
38,0
38,8
39,5
40,3 | 38,0
38,7
39,5
40,3
41,0 | 38,8
39,6
40,4
41,2
42,0 | | 40,0
40,8
41,6
42,4
43,2 | 42,5 | 44,8 | | | 41,2
42,1
43,0
43,9
44,8 | 56
57
58
59
60 | | 61
62
63
64
65 | 14,7 | | 23,0
23,3
23,7
24,1
24,5 | 26,2
26,6
27,1
27,5
27,9 | 28,9
29,4
29,9
30,4
30,9 | 31,6
32,1
32,6 | 32,8
33,3
33,9
34,5
35,0 | | 37,9
38,6
39,3
40,0
40,7 | | 40,7
41,4
42,2 | 41,8 | 41,0
41,8
42,5
43,3
44,0 | 41.8
42.6
43.3
44.1
44.9 | 42,8
43,5
44,3
45,1
45,9 | 43,5
44,3
45,1
45,9
46,7 | 44,9 | 44,9
45,7
46,6
47,4
48,2 | 45,6
46,4
47,2
48,1
48,9 | | | 45,6
46,5
47,4
48,3
49,2 | 61
62
63
64
65 | | 66
67
68
69
70 | 16,4 | 23,6
23,9
21,3
21,6
21,9 | 24,8
25,2
25,6
26,0
26,3 | 29.2
29.7 | 31,3
31,8
32,3
32,8
33,2 | 34.2 | 35,6
36,2
36,7
37,3
37,9 | 39.1
39.8 | 41,3
42,0
42,7
43,4
44,1 | 42,6
43,3
44,1
44,8
45,5 | 44,4
45,1
45,8 | 44,1
44,8
45,5
46,3
47,0 | 45,5
46,3 | 45,6
46,4
47,2
47,9
48,7 | 46,7
47,5
48,3
49,1
49,8 | 47,5
48,3
49,1
49,9
50,7 | | 49,8
50,7
51,5 | 49,7
50,6
51,4
52,2
53,1 | 53,7 | | 50,1
51,0
51,9
52,8
53,7 | 66
67
68
69
70 | | 71
72
73
74
75 | 16,8
17,1
17,3
17,5
17,8 | 22,5 | 26,7
27,1
27,5
27,9
28,2 | 30,5
30,9
31,4
31,8
32,2 | 33,7
34,2
34,7
35,1
35,6 | | | 41,6
42,2
42,9
43,5
44,1 | 46.8 | 46,2
46,9
47,6
48,3
49,1 | 48,8 | 49,2
50,0 | 48,6
49,3
50,1
50,8
51,6 | 51,8 | 50,6
51,4
52,2
53,0
53,8 | 53,1
53,9 | 54,6 | 54,0
54,8
55,6 | 54,7
55,6
56,4 | 54,5
55,3
56,2
57,0
57,9 | |
54,6
55,5
56,4
57,3
58,2 | 71
72
73
74
75 | | 76
77
78
79
80 | 18.0
18.3
18.5
18.7
19.0 | 24,1
24,4 | 28,6
29,0
29,4
29,7
30,1 | 32,7
33,1
33,5
33,9
34,4 | 36,1
36,5
37,0
37,5
38.0 | 39,5
40,0
40,5 | 41,2
41,8
42,4
42,9
43,5 | 45,4
46,0
46,6 | 48,9
49,6 | 49,8
50,5
51,2
51,9
52,6 | 51,7
52,4
53,2 | 53,6
53,7 | | 54,1
54,9
55,7 | 54,6
55,4
56,2
57,0
57,8 | | 56,2
57,0
57,9
58,7
59,5 | 58.1 | 58,9
59,8 | 58,7
59,6
60,4
61,3
62,1 | | 59,1
60,0
60,9
61,8
62,7 | 76
77
78
79
8 0 | | 81
82
83
84
85 | 19,2
19,4
19,7
19,9
20,2 | 25,6
26,0
26,3 | 30,5
30,9
31,2
31,6
32,0 | 34,8
35,2
35,7
36,1
36,5 | 38,4
38,9
39,4
39,9
40,3 | 42,6
42,6
43,1 | 44,6
44,6
45,1
45,7
46,3 | | | 54,8 | 50,9 | 55,9
56,7
57,4 | 56,1
56,9
57,7
58,4
59,2 | 58.0
58.8
59.6 | 58,6
59,4
60,2
61,8 | 59,6
60,4
61,2
62,0
62,8 | 62,0
62,8 | | 63, <u>1</u>
64,0 | 63.8 | | 63,6
64,5
65,4
66,3
67,2 | 81
82
83
84
85 | | 86
87
88
89
90 | 8 | 27,2
27,5
27,8 | 32,4
32,7
33,1
33,5
33,9 | 37,0
37,4
37,8
38,2
38,7 | | 44,6
45,1
45,6 | 46,8
47,4
47,9
48,5
49,0 | 51.6
52.2
52.8 | 55,7
56,4
57,1 | 56,9
57,6
58,3
59,0
59,8 | 59,1
59,8
60,5 | 59,7 | | 61,9
62,7
63,5 | 62,6
63,4
64,2
65,0
65,8 | 65,3 | 65,3
66,1
66,9 | 66,5
67,3
68,2 | | 68,1 | 71,8 | 68,1
69,0
69,9
70,8
71,8 | 86
87
88
89
90 | | 91
92
93
94
95 | 21,6
21,8
22,0
22,3
22,5 | 29,1
29,4 | 34,6
35,6 | 40,0 | 43,7
44,1 | 47,2
47,7
48,2 | 49,6
50,1
50,7
51,2
51,8 | 54,6
55,3
55,9 | 58,4
59,1
59,8
60,5
61,2 | 61,9 | 62,8
63,5
64,2 | 63,4
64,2
64,9 | 64,5
65,3
66,0 | 65.8
66.6 | 68,2
69,5 | 68,5
69,3
70,2 | 70.2
71.1 | 70,7
71,5
72,4 | 71,6 | 73,2
74,1 | 72,6
73,5
74,4
75,2
76,1 | 72,7
73,6
74,5
75,4
76,3 | 91
92
93
94
95 | | 96
97
98
99
100 | | 30,3 | 36,9
37,3 | 41,7
42,1
42,5 | 46,0
46,5
47,0 | 49,7
50,3
50,8 | 52,3
52,9
53,4
54,0
54,5 | 57,7
58,3
58,9 | 62,5
63,2
63,9 | 66.2 | 66,4
67,2
67,9 | 67,1
67,9
68,6 | | 69.7
70.5
71.3 | 71,4
72,2
73,6 | 72,6
73,4
74,3 | 73,5
74,4
75,2 | 74,9
75,7
76,6 | | 76,6
77,5
78,4 | 78,7 | 77,2
78,2
79,1
80,0
80,9 | 96
97
98
99
100 | | L K | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 36 | 35 | 46 | 56 | 6 5 | 76 | 96 | 116 | k=n | n | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|-------------------------|--------------------------------------|-------------------------|--------------------------------------|-------------------------|-------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|---|---------------------------------| | 100 | 23,7 | 31,3 | 37,6 | 43,6 | 47,5 | 51.3 | 54,5 | 59,5 | 64,6 | 66,9 | 68.7 | 69:4 | 70.6 | 72.1 | 73,8 | 75,1 | 76.0 | 77.4 | 78.4 | 79,2 | 85.4 | | 86,9 | 100 | | 102
104
106
108
110 | 24.2
24.7
25.1
25.6
26.1 | | 38,4
39,1
39,9
40,6
41:4 | 43,8
44,7
45,6
46,4
47,3 | 48,4
49,4
50,3
51,3
52,2 | 52,3
53,3
54,4
55,4
56,4 | 55,6
56,7
57,8
58,9
60,0 | 60,8
62,0
63,2
64,4
65,7 | | 68.3
69.7
71.2
72.6
74.6 | 70:1
71:6
73:1
74:5
76:0 | 72:4
73:9
75:4 | 73,7
75,2
76,8 | 73,7
75,2
76.8
78.4
79,9 | 78,7
80,3 | 76,7
78,4
86,6
81,7
83,3 | 79.4
81.0 | 85,8
82,5
84,2 | 80,1
81,8
83,6
85,3
87,0 | 82.7 | 82,2
83,9
85,6
87,4
89,1 | 90,1 | 82,7
84,6
86,4
88,3
95,1 | 102
104
106
108
110 | | 112
114
116
118
120 | 26,6
27,0
27,5
28,0
28,4 | 35,6
35,6
36,3
36,9
37,5 | 42,2
42,9
43,7
44,4
45,2 | 49.0
49.8 | 54,1
55,1 | 57,4
58,5
59,5
60,5
61,5 | 61,1
62,2
63,3
64,4
65,5 | 66,9
68,1
69,3
75,5
71,7 | 72,7
74,1
75,4
76,8
78,1 | 75,4
76,8
78,3
79,7
81,1 | 77,5
79,0
80,4
81,9
83,4 | 79,9
81:3
82:8 | | 81:5
83:1
84:7
86:2
87:8 | 86.8
88.4 | 85,0
86,6
88,3
89,9
91,6 | 87,7
89,4 | 89.3
91.5 | 88.7
90.4
92.1
93.9
95.6 | 89.6
91.3
93.0
94.8
96.5 | 90,9
92,6
94,4
96,1
97,9 | 91,9
93.6
95.4
97,2
98,9 | 95.7 | 112
114
116
118
120 | | 122
124
126
128
130 | 28,9
29,4
29,9
30,3
30,8 | 38,1
38,8
39,4
40,0
40,6 | 45,9
46,7
47,4
48,2
48,9 | 52,4
53,3
54,1
55,0
55,9 | 57,9
58,9
59,8
65,8
61,7 | 62,6
63,6
64,6
65,6
66,7 | | 72,9
74,1
75,3
76,5
77,7 | 79.5
85.8
82.2
83.5
84.9 | 82,5
83,9
85,4
86,8
88,2 | 89,3 | 87,3
88,8
95,3 | 89,0
90,5
92,1 | 89.4
91.6
92.5
94.1
95.7 | 94,9 | | 96,1
97,8
99,4 | 97.8
99.5
151.2 | 99,6
160,8
162,5 | 101,7 | 99,7
101,4
103,2
104,9
106,7 | 104.3 | 103,1
105,0
106,8 | 122
124
126
128
130 | | 132
134
136
138
140 | 31,3
31,8
32,2
32,7
33,2 | 41,3
41,9
42,5
43,2
43,8 | 50,4
51,2
51,9 | 56.7
57.6
58.4
59.3
65.2 | 62,7
63,6
64,6
65,5
66,5 | 67,7
68,7
69,7
70,8
71,8 | 72,0
73,1
74,2
75,3
76,4 | 78,9
86,1
81,3
82,5
83,7 | 86,2
87,6
88,9
90,3
91,6 | 91,0
92,4
93,9 | 93.7
95.2
96.6 | 94,8
96,3
97,8 | 96,7
98,2
99,7 | 98,8
100.4
102.0 | 101,4
103,0
104,6 | 103,2
104,8
106,5 | 104.5
106.2
107.9 | 156,4
158,1
159,8 | 167.7
169.4
111.2 | 108,7
110,5
112,2 | 108,5
110,2
112,0
113,8
115,5 | 111.3
113.1
114.9 | 112,4
114,3
116,2 | 132
134
136
138
140 | | 142
144
146
148
150 | 33,7
34,1
34,6
35,1
35,6 | 44,4
45,0
45,7
46,3
46,9 | 53.4
54.2
54.9
55.7
56.5 | 61.0
61.9
62.7
63.6
64.5 | 67,4
68,4
69,3
70,3
71,2 | 72,8
73,8
74,9
75,9
76,9 | 77,5
78,5
79,6
80,7
81,8 | 84,9
86,1
87,3
88,5
89,7 | 95.6
97.6 | 98,1
99,5
100,9 | 101.0
102.5
104.0 | 102.3
103.7
105.2 | 104,3
105,9
107,4 | 106.7
108.3
109.9 | 109,5
111,2
112,8 | 111,5
113,1
114,8 | 112,9
114,6
116,3 | 115,0
116,7
118,4 | 116,4
118,1
119,8 | 117,5
119,2
121,0 | 117,3
119,1
120.8
122.6
124.4 | 120,2
122.0
123.8 | 121.8
123.6
125.5 | 142
144
146
148
150 | | 152
154
156
158
160 | 36,0
36,5
37,0
37,5
37,9 | 47,5
48,2
48,8
49,4
50,0 | 57.2
58.0
58.7
59.5
60.2 | 65.3
66,2
67,0
67,9
68,8 | 72,1
73,1
74,0
75,0
75,9 | 77,9
79,0
85,0
81,0
82,0 | 82,9
84,0
85,1
86,2
87,3 | 92.1
93.2
94.4 | 100.9
102.2
103.5 | 105:1
106:5
107:9 | 168,4
169,8
111,3 | 109,7
111,2
112,7 | 112.0
113.5
115.0 | 114.6
116.2
117.8 | 117.7
119.3
121.6 | 119,8
121,5
123,1 | 121.4
123.1
124.7 | 123,6
125,3
127,0 | 125,1
126,8
128,6 | 126,2
128,0
129,7 | 126,1
127,9
129,7
131,5
133,3 | 129,2
131,0
132,8 | 131,2
133,6
134,9 | 152
154
156
158
160 | | 162
164
166
168
170 | 38,4
38,9
39,4
39,8
40,3 | 50,7
51,3
51,9
52,5
53,2 | 63,2 | 69,6
70,5
71,3
72,2
73,1 | 76,9
77,8
78,8
79,7
80,7 | 83,1
84,1
85,1
86,2
87,2 | 91,6 | 98,0
99,2
100,4 | 107,5
108,8
116,1 | 112,1
113,5
114,9 | 115,7
117,1
118,6 | 117,1
118,6
120,1 | 119,6
121,1
122,7 | 122.5
124.1
125.6 | 125,8
127,5
129,1 | 128,1
129,8
131,5 | 129.8
131.5
133.2 | 132,2
133,9
135,6 | 133,8
135,6
137,3 | 135.0
136.8
138.6 | 135.0
136.8
138.6
140.4
142.2 | 138,1
139,9
141,7 | 140,6
142,5
144,3 | 162
164
166
168
170 | | 172
174
176
178
180 | 40.8
41.2
41.7
42.2
42.7 | 53,8
54,4
55,5
55,7
56,3 | 66,2
67,5 | 74,8
75,6 | 81,6
82,6
83,5
84,5
85,4 | 88,2
89,2
96,3
91,3
92,3 | 94,9
96,0
97,1 | 104.0
105.2
106.4 | 114.0
115.3
116.6 | 119:1
125:4
121:8 | 122,9
124,4
125,9 | 124.5
126.0
127.5 | 127,2
128,8
130,3 | 130.4
131.9
133.5 | 134,6
135,6
137,3 | 136,5
138,2
139,8 | 138,3
140,0
141,7 | 140,8
142,6
144,3 | 142,6
144,3
146,1 | 143.8
145.6
147.4 | 143.9
145.7
147.5
149.3
151.1 | 147,1
148,9
150,7 | 150,0
151,9
153,8 | 172
174
176
178
185 | | 182
184
186
188
195 | 43:1
43:6
44:1
44:6
45:0 |
56,9
57,5
58,2
58,8
59,4 | 68.5
69.3
70.0
70.8
71.5 | 78,2
79,1
79,9
86,8
81,6 | 86,4
87,3
88,3
89,2
95,2 | 94.4
95.4
96.4 | 100,4
101,5
102,5 | 110.0
111.2
112.4 | 120.6
121.9
123.2 | 125:9
127:3
128:7 | 130,2
131,7
133,1 | 131,9
133,4
134,9 | 134,9
136,4
137,9 | 138,2
139,8
141,4 | 142,2
143,8
145,5 | 144,9
146,5
148,2 | 146.8
148.5
155.2 | 149.5
151.2
153.6 | 151:3
153:1
154:8 | 152,7
154,5
156,2 | 152,9
154,7
156,5
158,2
165,6 | 156,1
157,9
159,7 | 159,5
161,4
163,3 | 182
184
186
188
190 | | 192
194
196
198
200 | 45,5
46,5
46,5
46,9
47,4 | 60,0
60,7
61,3
61,9
62,5 | 72,3
73,0
73,8
74,5
75,3 | 83,4
84,2
85,1 | 94,6 | 99,5
106,5
101,5 | 105,8
106,9
108,0 | 116.0
117.2
118.4 | 127:1
128:4
129:7 | 132.8
134.1
135.5 | 137,4
138,8
140,2 | 139,3
140,8
142,3 | 142,5
144,0
145,5 | 146,1
147,7
149,3 | 150,4
152,6
153,6 | 153,2
154,9
156,6 | 155.3
157.0
158.7 | 158.2
159.9
161.7 | 160:1
161:9
163:6 | 161.6
163.3
165.1 | 161,8
163,6
165,4
167,2
169,6 | 165,1
166,9
168,7 | 168,9
1 ⁷ 6.8
1 ⁷ 2.7 | 192
194
196
198
200 | A = offered random traffic B = probability of loss k = accessibility n = number of trunks | gazzania | | us constitution and the same | station properties and | | | yuanumutuun oo oo o | un mentanja kentanga, | | | | postantia de la constantia de | | - | rida do mara de la composición de la c | | in Manhair page 100 and | | | | | | VIII CONTRACTOR CONTRA | | | |--------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|--|-------------------------|----------------------------------|--|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|--|--|-----------------------------|---------------------------------| | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 65 | 76 | 95 | 116 | k=n | n | | 200 | 47,4 | 62,5 | 75.3 | 85,9 | 94,9 | 102.6 | 109,1 | 119,5 | 131,1 | 136,9 | 141.7 | 143,7 | 147.0 | 150.8 | 155,3 | 158,3 | 165,4 | 163,4 | 165,4 | 166,9 | 169,5 | 170,5 | 174.6 | 266 | | 202
204
206
208
210 | 48,4
48,8
49,3 | 63,8
64,4
65,0 | 76,8
77,5
78,3 | 87,7
88,5
89,4 | 96,8
97,8
98,7 | 104,6
105,6
106,7 | 111,3
112,4
113,5 | 121,9
123,1
124,3 | 133,7
135,0
136,3 | 139,6
141,0
142,3 | 144,5
145,9
147,3 | 146,6
148,1
149,5 | 150,1
151,6
153,1 | 154.0
155.6
157.1 | 158,5
160,2
161,8 | 161,6
163,3
165,0 | 163,8
165,5
167,2 | 166,9
168,6
170,4 | 168,9
170,7
172,4 | 170.4
172.2
174.0 | 170.8
172.6
174.4
176.2
178.0 | 174.1
176.6
177.8 | 178,4
180,4
182,3 | 202
204
206
208
210 | | 212
214
216
218
220 | 50,7
51,2
51,7 | 66,9
67,5
68,2 | 80,5
81,3
82,0 | 92,8
92,8
93,7 | 101,6
102.5
103,5 | 109,7
110,8
111,8 | 116,7
117,8
118,9 | 127,9
129,1
130,3 | 140,2
141,5
142,8 | 146,4
147,8
149,2 | 151,6
153,0
154,4 | 153,8
155,2
156,7 | 157.6
159.2
160.7 | 161.8
163.4
165.0 | 166,7
168,3
170,0 | 170.0
171.7
173.3 | 172,4
174,1
175,8 | 175,6
177,3
179,1 | 177,7
179,5
181,3 | 179.3
181.1
182.9 | 179,8
181,6
183,4
185,2
187,5 | 183.2
185.0
186.8 | 188,0
189,9
191,8 | 212
214
216
218
226 | | 222
224
226
228
230 | 53,1
53,6
54,1 | 70,0
70,7
71,3 | 84,3
85,1
85,8 | 96,3
97,1
98,0 | 106,3
107,3
108,2 | 114,9
115,9
116,9 | 122,2
123,3
124,4 | 133,9
135,1
136,3 | 146,8
148,1
149,4 | 153,3
154,7
156,0 | 158,7
160,1
161,5 | 161.0
162.4
163.9 | 165,1
166,6
168,1 | 169,7
171,2
172,8 | 174,9
176,5
178,1 | 178,4
186,6
181,7 | 180,9
182,6
184,3 | 184.3
186.0
187.8 | 186,6
188,3
190,1 | 188,2
190,0
191,8 | 188,8
190,6
192,4
194,2
196,6 | 192.3
194.1
195.9 | 197.5
199.4
201.3 | 222
224
226
228
230 | | 232
234
236
238
240 | 55,5
55,9
56,4 | 73,2
73,8
74,4 | 88,1
88,8
89,6 | 100,6
101,4
102,3 | 111,1
112,0
113,0 | 120.0 | 127,6
128,7
129,8 | 139,9
141,1
142.3 | 153,3
154,6
156,6 | 160,1
161,5
162,9 | 165,7 | 168,2
169,6 | 172,5
174,0
175,5 | 177.5
179.1
180.6 | 183,0
184,7
186.3 | 186,8
188,4
198.1 | 189,4
191,1
192.8 | 193,0
194,8
196.5 | 195:4
197:2 | 197,2
198,9 | 197.8
199.6
201.4
203.2
205.0 | 201.3 | 207,1
209,0 | 232
234
236
238
240 | | 242
244
246
248
250
1 | 57,8
58,3
58,8
59,3 | 76,3
76,9
77,5
78,2 | 91,8
92,6
93,3
94,1 | 104,9
105,7
106,6 | 115,8
116,8
117,7
118,7 | 125,1
126,1
127,2
128,2 | 133,1
134,2
135,3
136,4 | 145,8
147,0
148,2
149,4 | 159,9
161,2
162,5
163,8 | 167,6
168,3
169,7 | 172,8
174,2
175,7 | 175,4
176,8
178,2 | 179,9
181,4
182,8
184,3 | 185.3
186.9
188.5 | 191,2
192,8
194,5 | 195,1
196,8
198,5
200,2 | 198.0
199.7
201.4
203.1 | 201,8
203,5
205,3
207,0 | 254,3
256,5
257,8
259,6 | 206:1
207:9
209:7 | 206,8
208,6
210,4
212,3
214,1
0,907 | 210.4
212.3
214.1
215.0 | 216,6
218,5
220,4 | 242
244
246
248
250 | | 300
1 | 71,1
0,237 | 93,8
0,313 | 112.9 | 128,9 | 142,4 | 153,8 | 163,6
0,545 | 179,3
5,598 | 196.6
0.655 | 205,3
0,684 | 212,5 | 215,6
0,719 | 221,2 | 228,0
0,760 | 236,8 | 242,1 | 245,8 | 250,8
0,878 | 254,6 | 256,3 | 259,4 | 261,6 | 2 ⁷ 0,4
0,966 | 366
1 | | 35g
1 | 83,0
0,237 | 109,4 | 131,7
0,376 | 150,4
0,430 | 166,1
0,475 | 179,5 | 190,9
0,545 | 209,2
0,598 | 229,3 | 239,5 | 247,9 | 251,6
0,719 | 258.0
0,737 | 266,5 | 276,3
0,789 | 283,9 | 288,6
0,854 | 294,7 | 298,6 | 301,3 | 305,6 | 307,5 | 318,7
0,969 | 350
1 | | 400
1 | 94,8
0,237 | 125,1 | 150.5
0.376 | 171,9 | 189.9 | 205,1 | 218,2 | 239,1 | 262,1 | 273,7 | 283,3 | 287,5
0,719 | 294,9 | 304,0
0,760 | 315,7 | 324,5 | 331,3
0,828 | 338,7 | 343,3 | 346,5 | 350,7 | 353,6 | 367.2 | 465 | | 500
1 | 118,5
0,237 | 156,3
0,313 | 188,2
0,376 | 214,9 | 237,3 | 256,4
0,513 | 272,7 | 298,9 | 327,6 | 342,2 | 354,1 | 359,4
6,719 | 368,6 | 385,1
0,760 | 394,7
3,789 | 405,6 | 414,1 | 426,5
0,853 | 432,8 | 437.0 | 442,6 | 446,1 | 464,5 | 500
1 | | 60g
1 | 142,2
0,237 | 187,6
0,313 | 225,8
0,376 | 257,8
0,430 | 284,8
0,475 | 307.7 | 327,3
0,545 | 358,6
0,598 | 393,2 | 415.6 | 425,6 | 431,2 | 442,3 | 456,1
0,760 | 473,6 | 486,7 | 496,9
0,828 | 511,8
0,853 | 522,4
5,87 <u>1</u> | 527,8 | 534,7 | 539,0 | 562,3
0,981 | 655
1 | | 700
1 | 627.0 | | | 700
1 | | 800
1 | 189,7
0,237 |
250,1
0,313 | 301,1 | 343,8 | 379,7 | 410,2 | 436,4 | 478,2 | 524,2 | 547.5 | 566,6 | 575.0 | 589,8 | 608,1 | 631,5 | 648,9 | 662,5
0,828 | 682,5 | 696.5 | 707,0 | 719,5 | 725,6 | 758,7
6,985 | 800 | | 900
1 | 812.0 | | 857.2
0.987 | 900
1 | | 1130
1 | 26g.8
g.237 | 344,0 | 414,0 | 472,7 | 522,1 | 564,1 | . 600,0
3 0,545 | 657,5
5 0,598 | 72g,8 | 752,8
5 0,684 | 779,5 | 790.6 | 810,9 | 836,1 | 868,3
0,789 | 892,3 | 911,0 | 938,4 | 957,6 | 972,;
L 0,88 | 992.4 | 1006 | 1055
0.989 | 1100 | Table A = offered random traffic B = probability of loss | L | k | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 36 | 35 | 46 | 56 | 65 | 76 | 96 | 110 | k=n | | |----------------------------|-------------|---------------------------------|--------------------------------------|----------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------------------|----------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|------|----|----|----|-----|--------------------------------------|--| | 1
2
3
4
5 | 2
3
4 | 5,87
1,2 | 1,4 | 0,01
0,15
0,46
0,87
1,4 | | | 6
7
8
9 | 7
B
9 | 1,5
1,8
2,1
2,4
2,7 | 1,7
2,1
2,5
2,8
3,2 | 1,9
2,3
2,7
3,2
3,6 | 2,5
3,0
3,4
3,9 | 3,1
3,6
4,1 | 3,8 | 4,5 | | | | | | | | | | | | | | | | 1,9
2,5
3,1
3,8
4,5 | | | 11
12
13
14 | 2
3
4 | 3,5
3,3
3,6
3,9
4,2 | 3,6
4,0
4,4
4,8
5,2 | 4,5
4,5
4,9
5,4
5,8 | 4,4
4,9
5,4
5,8
6,3 | 4,6
5,1
5,7
6,2
6,7 | 4,8
5,4
5,9
6,5
7,0 | 5,0
5,6
6,1
6,7
7,3 | 5,9
6,5
7,1
7,7 | 8,1 | | | | | | | | | | | | | | 5,2
5,9
6,6
7,4
8,1 | | | 16
17
18
19
25 | 7 3 | 4,5
4,8
5,1
5,4
5,7 | 5,6
6,0
6,3
6,7
7,1 | 6,3
6,7
7,2
7,7
8,1 | 6,8
7,3
7,8
8,3
8,9 | 7,3
7,8
8,3
8,9
9,4 | 7,6
8,2
8,7
9,3
9,9 | 7,9
8,5
9,0
9,6
10,2 | | 8,8
9,4
10,1
10,7
11,4 | | 11,2 | 12,6 | | | | | | | | | | | 8,9
9,7
10,4
11,2
12,6 | | | 21
22
23
24
25 | 2 3 4 | 6,0
6,3
6,5
6,8
7,1 | 7,5
7,9
8,3
8,7
9,1 | 8,6
9,8
9,5
9,9
13,4 | 15.9 | | 11,0
11,6
12,2 | 10,9
11,4
12,0
12,6
13,2 | 12,1
12,7
13,3 | 14,1 | 13,0
13,7
14,4 | 13,3
14,0
14,7 | 12,7
13,4
14,1
14,9
15,6 | 14,4 | 16,1 | | | | | | | | | 12,8
13,7
14,5
15,3
16,1 | distribution designation of the second | | 26
27
28
29
30 | 7 3 9 | 7,4
7,7
8,0
8,2
8,5 | 9,4
9,8
13,1
10,5
10,9 | 11,3
11,7 | 12,4
12,9
13,4 | 12,7
13,3
13,8
14,4
14,9 | 13,9
14,5
15,1 | 13,9
14,5
15,1
15,7
16,3 | 15,3
15,9
16,6 | 16,1
16,8
17,5 | 16,5
17,2
17,9 | 16,9
17,6
18,3 | 17,7
18,5 | 17,3
18,0
18,7 | 18,3 | 20,3 | | | | | | | | 17,0
17,8
18,6
19,5
20,3 | | | 31
32
33
34
35 | 2 3 | 9,1
9,4
9,7 | | 14,4 | 14,9
15,4
15,9 | 15,5
16,0
15,6
17,1
17,7 | 16,8
17,4
18,0 | | 18,5
19,2
19,9 | 25,3
21,5 | 20,1
20,8
21,5 | 21,2 | | 22,4 | 20,6
21,3
22,1
22,9
23,6 | 21,1
21,9
22,6
23,4
24,2 | 24,6 | | | | | | | 21,2
22,5
22,9
23,8
24,6 | | | 36
37
38
39
40 | 7 | 10,5
15,8
11,1 | 13,4
13,8
14,1 | 16.2
16.6 | 17,5 | 19,3
19,9 | 19,2
19,8
20,4
25,9
21,5 | 20,0
20,6
21,2
21,8
22,4 | 21,8
22,5
23,1 | 22,4
23,1
23,8
24,5
25,2 | 24,4
25,1 | 24,9 | 24,3
25,1 | 23,9
24,7
25,4
26,2
27,0 | 25,1
25,9 | 27,3 | 25,4
26,2
27,0
27,8
28,6 | 29,0 | | | | | | 25,5
26,4
27,3
28,1
29,0 | Photococococococococococococococococococo | | 41
42
43
44
45 | 2 4 | 11.9
12.2
12.5 | 15,2
15,6
15,9 | 17,9
18,3 | 20,5
21,0 | 21,5
22,0
22,6 | 22,1
22,7
23,3
23,9
24,5 | 23,1
23,7
24,3
24,9
25,5 | 25,1
25,8
26,5 | 25,9
26,6
27,3
28,0
28,7 | 27,3
28,6 | 27,8 | 28,1
28,8 | | 28,2
29,0
29,8
30,5
31,3 | 28,9
29,7
30,4
31,2
32,6 | 30,2 | 31,4
32,2 | | | | | | 29,9
30,8
31,7
32,5
33,4 | CONTROL OF THE PROPERTY | | 46
47
48
49
50 | 7 | 13,4
13,6
13,9 | 16,7
17,0
17,4
17,7
18,1 | | 22,4
22,9
23,4 | 24,8 | 26,8 | 28.0 | 28,5
29,1
29,8 | 31,5 | 30,9
31,6
32,4 | 31,5
32,3
33,0 | 31,8
32,6
33,3 | 31,5
32,3
33,0
33,8
34,6 | 32,9
33,6
34,4 | 32,8
33,6
34,4
35,2
36,0 | 35,8 | 34,7
35,5
36,3 | 37,9 | | | | | 34,3
35,2
36,1
37,0
37,9 | | A = offered random traffic B = probability of loss k = accessibility n = number of trunks | n k | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 60 | 76 | 96 | 110 k=n | n | |-----------------------------|-----------------------------------------|--------------------------------------|-----------------------------| | 5 g | 14,2 | 18,1 | 21.3 | 23,9 | 25,9 | 27.4 | 28,6 | 3⋳,4 | 32,3 | 33,1 | 33,8 | 34,1 | 34,6 | 35,2 | 36,0 | 36,6 | 37,1 | 37,9 | | | *************************************** | 37,9 | 50 | | 51
52
53
54
55 | 14,8
15,1
15,4 | 18,5
18,8
19,2
19,6
19,9 | 21,7
22,1
22,6
23,0
23,4 | 24,4
24,9
25,4
25,8
26,3 | 26,4
26,9
27,5
28,0
28,6 | 28,0
28,5
29,1
29,7
30,3 | 29,8 | 31,1
31,8
32,4
33,1
33,8 | 33,0
33,7
34,4
35,1
35,8 | 34,6
35,3
36,5 | 35,3 | 34,8
35,6
36,3
37,1
37,9 | 36,1
36,9 | 36,8
36,8
37,5
38,3
39,1 | 36,8
37.6
38,4
39,2
40,0 | 38,2
39,0
39,9 | | 38,7
39,6
40,4
41,2
42,1 | | | | 38,8
39,7
40,6
41,5
42,4 | 51
52
53
54
55 | | 56
57
58
59
60 | | 20,3
20,6
21,0
21,4
21,7 | 23,9
24,3
24,7
25,1
25,6 | 26,8
27,3
27,7
28,2
28,7 | 29,1
29,6
30,2
30,7
31,3 | 31,4
32,0
32,6 | 32,9 | 34,4
35,1
35,8
36,4
37,1 | 37,3
38,0 | 37,5
38,3
39,0
39,7
40,5 | 39,0
39,8 | 38,6
39,4
40,1
40,9
41,7 | 40,5
40,7 | 39,9
40,7
41,5
42,3
43,1 | 40,8
41,6
42,4
43,2
44,0 | 42,3 | 43,7 | 42,9
43,7
44,6
45,4
46,2 | 46,9 | | | 43,3
44,2
45,1
46,0
46,9 | 56
57
58
59
60 | | 61
62
63
64
65 | 17,3
17,6
17,9
18,2
18,5 |
22,1
22,5
22,8
23,2
23,5 | 26,0
26,4
26,8
27,3
27,7 | 29,2
29,7
30,1
30,6
31,1 | 31,8
32,3
32,9
33,4
33,9 | 33,8
34,3
34,9
35,5
36,1 | 35,4
36,6
36,6
37,2
37,8 | 37,8
38,4
39,1
39,8
40,4 | 40,1
40,8
41,6
42,3
43,0 | 41,2
42,0
42,7
43,4
44,2 | 42,1
42,8
43,6
44,3
45,1 | | 43,1
43,9
44,6
45,4
46,2 | 43,8
44,6
45,4
46,2
47,0 | 44,8
45,6
46,4
47,3
48,1 | 45,6
46,4
47,2
48,0
48,9 | 46,2
47,0
47,8
48,7
49,5 | 47,1
47,9
48,8
49,6
50,5 | 47,8
48,6
49,5
50,4
51,2 | | | 47,9
48,8
49,7
50,6
51,5 | 61
62
63
64
65 | | 66
67
68
69
70 | 18,8
19,0
19,3
19,6
19,9 | 24,3
24,6 | 28,1
28,5
29,0
29,4
29,8 | | 34,4
35,0
35,5
36,0
36,5 | 37,2
37,8
38,4 | 38,4
39,0
39,6
40,3
40,9 | | 43,7
44,4
45,1
45,9
46,6 | 44,9
45.7
46,4
47,1
47,9 | 46,6
47,4
48,1 | 46,3
47,0
47,8
48,6
49,3 | | 47,8
48,6
49,4
50,2
51,0 | 48,9
49,7
50,5
51,3
52,1 | 56,5
51,3
52,1 | 51,1
52,0
52,8 | 51,3
52,1
53,0
53,8
54,7 | 52,1
52,9
53,8
54,6
55,5 | 56,1 | | 52,4
53,4
54,3
55,2 | 66
67
68
69
70 | | 71
72
73
74
75 | 20,5
20,8
21,0 | 25,7
26,1
26,4
26,8
27,2 | 30,2
30,7
31,1
31,5
31,9 | 34,0
34,4
34,9
35,4
35,9 | 37,0
37,6
38,1
38,6
39,1 | 46,1 | 41,5
42,1
42,7
43,3
43,9 | 44,4
45,1
45,7
46,4
47,1 | 48,7 | 48,6
49,4
50,1
50,9
51,6 | 50,4
51,2
51,9 | 50,1
50,9
51,6
52,4
53,2 | 50,9
51,6
52,4
53,2
54,5 | 51,8
52,6
53,4
54,2
55,0 | 52,9
53,8
54,6
55,4
56,2 | 53,8
54,6
55,5
56,3
57,1 | 55,3
56,2 | 55,5
56,4
57,2
58,1
58,9 | 56,3
57,2
58,6
58,9
59,8 | 57.0
57.8
58.7
59.6
60.4 | | 57,0
58,0
58,9
59,8
60,7 | 71
72
73
74
75 | | 76
77
78
79
8d | 21,6
21,9
22,2
22,5
22,7 | 27,9
28,2 | 32,4
32,8
33,2
33,6
34,1 | 36,4
36,8
37,3
37,8
38,3 | 39,7
40,2
40,7
41,2
41,7 | 42,9
43,5
44,1 | 44,5
45,1
45,7
46,3
46,9 | 47,7
48,4
49,0
49,7
50,4 | 50,9
51,6
52,3
53,0
53,8 | 52,3
53,1
53,8
54,6
55,3 | 54,2
55,0
55,8 | 54,0
54,7
55,5
56,3
57,0 | 54,8
55,6
56,3
57,1
57,9 | 55,8
56,6
57,4
58,2
59,0 | 57,0
57,8
58,6
59,5
60,3 | 57,9
58,8
59,6
63,4
61,3 | 59,5
60,3 | 59,8
60,6
61,5
62,3
63,2 | | 61,3
62,2
63,0
63,9
64,8 | | 61,7
62,6
63,5
64,4
65,4 | 76
77
78
79
80 | | 81
82
83
84
85 | | 29:7 | 34,5
34,9
35,4
35,8
36,2 | 38,7
39,2
39,7
40,2
40,7 | 42,3
42,8
43,3
43,8
44,4 | 45,8 | 47,5
48,1
48,7
49,3
49,9 | 51,0
51,7
52,3
53,0
53,7 | 54,5
55,2
55,9
56,6
57,3 | 56.1
56.8
57.5
58.3
59.0 | 58,1
58,8
59,6 | 57,8
58,6
59,4
60,1
60,9 | 58,7
59,5
60,3
61,1
61,8 | 59,8
60,6
61,4
62,2
63,0 | 61,1
61,9
62,7
63,6
64,4 | 62,1
62,9
63,8
64,6
65,4 | | | 64,9
65,8
66,7
67,5
68,4 | 65,6
66,5
67,4
68,3
69,1 | | 66,3
67,2
68,2
69,1
70,0 | 81
82
83
84
85 | | 86
87
88
89
90 | 24.7 | 31.9
32.2 | 36,6
37,1
37,5
37,9
38,3 | | 45,4
45,9
46,4 | 48,6
49,1
49,7 | 50,5
51,1
51,7
52,3
52,9 | 54,3
55,6
55,6
56,3
57,0 | 58,1
58,8
59,5
60,2
60,9 | 59,8
60,5
61,3
62,0
62,8 | 61,9
62,6
63,4 | 61,7
62,4
63,2
64,0
64,8 | 63,4
64,2
65,0 | 64,6
65,4
66,2 | 66,9
67,7 | 67,1 | 67,9
68,8
69,6 | 75,5
75,9 | | 70,9
71,7
72,6 | 74.7 | 70,9
71,9
72,8
73,7
74,7 | 86
87
88
89
90 | | 91
92
93
94
95 | 25,9
26,2
26,4
26,7
27,0 | 33,3
33,7
34,0 | 38,8
39,2
39,6
40,0
40,5 | 44,5
45,0 | 48,0
48,5 | 51,4
51,9
52,5 | 53,5
54,1
54,7
55,3
55,9 | 59,6 | | 63,5
64,2
65,0
65,7
66,5 | 64,9
65,7
66,5
67,2
68,0 | 66,3
67,1
67,9 | 67,4
68,1
68,9 | 68,6 | 70,1
71,5 | 70,4
71,3
72,1
73,0
73,8 | 72,2
73,0 | 73,5
74,3
75,2 | 73,6
74,5
75,3
76,2
77,1 | 75.2
76.1
77.0 | 75,6
76,5
77,3
78,2
79,1 | 75,6
76,6
77,5
78,4
79,4 | 91
92
93
94
95 | | 96
97
98
99
100 | | 35,1
35,5
35,9 | 40,9
41,3
41,7
42,2
42,6 | 46,4
46,9
47,4 | 50,6
51,1
51,7 | 54,1
54,7
55,3 | 56,5
57,1
57,7
58,3
58,9 | 61,6
62,2
62,9 | 66,5
66,7
67,4 | 68.7
69.5 | 69,5
70,3
71,1 | 69.4
70.2
71.0
71.7
72.5 | 71,3
72,1
72,9 | 72,6
73,4
74,3 | 74,3
75,1
75,9 | 75,5
76,3
77,1 | 76,4
77,2 | 78,6
79,5 | | 79,6
80,5
81,4 | 80,0
80,9
81,8
82,7
83,5 | 80,3
81,2
82,2
83,1
84,1 | 96
97
98
99
100 | Table 1 -15 B = probability of loss k = accessibility n = number of trunks | n k | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 35 | 35 | 46 | 56 | 6 6 | 76 | 90 | 115 | k = n | NAME AND ADDRESS OF THE PARTY O | |---------------------------------|----------------------|--------------------------------------|----------------------|----------------------|------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------|--------------------------------------|-------------------------|---|-------------------------|-------------------------|-------------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--| | 100 | 28,4 | 36,2 | 42.6 | 47,8 | 52,2 | 55,8 | 58,9 | 63,5 | 68.1 | 70,2 | 71.8 | 72:5 | 73.7 | 75.1 | 76.8 | 78,6 | 78,9 | 80,4 | 81.4 | 82,3 | 83,5 | ini reproducina di Sala | 84,1 | | | 102
104
106
108
110 | 29,6
30,1
30,7 | 39,1 | 44.3
45.1
46.0 | 49.7
56.7
51.7 | 54,3
55,3 | 58,1
59,2
66,3 | | 66,1 | 71.6
72.4
73.8 | 71:7
73:2
74:7
76:2
77:6 | | 75.6
77.2
78.7 | 78:4 | 81,5 | 85,1
81,7
83,4 | 81,3
83,6
84,7 | | 83,8
85,6
87,3 | 88,4 | 85,8 | 87.1
88.9
90.7 | 93,5 | 85,8
87,8
89,7
91,6
93,5 | | | 112
114
116
118
126 | 32,4
33,5 | 40,6
41,3
42,0
42,7
43,5 | 48,6
49,4
50,3 | 54.5
55.5 | 59,5
65,5
61,6 | 63,6
64,8
65,9 | | 75,2 | | 85,6
82,1
83,6 | 84,1 | 83,4
84,9
86,5 | 84,7 | | 88,4
90,6
91,7 | 89,8
91,5
93,2 | 89,2
90,9
92,6
94,3
96,0 | 92,5
94,2
96.0 | 93:7
95:4
97:2 | 98,1 | 96,6
97.8
99.6 | 97.1
98.9
100.7 | 95.4
97.3
99.2
101.1
103.0 | Shouldernordernord Conservation | | 122
124
126
128
136 | 35,8
36,4 | 44,9
45,6
46,4 | 54.5 | 61.2 | 64.7 | 69,2
75,3
71,5 | 74.2
75.4 | 79, <u>1</u>
86,4 | 85,2
86,6
88,1 | 86,6
88,5
89,5
91,6
92,5 | 88,7
96,2
91,7
93,3
94,8 | 91.1
92.7
94.2 | 92,7 | 96,1
97,7 | 96,7
98,3
100,6 | 98,2
99,9
101,6 | 152,9 | 101.2
102.9
104.7 | 102,5
104,2
106,0 | 163.5
165.2
167.6 | 105.0
106.8
108.6 | 106,1
107,9
109,7 | 106,8
108.7
110,6 | | |
132
134
136
138
140 | 38,1
38,7
39,2 | 48,5
49,3
50,6 | 57,1
57,9
58,8 | 64,1
65,1
66,0 | 68,9
69,9
71,0
72,0 | 74.8
75.9
77.0 | 78,9
80,1
81,3 | 86,7 | 92.3
93.7
95.2 | 95.4
96.9
98.4 | 97,9
99,4
100,9 | 98,9
100.4
102.0 | 99.0
100.6
102.2
103.7
105.3 | 102.6
104.2
105.8 | 105.0
106.7
108.3 | 106,7 | 108.0
109.7
111.5 | 109.9
111.7
113.4 | 111:3
113:1
114:8 | 112.3
114.1
115.9 | 113,9
115,7
117,5 | 115.1
117.0
118.8 | 116.3 | | | 142
144
146
148
150 | 41.5
42.1 | 53,6 | 61,3
62,2
63,5 | 69,8
75,8 | 75.1 | 85,4
81,5
82,6 | 84,8
86,5
87,2 | 91,8
93,1
94,4 | 99,4
100,8
102,2 | 102.6
104.3
105.8 | 105,5
107,0
108,5 | 106,6
108,2
109,7 | 106.9
108.5
110.1
111.7
113.2 | 110.7
112.3
114.0 | 113.4
115.0
116.7 | 115,2
116,9
118,6 | 116,6
118,4
120,1 | 118.7
125.4
122.2 | 120:1
121:9
123:7 | 121.3
123.0
124.8 | 122,9
124,8
126,6 | 124,2
126,0
127,8 | 125.8
127.7
129.7 | ANA CIPACION CONTRACTOR CONTRACTO | | 152
154
156
158
160 | 43.8
44.3
44.9 | 55,0
55,8
56,5
57,2
57,9 | 65.6
66.4
67.3 | 73,7
74,6
75,6 | 86,4
81,4
82,4 | 86,0
87,1
88,2 | 90,7
91,9
93,1 | 98,2
99,5
100,8 | 106.4 | 110.2
111.7
113.2 | 113:1
114:6
116:2 | 114.3
115.9
117.4 | 114,8
116:4
118,6
119,6
121,2 | 118.8
120.5
122.1 | 121.7
123.4
125.1 | 123,7 | 125.3
127.6
128.7 | 127.5
129.2
131.0 | 129:5
135:8
132:6 | 130.2
132.0
133.8 | 132,6
133,8
135,6 | 133,3
135,1
136,9 | 135,4 | | | 162
164
166
168
170 | 46.6
47.2
47.8 | 58,7
59,4
60,1
60,8
61,6 | 69.9
70.7
71.6 | 85,4 | 86,6 | 91,5
92,7
93,8 | 96,6
97,8
99,5 | 104,6
105,9
107,2 | 113.3
114.7
116.1 | 117,6
119,0
120,5 | 120,7
122,3
123,8 | 122,1
123,6
125,2 | 122,7
124,3
125,9
127,5
129,1 | 127.0
128.6
130.2 | 130,1
131,8
133,4 | 132,3
134,6
135,7 | 133.9
135.6
137.4 | 136.2
138.6
139.8 | 137.9
139.7
141.5 | 139,2
140,9
142,7 | 141.0 | 142.4
144.2
146.1 | 145.5 | manuscrate contract c | | 172
174
176
178
186 | 49,5
50.0
50.6 | 62,3
63,5
63,7
64,5
65,2 | 74:1
75:0
75:8 | 83,2
84,2
85,1 | 96.8
91.8
92.9 | 97,1
98,2
99,4 | 162,5
163,7
164,9 | 111.6
112.3
113.5 | 120,2
121,6
123,6 | 124,8
126,3
127,7 | 128,3
129,9
131,4 | 129.8
131.3
132.9 | 130,6
132,2
133,8
135,4
137,0 | 135.1
136.7
138.3 | 138,5
140,1
141,8 | 146,8 | 142,6
144,3
146,5 | 145:1
146:8
148:6 | 146.8
148.6
156.4 | 148,1
149,9 | 156,1
151,9
153,7 | 151.5
153.4
155.2 | 154,6
156.6
158.5 | estration solventarion and a second | | 182
184
186
188
190 | 52.3
52.9
53.4 | 68,1 | 78,4
79,2
80,1 | 88.5
89.5
89.9 | 96.0
97.0
98.1 | 102.7 | 108,4
109,6
110,8 | 117.4
118.6
119.9 | 127:1
128:5
129:9 | 132,0
133,4
134,9 | 135.9
137.4
139.0 | 137,5
139,6 | 138,5
140,1
141,7
143,3
144,8 | 143.2
144.8
146.4 | 146.8
148.5
150.2 | 149,4 | 151.2
153.6 | 153.9
155.7
157.4 | 155.7
157.5 | 157,1
158,9 | 159:2
161:6 | 160,7 | 164.3 | Name of the last o | | 192
194
196
198
200 | 55:2
55:7
56:3 | 70:3 | 82,6 | 92:8
93,7
94,7 | 101,2
102,3
103,3 | 168,3
169,4
116,5 | 114.3
115.5
116.7 | 125,7
125,6
126,3 | 134.6 | 139:2 | 144,9 | 145,2
146,7
148,2 | 146,4
148,6
149,6
151,2 | 151.3
152.9
154.6 | 155,2
156,9
158.6 | 157,9 | 159,9
161,6
163.4 | 162.7
164.5
166.3 | 164.7 | 166,1
167,9 | 168:3
170:1 | 169.9
171.7 | 173.9
175.9 | | | | | delicionamento. | | Andrew House, and the Control of | THE RESIDENCE OF THE PERSON | · | NO REPORTED IN COLUMN TO THE PARTY OF PA | | | Million on the State | T | anarateiki sa san ayas | and the second second | energia de la constitución de la c | | - | and the constant | | | ************************************** | phones area | | NAME OF THE OWNER, WHEN | Villa Malandari Marini | - | |--------------------------------------|------------------------------|------------------------------|----------------------------------|--|--|----------------------------------
--|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|-------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|--|-------------------------|-------------------------|-------------------------|---------------------------------|-----------------| | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 36 | 35 | 46 | 56 | 6 🖱 | 76 | 96 | 116 | k = n | n | | | 200 | 56,9 | 72,4 | 85,2 | 95,7 | 104,4 | 111.6 | 117.8 | 127,6 | 138,2 | 143,5 | 147.9 | 149,8 | 152,7 | 156,2 | 160,2 | 163,0 | 165,1 | 168,5 | 170:0 | 171.6 | 173.8 | 175.4 | 179,7 | 266 | | | 202
204
206
208
210 | 58,5
58,6
59,1 | 73,9
74,6
75,3 | 86,9
87,7
88,6 | 97,6
98,5
99,5 | 106,4
107,5
108,5 | 113,9 | 120,2 | 130,1
131,4
132.7 | 140,9
142,3
143,7 | 146,4 | 150,8
152,3 | 152,8
154,3 | 155,9
157,4 | 159.4
161.0 | 165,3 | 166,5 | 168,6
170,3 | 171,6
173,4 | 173.6 | 173,4
175,2
177,0
178,8
180,6 | 177.4 | 179.6 | 185.6 | 202
204
206
208
210 | | | 212
214
216
218
220 | 60,3
60,8
61,4
62,0 | 76,8
77,5
78,2
79,0 | 90.3
91.1
92.0
92.9 | 101,4
102,4
103,3
104,3 | 110,6
111,7
112,7
113,7 | 118,3
119,5
120,6
121,7 | 124,9
126,1
127,3
128,4 | 135,2
136,5
137,8 | 146.5
147.8
149.2 | 152,1
153,5
155,0 | 156,7
158,2
159,7 | 158,8
160,3
161,7 | 162,2
163,7
165,3 | 165,9
167,5
169,1 | 170,3
172,6
173,7 | 173,3
175,0
176,8 | 175,6
177,3
179,0 | 178,7
180,4
182,2 | 180.8
182.6
184.4 | 182,4
184,2
186,0
187,8
189,6 | 184.7
186.5
188.4 | 186,4
188,2
190,1 | 191.4
193.3
195.2 | 212
214
216
218
220 | | | 222
224
226
228
230 | 64,8 | 81,1
81,9
82,6 | 95,4
96,3
97,1 | 107,1
108,1
109,1 | 116,9
117,9
119,6 | 125,0 | 132,0
133,1
134,3 | 142,9
144,1
145,4 | 154.7
156.1
157.5 | 160,7
162,1
163,6 | 165,6
167,1
168,6 | 167,7
169,2 | 171,5
173,0 | 175,6
177,2
178,9 | 180,4
182,6
183.7 | 183,6 | 186,0
187,7 | 189,3
191,1 | 191.6 | 191,4
193,3
195,1
196,9
198,7 | 195,7 | 197,4 | 203,0 | 222
224
226
228
230 | _ | | 232
234
236
238
240 | 66,5
67,1
67,7 | 84.7
85.5
86.2 | 99.7
100.5
101.4 | 111,9
112,9
113,8 | 122,1
123,1
124,2 | 130,6
131,7
132,9 | 137,9 | 149,2
150,5
151,8 | 161,7
163,0
164,4 | 167,9
169,3
175,8 | 173,0
174,5
176,0 | 175,2
176,7
178,2 | 179,2
180,7
182,2 | 183,7
185,3
186,9 | 188,7
190,4 | 192,2 | 194,7
196,4 | 198,2
200.0
201.8 | 200:6 | 200,5
202,3
204,1
205,9
207,8 | 264,9 | 206.7
208.5 | 212,7 | 232
234
236
238
240 | | | 242
244
246
248
250
1 | 69,4
69,9
70,5
71,1 | 89,1
89,8
90,5 | 103,9
104,8
105,6
106,5 | 116,7
117,7
118,6
119,6 | 127,3
128,4
129,4
135,4 | 136,2
137,3
138,4 | 143,8
144,9
146,1 | 155,6
156,9
158,2
159.5 | 168,6
169,9
171,3 | 175,1
176,5
177,9 | 180,4
181,9
183,3 | 182,7
184,2
185,7 | 186,8
188,4
189,9 | 191,8
193,4
195,0 | 197,1
198,8
200,5 | 200,8
202,5
204,2
205,9 | 203,4
205,2
206,9 | 207,1
208,9
210,6 | 209.6
211.4
213.2 | 209,6
211,4
213,2
215,0
216,8
0,911 | 214,6
215,9
217,7 | 215.9
217.7
219.6 | 222,5 224,4 226,3 | 242
244
246
248
250 | - | | 300
1 | 85,3
0,284 | 108,7 | 127,8
0,426 | 143,5
0,478 | 156,5 | 167,5 | 176,7 | 7 191,3 | 207,2 | 215.2 | 221,8 | 224.6 | 229,7 | 236.0 | 243,9 | 248,8 | 252,3 | 257.6 | 260,1 | 262.4 | 265,6 | 267,8 | 277,1 | 366
1 | | | 35g
1 | 99,5 | 126.8 | 149.1 | 167,4 | 182,6 | 195,4 | 206,2 | 2 223.2 | 241,8 | 251.1 | 258,8 | 262,1 | 268,5 | 275,3 | 284.6 | 291.6 | 295.9 | 3ጠ1.6 | 365.4 | 308,1 | 311.8 | 314.8 | ₹26.2 | 350 | | | 400 | 113,7 | 144,9 | 170,4 | 191,3 | 208,7 | 223,3 | 235,7 | 7 255,1 | 276,3 | 287,0 | 295,7 | 299,5 | 306,3 | 314,6 | 325.3 | 333.2 | 339.4 | 346.3 | 356.8 | 353.9 | 358.4 | 364.8 | ₹78.₹ | 450 | _ | | 500 | 142,1 | 181,1 | 213.0 | 239,2 | 265,9 | 279,1 | 294,0 | 318,9 | 345,4 | 358,7 | 369,6 | 374,4 | 382,8 | 393,3 | 406,6 | 416.5 | 424.3 | 435.7 | 441.6 | 0.918 | 451.2 | 454.7 | 474.e | 1
560 | | | 1
6gg | 0,284 | 0,362 | 0,426 | 0,478 | 0.522 | 0.558 | g,589 | 9 0,638 | 0,691 | 0.717 | 0,739 | 0,749 | 0,766 | 0,787 | 0.813 | 0,833 | 0,849 | 6,871 | 0,909 | 0,920
537,7 | 6,933 | 0.941 | 6,996 | 1 | | | 1 | 0.284 | 0,362 | 0,426 | 0,478 | 0,522 | 0,558 | g,589 | 9 0,638 | 0.691 | 0,717 | 0.739 | 6,749 | 0.766 | 0,787 | 5,813 | 0,833 | 0.849 | 0,871 | 0.888 | 0,920 | 0,935 | 0.943 | 0,993 | 655 | | | 700 | 199.0
0.284 | 253,5
0,362 | 298,2 | 334,8
0,478 | 365,2 | 390,8 | 412,
0,589 | 4 446,5 | 483,6 | 502.2 | 517,5
0,739 | 524,2
6,749 | 536.0 | 550,6
0,787 | 569,2 | 583,2 | 594.0
0.849 | 616,6 | 621,3 | 629,8 | 637,9 | 643,1 | 672,4
6,995 | 766
1 | | | 800
1 | 227,4
0,284 | 289,7
0,362 | 340,7 | 382,6 | 417,4 | 446,6 | 471, | 5 515,3
9 6,638 | 552,7 | 574,6
6,717 | 591,4
0,739 | 599,1
6,749 | 612,5 | 629,2 | 650,5 | 666,5 | 678,9 | 697,2 | 710,1 | 719,7 | 731,5 | 737,5 | 771.8
0.996 | 855 | - | | 900
1 | 255,9 | 326,0 | 383,3 | 430,5 | 469,6 | 502,4 | 530, | 2 574.0 | 621.7 | 645.7 | 665.4 | 673.9 | 689,1 | 707.9 | 731.8 | 749.8 | 763.8 | 784.3 | 798.8 | 859,7
8 5,955 | 825.4 | RTO M | 874.E | 900 | | | 1100 | 312,7 | 398,4 | 468,5 | 526,1 | 573,9 | 614,6 | 648, | 1 701,6 | 759.9 | 789.2 | 813,2 | 823.7 | 842.2 | 865.2 | 894.5 | 916.4 | 933.5 | 958.6 | 976.1 | . 980.4 | 1448 | 1 # 2 4 | 1871 | 1100 | Table
1 - 17 | | • | r k | 4 | 5 | Ó | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 30 | 35 | 40 | 50 | 65 | 76 | 96 | 116 | k = n | n | |-----------------|----------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------------------|----------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|----|----|----|-----|--------------------------------------|----------------------------| | | 1
2
3
4
5 | 1,1
1,4 | 1,7 | 0,02
0,22
0,60
1,1
1,7 | 1 2 3 4 5 | | | 6
7
8
9
10 | 1,8
2,1
2,5
2,9
3,2 | 2,1
2,5
2,9
3,4
3,8 | 2,3
2,7
3,2
3,7
4,2 | 2,9
3,4
4,8
4,5 | 3,6
4,2
4,7 | 4,3 | 5,1 | | | | | | | | | | | | | | | | 2,3
2,9
3,6
4,3
5,1 | 6
7
8
9
15 | | | 11
12
13
14
15 | 3,6
4,0
4,4
4,7
5,1 | 4,2
4,7
5,1
5,6
6,0 | 4,7
5,2
5,7
6,2
6,7 | 5,0
5,6
6,1
6,6
7,2 | 5,3
5,8
6,4
7,0
7,6 | 5,5
6,1
6,7
7,3
7,9 | 5,7
6,3
6,9
7,5
8,1 | 6,6
7,3
7,9
8,6 | 9,0 | | | | | | | | | | | | | | 5,8
6,6
7,4
8,2
9,0 | 11
12
13
14
15 | | | 16
17
18
19
25 |
5,5
5,8
6,2
6,5
6,9 | 6,5
6,9
7,4
7,8
8,3 | 7,2
7,7
8,2
8,7
9,2 | 7,7
8,3
8,8
9,4
10,0 | 8,2
8,7
9,3
9,9
15,5 | | 8,8
9,4
10,0
10,7
11,3 | 16,5 | 9,7
10,4
11,1
11,8
12,5 | 11,4 | 12,3 | 13,2 | | | | | | | | | | | 9,8
10,7
11,5
12,3
13,2 | 16
17
18
19
20 | | | 21
22
23
24
25 | 7,2
7,5
7,9
8,2
8,6 | 9,6
10,1 | 11.3 | 12,2 | 12,3
12,9 | 12,8 | 12,6
13,3
13,9 | 13,2
13,9
14,6 | 13,2
13,9
14,6
15,3
16,1 | 14,3
15,0
15,7 | 14,5 | 13,9
14,7
15,4
16,2
16,9 | 15,7 | 17.5 | | | | | | | | | 14,6
14,9
15,8
16,6
17,5 | 21
22
23
24
25 | | | 26
27
28
29
30 | 9,3
9,6 | 11,4
11,8 | 12,3
12,8
13,4
13,9
14,4 | 13,9
14,5 | 14,7
15,3 | 15.3 | 15,9
16,5
17,2 | 18,0 | 17.5
18.2 | 17:9 | 18,3 | 17,7
18,4
19,2
19,9
20,7 | 18,7
19,5 | 19,1
19,8 | 21,9 | | | | | | | | 18,4
19,3
20,2
21,0
21,9 | 26
27
28
29
30 | | | 31
32
33
34
35 | 11,0
11,3
11,7 | 14,3 | 14.9
15.4
15.9
16.4
16.9 | 17.8 | 17,1
17,7
18,3
18,9
19,5 | 18,5
19,1
19,8 | 18,5
19,2
19,8
20,5
21,1 | | 21,1
21,9
22,6 | | | 22,2 | 21,8
22,6
23,3
24,1
24,9 | 22,2
23,0
23,8
24,6
25,4 | | 26,4 | | | | | | | 22,8
23,7
24,6
25,5
26,4 | 31
32
33
34
35 | | | 36
37
38
39
40 | 12.7
13.0
13.4 | 15,6
16,3 | 17,4
17,9
18,4
18,9 | 19,5
25,1 | 20,1
20,7
21,3
21,9
22,5 | 21,7 | | 24,3 | 24,8
25,6
26,3 | 26.2 | | 26,1
26,9
27,7 | 26,5
27,3 | | 26,8
27,6
28,4
29,2
30,0 | 27,3
28,1
28,9
29,7
36,6 | 31,0 | | | | | | 27,3
28,3
29,2
30,1
31,6 | 36
37
38
39
40 | | • | 41
42
43
44
45 | 14,4
14,7
15,1 | 18,6 | 20.8 | 21,8
22,3
22,9
23,4
24,0 | 23,1
23,7
24,4
25,0
25,6 | 24.2
24.9
25.5
26.1
26.8 | | | | | 31,3 | | 31,2
32,5 | | | 31,4
32,2
33,0
33,9
34,7 | 31,8
32,7
33,5
34,4
35,2 | | | | | | 31,9
32,8
33,8
34,7
35,6 | 41
42
43
44
45 | | Table
1 - 18 | 46
47
48
49
56 | 16,1
16,4
16,8 | 19,4
19,8
20,2
25,7
21,1 | 22,3
22,8
23,3
23,7
24,2 | | 26,2
26,8
27,4
28,0
28,6 | | 29,1
29,8
30,4 | 36,7
31,4
32,1 | 33,6
33,8 | 33,8
33,8
34,6 | 33,7
34,4
35,2 | 33,1
33,9
34,7
35,5
36,3 | 34,4
35,2
36,0 | 35,8
35,8
36,6 | 35,8
36,6
37,4 | 36,4
37,2
38,1 | 36,0
36,9
37,7
38,6
39,4 | 40,3 | | | | | 36,5
37,5
38,4
39,3
40,3 | 46
47
48
49
50 | | k | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 3.5 | 35 | 40 | 50 | 65 | 76 | 0.6 | 110 k=n | | |-----------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|----------------------|--------------------------------------|--|----------------------|--|--------------------------------------|-----------------------------|---------------------------------------|----------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------| | | | | | ************* | ti di anno anti di | | | ************************************** | | **** ******************************** | | War-hammen and the large on | · · · · · · · · · · · · · · · · · · · | | | | *************************************** | | • | , O | 70 | 110 4-11 | n | | 50 | 17.1 | 21.1 | 24,2 | 26,8 | 28,6 | 30,0 | 31,1 | 32,8 | 34,5 | 35,3 | 36,5 | 36,3 | 36,8 | 37,4 | 38,2 | 38,9 | 39,4 | 40,3 | | | - | 40,3 | 50 | | 51
52
53
54
55 | 17,8
18,2
18,5 | 21,5
21,9
22,3
22,8
23,2 | 24,7
25,2
25,7
26,2
26,6 | 27,3
27,8
28,4
28,9
29,4 | 29,2
29,8
30,4
31,0
31,5 | 31,2
31,9
32,5 | 32,4
33,1
33,8 | 33,5
34,2
34,9
35,6
36,3 | 36,8
36,8
37,5 | 36,1
36,9
37,6
38,4
39,2 | 37,6
38,4
39,1 | 37,9
38,7
39,4 | 37,5
38,4
39,2
40,5
40,8 | 39,1
39,9
40,7 | 39,9
45,7 | | 41,1 | | | | | 41,2
42,1
43,1
44,0
44,9 | 51
52
53
55
55 | | 56
57
58
59
60 | 19,5
19,9
20,2 | 23,6
24,0
24,5
24,9
25,3 | 27,6 | | 32,1
32,7
33,3
33,9
34,5 | 34,4
35,6 | 35,7 | 37,0
37,8
38,5
39,2
39,9 | 39,8 | 40,0
40,7
41,5
42,3
43,0 | 41,5 | 41,8
42,6
43,4 | 42,4
43,2
44,0 | 44,0 | 43,2
44,1
44,9
45,7
46,6 | 43,9
44,8
45,6
46,5
47,3 | 44,5
45,4
46,2
47,1
47,9 | 47,2 | 49,6 | | | 45,9
46,8
47,8
48,7
49,6 | 56
57
58
59
60 | | 61
62
63
64
65 | 21,2
21,6
21,9 | 25,7
26,1
26,6
27,0
27,4 | 29,6
30,0
30,5
31,0
31,5 | 32,6
33,2
33,7
34,3
34,8 | 35,1
35,7
36,3
36,9
37,5 | 37,6
38,2
38,8 | 38,4
39,1
39,7
40,4
41,0 | 40,6
41,3
42,0
42,7
43,4 | 43,5
44,3 | 43,8
44,6
45,4
46,1
46,9 | 45,4
46,2
47,5 | 45,8
46,6
47,4 | 45,6
46,4
47,3
48,1
48,9 | 48,1 | 48,2
49,1 | 48,2
49,0
49,9
50,7
51,6 | 48,8
49,7
56,5
51,4
52,2 | 49,8
50,6
51,5
52,4
53,3 | 50,5
51,4
52,3
53,2
54,0 | | | 50,6
51,5
52,5
53,4
54,4 | 61
62
63
64
65 | | 66
67
68
69
70 | 23,0
23,3
23,6 | 27.8
28.3
28.7
29.1
29.5 | | 35,3
35,9
36,4
36,9
37,5 | 38,1
38,6
39,2
39,8
40,4 | 40.7
41.3
42.0 | 43,0
43,7 | 44,1
44,8
45,6
46,3
47,0 | 48,1
48,8 | 48,5
49,3 | 49,4
50,2
51,0 | 50,6
51,4 | 50,5
51,3 | 51,3
52,2
53,0 | 51,6
52,4
53,3
54,1
55,0 | 52,4
53,3
54,1
55,0
55,8 | 53,1
53,9
54,8
55,7
56,5 | 55,6
55,9 | 57,6 | 59,1 | | 55,3
56,3
57,2
58,2
59,1 | 66
67
68
69
70 | | 71
72
73
74
75 | 24,7
25,0
25,4 | 29,9
30,4
30,8
31,2
31,6 | 34,4
34,9
35,4
35,9
36,3 | 38,0
38,5
39,1
39,6
40,1 | 40,9
41,5
42,1
42,7
43,2 | 43,9 | 45,7 | 47,7
48,4
49,1
49,8
56,5 | 51,1
51,8
52,6 | 51,6
52,4
53,1
53,9
54,7 | 52,6
53,4
54,2
55,5
55,8 | 53,8
54,6
55,4 | 53,7
54,6
55,4
56,2
57,5 | 55,5
56,3
57,1 | 56,6
57,5
58,3 | 56,7
57,5
58,4
59,3
65,1 | 57,4
58,3
59,1
60,0
60,9 | | 60.2 | 60,0
60,9
61,8
62,7
63,6 | | 60,1
61,0
62,0
62,9
63,9 | 71
72
73
74
75 | | 76
77
78
79
80 | 26.4
26.7 | 32,0
32,5
32,9
33,3
33,7 | 36.8
37.3
37.8
38.3
38.8 | 40,7
41,2
41,7
42,3
42,8 | 43.8
44.4
45.0
45.5
46.1 | 47,0
47,6
48,2 | 48,3
49,0
49,6
50,3
50,9 | 53,3 | 54,9
55,6 | | 57,3
58,1
58,9 | 57,8
58,6
59,4 | 57,8
58,6
59,4
60,3
61,1 | 59,6
60,4
61,3 | 60,9
61,7
62,6 | 61,8
62,7
63,5
64,4 | 63,5
64,3 | 62,9
63,8
64,6
65,5
66,4 | 64,7
65,5
66,4 | 64,5
65,4
66,3
67,2
68,1 | | 64,9
65,8
66,8
67,7
68,7 | 76
77
78
79
80 | | 81
82
83
84
85 | 28,1
28,4
28,8 | 34,2
34,6
35,0
35,4
35,8 | | 43,3
43,9
44,4
45,0
45,5 | 46,7
47,3
47,9
48,4
49,0 | 50.1
50.7
51.3 | | 54,8
55,5
56,2
56,9
57,6 | 58,7
59,4
60,2 | 59,4
60,1
60,9
61,7
62,5 | 62,1
62,9 | 61,8
62,6
63,4 | | 64,6
65,4 | 65,1
66,5
66,8 | 65,3
66,1
67,0
67,8
68,7 | 66,1
66,9
67,8
68,7
69,5 | 68,2
69,0
69,9 | 69, <u>1</u>
70,0 | 70,8 | | 69,6
70,6
71,6
72,5
73,5 | 81
82
83
84
85 | | 86
87
88
89
90 | 29,8
30,2
30,5 | 36,3
36,7
37,1
37,5
37,9 | 42,2
42,6 | 46,0
46,6
47,1
47,6
48,2 | 56,7 | 53,1
53,8
54,4 | 54,9
55,5
56,2
56,8
57,5 | 59,0
59,7
60,4 | 63,2 | 63,3
64,6
64,8
65,6
66,4 | 65,3
66,1
66,9 | 65,9
66,7
67,5 | 66,8
67,6
68,4
69,2 | 67,9
68,8
69,6 | 69,3
70,2
71,0 | 69,6
70,4
71,3
72,1
73,0 | 71.3 | 72,6
73,5
74,3 | 72,7
73,6
74,5
75,3
76,2 | 74,3
75,2
76,1 | 78,3 | 74,5
75,4
76,4
77,3
78,3 | 86
87
88
89
90 | | 91
92
93
94
95 | 31,5
31,9
32,2 | 38,4
38,8
39,2
39,6
40,1 | 44,1
44,6
45,1
45,5
46,0 | | 53,6 | 56,2
56,8
57,4 | 58,1
58,8
59,4
60,1
60,7 | 62,5
63,2 | 66,2
67,0
67,7 | 67,2
67,9
68,7
69,5
70,3 | 70,9 | 69,9
70,7
71,5 | | 72,1
72,9
73,8 | 72,7
73,6
74,4
75,3
76,2 | | 74,8
75,6
76,5
77,4
78,2 | 77,0
77,9
78,8 | 77:1
78:0
78:9
79:8
80:7 | 78.8
79.7 | 79,2
80,1
81,0
81,9
82,9 | 79,3
80,2
81,2
82,2
83,1 | 91
92
93
94
95 | | 96
97
98
99
100 | 33,6
33,9 | 40,5
40,9
41,3
41,7
42,2 | 46,5
47,6
47,5
48,6
48,5 | 53.0 | 55,4
55,9
56,5
57,1
57,7 | 59.3
59.9
60.5 | 62,7 |
66,0
66,7
67.4 | 76,6
76,8
71.5 | 71,1
71,9
72,6
73,4
74,2 | 73,3
74,1
74,9 | 73,9
74,7
75,5 | 74,2
75,9
75,8
76,6
77,4 | 76,3
77,1
77,9 | 77,9
78,7
79,6 | 79,1
79,9
86,8 | 86,9
81,7 | 81,4
82,3
83,2 | | 85,2 | 86,5 | 84,1
85,1
86,0
87,0
88,0 | 96
97
98
99
100 | A = offered random traffic B = probability of loss | n k | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 36 | 35 | 46 | 56 | 66 | 76 | 98 | Ī16 | k=n | | |---------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------|-------------------------|-------------------------|-------------------------|--|-------------------------|--------------------------------------|--| | 100 | 34,3 | 42,2 | 48.5 | 53,5 | 57,7 | 61.1 | 64.0 | 68,1 | 72.3 | 74:2 | 75.7 | 76.3 | 77:4 | 78,8 | 86,4 | 81,7 | 82,6 | 84.1 | 85,2 | 86,1 | 87,4 | | 88,6 | Carried States | | 102
104
106
108
110 | 35,6
36,3
37,0 | 43,9
44,7
45,5 | 51,4
52,3 | 55.7
56.7 | 60,0 | 63,5
64,8
66,5 | 66,5
67,8
69,1 | 72,4 | 75.3
76.8
78.3 | 77:3
78:9
85:4 | 78,9 | 81,2
82,8 | 86,7
82,4 | | 83,8 | 85,1
86,9
88,6 | 84.4
86.1
87.9
89.6
91.4 | 87.6
89.4
91.2 | 90.6 | | | 97,7 | 89.9
91.9
93.8
95.7
97.7 | | | 112
114
116
118
120 | 39,8
40,4 | 48,1
48,9
49,8 | 55.2
56.2
57.2 | | | 69,6
75,9
72,1 | 71,7
72,9
74,2
75,5
76,8 | 86,7 | 82.8 | | | 87.6 | | 90.5
92.2
93.8 | 94,1
95,8 | 93,8
95,5
97,3 | 96.7
98.4 | 96,6
98,3
100,1 | 97:8
99:6
101:4 | 160,6 | 98.4
100.2
102.1
103.9
105.8 | 103.2 | 101.6
103.5
105.5 | W.Spicetophicalophical | | 122
124
126
128
130 | 43,2
43,9 | 52,3 | 62:0 | 66,4
67,4
68,5 | 75,3
71,5
72,6
73,8
75,0 | 75,8
77,5
78,2 | 81,9 | 86,2
87,6 | 96.4
91.9
93.4 | 94.5
96.0 | 94,9
96,5
98,1 | 94.1
95.7
97.3
99.0
100.6 | 97.2
98.8
100.4 | 98.9
100.5
102.2 | 101.0
102.7
104.4 | 162,5
164,3
166,6 | 163.7
165.5
167.2 | 165.5
167.3
169.1 | 156,8
158,6
115,4 | 107.8
109.7
111.5 | 109.4
111.3
113.1 | 115,6
112,5
114,3 | 111.3
113.3
115.2 | | | 132
134
136
138
140 | 45,9
46,6
47,3 | 55,7
56,5
57,3
58,2
59,0 | 64,9
65,9 | 72,8
73,9 | 77,3
78,4
79,6 | 81,9
83,1
84,3 | 85.7
87.5
88.3 | 91.7
93.1
94.4 | 97.9
99.4
100.9 | 100.7
102.3
103.8 | 102,9
104,5
106,1 | 102,2
103,8
105,4
107,0
108,7 | 105,4
107,0
108,7 | 107.3
108.9
110.6 | 109,6
111,3
113,6 | 111,2
113,0
114,7 | 112,5
114,3
116,1 | 114,5
116,3
118,1 | 115,9
117,7
119,5 | 117.0
118.8
120.6 | 118,6
120,5
122,3 | 119,9
121,8
123,6 | 121.1
123.1
125.6 | CONTRACTOR PROPERTY CONTRACTOR CO | | 142
144
146
148
150 | 50.0
50.7 | 60,7
61,6
62,4 | 68,8
69,8
70,7
71,7
72,7 | | 84,2
85,3 | 88.0
89.2
96.4 | 92,1
93,4
94,7 | 98,5
99,9
151,3 | 105,4 | 108.5
110.0
111.6 | 110,9
112,5
114,1 | 110:3
111:9
113:5
115:1
116:7 | 113.6
115.3
116.9 | 115.7
117.4
119.0 | 118,2
119,9
121,6 | 120,6
121,7
123,5 | 121,4
123,2
124,9 | 123,5
125,3
127,1 | 124,9
126,8
128,6 | 126,1
127,9
129,8 | 127.9
129.7
131.6 | 129,2
131,1
132,9 | 136,9
132,9
134,8 | | | 152
154
156
158
160 | 52,8
53,5
54,1 | 64,9
65,8
66,6 | 74.6
75.6
76.6 | 81,3
82,4
83,5
84,6
85,6 | 89.9 | 94,1
95,3
96,5 | 98,5
99,8
161.1 | 105,4
106,8
108,1 | 112.8
114.3
115.7 | 116:2
117:8
119:3 | 118,9
120,5
122,5 | 118,3
120,0
121,6
123,2
124,8 | 121,8
123,5
125,1 | 124,1
125,8
127,4 | 126,8
128,5
130,3 | 128,8
135,5
132,3 | 130,3
132,6
133,8 | 132,5
134,3
136,1 | 134,6
135,9
137,7 | 135,3
137,1
138,9 | 137:1
139:0
140:8 | 138,5
146,4
142,3 | 140.7
142.7
144.7 | ensecutional department of the contraction c | | 162
164
166
168
170 | 56,9
57,6 | 69,2 | 85,4
81,4 | 87,8
88,8
89,9 | 95,7
96,9 | 100.2 | 104,9
106,2
107,5 | 112.2
113.6
115.6 | 126:1
121:6
123:1 | 124:5
125:5
127:1 | 126,8
128,4
130,0 | 26,4
28,0
29,6
31,2
31,2 | 130,1
131,7
133,4 | 132,5
134,2
135,9 | 135,4
137,2
138,9 | 137.5 | 139,1
140,9
142,7 | 141.5
143.3
145.1 | 143.2
145.6
146.8 | 144,5
146,3
148:1 | 146,4 | 147,9
149,7
151,6 | 150.6
152.6
154.5 | T.CTRODERACTION OF THE PROPERTY PROPERT | | 172
174
176
178
180 | 59,6
60,3
61,0 | 73:4
74:2 | 84,3
85,3
86,2 | 93,1
94,2
95,3 | 100.3
101.5
102.6 | 106.3 | 111.3
112.6
113.9 | 119.1
120.4
121.8 | 127.4 | 131:6
133:2
134:7 | 134,8
136,4
138,0 | 34.5
136.1
37.7
139.3
140.9 | 138,3
139,9
141,6 | 140.9
142.6
144.3 | 144,1
145,8
147,5 | 146,3 | 148.6
149.8
151.6 | 150,5
152,3
154.1 | 152,3
154,1
155,9 | 153,7
155,5
157,3 | 155.7
157.6
159.4 | 157,2
159,1
161,6 | 160,4 | and the second of o | | 182
184
186
188
190 | 63,1
63,7
64,4 | 77,6
78,4
79,3 | 89,2
90,1
91,1 | 98,5
99,5
100,6 | 166,1
167,2
168,4 | 112,4
113,6
114,9 | 117:7
119:0
120:3 | 125,9
127,3
128,7 | 134.8
136.2
137.7 | 139:2 | 142.7
144.3
145,9 | 42,5
444,7
44,45,7
3,9 | 146,5
148,2
149,8 | 149.3
151.0
152.7 | 152,7
154,4
156,2 | 155,1
156,9
158,6 | 156,9
158,7
160,5 | 159.6
161.4
163.2 | 161:4
163:3
165:1 | 162.9
164.7
166.6 | 165.0
166.9
168.7 | 166,6
168,5
176,3 | 170:3
172:3
174:3 | and the second s | | 192
194
196
198
200 | 66:5
67:2
67:9 | 81,8
82,6
83,5 | 94,5
95,5
95,9 | 103,8
104,9
106,0 | 111,9
113,0
114,2 | 118,5
119,7
121,6 | 124,1
125,4
126,7 | 132.8
134.1
135,5 | 142.1
143.6
145.0 | 146.8
148.3
149.8 | 150.6
152.2
153.7 | 50.6
552.8
553.8
1557.0 | 154,7
156,4
158,6 | 157.7
159.4
161.1 | 161,3
163,1
164,8 | 163,9
165,7
167,4 | 165.8
167.6
169.4 | 168.6
170.4
172.2 | 170.6
172.4
174.2 | 172,1
173,9
175,8 | 174:3
176:2
178:5 | 176,0
177,8
179,7 | 180,2
182,2
184,2 | Monte de la company comp | | | | | | | | T | | | *************************************** | *************************************** | _ | - Constanting | *************************************** | | on West Institution Comment | T | - | | in in the second se | | _ | Marie Construction (Construction (Constructi | Almonomorphisms, | A-management | | |------------|--------------|-------|---------|--------|-------|--------|--------|-------|---|---|------------|---------------|---|-------|-----------------------------|--------|-------|--------
--|---------|--------|--|------------------|--------------|-------| | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1, 2 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 46 | 56 | 6 5 | 70 | 98 | 116 | k = n | n | | | 200 | 68,5 | 84.3 | 96,9 | 107.0 | 115,3 | 122.2 | 12,8,0 | 136.9 | 146,5 | 151,3 | 155.3 | 157.0 | 159,6 | 162.8 | 166,5 | 169,2 | 171.2 | 174.1 | 176,1 | 177,6 | 179,9 | 181.6 | 186,2 | 200 | | | 202
204 | 69,2 | 85,2 | 97,9 | 108,1 | 116,5 | 123,4 | 129,2 | 138,2 | 148,6 | 152.8 | 156.8 | 158.5 | 161,3 | 164.5 | 168,3 | 176.9 | 173.5 | 175.9 | 177,9 | 179,5 | 181.8 | 183,5 | 188,1 | 202 | | | 206 | 70,6 | 86.9 | 99.8 | 1107/2 | 117,6 | 125.8 | 131.8 | 141.6 | 156.9 | 155.8 | 159.9 | 100.1 | 164.6 | 167.8 | 1/0,0 | 172.7 | 174,8 | 177,7 | 179:8 | 181.3 | 183,6 | 185,4 | 190:1
192:1 | 204 | | | 208 | 11,3 | 0/1/ | T00 * 0 | 111,5 | 119,9 | 112/11 | 133:1 | 142.3 | 102.4 | 15/.4 | 1101.5 | 163.3 | 166.2 | 169.5 | 173.4 | 1174.2 | 478.₹ | 484.3 | 488.4 | 4 DE A | 4 27 4 | 400 4 | 2042 | 256
258 | | | 210 | 72.0 | 00,0 | 101.8 | 112.4 | 121,1 | 128,3 | 134,4 | 143,/ | 153.8 | 158,9 | 103,0 | 164,8 | 167.8 | 171,2 | 175,2 | 178,0 | 180,1 | 183,1 | 185,3 | 186,9 | 189,2 | 191.0 | 196,1 | 215 | | | 212
214 | 72,6 | 89,4 | 102.7 | 113.5 | 122,2 | 129,5 | 135,6 | 145,1 | 155,3 | 160,4 | 164,6 | 166,4 | 169,5 | 172.9 | 176,9 | 179,8 | 181,9 | 185,6 | 187,1 | 188,7 | 191.1 | 192.9 | 198,1 | 212 | | | 216 | 7410 | 71,1 | 1041/ | 115,6 | 123,4 | 1132.0 | 138:2 | 147.8 | 158.2 | 163.4 | 1167.7 | 469.5 | 172.7 | 176.2 | 186.4 | 1483.3 | 485.5 | 488.6 | 4 O m . 2 | 400.4 | 404 0 | 404 4 | 080 - | 214
216 | | | 218 | /4// | 7117 | 100:0 | 110,/ | 1221/ | 1133,2 | 139,0 | 149.2 | 159.7 | 164.9 | 1109.2 | 171.1 | 174.4 | 177.9 | 482.4 | 1485.6 | 487.7 | 408.4 | 400.6 | 404.3 | 404.7 | 400 6 | 084 0 | 218 | | | 220 | 7514 | 7210 | 100.0 | 11/•/ | 120,0 | 134,4 | 140,0 | 120,6 | 101,1 | 106,4 | 1/0,8 | 1/2,7 | 176.0 | 179,6 | 183,8 | 186,8 | 189,0 | 192,2 | 194,4 | 196.1 | 198,6 | 200,4 | 256,5 | 220 | _ | | 222
224 | /0,0 | 74,7 | 108.5 | 119,9 | 128.0 | 1135.8 | 143.3 | 153.3 | 104.1 | 169.5 | 11/3.9 | 475.8 | 179.0 | 182.9 | 187.3 | 1400.3 | 102.6 | 105 0 | 408 4 | 400 0 | 262 7 | 004'0 | ~4 ~ ` ~ | 222 | | | 226 | //,4 | 7713 | 109.5 | 120.9 | 130.3 | 1153.1 | 144.6 | 154./ | 165.5 | 171.4 | 1175.4 | 477.4 | 184.8 | 184.6 | 180 A | 1100 1 | 4044 | 407 7 | 088 6 | 004 7 | 004 - | ~ ~ | | 224
226 | | | 228
236 | /011 | 7011 | 110,0 | 12210 | 131,2 | 1139,3 | 140,7 | 120.0 | 107,11 | 1/2:5 | 11//.0 | 179.6 | 182.4 | 186.3 | 196.7 | 1193.9 | 196.2 | 100.5 | 2 M 4 . 2 | 297 E | DAK 4 | 264 0 | 017 0 | 228 | | | | | | | | | 1 | | | | | ł | | | | | i | | | | | 1 | | 215,9 | 236 | | | 232
234 | 86.2 | 98.7 | 112,4 | 124,2 | 133,8 | 141,7 | 148.4 | 158,8 | 169,9 | 175.5 | 180,1 | 182,1 | 185,6 | 189,6 | 194,2 | 197,4 | 199,8 | 203,1 | 205,5 | 207.2 | 209.8 | 211.7 | 217.9 | 232 | | | 236 | 0019 | 7710 | 114,3 | 120.3 | 130,1 | 1144,2 | 151,0 | 101.5 | 1/2,9 | 178,5 | 1183,2 | 185.2 | 188.8 | 193.6 | 197.7 | 1288.9 | 283.3 | DAK. A | 280.2 | 244 6 | 218 6 | 24 6 6 | 024 0 | 234
236 | | | 238
240 | 01,0 | 100,4 | 112,5 | 12/.4 | 137.2 | 1145.4 | 152.3 | 102.4 | 4/4.7 | 186.1 | 11 H 4 . B | 186.8 | 1 Q M . A | 404.7 | 100 4 | 1280 7 | ORE 4 | 200 | 244 - | 0 4 0 0 | 1015 1 | ` . | -0-'- | 238 | | | | 0212 | 101,2 | 110:3 | 128,4 | 130,4 | 145.0 | 100,0 | 104,2 | 1/5,8 | 181.6 | 186,3 | 188,4 | 192.0 | 196,4 | 201,1 | 204,4 | 206,9 | 210.4 | 212,8 | 214.7 | 217.3 | 219,3 | 225,9 | 240 | _ | | 242
244 | 82.9
83.6 | 102.0 | 117,3 | 129.5 | 139,5 | 147,8 | 154.8 | 165,6 | 177,3 | 183,1 | 187,9 | 189,9 | 193,6 | 198,0 | 202.8 | 206,2 | 208,7 | 212.2 | 214.7 | 216,5 | 219.2 | 221.1 | 227,9 | 242 | | | 246 | 1 4,5 | 1001/ | 11712 | 1311/ | 141,0 | 1120.3 | 15/14 | 108.3 | 188.2 | 186.1 | 1191.6 | 4 93 . 4 | 196.8 | 261.4 | 266.3 | 1280.7 | 212 1 | 248 0 | 248 4 | 204 0 | 0000 | 004 0 | .7 | 244
246 | | | 248
250 | 0010 | T0410 | TC0:5 | 132,/ | 140,0 | 1121,5 | 150,/ | 109./ | 101,7 | 187,6 | 1192.5 | 194.7 | 198.4 | 263.1 | 268.6 | 1211.5 | 214.1 | 247.7 | 224.1 | 222 4 | 224 0 | 224 9 | 277 0 | 248 | | | 1 | 001/ | 10014 | 161:1 | 133:0 | 144.1 | 11721/ | 159,9 | 1/1.1 | 183.1 | 189.1 | 1194.1 | 196.2 | 288.8 | 284.7 | 289.7 | 247.3 | 215 0 | 240 E | 222 6 | 207 0 | 1004 # | 000'7 | 235,8 | 250 | | | 700 | | | | | | 1 | | | | | ı | | | | | 1 | | | | | 1 | | | 1 | | | 300
1 | 102.8 | 120,5 | 145,4 | 160,5 | 173.0 | 183,3 | 191,9 | 205,3 | 219,7 | 227,0 | 232,9 | 235,5 | 240,0 | 245.7 | 252,9 | 257,3 | 260,6 | 265,1 | 268,2 | 270.5 | 273,7 | 276.6 | 285,7 | 300 | | | _ | | | | | | 1 | | | | | 1 | | | | | 1 | | | | | | | 1,661 | 1 | | | 35g
1 | 119,9 | 147,6 | 169,6 | 187,3 | 201,8 | 213,8 | 223,9 | 239,5 | 256.4 | 264.8 | 271.7 | 274,7 | 280,0 | 286,6 | 295,1 | 301,4 | 305,4 | 310,8 | 314,5 | 317,1 | 320,9 | 323.5 | 335,7 | 350 | | | | | | | | | - | | | | | | | | | | | | | | | 1 | | 1,003 | 1 | - | | 400
1 | 137,1 | 168,7 | 193,8 | 214,1 | 235,6 | 244,4 | 255,9 | 273,7 | 293,0 | 302,6 | 310,5 | 314,0 | 320,0 | 327,6 | 337,2 | 344,4 | 350,1 | 356,5 | 366,8 | 363,9 | 368,1 | 371.1 | 385,9 | 400 | | | | | | | | | 1 | | | | | 1 | | | | | ł. | | | | | ł | | 1,006 | 1 | | | 500 | 171,3 | 210,8 | 242,3 | 267,6 | 288,3 | 305.5 | 319.9 | 342,2 | 366.2 | 378.3 | 388,1 | 392,4 | 400,0 | 409.5 | 421,5 | 430,5 | 437,6 | 448,0 | 453,6 | 457,6 | 462.9 | 466.6 | 486,4 | 500 | | | 1 | | | | | | } | | | | | 1 | | | | | 1 | | | | | 1 | | 1,008 | -1 | | | 655 | 205.6 | 253,0 | 290.7 | 321.1 | 345,9 | 366,5 | 383,9 | 415.6 | 439,5 | 453,9 | 465,8 | 470,9 | 480,0 | 491.4 | 505,8 | 516,6 | 525.1 | 537,6 | 546,4 | 551,4 | 558,0 | 562.3 | 587,2 | 600 | | | 1 | 1 | | | | | | | | | | 1 | | | | | 1 | | | | | 1 | | 1,010 | 1 | | | 700 | 239,9 | 295,2 | 339.2 | 374,6 | 453,6 | 427,6 | 447.8 | 479,0 | 51 <u>2.</u> 7 | 529.6 | 543.4 | 549,4 | 560,1 | 573,2 | 590,1 | 602,8 | 612.6 | 627,2 | 637,5 | 645,3 | 653.2 | 658,3 | 688,2 | 700 | | | 1 | 0,343 | 0,422 | 0,405 | 0,535 | 0.57/ | ٥,611 | 0,640 | 0,684 | 0,732 | 0,757 | 0.776 | 0,785 | 0,800 | 0,819 | 0,843 | 0,861 | 0,875 | 0,896 | 0,911 | 0,922 | 0,952 | 0.961 | 1.011 | 1 | | | 800 | 274,1 | 337.3 | 387.6 | 428,1 | 461,3 | 488,7 | 511.8 | 547,5 | 586,0 | 605,2 | 621,0 | 627,9 | 640,1 | 655,1 | 674,4 | 688.9 | 700.2 | 716,8 | 728,6 | 737,4 | 748,4 | 754.3 | 789,3 | 866 | - | | 1 | 5,343 | 0,422 | 0,485 | 0,535 | 6,577 | 0.611 | 0,646 | 0,684 | 0,732 | 6,757 | 0,776 | 6,785 | 0,800 | 0.819 | 0,843 | 0,861 | 0,875 | 0,896 | 6,911 | 0,922 | 0.953 | 0,961 | 1.012 | 1 | | | 900 | 308,4 | 379,5 | 436,1 | 481,6 | 518,9 | 549.8 | 575,8 | 615,9 | 659,2 | 680,9 | 698,6 | 706,4 | 720,1 | 737,6 | 758.7 | 775.6 | 787.7 | 806.4 | 819.7 | 829.4 | 843.7 | 854.4 | 895,6 | 900 | | | 1 | 0,343 | 0,422 | 0,485 | 0,535 | 6.577 | 0.611 | 0,640 | 0,684 | 0.732 | 0,757 | 0.776 | 0,785 | 0,800 | 0.819 | 0.843 | 0.861 | 0.875 | 0.896 | 0.911 | 0,922 | 0.937 | 0,962 | 1.013 | 1 | | | 1100 | ł | | | | | 1 | | | | | 1 | | | | | 1 | | | | | ! | | 1693 | | Tab | | 1 | 0,343 | 0,422 | 0,485 | 0.535 | 6,577 | 5.611 | 0.646 | 0.684 | 0.732 | 0,757 | 0,776 | 5 0.785 | 0,800 | 0.819 | 0,843 | 0,861 | 0.875 | 0,896 | 0.911 | 1014 | 1031 | 1043 | 1093
1,014 | 1100 | 1 - 2 | | | | | | | | 1 | | | - | | 1 | | | | | 1 | | J, • | 3 | J., L. | 10.707 | 31740 | 7.074 | 1 - | • • | A in Erl B = 3.0 % | n k | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 46 | 56 | 6 ტ | 76 | 98 | 115 | k = n | and contact the state of | |----------------------------|---------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|---------------------------------
--------------------------------------|--------------------------|--------------------------------------|----------------------|----------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|----------------------|----------------------|---|-----|----|----|-----|--------------------------------------|--| | 1
2
3
4
5 | 1,3 | 1,9 | 0,03
0,28
0,72
1,3 | | | 6
7
8
9 | 2,0
2,4
2,8
3,2
3,7 | 2,3
2,8
3,3
3,7
4,2 | 2,5
3,0
3,6
4,1
4,6 | 3,2
3,8
4,3
4,9 | 4,0
4,6
5,2 | 4,7 | 5,5 | | | | | | | | | | | | | | | | 2,5
3,2
4,6
4,7
5,5 | | | 11
12
13
14
15 | 4,1
4,5
4,9
5,3
5,7 | 4,7
5,2
5,7
6,2
6,6 | 5,1
5,7
6,2
6,8
7,3 | 5,5
6,0
6,6
7,2
7,8 | 5,7
6,4
7,0
7,6
8,2 | 6,0
6,6
7,2
7,9
8,5 | 6,2
6,8
7,5
8,1
8,8 | 7,1
7,8
8,5
9,2 | 9,6 | | | | | | | | | | | | | | 6,3
7,1
8,0
8,8
9,6 | The same of sa | | 16
17
18
19
20 | 6,1
6,5
6,9
7,3
7,7 | 7,1
7,6
3,1
8,6
9,1 | 7,8
8,4
8,9
9,5
10,6 | 8,4
9,0
9,6
10,2
10,7 | 8,8
9,4
10,0
10,7
11,3 | 10.4 | 11,4 | | 12,6 | 12,1 | 13,1 | 14,0 | | | | | | | | | | | 10,5
11,4
12,2
13,1
14,0 | sancoidei-aconoliteliteletilliteletilliteletilliteletil | | 21
22
23
24
25 | | 9,6
15,1
15,6
11,1
11,6 | 12,3 | 11,9
12,5
13,1 | 11,9
12,6
13,2
13,8
14,5 | 13,0
13,7
14,4 | 14,1
14,8 | 14,1
14,8
15,5 | | 15,1
15,9
16,6 | 15,4
16,2
17,5 | 14,8
15,5
16,3
17,1
17,9 | 16.6
17.4 | 18,5 | | | | | | | | | 14,9
15,8
16,7
17,6
18,5 | no interestante de compositore de la della | | 26
27
28
29
30 | 19,8
11,1 | 12,0
12,5
13,0
13,4
13,9 | 13,9
14,5
15,0 | 14,9
15,5
16,1 | 15,1
15,7
16,4
17,0
17,6 | 16.3
17.0
17.7 | | 17,7
18,4 | | 18,9
19,7
20,5 | 19,3
20,1
20,8 | 18,7
19,4
20,2
21,0
21,8 | 19.7
20.5
21.3 | 19.3
20,1
20,9
21,7
22,5 | 23,1 | | | | | | | | 19,4
20,3
21,2
22,1
23,1 | on the second of | | 31
32
33
34
35 | 12,3
12,7
13,1 | 14,4
14,8
15,3
15,7
16,2 | 16,7
17,2 | 17,9
18,5
19,1 | | 19,7 | 21,5 | 22,7 | 22,3
23,6
23,8 | 23,6 | 24,8 | 24.2
25.0 | 25,3 | 24,1
25,6
25,8 | 23,9
24,7
25,6
26,4
27,2 | 27,7 | | | | | | | 24,6
24,9
25,8
26,8
27,7 | or control of the con | | 36
37
38
39
40 | 14,2
14,6
15,5 | 16,7
17,1
17,6
18,1
18,5 | 19,4
19,9 | 20,4
21,0
21,6
22,2
22,8 | 22,1
22,8 | 23,7 | 23,8 | 24,9
25,6
26,4 | 25,3
26,1
26,9
27,6
28,4 | 26,7
27,5
28,3 | 28,0 | 27,4
28,2
29,0 | 28.6 | 28,2
29,1
29,9 | 29,7
30,6 | 29,4
30,3
31,1 | 32,4 | | | | | | 28,6
29,6
30,5
31,5
32,4 | | | 41
42
43
44
45 | 16,1
16,5
16,9 | 19,5
19,4
19,9
25,4
25,8 | | 24,6 | 25,3
25,9
26,6 | 26.4
27.1
27.7 | 26,6
27,2
27,9
28,6
29,3 | 28,6
29,3
30,8 | 36,7
31,5 | 30,6
31,4
32,2 | 31,2 | 30,6
31,4
32,2
33,0
33,8 | 31,8
32,7 | 32,4 | 33,1
33,9 | 33,7 | 34,1
35,0 | 201 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | 33,4
34,3
35,3
36,2
37,2 | | | 46
47
48
49
50 | 18,1
18,4
18,8 | 21,3
21,8
22,2
22,7
23,2 | 24,7
25,2
25,7 | 26,9
27,5
28,1 | 27,9
28,5
29,1
29,8
35,4 | 29.7
36.4
31.1 | 30,7
31,4
32,1 | 33,8
33,7 | 33,8
34,6
35,4 | 34:6
35:4
36:1 | 35,2
36,0
36,8 | 34,6
35,5
36,3
37,1
37,9 | 35,9
36,8
37,6 | 36,5
37,4
38,2 | 36,5
37,3
38,2
39,0
39,9 | 38,8 | 38,5
39,3
40,2 | 41,9 | | | | | 38,1
39,1
40,0
41,0
41,9 | DERIOR ORIENTATION DE L'ANNO DE LA COMPONION DE L'ANNO D | A = offered random traffic B = probability of loss k = accessibility n = number of trunks | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 2 5 | 30 | 35 | 40 | 56 | 60 | 76 | 90 | 110 k=n | n | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------| | 50 | 19,2 | 23,2 | 26,2 | 28,7 | 30,4 | 31,8 | 32,8 | 34,5 | 36,1 | 36,9 | 37,6 | 37,9 | 38,4 | 39,0 | 39,9 | 46,5 | 41.1 | 41,9 | | | | 41,9 | 50 | | 51
52
53
54
55 | 19,6
20,0
20,4
20,7
21,1 | 24,1
24,5
25,0 | 26,8
27,3
27,8
28,3
28,9 | 29,9
30,4
31,0 | 31,1
31,7
32,3
33,0
33,6 | 33,1
33,8
34,4 | 35,6 | 35,2
35,9
36,7
37,4
38,2 | 36,9
37,7
38,5
39,2
40,0 | | 39,2
40,0
40,8 | 38,7
39,5
40,3
41,1
42,0 | 39,2
40,0
40,9
41,7
42,5 | 39,9
40,7
41,5
42,4
43,2 | 40,7
41,6
42,4
43,3
44,1 | 42,3 | 41,9
42,8
43,7
44,6
45,4 | | | | | 42,9
43,9
44,8
45,8
46,7 | 51
52
53
54
55 | | 56
57
58
59
60 | 21,5
21,9
22,3
22,7
23,5 | 27,3 | 29,4
29,9
30,4
31,6
31,5 | 32,2
32,7
33,3
33,9
34,4 | 34,2
34,9
35,5
36,1
36,8 | 36,4
37,1 | 37,6
37,7
38,4
39,1
39,8 | 38,9
39,6
40,4
41,1
41,8 | | 42,5
43,3 | 44,1 | 42,8
43,6
44,4
45,2
46,1 | 43,4
44,2
45,0
45,8
46,7 | 44,1
44,9
45,7
46,6
47,4 | 45,6
45,9
46,7
47,6
48,4 | 48,3 | 47,2
48,1 | 47,3
48,1
49,0
49,9
50,8 | 51.6 | | | 47,7
48,7
49,6
50,6
51,6 | 56
57
58
59
60 | | 61
62
63
64
65 | 23,4
23,8
24,2
24,6
25,0 | 28,2
28,7
29,2
29,6
31,1 | 32,5
32,5
33,1
33,5
34,1 | 35,6
35,6
36,2
36,7
37,3 | 37,4
38,0
38,7
39,3
39,9 | 39,8
46,5 | 40,5
41,2
41,9
42,6
43,3 | 42,6
43,3
44,1
44,8
45,5 | 44,7
45,5
46,3
47,0
47,8 | 45,7
46,5
47,3
48,1
48,9 | 49,0 | 46,9
47,7
48,5
49,3
50,2 | 47,5
48,3
49,2
50,0
50,8 | 48,3
49,1
50,0
50,8
51,7 | 49,3
50,1
51,0
51,9
52,7 | 50,1
50,9
51,8
52,7
53,6 | 50,7
51,6
52,5
53,3
54,2 | 51,7
52,6
53,5
54,4
55,3 | 52,5
53,4
54,3
55,2
56,1 | | | 52,5
53,5
54,5
55,4
56,4 | 61
62
63
64
65 | | 66
67
68
69
70 | 26,5 | 31,0
31,5 | 34,6
35,2
35,7
36,2
36,7 | 37,9
38,5
39,0
39,6
40,2 | 48,5
41,1
41,8
42,4
43,0 | 43,1
43,8
44,5 | 44,5
44,7
45,4
46,1
46,8 | 46,3
47,0
47,8
48,5
49,2 | 48,6
49,4
50,2
51,0
51,7 | 49,7
50,5
51,3
52,1
52,9 | 51,4
52,2 | 51,0
51,8
52,6
53,5
54,3 | 51,7
52,5
53,3
54,2
55,0 | 52,5
53,3
54,2
55,0
55,9 |
53,6
54,4
55,3
56,2
57,0 | 54,4
55,3
56,2
57,0
57,9 | 55,1
56,0
56,9
57,8
58,6 | 56,2
57,1
58,0
58,9
59,7 | 57,0
57,9
58,8
59,7
60,6 | 61.3 | | 57,4
58,4
59,3
60,3
61,3 | 66
67
68
69
70 | | 71
72
73
74
75 | 27,7
28,0
28,4 | 32,9
33,3
33,8
34,3
34,7 | | 45,8
41,3
41,9
42,5
43,1 | 43,6
44,2
44,8
45,4
46,1 | 46,4 | 47,5
48,2
48,8
49,5
50,2 | 56,6
56,7
51,5
52,2
52,9 | 52,5
53,3
54,1
54,9
55,6 | 53,7
54,5
55,3
56,1
56,9 | 56,3
57,1 | 55,1
55,9
56,8
57,6
58,4 | 55,8
56,7
57,5
58,3
59,2 | 56,7
57,6
58,4
59,3
60,1 | 57,9
58,8
59,6
60,5
61,4 | 61,4 | 59,5
60,4
61,3
62,2
63,1 | 60,6
61,5
62,4
63,3
64,2 | 64.2 | 62,2
63,1
64,6
64,9
65,9 | | 62,3
63,2
64,2
65,2
66,2 | 71
72
73
74
75 | | 76
77
78
79
80 | 30,0
30,3 | 35,7
36,1 | 39,9
40,4
40,9
41,5
42,0 | 43,6
44,2
44,8
45,4
45,9 | 46,7
47,3
47,9
48,5
49,1 | 56,4
51,1 | 50.9
51.6
52.3
53.0
53.7 | 53,7
54,4
55,2
55,9
56,6 | 56,4
57,2
58,0
58,8
59,6 | 57,7
58,5
59,3
60,2
61,0 | 59,6
60,4
61,2 | 59,2
60,1
60,9
61,7
62,5 | 60,9
61,7
62,5 | 61,8
62,7 | 62,2
63,1
64,0
64,8
65,7 | 64,1 | 63,9
64,8
65,7
66,6
67,5 | 65,1
66,0
66,9
67,8
68,7 | 66,0
67,0
67,9
68,8
69,7 | | | 67,2
68,1
69,1
70,1
71,1 | 76
77
78
79
80 | | 81
82
83
84
85 | 31,5
31,9 | 37,5
38,0
38,4
38,9
39,4 | 42,5
43,0
43,6
44,1
44,6 | 46,5
47,1
47,7
48,2
48,8 | 49,7
50,4
51,0
51,6
52,2 | 53,1
53,7
54,3 | 54,4
55,1
55,8
56,5
57,2 | 57,4
58,1
58,8
59,6
60,3 | 60,4
61,1
61,9
62,7
63,5 | 61,8
62,6
63,4
64,2
65,0 | 65,3 | 63,4
64,2
65,0
65,8
66,7 | 65,0
65,9
66,7 | 65,2
66,1
67,0
67,8
68,7 | 66,6
67,4
68,3
69,2
70,0 | 67,6
68,5
69,3
70,2
71,1 | 69,3
70,2 | 76,5
71,4
72,3 | 73,3 | 72.3
73.2 | | 72,1
73,0
74,0
75,0
76,0 | 81
82
83
84
85 | | 86
87
88
89
90 | 33,4
33,8 | 39,8
40,3
40,8
41,2
41,7 | 45,1
45,7
46,2
46,7
47,2 | 49,4
50,0
50,5
51,1
51,7 | 53,4
54,0 | 56,3
56,9
57,6 | 57,8
58,5
59,2
59,9
60,6 | 61,8 | 65,1
65,8 | 65,8
66,6
67,4
68,2
69,0 | 67,8
68,6
69,5 | 67,5
68,3
69,2
70,0
70,8 | 69,2
70,1
70,9 | 70,4
71,2
72,1 | 70,9
71,8
72,7
73,5
74,4 | 72,9
73,7
74,6 | 72.8
73.7
74.6
75.5
76.4 | 75:1
76:0
76:9 | 77.9 | 76,0
76,9
77,8
78,7
79,6 | 85.9 | 77,0
78,0
78,9
79,9
80,9 | 86
87
88
89
90 | | 91
92
93
94
95 | 35,0
35,3
35,7
36,1
36,5 | 42,6 | 47,8
48,3
48,8
49,3
49,9 | 52,2
52,8
53,4
54,0
54,5 | 55,9
56,5
57,1
57,7
58,3 | 59,5
6m,2
6m,8 | | | 68,2
69,0
69,8
70,5
71,3 | 69,8
70,6
71,4
72,2
73,0 | 71,9
72,7
73,6 | 71,7
72,5
73,3
74,1
75,6 | 73,5
74,3
75,1 | 74,6
75,5 | 75,3
76,1
77,0
77,9
78,8 | 77,3 | | 79,6 | 80,6
81,5 | 80,6
81,5
82,4
83,3
84,2 | 81,8
82,8
83,7
84,6
85,6 | 81,9
82,9
83,9
84,9
85,8 | 91
92
93
94
95 | | 96
97
98
99
100 | | 45,4
45,8 | 50,4
50,9
51,4
52,0
52,5 | 55.7
56.3
56.8 | 59.6
65.2
65.8 | 62,8 | 66.8 | 69,2
69,9
75.6 | 72,9
73,7
74.5 | 74,6
75,5
76.3 | 76,5 | 75,8
76,6
77,5
78,3
79,1 | 77,7
78,5 | 78,9
79,8 | 80 3 | 81,7 | 82.7 | 85.0 | 85,2 | 86.1 | 86,5
87,4
88,4
89,3
90,2 | 86,8
87,8
88,8
89,8
90,8 | 96
97
98
99
100 | Table 1 - 23 | nk | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 3 € | 35 | 46 | 56 | 66 | 76 | 96 | Ĩ10 | k=n | n | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|------------------------------|-------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|--------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|---|----------------------------------|---------------------------------------|---------------------------------| | 155 | 38,4 | 46,3 | 52,5 | 57,4 | 61.4 | 64,7 | 67.5 | 71.4 | 75.2 | 77.1 | 78,5 | 79.1 | 80,2 | 81,5 | 83,1 | 84,4 | 85,3 | 86,8 | 88.6 | 88,9 | 90:2 | | 96.8 | 100 | | 102
104
106
108
110 | 39,2
39,9
40,7
41,5 | 47,2
48,2
49,1
50,0
50,9 | 54.6
55.6
56.7 | 60,9
62,5 | 62,6
63,9
65,1
66,3
67,6 | 68,6 | 70.2
71.5
72.8 | 74,3 | 79,9
81.5 | 81.9
83.5 | 81,8
83,4
85,1 | 80.8
82.4
84.1
85.8
87.4 | 83,6
85,3
86,9 | 84.9
86.6
88.4 | 86,6
88,4
90,1 | | 87,1
88,9
90,7
92,5
94,3 | | 91:6
93:5 | 92,6
94,4
96,3 | 95.8
97.7 | 188 9 | 92,8
94,8
96.7
98.7
100.7 | 102
104
106
108
110 | | 112
114
116
118
125 | 43.0
43.8
44.6
45.3
46.1 | 51,9
52,8 | 58,8
59,8
60,9 | 64,3
65,5
66,6
67,8 | 68,8
70,0
71,2 | 72,5
73,8
75,1
76,3 | 75,5 | 85,1
81,6
83,1
84,5 | 84.6
86.2
87.8
89.3 | 86:7
88:4
90:0
91:6 | 88,4
96,0
91,7
93,3 | 89,1
90,8
92,4
94,1 | 90,3
92,0
93,7
95,4 | 91.8
93.5
95.2
97.0 | 93,6
95,4
97,2
98,9 | 95,0
96,8
98,6
100,4 | 96.1
97.9
99.7
101.5 | 97,8
99,6
101,4
103,2 | 99.0
166.8
162.7
164.5 | 100.0
101.8
103.7
105.5 | 101.5
103.3
105.2
107.1
109.5 | 102.6
104.5
106.4
108.3 | 102.7
104.7
106.7
108.7 | 112
114
116
118
120 | | 122
124
126
128
130 | 46,9
47,6
48,4
49,2
49,9 | 56,5
57,4
58,3
59,3
60,2 | 64,5
65,1
66,1
67,2 | 70.0
71.2 | 74,9
76,1
77,4
78,6 | 78,9
80,2
81,5
82,8 | 82,3
83,6 | 87,4
88,8
90,3
91,7 | 92,5
94,5
95,6
97,1 | 94,8
96,4
98,0
99,6 | 96.6
98.3
99.9
101.6 | 97,4
99,1
100,7 | 98,8
100,5
102,1
103,8 | 100,4
102,1
103,8
105,6 | 102,4
104,2
105,9
107,7 | 103,9
105,7
107,5
109,3 | 105,1
106,9
108.7
110,5 | 106.9
108.7
110.5
112.4 | 108,2
110,0
111,9
113,7 | 169,2
111,1
113,6
114,8 | 110.8
112.7
114.6
116.5
118.4 | 112.5
113.9
115.8
117.7 | 112.6
114.6
116.6
118.6 | 122
124
126
128
130 | | 132
134
136
138
140 | 56,7
51,5
52,2
53,6
53,8 | 62,1
63,0 | | 75,8
76,9
78,1
79,2
80,4 | 82,3
83,5 | 86,7
88,6
89,3 | 93:1 | 96.0
97.4
98.9 | 101,8
103,4
104,9 | 104.5
106.1
107.7 | 106,5
108,2
169,8 | 107.4
109.1
110.7 | 108,9
110,6
112,3 | 110.7
112.5
114.2 | 113,0
114,7
116,5 | 114,6
116,4
118,2 | 115,9
117,7
119,5 | 117.9
119.7
121.5 | 119.3
121.1
123.0 | 120,4
122,3
124,1 | 120,2
122,1
124,6
125,9
127,8 | 123,4
125,3
127,2 | 124.6
126.6
128.6 | 132
134
136
138
140 | | 142
144
146
148
150 | 55,3 | | 74,5
75,6
76,6
77,7
78,7 | 81,5
82,7
83,8
85,6
86,1 | 88,4
89,7
90,9 | 93,2
94,5
95,8 | 97,1
98,5
99,8 | 103,2
104,6
106,0 | 109.6
111.2
112.7 | 112.5
114.1
115.7 | 114.8
116.4
118.1 | 115.7
117.4
119.0 | 117.4
119.1
120.8 | 119.3
121.1
122.8 | 121.8
123.6
125.3 | 123,6
125,4
127,2 | 125.0
126.8
128.6 | 127.0
128.9
130.7 | 128.6
130.4
132.3 | 129.7
131.6
133.5 | 129,7
131,5
133,4
135,3
137,2 | 132,9
134.8
136.7 | 134.6
136.6
138.6 | 142
144
146
148
150 | | 152
154
156
158
160 | 58:4
59:2
59:9
65:7
61:5 | 70,4
71,3
72,2
73,2
74,1 | 79,8
86,8
81,9
82,9
84,6 | 88,4 | 95,8
97,0 | 99.6
100,9
102,2 | 103.9
105.2
106,6 | 115,3
111,8
113,2 | 117.3
118.8
120.4 | 120,5
122:1
123:7 | 123,0
124,6
126,3 | 124.0
125.7
127.4 | 125.8
127.5
129.2 | 128.0
129.7
131.4 | 130.6 | 132,5
134,3
136,1 | 134,0
135,8
137,6 | 136.2
138.1
139.9 | 137.8
139.7
141.5 | 139,1
141.0
142,8 | 139.1
141.6
142.9
144.8
146.6 | 142.4
144.3
146.2 | 144.6
146.6
148.6 | 152
154
156
158
160 | | 162
164
166
168
175 | 63,0
63,8
64,5 | 75,0
75,9
76,9
77,8
78,7 | 88,2 | 94,2
95,3
96,5 | 99,5
1001,9
103,2
104,4 | 106.1
107.4
108.7 | 110.6
112.0
113.3 | 117,5
118,9
125,4 | 124.9 | 128,5
130,1
131,7 | 131:2
132:9
134:5 | 132,3
134,6
135,7 | 134.3
136.0
137.7 | 136.6
138.3
140.1 | 139.4
141.2
143.6 | 141,5 | 143.1
144.9
146.7 | 145,4
147,3
149,1 | 147:1
149:6
156:8 | 148.4
156.3
152.2 | 156.4
152.3
154.2 | 151,9
153,8
155,7 | 154.7
156.7
158.7 |
162
164
166
168
170 | | 172
174
176
178
180 | 66,8 | 80,6
81,5
82,4 | 91.3
92.4
93.4 | 99,9
101,1
102,2 | 105,6
106,9
108,1
109,3
110,5 | 112.6
113.9
115.2 | 117.4
118.7
120.1 | 124.7
126.1
127.5 | 132.5
134.1
138.6 | 136.5
138.0
139.6 | 139,4
141,1
142,7 | 140.6 | 142.7 | 145.2
147.0
148.7 | 148,3
150.5
151.8 | 150,5
152,3
154,1 | 152,2
154,0
155,8 | 154,6
156,5
158,3 | 156:4
158:3
160:2 | 157,8
159,7
161,6 | 159.9
161.8
163.7 | 161,4
163,3
165,3 | 164.7
166.7
168.7 | 172
174
176
178
186 | | 182
184
186
188
190 | | 84,3
85,2
86,1
87,1
88,0 | 96,6
97,6
98,7 | 165,6
166,8
167,9 | 111.8
113.0
114.2
115.5
116.7 | 119.0
120.3
121.6 | 124:1
125:5
126:8 | 131,8
133,3
134,7 | 146,2
141,7
143,2 | 144.3
145.9
147.5 | 147,6
149,3
150,9 | 48,9
150,6
152,3 | 151,2
152,9
154,6 | 153.9
155.6
157.3 | 157.1
158.9
160.7 | 159,5
161,3
163,1 | 161.3
163.1
164.9 | 163,9
165,7
167,6 | 165.8
167.6
169.5 | 167.2
169.1
171.0 | 169.4 | 171.6
172.9
174.8 | 174.8
176.8
178.8 | 186
186
188
198
198 | | 192
194
196
198
200 | 76:1 | 89,8
90,8
91,7 | 101:8
102:9
103:9 | 111,4
112,5
113,7 | 117,9
119,1
120,4
121,6
122,8 | 125,5
126,8
128,1 | 130,9
132,2
133,6 | 139.0
140.4
141.9 | 147.8
149.3
150.0 | 152:2
153:7
155:3 | 155.8
157.4
159.0 | 157.2
158.9
160.5 | 159.6
161.3
163.6 | 162,5
164,2
165,9 | 166,5
167.7
169.5 | 168,4
170,2
172,0 | 170,3
172:2
174,0 | 173:1
175:0
176:8 | 175.1
177.6
178.8 | 176.6
178.5
180.4 | 178.9
185.8
182.7 | 186,5
182,5
184,4 | 184,8
186.9
188.9 | 192
194
196
198
200 | B = 3.0 % A = offered random traffic B = probability of loss k = accessibility n = number of trunks A in Erl B = 3.0 % | n k | 4 | 5 | 6 | , | 7 8 | 9 | 16 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 60 | 76 | 90 | 110 | k=n | n | |---------------------------------|------------------------------|----------------------------------|----------------------------------|------------------------------|---|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------| | 200 | 76. 8 | 92.6 | 105.0 | Ĩ14,8 | 122,8 | 129.4 | 134,9 | 143,3 | 152,3 | 156,9 | 160,6 | 162,2 | 164,7 | 167.7 | 171,3 | 173,8 | 175.8 | 178.7 | 180.7 | 182.3 | 184,6 | 186,3 | 190,9 | 200 | | 202
204
206
208
210 | 78,4
79,1
79,9 | 94,5
95,4
96,3 | 107:1
108:1
109:2 | 117,1
118,1
119,4 | 124.0
125,3
126,5
127,7
127,7 | 132,0 | 137,6
139,0
140,3 | 146.2
147.6
149.0 | 155,4
156,9
158,4 | 160,0
161,6
163,1 | 163,8
165,4
167,0 | 165,4
167,6
168,7 | 168,1
169,7
171,4 | 171,1
172,8
174,6 | 174,8
176,6
178,3 | 177,4
179,2
181,0 | 179,5
181,3
183,1 | 182,4
184,2
186,1 | 184,4
186,3
188,2 | 186.0
187.9
189.8 | 188,4
195,3
192,2 | 190.1
192.0
193.9 | 194,9
196,9
199,6 | 252
254
256
258
215 | | 212
214
216
218
220 | 82,2
83,5
83,7 | 99,1
100,0
100,9 | 112.3
113.4
114.4 | 122,9 | 7 130,2
9 131,4
9 132,6
2 133,9
3 135,1 | 138,5
139,8
141,0 | 144,4
145,7
147,0 | 153.3
154.8
156.2 | 163,0
164,5
166,1 | 167,8
169,4
171,0 | 171,8
173,4
175,0 | 173,5
175,2
176.8 | 176,5
178,2
179,9 | 179.7
181.5
183.2 | 183,6
185,4
187,2 | 186,4
188,2
195,0 | 188,6
190,4
192,2 | 191,6
193,5
195,3 | 193.8
195.7
197.5 | 195,4
197,3
199,2 | 197.9
199.8
201.7 | 199;7
201;6
203;9 | 205.0
207.0
209.1 | 212
214
216
218
220 | | 222
224
226
228
230 | 86,0
86,8
87,6 | 103,7
104,7
105,6 | 117,6
118,6
119,7 | 128, | 5 136,3
5 137,6
3 138,8
9 140,0
1 141,2 | 144,9 | 151:1
152:4
153:8 | 165,5
161,9
163,4 | 170,6
172,2
173,7 | 175.7
177.3
178.8 | 179,8
181,4
183,0 | 181,6
183,3
184,9 | 184,8
186,5
188,1 | 188.3
190.1
191.8 | 192,5
194,3
196,5 | 195,4
197,2
199,0 | 197.7
199.5
201.3 | 200,9
202,7
204,6 | 203,1
205,0
206,9 | 254,9
256,8
258,6 | 267,4
269,3
211,2 | 209,3
211,2
213,1 | 215,1
217,1
219,2 | 222
224
226
228
230 | | 232
234
236
238
240 | 89.9
90.7
91.4 | 108,4
109,3
110,2 | 122,8
123,9
124,9 | 134,
135,
136, | 2 142,5
4 143,7
5 144,9
7 146,2
8 147,4 | 151.4
152.7
154.0 | 157,8
159,2
160,5 | 167,7
169,1
176,5 | 178,2
179,8
181,3 | 183,5
185,1
186,7 | 187,9
189,5
191,1 | 189.8
191.4
193.0 | 193,1
194,7
196,4 | 197,0
198,7
200,4 | 201,3
203,1
204,9 | 204,4
206,2
208,0 | 206,8
208,6
210,4 | 210,2
212,0
213,9 | 212,5
214,4
216,3 | 214,3
216,2
218,1 | 216,9
218,8
220,8 | 218.9
220.8
222.7 | 225,2 227,2 229,3 | 232
234
236
238
240 | | 242
244
246
248
250 | 93,7
94,5
95,3
96,0 | 113,0
113,9
114,8
115,8 | 128,1
129,1
130,2
131,2 | 140,
141,
142,
143, | 9 148,6
1 149,6
2 151,1
4 152,3
5 153,5
4 0,61 | 157,9
159,2
160,5 | 164,6
165,9
167,3
168,6 | 174,8
176,3
177,7
179,1 | 185,9
187,4
188,9
196,4 | 191,4
192,9
194,5
196,1 | 195,9
197,5
199,1
200,7 | 197,9
199,5
201,1
202,7 | 201,3
203,0
204,6
206,3 | 205,6
207,3
209.0
210,7 | 210,2
212,6
213,7
215,5 | 213,5
215,3
217,1
218,9 | 215.9
217.7
219.6
221.4 | 219.4
221.3
223.1
225.0 | 221,9
223,8
225,6
227,5 | 223,7
225,6
227,5
229,4 | 226.5
228.4
230.3
232.2 | 228,5
235,4
232,3
234,2 | 235,3
237,4
239,4
241,4 | 242
244
246
248
250 | | 388
1 | | | | | 2 184,2
4 0,614 | | | | | | | | | | | | | | | | | | | 366
1 | | 35 0
1 | | | | | 0 214,9
4 0,614 | | | | | | | | | | | | | | | | | | | 356
1 | | 400 | 153,6
0,384 | 185,2 | 210.0 | 229, | 7 245,6
4 0,614 | 258,8 | 269,8 | 286,6 | 304.7 | 313,7 | 321,1 | 324,4 | 330,1 | 337,1 | 346,2 | 353,6 | 358,3 | 364,6 | 368,7 | 371,8 | 376.6 | 379,6 | 393,9 | 466 | | 50g
1 | 192.1 | 231,5 | 262,5 | 287, | 1 367,0 | 323,5 | 337,3 | 358,3 | 388,9 | 392.2 | 401.4 | 405.5 | 412.6 | 421,4 | 432,8 | 441,3 | 447.9 | 457.7 | 463,2 | 467,1 | 472.4 | 476.6 | 495.9 | 566
1 | | 600
1 | 230,5 | 277,8 | 314,9 | 344, | 5 368,5
4 0,61 | 388,2 | 2 404,7 | 429,9 | 457,6 | 475.6 | 481.7 | 486,5 | 495.1 | 565,7 | 519,3 | 529,5 | 537,5 | 549.3 | 557,6 | 562.4 | 568,9 | 573.3 | 598,1 | 666 | | 700
1 | 268.9 | 324,1 | 367,4 | 4 4 6 1 , | 9 429,9 | 452,9 | 472,2 | 501,6 | 5 533,2 | 549.5 | 562.0 | 567,6 | 577.6 | 590.0 | 605,9 | 617.8 | 627.1 | 646.8 | 650,5 | 657,8 | 665,6 | 676;7 | 700,5 | 700
1 | | 800
1 | 307.3 | 370,5 | 419,9 | 459, | 3 491.
4 0.61 | 3 517.0 | 5 539,6 | 573,2 | 2 609,4 | 627,5 | 642,3 | 648.7 | 660.1 | 674.3 | 692.4 | 706.0 | 716.7 | 732,4 | 743.5 | 751,8 | 762.3 | 768.2 | 853,5 | 866 | | 900
1 | 345,7 | 416,8 | 472. | 4 516, | 7 552.
4 5.61 | 7 582, | 3 607.1 | 644.9 | 685.6 | 705,9 | 722.6 | 729.8 | 742,7 | 758,6 | 779,6 | 794,3 | 806,3 | 823,9 | 836.4 | 845,8 | 859,1 | 865,8 | 905.5 | 966
1 | | 1100 | 422,5 | 509, | 577. | 4 631, | 6 675,
4 0.61 | 5 711. | 7 742.0 | 788,2 | 2 837,9 | 862,8 | 883,1 | 892,0 | 907.7 | 927,2 | 952,1 | 976.8 | 985,4 | 1007 | 1022 | 2 1634 | 1050 | 1561 | 1111 | 1100 | A = offered random traffic B = probability of loss | nk | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 26 | ?2 | 25 | 3 რ | 35 | 40 | 5 0 | 66 | 70 | 95 | 110 | k=n | n | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|----|----
--|-----|--------------------------------------|----------------------------| | 1
2
3
4
5 | 1,5
2,0 | 2,2 | 0,05
0,38
0,90
1,5
2,2 | 1 2 3 4 5 | | 6
7
8
9
10 | 2,4
2,9
3,3
3,8
4,3 | 2,7
3,2
3,8
4,3
4,8 | 3,6
3,5
4,1
4,7
5,3 | 3,7
4,3
5,0
5,6 | 4,5
5,2
5,8 | 5,4
6,0 | 6,2 | | | | | | | | | | | | | | | | 3,9
3,7
4,5
5,4
6,2 | 6
7
8
9
10 | | 11
12
13
14
15 | 4,8
5,2
5,7
6,2
6,7 | 5,4
5,9
6,5
7,0
7,6 | 5,8
6,4
7,0
7,6
8,2 | 6,2
6,8
7,5
8,1
8,7 | 6,5
7,1
7,8
8,5
9,1 | 6,7
7,4
8,1
8,7
9,4 | 6,9
7,6
8,3
9,0
9,7 | 8,0
8,7
9,4
10,1 | 10,6 | | | | | | | | | | | | | | 7,1
8,0
8,8
9,7
10,6 | 11
12
13
14
15 | | 16
17
18
19
20 | 7,2
7,6
8,1
8,5
9,0 | 8,1
8,7
9,2
9,8
10,4 | 8,8
9,4
10,1
10,7
11,3 | 9,4
13,0
10,7
11,3
12,0 | 9,8
16,5
11,1
11,8
12,5 | 10,1
10,8
11,5
12,2
12,9 | 10,4
11,1
11,9
12,6
13,3 | 12,4 | 11,4
12,2
13,0
13,7
14,5 | 12,5
13,3
14,6
14,8 | 14,3
15,1 | 15,2 | | | | | | | | | NOT POOL AND ADDRESS OF THE TH | | 11,5
12,5
13,4
14,3
15,2 | 16
17
18
19
20 | | 21
22
23
24
25 | 10,3
10,7 | 10,9
11,5
12,0
12,6
13,1 | 13,7 | 12,6
13,3
13,9
14,6
15,2 | 13,2
13,9
14,5
15,2
15,9 | 15,8 | 14,0
14,7
15,5
16,2
16,9 | 15,4
16,1
16,9 | 16,1
16,9
17,7 | | 15,9
16,7
17,6
18,4
19,2 | | 18,5 | 20,0 | | | | | | | | | 16,2
17,1
18,1
19,0
20,0 | 21
22
23
24
25 | | 26
27
28
29
30 | 11,6
12,1
12,5
13,0
13,4 | 14,7
15,2 | 15,6
16,2 | 15,9
16,5
17,2
17,9
18,5 | 16,6
17,3
18,0
18,7
19,4 | 17,2
17,9
18,6
19,3
20,1 | 17,7
18,4
19,1
19,9
20,6 | 19,2
25,5
25,7 | 19,3
20,0
20,8
21,6
22,4 | 19,7
20,5
21,3
22,1
22,9 | 20,0
20,9
21,7
22,5
23,3 | | 20,5
21,3
22,1
23,0
23,8 | 20,8
21,7
22,5
23,4
24,2 | 24,8 | | | | | | | | 20,9
21,9
22,9
23,8
24,8 | 26
27
28
29
30 | | 31
32
33
34
35 | | 16,3
16,8
17,4
17,9
18,4 | 18,6
19,2
19,9 | 19,2
19,8
20,5
21,1
21,8 | 25,1
20,8
21,4
22,1
22,8 | 26,8
21,5
22,2
22,9
23,6 | - 21,4
22,1
22,8
23,6
24,3 | 23,6 | 23,3
24,1
24,9
25,7
26,5 | 23,7
24,6
25,4
26,2
27,0 | 24,2
25,0
25,8
26,7
27,5 | 24,3
25,2
26,0
26,9
27,7 | 24,7
25,5
26,4
27,2
28,1 | 25,1
26,6
26,8
27,7
28,5 | 25,7
26,5
27,4
28,3
29,2 | 29,7 | | | | | | | 25,8
26,7
27,7
28,7
29,7 | 31
32
33
34
35 | | 36
37
38
39
40 | 16,1
16,6
17,0
17,5
17,9 | 18,9
19,5
20,5
20,5
21,5 | 21,1
21,7
22,3
22,8
23,4 | 22,5
23,1
23,8
24,4
25,1 | 23,5
24,2
24,9
25,6
26,3 | 24,4
25,1
25,8
26,5
27,3 | 25,1
25,8
26,6
27,3
28,0 | 26,9
27,7
28,5 | 28,1
28,9
29,7 | 27,9
28,7
29,5
30,3
31,2 | 28,3
29,2
30,0
30,8
31,7 | 29,4
30,2
31,1 | 30,6
31,5 | 32.0 | 31,8
32,7 | | 34,6 | | | | | | 30,7
31,6
32,6
33,6
34,6 | 36
37
38
39
40 | | 41
42
43
44
45 | 18,4
18,8
19,2
19,7
20,1 | 21,6
22,1
22,6
23,1
23,7 | 24,6
25,2
25,8
26,4 | 25,8
26,4
27,1
27,7
28,4 | 27,5
27,7
28,4
29,1
29,8 | 28,0
28,7
29,4
30,2
30,9 | 28,8
29,5
30,3
31,0
31,8 | 36,8
31,6
32,4 | | 32,6
32,8
33,7
34,5
35,3 | 32,5
33,4
34,2
35,1
35,9 | 33,6
34,5 | 33,2
34,1
34,9
35,8
36,6 | 33,7
34,6
35,5
36,3
37,2 | 35,3
36,2
37,1 | 35,0
35,9
36,8
37,7
38,6 | 35,5
36,4
37,3
38,2
39,1 | | | | | | 35,6
36,6
37,6
38,6
39,6 | 41
42
43
44
45 | | 46
47
48
49
50 | 20,6
21,5
21,5
21,9
22,4 | 24,2
24,7
25,2
25,8
26,3 | | 29,0
29,7
30,4
31,0
31,6 | 30,5
31,2
31,9
32,6
33,2 | 31,6
32,3
33,0
33,8
34,5 | 34,8 | | 37.0
37.9 | 37,6
37,8
38,6 | 38,4
39,3 | 37,9
38,7 | 40,1 | 39,0
39,8
40,7 | 38,9
39,8
40,7
41,5
42,4 | 39,5
46,4
41,3
42,2
43,1 | | 44,5 | | | | | 40,5
41,5
42,5
43,5
44,5 | 46
47
48
49
56 | | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 30 | 35 | 40 | 50 | 66 | 76 | 96 | ₁₁₀ k=n | n | |-----------------------------|-----------------------------| | 50 | 22,4 | 26,3 | 29,3 | 31,6 | 33,2 | 34,5 | 35,5 | 37.1 | 38,7 | 39,5 | 40,1 | 40,4 | 40,9 | 41,6 | 42,4 | 43,1 | 43,7 | 44,5 | | | | 44,5 | 50 | | 51
52
54
55 | 22,8
23,3
23,7
24,2
24,6 | 26,8
27,3
27,9
28,4
28,9 | 29,9
30,5
31,0
31,6
32,2 | 32,3
32,9
33,5
34,2
34,8 | 33,9
34,6
35,3
36,0
36,7 | 35,9
36,7
37,4 | 36,3
37,0
37,8
38,5
39,2 | 37,8
38,6
39,4
40,2
41,0 | 40,3
41,1
42,0 | 40,3
41,2
42,0
42,8
43,7 | 41,8 | 41,3
42,1
43,0
43,8
44,7 | 41,8
42,7
43,5
44,4
45,3 | 42,5
43,3
44,2
45,1
46,0 | 43,3
44,2
45,1
46,0
46,9 | 44,5
44,9
45,8
46,7
47,6 | 44,6
45,5
46,4
47,3
48,2 | 45,5
46,4
47,3
48,2
49,2 | | | | 45,5
46,5
47,5
48,5
49,5 | 51
52
53
54
55 | | 56
57
58
59
60 | 25,1
25,5
26,0
26,4
26,9 | 29,4
30,0
30,5
31,0
31,5 | 34,0 | | 37,4
38,1
38,8
39,5
40,2 | 39,6 | 40,0
40,7
41,5
42,2
43,0 | 41,8
42,6
43,3
44,1
44,9 | 43,6
44,4
45,2
46,1
46,9 | | 45,2
46,1
46,9
47,8
48,7 | 45,6
46,4
47,3
48,1
49,0 | 46,1
47,0
47,9
48,7
49,6 | 46,8
47,7
48,6
49,5
50,4 | 47,8
48,7
49,6
50,5
51,4 | 50,3 | 49,1
50,0
51,0
51,9
52,8 | 50,1
51,0
51,9
52,9
53,8 | 54.6 | | | 50,5
51,5
52,6
53,6
54,6 | 56
57
58
59
60 | | 61
62
63
64
65 | 27,3
27,8
28,2
28,6
29,1 | 32,1
32,6
33,1
33,7
34,2 | | 38,6
39,2
39,9
40,5
41,1 | 40,9
41,5
42,2
42,9
43,6 | 42,4
43,2
43,9
44,6
45,3 | 43,7
44,5
45,2
46,0
46,7 | 45.7
46.5
47.3
48.1
48.8 | 49,4
50,2 | 48,7
49,5
50,4
51,2
52,1 | 52,1 | 49,9
50,7
51,6
52,4
53,3 | 50,5
51,3
52,2
53,1
54,0 | 51.3
52.1
53.0
53.9
54.8 | 52,3
53,2
54,1
55,0
55,9 | 53,1
54,0
54,9
55,8
56,7 | 53,7
54,6
55,5
56,5
57,4 | 54,7
55,7
56,6
57,5
58,4 |
55,5
56,4
57,4
58,3
59,3 | | | 55,6
56,6
57,6
58,6
59,6 | 61
62
63
64
65 | | 66
67
68
69
70 | | 34,7
35,2
35,8
36,3
36,8 | 38,7
39,2
39,8
40,4
41,0 | 41,8
42,4
43,0
43,7
44,3 | 44,3
44,9
45,6
46,3
47,0 | | 47,5
48,2
49,0
49,7
50,5 | 49,6
56,4
51,2
52,0
52,8 | 52,7
53,5 | 52,9
53,8
54,6
55,4
56,3 | 53,8
54,6
55,5
56,4
57,2 | 54,2
55,0
55,9
56,7
57,6 | 54,8
55,7
56,6
57,4
58,3 | 55,7
56,6
57,4
58,3
59,2 | 56,8
57,7
58,6
59,5
60,4 | 58,5
59,4 | 58,3
59,2
60,1
61,1
62,0 | 59,4
60,3
61,2
62,2
63,1 | 60:2
61:1
62:1
63:0
64:0 | 64.7 | | 60,6
61,6
62,6
63,7
64,7 | 66
67
68
69
70 | | 71
72
73
74
75 | 31,8
32,2
32,7
33,1
33,6 | 37,3
37,9
38,4
38,9
39,4 | 41,6
42,2
42,8
43,3
43,9 | 44,9
45,6
46,2
46,8
47,5 | 47,6
48,3
49,0
49,6
50,3 | 49,7
50,4
51,1
51.8
52,5 | 51,2
52,0
52,7
53,4
54,2 | 53,6
54,3
55,1
55,9
56,7 | 56,8
57,6
58,4 | 57,1
58,0
58,8
59,7
60,5 | 58,1
58,9
59,8
60,6
61,5 | 58,5
59,3
60,2
61,1
61,9 | 59,2
60,1
60,9
61,8
62,7 | 60,1
61,0
61,9
62,8
63,6 | 61,3
62,2
63,1
64,0
64,9 | 62,2
63,1
64,0
64,9
65,8 | 63,8
64,7 | 64,0
65,0
65,9
66,8
67,8 | 64.9
65.9
66.8
67.7
68.7 | 65,6
66,6
67,5
68,5
69,4 | | 65,7
66,7
67,7
68,7
69,7 | 71
72
73
74
75 | | 76
77
78
79
80 | 34,0
34,5
34,9
35,4
35,8 | 40.0
40.5
41.0
41.5
42.1 | 44,5
45,1
45,7
46,3
46,9 | 48,1
48,7
49,4
50,0
50,6 | 51.0
51.6
52.3
53.0
53.7 | 53,3
54,0
54,7
55,4
56,1 | 54,9
55,7
56,4
57,2
57,9 | 57,5
58,3
59,1
59,8
66,6 | 60,1
60,9
61,7
62,6
63,4 | 61,3
62,2
63,0
63,9
64,7 | 64,1 | 62,8
63,7
64,5
65,4
66,3 | | 67,2 | 65,8
66,7
67,6
68,5
69,4 | 67,6
68,6
69,5 | 67,5
68,4
69,4
70,3
71,2 | 68,7
69,7
70,6
71,5
72,5 | 71.5
72.5 | 70,4
71,3
72,3
73,2
74,2 | | 70,8
71,8
72,8
73,8
74,8 | 76
77
78
79
80 | | 81
82
83
84
85 | 36,3
36,7
37,2
37,6
38,1 | 42,6
43,1
43,6
44,2
44,7 | 47,4
48,0
48,6
49,2
49,8 | 51,3
51,9
52,5
53,2
53,8 | 54,3
55,0
55,7
56,3
57,0 | 56,8
57,5
58,2
58,9
59,6 | 58,7
59,4
60,1
60,9
61,6 | 61,4
62,2
63,0
63,8
64,6 | 64,2
65,0
65,9
66,7
67,5 | 65,6
66,4
67,3
68,1
69,0 | | 68,9
68,9 | | 69,0
69,9
70,8
71,6
72,5 | 70,3
71,2
72,1
73,0
73,9 | 72,2
73,1
74,1 | 72,1
73,1
74,0
74,9
75,8 | 74.3
75.3
76.2 | 74,4
75,3
76,3
77,2
78,1 | 77.6
78.6 | | 75,8
76,9
77,9
78,9
79,9 | 81
82
83
84
85 | | 86
87
88
89
90 | 38,5
38,9
39,4
39,8
40,3 | 45,2
45,7
46,3
46,8
47,3 | 50,4
51,0
51,6
52,1
52,7 | 55.1
55.7 | 57,7
58,4
59,0
59,7
60,4 | 61,0 | 64.6 | 66,1 | 68,4
69,2
70,0
75,8
71,7 | 69.8
70,6
71.5
72,3
73,2 | 71,8
72,7
73,5 | 71,5
72,3
73,2
74,1
74,9 | 72,3
73,2
74,1
75,0
75,8 | 74,3 | | 76,8
77,7
78,6 | | 79,0
80,0
80,9 | 79,1
80,0
81,0
81,9
82,9 | 80.9 | 85,0 | 80,9
82,0
83,0
84,0
85,0 | 86
87
88
89
90 | | 91
92
93
94
95 | 40,7
41,2
41,6
42,1
42,5 | 47,8
48,4
48,9
49,4
50,0 | 53,3
53,9
54,5
55,1
55,7 | 57,6
58,2
58,9
59,5
60,1 | 61,0
61,7
62,4
63,1
63,7 | 63,9
64,6
65,3
66,0
66,7 | 66,1
66,8
67,6
68,3
69,0 | 69,3
70,1
70,8
71,6
72,4 | | 74,0
74,9
75,7
76,6
77,4 | 76,1
77,0
77,8 | 75.8
76.7
77.5
78.4
79.3 | 77,6
78,5
79,4 | 79,7
80,6 | 79,4
80,3
81,2
82,1
83,0 | 82,3 | 82,3
83,2
84,2 | 82,8
83,7
84,7
85,6
86,5 | 83,8
84,8
85,7
86,7
87,6 | 84,7
85,6
86,6
87,6
88,5 | 86.6
86.9
87.9
88.9
89.8 | 86,0
87,1
88,1
89,1
90,1 | 91
92
93
94
95 | | 96
97
98
99
100 | 43,0
43,4
43,9
44,3
44,8 | 50,5
51,0
51,5
52,1
52,6 | 56,2
56,8
57,4
58,0
58,6 | 61,4
62,0
62,7 | | 68,1
68,8
69,5 | 70.5
71.3
72.0 | 74,0
74,8
75.5 | 78.3
79.1 | 79,1
80,0
80,8 | 80,4
81,3
82,2 | 80,1
81,0
81,9
82,7
83,6 | 82,0
82,9
83.8 | 83,2
84,1
85.6 | 84,8
85,7 | 85,1
86,0
86,9
87,8
88,8 | 87,0
87,9 | 87,5
88,4
89,4
90,3
91,3 | 88,6
89,5
90,5
91,4
92,4 | 89,5
90,4
91,4
92,3
93,3 | 90.8
91.8
92.8
93.7
94.7 | 91,1
92,2
93,2
94,2
95,2 | 96
97
98
99
100 | B = probability of loss k = accessibility n = number of trunks | nk | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 36 | 35 | 46 | 50 | 66 | 76 | 96 | 116 | k=n | n | |---------------------------------|--------------------------------------|--------------------------------------|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|---|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------------| | 100 | 44,8 | 52,6 | 58.6 | 63,3 | 67.1 | 76,2 | 72.7 | 76,3 | 79.9 | 81.7 | 83,6 | 83,6 | 84,6 | 85,9 | 87.5 | 88,8 | 89.8 | 91,3 | 92:4 | 93,3 | 94.7 | | 95,2 | 100 | | 102
104
106 | 45.7
46.6
47.5 | 53,6
54,7
55,7 | 60.9 | 64,6
65,8
67,1 | 68.4
69.8
71.1 | 73.0 | | 77.9
79.5
81.0 | 84.9 | 83.3
85.5
86.7 | 86,5 | 85.4
87.1
88.8 | 88,2
89,9 | 87.7
89.5
91.3 | 89.4
91.2
93.5 | 95,6
92,5
94,3 | 93.5
95.3 | 93.1
95.0
96.9 | 96.2
98.1 | 97.1 | 160.5 | | 97.3
99.3
101.4 | 102
104
106 | | 168
116 | 48.3 | 56,8
57,8 | | 68.4 | | 75.8
77.2 | | 82.6 | 86,5 | 88.4
95,1 | 89,9 | | 91,7
93,5 | 93.1
94.9 | | | | 98,8
166.7 | | | | 105,5 | 103,4 | 168
116 | | 112
114
116
118
120 | 50.1
51.0
51.9
52.8
53.7 | 58,9
59,9
61,0
62,0
63,1 | 66.8 | 70,9
72,2
73,4
74,7
76,6 | 75.1
76.5
77.8
79.1
86.5 | 76.6
85.5
81.4
82.8
84.2 | 82,9
84,4
85,8 | 85.7
87.3
88.6
90.4
91.9 | 91,5
93,2
94,8 | | 95,1
96,8
98,6 | 95.8
97.5
99.3 | 98.7
100.5 | 98.4
100.2
102.0 | 100.3
102.1
103.9 | 101,7 | 102.8
104.7
106.5 | 162.6
164.5
166.4
168.3
116.2 | 105.7
107.6
109.6 | 166.7
168.7
110.6 | 108.3
116.2
112.1 | 109.4
111.4
113.3 | 109.6
111.7
113.7 | 112
114
116
118
120 | | 122
124
126
128
130 | 54,6
55,5
56,4
57,3
58,2 | 64,1
65,2
66,3
67,3
68,4 | | 77,2
78,5
79,7
81,0
82,3 | 81,8
83,2
84,5
85,9
87,2 | 85,6
87,0
88,4
89,8
91,2 | 96.2
91.7 | 96,5
98,1 | 99.8
101.4
103.1 | 102.0
103.7
105.4 | 103.7
105.5
107.2 | 104.5
106.2
108.0 | 105,8
107,6
109,3 | 107:4
109:2
111:0 | 109,4
111,3
113,1 | 110,9
112,8
114,6 | 112.1
114.5
115.9 | 112:1
113:9
115:8
117:7 | 115,3
117,2
119,1 | 116,4
118,3
120,2 | 118.0
119.9
121.9 | 119,2
121,2
123,1 | 119,9
121,9
124,6 | 122
124
126
128
130 | | 132
134
136
138
140 | 59,1
60,0
60,9
61,8
62,7 | 69.4
70.5
71.5
72.6
73.6 | 79.7 | 83,5
84,8
86,1
87,3
88,6 | 899109 | 94.0
95.4
96.8 | 97,5
98,9
100,4 | 101.1
102.7
104.2
105.7
107.3 | 108.0
109.6
111.3 | 110.4
112.1
113.8 | 112,4
114:1
115,8 | 113.2
114.9
116.7 | 114.6
116.4
118.2 | 116,4
118,2
120.0 | 118,6
120,4
122,2 | 120,2
122,1
123,9 | 121.5
123.4
125.2 | 123.4
125.3
127.2 | 124,9
126,8
128,7 | 126.0
127.9
129.9 | 127.7
129.7
131.6 | 129.0
131.0
132.9 | 130,2
132,3
134,3 | 132
134
136
138
140 | | 142
144
146
148
150 | 63,6
64,5
65,4
66,3
67,1 | 74,7
75,7
76,8
77,8
78,9 | 84,4
85,5
86,7 | 92,4
93,7 | 97,9 | 101,0
102,4
103,8 | 104,7
106,2
107,7 | 108.8
110.3
111.9
113.4
114.9 | 116.2
117.9
119.5 | 118,9
120,6
122,3 | 121,0
122,7
124,5 | 121.9
123.7
125.4 | 123,5
125,2
127,0 | 125.4
127.2
129.0 | 127.7
129.6
131.4 | 129,5
131,3
133,2 | 130.9
132.7
134.6 | 132,9
134,8
136,7 | 134.5
136.4
138.3 | 135,7
137,6
139,5 | 137.5
139.4
141.4 | 138.8
146.8
142.7 | 140,5
142,6
144,6 | 142
144
146
148
150 | | 152
154
156
158
160 | 68,0
68,9
69,8
70,7
71,6 | 79,9
81,6
82,6
83,1
84,1 | 90,2
91,4
92,6 | 97,5
98,7
100,0 | 103,3
104,6
106,0 | 108,1
109,5
116,9 | 112,5
113,5
114,9 | 116.5
118.0
119.5
121.0
122.6 | 124.4
126.0
127.6 | 127,3
129,6
136,7 |
129.6
131.4
133.1 | 130.6
132.4
134.1 | 132,3
134,1
135,8 | 134.3
136.1
137.9 | 136,9
138,7
140,6 | 138,8
146,6
142,5 | 140,3
142,1
144,0 | 142,4
144,4
146,3 | 144:1
146:0
147:9 | 145,3
147,3
149,2 | 147.2
149.2
151.1 | 148,6
155,6
152,6 | 150.8
152.9
155.0 | 152
154
156
158
160 | | 162
164
166
168
170 | 72:5
73:4
74:3
75:2
76:1 | 85,2
86,2
87,3
88,3 | 96:1
97:2
98:4 | 103.8
105.1
106.3 | 110,0
111,3
112,7 | 115:1
116:5
117:9 | 119,3
120,7
122,2 | 124,1
125,6
127,2
128,7
136,2 | 132,5
134,1
135,7 | 135,8
137,5
139,2 | 138,3
140,0
141,7 | 139,3
141,1
142,8 | 141,1 142.9 144.7 | 143.3
145.1
146.9 | 146,1
147,9
149,7 | 148,1
149,9
151,8 | 149,6
151.5
153,4 | 152.0
153.9
155.8 | 153,7
155,6
157,5 | 155.0
156.9
158.9 | 157.0
159.0
160.9 | 158,5
165,4
162,4 | 161,2
163,3
165,3 | 162
164
166
168
170 | | 172
174
176
178
180 | 77:0
77:9
78:8
79:7
80:6 | 91,5
92,5
93,6 | 101.9
103.1
104.3 | 110,1
111,4
112,7 | 116.7
118.1
119.4 | 122,1 | 126,6
128,0
129,5 | 131.8
133.3
134.8
136.4
137.9 | 140.5 | 144.2
145.8
147.5 | 146,9
148,6
150.3 | 148.6
149.8
151.5 | 150.0
151.7
153.5 | 152.3
154.1
155.9 | 155,2
157,1
158,9 | 157,4
159,3
161,1 | 159,0
160,9
162,8 | 161,5
163,4
165,3 | 163.3
165.2
167.2 | 164.7
166.6
168.6 | 166,8
168.7
175.7 | 168.3
170.3
172.3 | 171.5
173.6
175.7 | 172
174
176
178
180 | | 182
184
186
188
190 | 83.3 | 96,7
97,8
98,9 | 107.8
109.0
110.1 | 116,5
117,7
119,0 | 125.4
124.8
126.1 | 129.1
130.5
131.9 | 133,8
135,3
136,8 | 139.4
141.6
142.5
144.6
145.6 | 148.6
150.2
151.9 | 152,4
154,1
155,8 | 155.5
157.2
158.9 | 156.7
158.4
160.2 | 158.8
160.6
162.3 | 161:3
163:1
164:9 | 164,4 | 166,7
168,6
170,4 | 168,5
170,3
172,2 | 171:1
173:0
174:9 | 172.9
174.9
176.8 | 174.4
176.3
178.3 | 176.6
178.5
180.5 | 178.2
180.2
182.1 | 181,9
184,6
186,1 | 182
184
186
188
196 | | 192
194
196
198
200 | 86.8
87.7
88.6 | 102,0
103,1
104,1 | 113:6
114:8
116:0 | 122,8
124,1
125,3 | 130.1
131.5
132.8 | 136,1
137,5
138,9 | 141,1
142,6
144,0 | 147.1
148.6
150.2
151.7
153.2 | 156.7
158.3
159.9 | 160,7
162,4
164,6 | 164,6
165,7
167,4 | 165.4
167.1
168.9 | 167.6
169.4
171.1 | 170:3
172:1
173:9 | 173.6
175.5
177.3 | 176.0
177.9
179.8 | 177,9
179,8
181,7 | 186.6
182.5
184.4 | 182.6
184.5
186.4 | 184.1
186.1
188.0 | 186,4
188,3
195,3 | 188,1
195,5
192,6 | 192,3
194,4
196,4 | 192
194
196
198
200 | Table 1 - 29 | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 1,7 | 19 | 20 | 22 | 25 | 36 | 35 | 40 | 50 | 66 | 76 | 90 | 110 | k=n | n | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|----------------------------------|---------------------------------| | 200 | 89,5 | 195.2 | 117,2 | 126,6 | 134,2 | 146.3 | 145,5 | 153,2 | 161,5 | 165,7 | 169,1 | 170,6 | 172,9 | 175:7 | 179.1 | 181,6 | 183,5 | 186,4 | 188,4 | 189,9 | 192,3 | 194,6 | 198,5 | 200 | | 202
204
206
208
210 | 91,3
92,2
93,1 | 107.3
108.3
109.4 | 119.5
120.7
121.8 | 129,1
130,4
131,6 | 136,8
138,2
139,5 | 143,1
144,5
146,0 | 148,4
149,8
151,3 | 156,3
157,8
159,4 | 164,8
166,4
168,0 | 169,6
170,7
172,3 | 172,5
174,2
175,9 | 174,0
175,7
177,4 | 176,4
178,2
180,0 | 179.3
181.1
182.9 | 182,8
184,6
186,5 | 185,3
187,2
189,1 | 187,3
189,2 | 190,2
192,1
194,0 | 192:2
194:2 | 193.8
195.8 | 194,2
196,2
198,2
200,1
202,1 | 197,9
199,9 | 202,7
204,7
206.8 | 202
204
206
208
210 | | 212
214
216
218
220 | 95,8
96,7
97,6 | 112,5
113,6
114,6 | 125,4
126,5
127,7 | 135,4
136,7
138,0 | 143,5
144,9
146,2 | 150,2
151,6
153,0 | 155,7
157,1
158,6 | 164,0
165,5
167.0 | 172,9
174,5 | 177.3
179.0
180.6 | 180,9
182,6
184,3 | 182,5
184,2
185,9 | 185,2
187,0
188,8 | 188,3
190,1
191,9 | 192,6
193,8 | 194,7
196,5 | 196,7
198,6 | 199.7
261.7
263.6 | 201,9 | 263,6 | 204.1
206.0
208.0
209.9
211.9 | 207.8 | 213,6
215,1 | 212
214
216
218
220 | | 222
224
226
228
230 | 100,3
101,2
102,1 | 117,8
118,8
119,9 | 131,2
132,4
133,6 | 141.8
143.0
144.3 | 150,2
151.6
152.9 | 157,2
158,6 | 162,9
164,4
165,8 | 171,6
173,1
174.7 | 186,9
182,5 | 185.6
187.2
188.9 | 189,4
191:1
192:8 | 191,1
192,8 | 194,0
195,7 | 197,3
199,1
200,8 | 201,2 | 264,6 | 206,2 | 209,3 | 211.6 | 213,3 | 213,9
215,8
217,8
219,8
221,7 | 217.7 | 223,4 | 222
224
226
228
230 | | 232
234
236
238
240 | 104.8
105,6
106,5 | 123,0
124,1
125,1 | 137,1
138,2
139,4 | 148,1
149,4
158.6 | 157.0
158.3
159.6 | 164,2 | 170,2
171,7 | 179,3
180,8
182.3 | 189,0 | 193,9 | 197.8 | 199,6 | 202,7 | 256,2
258.5
259.8 | 210,4 | 213,3 | 217,5 | 218,9 | 221,2 | 223,0 | 223,7
225,7
227,6
229,6
231,6 | 227.6 | 233,8 | 232
234
236
238
240 | | 242
244
246
248
250
1 | 109,2
110,1
111,0
111,9 | 128,3
129,3
130,4
131,4 | 142,9
144,1
145,3
146,4 | 154,4
155,7
157,0
158,2 | 165,0
166,3
167,7 | 171,2
172,6
174,0
175,4 | 177,5
178,9
180,4
181,8 | 186,9
188,5
196,0
191,5 | 197,1
198,7
200,3
201,9 | 202,1
203,8
205,5
207,1 | 206,3
208.0
209.7
211.4 | 208,1
209,8
211,5
213,2 | 211,3
213,0
214,8
216,5 | 215,2
217,0
218,8
220,6 | 219,6
221,4
223,2
225,1 | 222,7
224,5
226,4
228,3 | 225.1
226.9
228.8
236.7 | 228,5
230,4
232,3
234,3 | 230,9
232,9
234,8
236,7 | 232:8
234:7
236:7
238:6 | 233,6
235,5
237,5
239,5
241,4
0,986 | 237,5
239,5
241,5
243,5 | 244.3
246.3
248.4
256.5 | 242
244
246
248
250 | | 300
1 | 134.3
0.448 | 157,7
0,526 | 175,7
0,586 | 189,9
0,633 | 201.2 | 216,5 | 218,2
0,727 | 229,8
0,766 | 242,3 | 248,5 | 253,6
0,845 | 255,9
6,853 | 259,8
0,866 | 264,7
0,882 | 271.5 | 275,0 | 278.0 | 282,3 | 285,2 | 287.5
0.979 | 296.7 | 293,1 | 302.6
1.044 | 300
1 | | 35 ₀ | 156,7
0,448 | 184,6
0,526 | 205.g | 221,5 | 234,8
0,671 | 245,6 | 254,6
0,727 | 268,1
0,766 | 282,7
0,808 | 290,0
0,828 | 295,9 | 298,5
6,853 | 303,1
0,866 | 308,8
0,882 | 316,1 | 321,6 | 325,2 | 330,3
0,962 | 333.8 | 336,4
0,980 | 340,2 | 342.8
0.996 | 354,8
1,045 | 356
1 | | 400 | 179,1 | 210,3 | 234,3 | 253,2
0,633 | 268,3
0,671 | 286,7 | 291,6 | 306,5
0,766 | 323,1 | 331,4
0,828 | 338,2
0,845 | 341,2 | 346,4
0,866 | 352,9
0,882 | 361,3 | 367,6 | 372,5 | 378,4
0,962 | 382:5 | 385,5 | 389,7 | 392.6 | 407,1
1,647 | 400 | | 500
1 | 223,8 | 262,9 | 292,9 | 316,5 | 335,4 | 356,8 | 363,7 | 383,1 | 403.9 | 414,2 | 422.7 | 426,5 | 433,6 | 441.2 | 451.6 | 459.5 | 465.6 | 474.7 | 479.9 | 483.6 | 488.9 | 492.5 | 511.8 | 500
1 | | 600
1 | 268,6 | 315,5 | 351,5 | 379,8 | 402,5 | 421,0 | 436.4 | 459,7 | 484,6 | 497,1 | 507,3 | 511.8 | 519,6 | 529.4 | 541.9 | 551.3 | 558.7 | 569.6 | 577.3 | 581.9 | 588,2 | 595.8 | 616.5 | 655
1 | | 700
1 | 313,4
0,448 | 368,1
0,526 | 410,1 | 443,1 | 469,5 | 491,2
0,702 | 509,2
0,727 | 536,3
0,766 | 565,4
0,868 | 579,9
0,828 | 591.8
0.845 | 597.5
5.853 | 606,2
0,866 | 617,6 | 632,2 | 643,2 | 651,8
0,931 | 664,5
0,949 | 673.5 | 680,2 | 687.7 | 692,7 | 721,4
1,649 | 760
1 | | 800 | 358,1 | 420,6 | 468,6 | 506,3 | 536,6 | 561,4 | 581,9 | 612,9 | 646.2 | 662,8 | 676,4 | 682,3 | 692,8 | 705,9 | 722.6 | 735,1 | 744.9 | 759.4 | 769.7 | 777.4 | 787,2 | 792:9 | 826.4 | 800 | | 900
1 | 402.9
0.448 | 473,2 | 527,2 | 569.6 | 603,7 | 631,5 | 654,7
0,727 | 689,5 | 726,9 | 745,6
0,828 | 760,9
0,845 | 767,6
0,853 | 779,4
0,866 | 794.1
0.882 | 812,9 | 827.0 | 838.1 | 854,4 | 865,9 | 874,6 | 886,8 | 893,2 | 931.4 | 966
1 | | 1100 | 492,4 | 578,4 | 644.4 | 696,2 | 737,8 | 771.9 | 800.1 | 842,7 | 888,5 | 911.3 | 930,0 | 938,2 | 952.6 | 970.6 | 993,5 | 1011 | 1624 | 1044 | 1058 | 1 1 1 6 9 | 1684 | 1 11 9 4 | 1141
1,651 | 1100 | B = 10.0 % Table 1 - 30 A = offered random traffic B = probability of loss k = accessibility n = number of trunks A in Erl B = 10.0 % | U K | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 46 | 56 | 6 ტ | 76 | 95 | 116 | k=n | n | |----------------------------
--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|-----------|----|----|-----|--------------------------------------|----------------------------| | 1
2
3
4
5 | 2,0
2,6 | 2,9 | 0,11
0,60
1,3
2,0
2,9 | 1
2
3
4
5 | | 6
7
8
9
10 | 3,2
3,7
4,3
4,9
5,5 | 3,5
4,1
4,8
5,4
6,1 | 3,8
4,4
5,1
5,8
6,5 | 4,7
5,4
6,1
6,8 | 5,6
6,3
7,1 | 6,5
7,3 | 7,5 | | | | | | | | | | | | | | | | 3,8
4,7
5,6
6,5
7,5 | 6
7
8
9
10 | | 11
12
13
14
15 | 6,1
6,7
7,3
7,9
8,5 | 6,7
7,4
8,1
8,7
9,4 | 7,2
7,9
8,6
9,3
10,8 | 7,6
8,3
9,0
9,8
13,5 | 7,9
8,6
9,4
10,2
10,9 | 8,1
8,9
9,7
10,5
11,3 | 8,3
9,1
9,9
10,7
11,5 | 9,5
15,3
11,1
12,0 | 12,5 | | | | | | | | | | 7 - 43134 | | | | 8,5
9,5
10,5
11,5
12,5 | 11
12
13
14
15 | | 16
17
18
19
20 | 9,1
9,7
10,2
10,8
11,4 | 10,0
10,7
11,4
12,1
12,7 | 12,2
12,9 | | 11,7
12,5
13,3
14,0
14,8 | | 12,3
13,2
14,0
14,8
15,6 | 14,5
15,4 | 13,4
14,2
15,1
16,0
16,9 | 15,4 | 16,6 | 17,6 | | | | | | | | | | | 13,5
14,5
15,5
16,6
17,6 | 16
17
18
19
20 | | 21
22
23
24
25 | 13,1
13,6 | 13,4
14,1
14,7
15,4
16,1 | 15,1
15,8
16,5 | 15.0
15.8
16.6
17.3
18.1 | 15,6
16,4
17,2
18,0
18,8 | 16,1
16,9
17,7
18,5
19,3 | 16,4
17,3
18,1
18,9
19,8 | 17,9
18,8
19,6 | | 18,1
19,0
19,9
20,8
21,7 | 18,4
19,3
20,2
21,1
22,0 | 19,4
20,4 | 19.7
20.6
21.5
22.5 | 22,8 | | | | | | | | | 18,7
19,7
20,7
21,8
22,8 | 21
22
23
24
25 | | 26
27
28
29
30 | 14,8
15,3
15,9
16,5
17,0 | 17,4 | | 19,6
20,4 | 20,3
21,1 | 25,1
25,9
21,7
22,6
23,4 | 22,3 | | 22,2
23,1
24,0
24,8
25,7 | 22,6
23,5
24,4
25,3
26,2 | 24,8 | 24,0
25,0
25,9 | 23,4
24,3
25,3
26,2
27,1 | 23,8
24,7
25,7
26,6
27,6 | 28,1 | | | | | | | | 23,9
24,9
26,5
27,1
28,1 | 26
27
28
29
30 | | 31
32
33
34
35 | 17,6
18,2
18,8
19,3
19,9 | 20,0
20,6
21,2
21,9
22,5 | 21,6
22,3
23,6
23,8
24,5 | 22,7
23,4
24,2
25,8
25,7 | 23,5
24,3
25,1
25,9
26,7 | 24,2
25,0
25,8
26,6
27,5 | 24,8
25,6
26,4
27,3
28,1 | 25,7
26,5
27,4
28,3
29,1 | 26,6
27,5
28,4
29,3
30,2 | 27,1
28,0
29,0
29,9
30,8 | 27,6
28,5
29,4
30,3
31,3 | 28,7
29,6
30,5 | 28,1
29,0
30,0
30,9
31,8 | 28,5
29,5
30,4
31,4
32,3 | 29,1
30,5
31,6
32,6
32,9 | 33,4 | | | | | | | 29,2
35,2
31,3
32,4
33,4 | 31
32
33
34
35 | | 36
37
38
39
40 | | 23,2
23,8
24,5
25,1
25,8 | 25,9
26,6 | 26,5
27,3
28,0
28,8
29,6 | 27,5
28,3
29,1
29,9
30,7 | 28,3
29,1
29,9
35,8
31,6 | 29,8
29,8
30,6
31,5
32,3 | 35,9
31,7
32,6 | 31,1
32,0
32,9
33,8
34,7 | 32,6
33,5
34,4 | 32,2
33,1
34,0
35,0
35,9 | 33,3
34,3
35,2 | 32,8
33,7
34,7
35,6
36,5 | 33,3
34,2
35,2
36,1
37,1 | 33,9
34,9
35,8
36,8
37,8 | 34,4
35,4
36,4
37,4
38,3 | 38,8 | | | | | | 34,5
35,6
36,6
37,7
38,8 | 36
37
38
39
40 | | 41
42
43
44
45 | | 26,4
27,0
27,7
28,3
29,0 | 28,7
29,4
30,1
30,8
31,5 | 33,3
31,1
31,9
32,6
33,4 | 31,5
32,3
33,1
33,9
34,7 | 32,4
33,2
34,0
34,9
35,7 | 33,2
34,0
34,8
35,7
36,5 | 36,1 | 36,5
37,4
38,3 | 36,3
37,2
38,1
39,0
40,0 | 36,8
37,7
38,7
39,6
40,5 | 38,0
38,9
39,9 | 37,5
38,4
39,4
40,3
41,3 | 38,0
39,0
39,9
40,9
41,9 | 38,7
39,7
40,7
41,7
42,6 | 39,3
40,3
41,3
42,3
43,2 | 39,8
40,8
41,8
42,8
43,7 | | | | | | 39,9
40,9
42,0
43,1
44,2 | 41
42
43
44
45 | | 46
47
48
49
50 | 27,8 | 30,3
30,9
31,5 | 32,9 | | 36,3
37,1
37,9 | 36,5
37,3
38,2
39,0
39,8 | 39,1
39,9 | 46,5
41,3 | 42.9 | 42,7
43,6 | 44,3 | 43,6 | 45,1 | | 43,6
44,6
45,6
46,5
47,5 | 47,2 | | 49,6 | | | | | 45,2
46,3
47,4
48,5
49,6 | 46
47
48
49
50 | Table | nk | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 36 | 35 | 45 | 50 | 65 | 76 | 96 | 115 | k=n | n | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---|--------------------------------------|-----|--|-----------------------------| | 50 | 28.4 | 32,2 | 35,8 | 37,2 | 38,7 | 39,8 | 40,8 | 42,2 | 43,8 | 44,6 | 45,2 | 45,5 | 46,5 | 46,6 | 47,5 | 48,2 | 48,7 | 49,6 | | *************************************** | | | 49,6 | 50 | | 51
52
53
54
55 | 29.5
30.1
30.7 | 32,8
33,5
34,1
34,8
35,4 | 35,7
36,4
37,1
37,8
38,5 | 37,9
38,7
39,4
40,2
40,9 | 39,5
40,3
41,1
41,9
42,7 | 40,6
41,5
42,3
43,1
43,9 | 41,6
42,4
43,3
44,1
45,0 | 43,1
44,6
44,9
45,7
46,6 | 44,7
45,6
46,5
47,4
48,3 | 45,5
46,4
47,3
48,3
49,2 | 47,1
48,0
49,0 | 46,4
47,4
48,3
49,3
50,2 | 47,9
48,9
49,8 | 47,6
48,6
49,5
50,5
51,5 | 48,5
49,5
50,4
51,4
52,4 | 50,1
51,1
52,1 | 49,7
50,7
51,7
52,7
53,7 | 51,6
52,6
53,6 | | | | | 50,6
51,7
52,8
53,9
55,0 | 51
52
53
54
55 | | 56
57
58
59
60 | 33,5 | 37,3 | 39,2
39,9
40,6
41,3
42,0 | 41,7
42,4
43,2
43,9
44,6 | 43,5
44,2
45,6
45,8
46,6 | 45,6
46,4
47,2 | 45,8
46,7
47,5
48,4
49,2 | 47,5
48,4
49,2
50,1
51,0 | 50,2
51,1
52,0 | 51,0 | 51,8
52,7
53,6 | | 52,7
53,6 | 52,4
53,4
54,4
55,3
56,3 | 53,4
54,3
55,3
56,3
57,3 | 55,1
56,1
57,1 | 54,7
55,7
56,7
57,7
58,7 | 55,6
56,6
57,6
58,7
59,7 | 60,4 | | | | 56,1
57,1
58,2
59,3
60,4 | 56
57
58
59
60 | | 61
62
63
64
65 | 34,7
35,2
35,8
36,4
36,9 | 39,3
39,9
40,6
41,2
41,8 | 42,7
43,4
44,1
44,8
45,5 | 45,4
46,1
46,9
47,6
48,4 | 47,4
48,2
49,0
49,8
50,6 | | 50,1
50,9
51,8
52,6
53,4 | 51,9
52,8
53,6
54,5
55,4 | 53,8
54,7
55,6
56,5
57,4 | 54,7
55,7
56,6
57,5
58,5 | 58,3 | 55,9
56,8
57,8
58,7
59,7 | 56,5
57,4
58,4
59,3
60,3 | 57,2
58,2
59,2
60,1
61,1 | 58,3
59,2
60,2
61,2
62,2 | 59,0
60,0
61,0
62,0
63,0 | 59,7
60,7
61,7
62,7
63,7 | 60,7
61,7
62,7
63,7
64,7 | 61,4
62,4
63,5
64,5
65,5 | | | | 61,5
62,6
63,7
64,8
65,8 | 61
62
63
64
65 | | 66
67
68
69
70 | 37,5
38,1
38,6
39,2
39,8 | 42,5
43,1
43,8
44,4
45,1 | 46,2
46,9
47,6
48,3
49,0 | 49,1
49,8
50,6
51,3
52,1 | 51,4
52,2
52,9
53,7
54,5 | 53,8
54,6
55,5 | 54,3
55,1
56,0
56,8
57,7 | 56,3
57,2
58,0
58,9
59,8 | | 59,4
60,3
61,2
62,2
63,1 | 61,2 | 60,6
61,5
62,5
63,4
64,4 | 62,2
63,2 | 63,0
64,0 | 63,2
64,1
65,1
66,1
67,1 | 64,0
65,0
66,0
67,0
68,0 | 64,7
65,7
66,7
67,7
68,7 | 65,7
66,8
67,8
68,8
69,8 | 66,5
67,6
68,6
69,6
70,6 | 71,3 | | | 66,9
68,0
69,1
70,2
71,3 | 66
67
68
69
70 | | 71
72
73
74
75 | 40,3
40,9
41,5
42,0
42,6 | 45,7
46,4
47,0
47,6
48,3 | 49,7
50,4
51,1
51,8
52,5 | 52,8
53,6
54,3
55,1
55,8 | 55,3
56,1
56,8
57,6
58,4 | 57,9
58,8
59,6 | 58,5
59,4
60,2
61,1
61,9 | 60,7
61,6
62,4
63,3
64,2 | 62,9
63,8
64,7
65,7
66,6 | 64.0
65.0
65.9
66.8
67.7 | 67,8 | | 68,9 | | 68,1
69,1
70,0
71,0
72,0 | 69,0
70,0
71,0
71,9
72,9 | 69,7
70,7
71,7
72,7
73,7 | 70,8
71,8
72,8
73,9
74,9 | 71.7
72.7
73.7
74.7
75.7 | 72,3
73,3
74,4
75,4
76,4 | | | 72,4
73,5
74,6
75,6
76,7 |
71
72
73
74
75 | | 76
77
78
79
80 | 43,2
43,8
44,3
44,9
45,5 | 48,9
49,6
50,2
50,9
51,5 | 54,6
55,3 | 56;5
57,3
58,0
58,8
59,5 | 59,2
60,0
60,7
61,5
62,3 | 62,1
62,9
63,7 | 62,7
63,6
64,4
65,3
66,1 | 65,1
66,0
66,8
67,7
68,6 | 68,4
69,3
76,2 | 68,7
69,6
76,5
71,5
72,4 | 70,6
71,5
72,5 | | 70,8
71,8
72,7
73,7
74,7 | 71,8
72,7
73,7
74,7
75,6 | 74,0
75,0
75,9 | 73,9
74,9
75,9
76,9
77,9 | 74,7
75,7
76,7
77,7
78,7 | 76,9
77,9 | 76,8
77,8
78,8
79,8
80,9 | 77,5
78,5
79,5
80,6
81,6 | | | 77,8
78,9
80,0
81,1
82,2 | 76
77
78
79
80 | | 81
82
83
84
85 | 46,0
46,6
47,2
47,7
48,3 | 53,4
54,1 | | 60,3
61,0
61,8
62,5
63,2 | 63,1
63,8
64,6
65,4
66,2 | 66,1
67,0
67,8 | 67,0
67,8
68,7
69,5
70,3 | 69,5
70,3
71,2
72,1
73,0 | 72,1
73,0
73,9
74,8
75,7 | 73,3
74,3
75,2
76,1
77,1 | 75,3
76,3
77,2 | | 76,6
77,5
78,5 | 77.6
78.6 | 78,9
79,9 | 78,9
79,9
80,9
81,9
82,9 | 79,7
80,7
81,7
82,7
83,7 | 82,0
83,0 | 81,9
82,9
84,0
85,0
86,0 | 82,6
83,7
84,7
85,7
86,8 | | | 83,3
84,4
85,5
86,6
87,7 | 81
82
83
84
85 | | 86
87
88
89
90 | 48,9
49,4
50,0
50,6
51,1 | 56,7
57,3 | 60,9
61,6
62,3 | 64,0
64,7
65,5
66,2
67,0 | 67,0
67,7
68,5
69,3
70,1 | 75,2
71,0
71,8 | 71,2
72,0
72,9
73,7
74,6 | 73,9
74,7
75,6
76,5
77,4 | 76,6
77,6
78,5
79,4
80,3 | 78,0
78,9
79,9
80,8
81,7 | 79,1
80,0
81,5
81,9
82,9 | 81,5
82,4 | 81,4
82,3 | 82,4
83,4
84,4 | 83,8
84,8
85,8 | 83,9
84,9
85,9
86,9
87,9 | 84,7
85,8
86,8
87,8
88,8 | 87,1
88,1
89,1 | 87,0
88,1
89,1
90,1
91,1 | 88,8
89,9
90,9 | 93,1 | | 88,8
89,9
91,0
92,1
93,1 | 86
87
88
89
90 | | 91
92
93
94
95 | 51,7
52,3
52,8
53,4
54,0 | 59,9
60,5 | 64,4
65,1
65,8 | | 72.4
73.2 | 74:2
75:0
75:8 | 75,4
76,2
77,1
77,9
78,8 | | 81,2
82,1
83,0
84,0
84,9 | 85,5 | 85,7 | 85,3 | | 87,3
88,3
89,3 | 88,8
89,8 | 88,9
89,9
90,9
91,9
92,9 | 92,8 | 92,2
93,2
94,2 | 93,2
94,2
95,3 | 95.0
96.1 | 94,2
95,2
96,3
97,3
98,4 | | 94,2
95,3
96,4
97,5
98,6 | 91
92
93
94
95 | | 96
97
98
99
100 | 54,5
55,1
55,7
56,3
56,8 | 62,4
63,1 | 67,9
68,6
69,3 | 72,9 | 75.5
76.3
77.1 | 78,2
79,1
79,9 | 79,6
80,5
81,3
82,1
83,0 | 83,5
84,4
85,3 | 86,7
87,6
88,5 | 89,2
95,1 | 89,5
90,4
91,4 | 89,1
90,0
91,0
91,9
92,9 | 91,5
92,5
92,9 | 92,2
93,2
94,1 | | | 95,8
96,8
97,8 | 97,3
98,3
99,3 | 97,3
98,3
99,4
100,4
101,4 | 99:2
100:2
101:3 | 100.5
101.5
102.6 | | 99,7
100,8
101,9
103,6
104,1 | 96
97
98
99
100 | Table 1 -32 | U K | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 30 | 35 | 40 | 50 | 68 | 76 | 96 | 110 | k=n | U | |-------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------------|----------------|----------------|------------------------|----------------|-------|----------------|----------------|----------------|-------|----------------|-------------------------|----------------|-------------------------|-------------------| | 100 | 56,8 | 64.4 | 76.5 | 74.4 | 77,9 | 86,7 | 83,5 | 86,2 | 89,5 | 91,0 | 92,3 | 92.9 | 93,9 | 95,1 | 96,7 | 97,9 | 98,8 | 166,3 | 161.4 | 102,3 | 103.6 | | 104,1 | 155 | | 102
104
106 | 58.0
59.1
60.2 | 65,7
67,0
68,2 | 71,4
72:8
74:2 | 75.9
77.4
78.9 | 81.0 | 83,9 | 86,3 | 89.7 | 93,1 | 92.9
94.8
96.6 | 96,1 | 94.8 | 97.7 | | 100,6 | 101,9 | 162,9 | 104,4 | 103.5 | 106.4 | 107.8 | | 106.3 | 102
104
106 | | 108 | 61,4 | | 75.6 | 80,4 | 84,1 | 87,1 | | 93,2 | 96.8 | 98,5 | 99,9 | 100,5 | 99.7
101.6
103.5 | 102:9 | 104,6 | 105,9 | 106,9 | 168.5 | 109:7 | 110,6 | | 115.1 | 110.7
112.9
115.1 | 108 | | 112
114 | 63,6
64,8 | 73,4 | 78.4
79.8 | 84,8 | | 92,6 | 94,6 | 98;5 | 102.3 | 104.1 | 105,6 | 106.2 | 107.4 | 108,8 | 110.5 | 111.9 | 113.0 | 114,6 | 115.9 | 116,8 | 116,2 | 119.3 | 119.5 | 112
114 | | 116
118
120 | | 74.7
76.0
77.3 | 81,2
82,6
84,5 | 86,3
87,8
89,3 | 91,9 | 95,2 | 97,9 | 102,0 | 105,9 | 107.8 | 109,4 | 110.1 | 111:2 | 112.7 | 114,5 | 115,9 | 117.0 | 118.7 | 120.6 | 121.0 | 120.4
122.5
124.5 | 123,5 | 123,9 | 116
118
120 | | 122 | 69,3
70,5 | 78,5
79,8 | 85,4
86,8 | 90,8
92,3 | 96,5 | 100.0 | 162,9 | 167,2 | 111.4 | 113.4 | 115.1 | 115.8 | 117.0 | 118,5 | 120,5 | 121,9 | 123,1 | 124,9 | 126,2 | 127,2 | 126,6 | 129,9 | 130,5 | 122 | | 126
128
130 | 71.6
72.7
73.9 | 81,1
82,4
83,7 | | 95,2 | 99,7 | 103,3 | 106,2 | 110,6 | 115,1 | 117,2 | 118,9 | 119,6 | 126,9 | 122,4 | 124,4 | 125,9 | 127.1 | 129,5 | 136.3 | 131.4 | 130,8
132,9
135,0 | 134.1 | 134,9 | 126
128
130 | | 132
134 | 75,0
76,1 | 85,6
86,3 | 92.4
93.8 | | | | | | | | | | | | | | | | | | 137.1 | | | 132
134 | | 136
138
140 | 77:3
78:4
79:5 | 87,6
88,8
90,1 | 95,2 | 101.2
102.7 | 105.9 | 109.7 | 112,9 | 117,5
119,3 | 122,4 | 124,6 | 126,5
128,3 | 127,2 | 128,6
130,5 | 130,3 | 132,4 | 134,0 | 135,2
137,3 | 137,2 | 138,6 | 139,7 | 141.3
143.4
145.5 | 142,5 | 143.7
145.9 | 136
138
140 | | 142 | 8g,7
81,8 | 91,4
92,7 | | | | | | | | | | | | | | | | | | | 147.6 | | | 142 | | 146
148
156 | 83,0
84,1
85,2 | 95,3 | 103.7 | 110,1 | 115.2 | 119,4 | 122,8 | 127,9 | 133,4 | 135,8 | 137,8 | 138,7 | 140.2 | 142.0 | 144,3 | 146,0 | 147,4 | 149,5 | 151.6 | 152,2 | 151,8
153,9
156,0 | 155,2 | 156,9 | 146
148
150 | | 152
154 | 86.4
87.5 | 97,9
99,1 | 106,5 | 113,1
114,6 | 118,3 | 122.6
124.2 | 126,1 | 131,4 | 137.0
138.8 | 139:6 | 141,6 | 142,5
144,4 | 144,0 | 145.9 | 148,3 | 150,1
152,1 | 151,5
153,5 | 153,6
155,6 | 155.1 | 156,3
158,4 | 158,1 | 159,4 | 161,3 | 152
154 | | 156
158
160 | 89,8 | 101,7 | 116:7 | 117,6 | 123,0 | 127,4 | 131,1 | 136,6 | 142,4 | 145,2 | 147.3 | 148,2 | 149.8 | 151.8 | 154,3 | 156,1 | 157.6 | 159.7 | 161,3 | 162,6 | 162,3
164,4
166,5 | 165,8 | 167,9 | 156
158
160 | | 162
164 | 92,0 | 104,3 | 113,5 | 120,5 | 126,1
127.7 | 136,7 | 134,4 | 145.5 | 146.0 | 148.9 | 151:1 | 152,0 | 153,7 | 155.7 | 158,2 | 165,1 | 161,6 | 163,9 | 165:5 | 166,8 | 168,7 | 175.5 | 172.4 | 162
164 | | 166
168
175 | 95.5 | 108,9 | 116:3 | 123.5 | 129,2 | 133,9 | 137.7 | 143,5 | 149,6 | 152.6 | 154,9 | 155,9 | 157,5
159,5 | 159.6 | 162,2 | 1,64,2 | 165,7 | 168.0 | 169,6 | 175.9 | 172.9
175.6
177.1 | 174,3 | 1 ⁷ 6.8 | 166
168
170 | | 172
174 | 97.7 | 110,7 | 126.5 | 128.5 | 133,9 | 138,7 | 142,7 | 148,7 | 155.6 | 158,2 | 160,6 | Ĩ61,6 | 163,3 | 165.5 | 168,2 | 176.2 | 171.8 | 174.1 | 175.9 | 177,2 | 179.2 | 180,6 | £83,4 | 172 | | 176
178
180 | 100.0 | 113,3 | 123,3
124,7 | 135,9
132,4 | 137,6 | 142,6 | 146.0 | 152.1
153.8 | 158.6
160.4 | 161.9 | 164,4 | 165,4
167,3 | 167,2 | 169:4 | 172.2 | 174,2
176,3 | 175.8
177.9 | 178.3
185.3 | 180.0 | 181,4 | 183,4 | 184,8 | 187.8
190.0 | 176
178 | | 182 | 103,4 | 117,2 | 127.5 | 135,4 | 141.7 | 146,8 | 151:0 | 157,3 | 164.0 | 167,4 | 176.5 | <u>1</u> 71.1 | 173.0 | 1,75,3 | 178,2 | 1,86,3 | 181,9 | 184,4 | 186,2 | 187,6 | 187,6 | 191,2 | 194,4 | 180 | | 184
186
188 | 105.7
106.8 | 119,7
121,0 | 130.3 | 138,4
139,9 | 144.8 | 150,0
151,6 | 154,3
156,6 | 165.8 | 167,6 | 171.0 | 173,8
175,7 | 174.9
176.8 | 176,9
178,8 | 179:2
181:2 | 182.1 | 184,3
186,3 | 186.0
188.0 | 188.5 | 190,4 | 191,8 | 191.8
193.9
196.6 | 195,4
197,6 | 198.9
201.1 | 184
186
188 | | 198
192 | 109:1 | 123,6 | 134,5 | Ĩ42,8 | 149.5 | 154,9 | 159.3 | 165,9 | 173.0 | 176.6 | 179,5 | Ĩ80,6 | 182,6 | 185.1 | 188,1 | 196,4 | 192.1 | 194,7 | 196.6 | 198,1 | 198,1 | 201.8 | 205,5 | 196
192 | | 194
196
198 | 110.2
111.4 | 124,9 | 135.9
137.3 | 144.3
145.8 | 151,6 | 156,5 | 161,6 | 167.7 | 174.8 | 178.4 | 181,3
183,2 | 182,5 | 184,6 | 187.0 | 190.1 | 192,4 | 194.2 | 196.8 | 198.7 | 200,2 | 202.3
204.4
206.6 | 263,9 | 207.7 | 194
196
198 | | 200 | 113,6 | 200 | Table | L K | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 36 | 35 | 4 5 | 56 | 60 | 76 | 96 | Ĩ16 | k=n | n | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|----------------------------------|------------------------------|---------------------------------| | 200 | 113,6 | 128,8 | 140,1 | 148.8 | 155,7 | 161,3 |
166,0 | 172,9 | 186,2 | 183,9 | 186,9 | ī88,3 | 190,4 | 192.9 | 196,1 | 198,4 | 200,3 | 263,6 | 204.9 | 206.4 | 208,7 | 210:3 | 214,3 | 266 | | 202
204
206
208
210 | 115.9
117.0
118.2 | 131,3
132,6
133,9 | 142,9
144,3
145,7 | 151,8
153,3
154,8 | 157,3
158,8
160,4
161,9
163,5 | 164,6
166,2
167,8 | 169,3
170,9
172,6 | 176,3
178,6
179,8 | 183,8
185,6
187,4 | 187.6
189.4
191.3 | 190.7
192.6
194.4 | 192,6
193,9 | 194,2
196,1 | 196.8
198.8
200.7 | 200,1 | 202,5 | 204,3 | 207,1 | 269,1
211,2
213,2 | 210,6
212,7
214.8 | 212.9 | 214,5 | 218.7 | 202
204
206
208
210 | | 212
214
216
218
220 | 120,5
121,6
122,7
123,9 | 136,5
137,8
139,1
140,3 | 148.5
149.9
151.3
152.7 | 157,7
159,2
160,7 | 165,1
166,6
168,2
169,7
171,3 | 171.0
172.6
174.2
175.8 | 175,9
177,6
179,2
180,9 | 183,2
185,0
186,7
188,4 | 191,1
192,9
194,7 | 195,0
196,8
198,6
200,5 | 198,2
200,0
201,9
203,8 | 199,6
201,4
203,3
205,2 | 201,9
203,9
205,8
207,7 | 264.7
206.6
208.6
210.5 | 208,0
210,0
212,0
214.6 | 210,5
212,6
214,6
216.6 | 212,5
214,5
216,5
218,6 | 215,3
217,4
219,5 | 217,4
219,5
221,5 | 219,0
221,1
223,2 | 221,3
223,4
225,5 | 223.0
225.1
227.2
229.4 | 227,6
229,8
232,0 | 212
214
216
218
220 | | 222
224
226
228
230 | 127,3
128,4
129,5 | 144,2
145,5
146,8 | 156,9
158,3
159,7 | 166,7
168,1 | 172,9
174,4
176,0
177,5
179,1 | 186,7
182,3
183,9 | 185,9
187,5
189,2 | 193,6
195,3
197,1 | 201,9
203,7
205,5 | 206.0
207.8
209.7 | 209,4 | 210.9
212.7
214.6 | 213,5
215,4
217,3 | 216.4
218.4
220.3 | 220,0 | 222.7 | 224.7
226.7
228.8 | 227,7
229,8
231.8 | 229,9 | 231,5
233,6
235.7 | 234,0 | 235,7 | 240.9
243.1 | 222
224
226
228
236 | | 232
234
236
238
240 | 133,0
134,1
135,2 | 150,7
151,9
153,2 | 163,9
165,3
166,7 | 174,1
175,6
177,1 | 180,6
182,2
183,8
185,3
186,9 | 188.8
190.4
192.0 | 194,2
195,8
197,5 | 262,2
264,6
265,7 | 210,9
212,7
214,5 | 215:2
217:5
218:9 | 218,7 | 220:3
222:1
224:0 | 223,0
224,9
226,8 | 226,2
228,1
230,1 | 230,5
232,5
234,6 | 232.7
234.8
236.8 | 234,9
236,9
239,0 | 238,6
246,1
242,1 | 240:3
242:3
244:4 | 242.0
244.1
246.2 | 244,5
246,6
248,7 | 246,3
248,5
256,6 | 251.9
254.1
256.3 | 232
234
236
238
240 | | 242
244
246
248
250
1 | 138,6
139,8
140,9
142,0 | 157,1
158,4
159,7
161,0 | 170,9
172,3
173,7
175,1 | 181,5
183,6
184,5 | 188,4
5 190,0
5 191,5
5 193,1
6 194,7
7 0,779 | 196,8
198,4
200,0 | 202,5
204,1
205,8
207,4 | 210.9
212.6
214.3
216.1 | 219,9
221,7
223,5
225,3 | 224,4
226,2
228,1 | 228,1
229,9
231,8
233,7 | 229.7
231.6
233.4
235.3 | 232,5
234,4
236,3
238,2 | 236.0
237.9
239.9
241.8 | 239,9
241,9
243,9
245.9 | 242,8 244,9 246,9 248,9 | 245.1
247.1
249.2 | 248.3
250.4
252.5
254.5 | 250:7
252:8
254:8 | 252,5
254,6
256,7 | 255:1
257:2
259:3 | 257,0
259,1
261,2 | 263,6
265,2
267,4 | 242
244
246
248
250 | | 300
1 | 170,5
0,568 | 193,1
0,644 | 210,1 | 223,2 | 233,6 | 242,0 | 248,9
0,830 | 259,3
0,864 | 276,4 | 275,9
0,920 | 280,4 | 282,4 | 285,9
0,953 | 290.2 | 295,8
0,986 | 299,4 | 352,2
1,025 | 306,2
1,034 | 369,6 | 311,2 | 314,3 | 316,5 | 325.5 | 366
1 | | 350
1 | 198,9 | 225,3 | 245.1 | 260, | | 282,3 | 290,4 | 302,5 | 315,4 | 321,9 | 327,2 | 329,5 | 333.5 | 338,6 | 345.0 | 349.9 | 353.2 | 357.9 | 361.2 | 363.7 | 367.2 | 369.7 | 384.4 | 396
1 | | 400 | 227,3 | 257,5 | 286,1 | 297.0 | 311,4 | 322.7 | 331.9 | 345,7 | 366,5 | 367,8 | 373,9 | 376,5 | 381,2 | 386,9 | 394.3 | 399,9 | 404.2 | 469.7 | 413.4 | 416.2 | 426.2 | 423.6 | 435.8 | 400 | | 500
1 | 284,1 | 321,9 | 350,2 | 372,0 | 389,3
0,779 | 403.3 | 414,9 | 432,1 | 450,6 | 459.8 | 467,4 | 476.7 | 476,5 | 483,7 | 492.9 | 499,9 | 565.3 | 513.2 | 518.6 | 521.5 | 526.4 | 529.7 | 846.7 | 500 | | 600 | 340,9 | 386,3 | 420,2 | 446. | 4 467,2
4 0,779 | 484,6 | 497,9 | 518,6 | 540.7 | 551.8 | 566,8 | 564,8 | 571.8 | 580.4 | 591.5 | 599,8 | 606.3 | 615.9 | 622.6 | 624.8 | 632.6 | 636.6 | 457.7 | 655 | | 700
1 | 397,7 | 450,7 | 490,2 | 520, | | 564.6 | 580,9 | 605,0 | 630,8 | 643,7 | 654,3 | 658,9 | 667,1 | 677.2 | 690,1 | 699,8 | 767.4 | 718.5 | 726.3 | 732.2 | 739.6 | 743.6 | 768.7 | 700 | | 800 | 454,6 | 515,6 | 560,3 | 5 595, | | 645,3 | 663,8 | 691.4 | 721,0 | 735,7 | 747,8 | 753,0 | 762,3 | 773.9 | 788.7 | 799.8 | 868.4 | 821.1 | 835,1 | 836.8 | 845.4 | 856.4 | 879.7 | 866 | | 900 | 511. | 579,4 | 630,3 | 3 669, | 6 700,7 | 726,0 | 746,8 | 777.8 | 811,1 | 827.7 | 841,2 | 847.2 | 857,6 | 870,6 | 887.3 | 899,7 | 989.5 | 923.8 | 933.9 | 941.4 | 951.9 | 957.1 | 990.8
1,111 | 900 | | 1100 | 625.0 | 768,2 | 770,4 | 4 818, | 4 856,5 | 887,3 | 912,8 | 955,7 | 991.3 | 1012 | 1028 | 1635 | 1 1 1 4 8 | 1064 | 1084 | 1100 | 1112 | 1129 | 1144 | 1151 | 1163 | 1 1 7 2 | 2 1/111
2 1213
3 1/111 | 1
1100
1 | B = 20.0 % Table 1 -34 A = offered random traffic B = probability of loss k = accessibility n = number of trunks B = 20.0 % A in Erl | | , | - Distriction (1997) | | | | 1 | | | | | Name of the last o | - marinonikasi | | | | 7 | ************ | and the second | | | | | | 1 | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------|-----|----|----|-----|--------------------------------------|----------------------------| | n k | 4 | 5 | 6 | 7 | 8 | 9 | 18 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 35 | 35 | 40 | 50 | 6 ტ | 76 | 95 | 115 | k=n | n | | 1
2
3
4
5 | 2.9
3.7 | 4,8 | 0,25
1,0
1,9
2,9
4,0 | 1
2
3
4
5 | | 6
7
8
9
10 | 4,5
5,3
6,0
6,8
7,6 | 4,8
5,7
6,5
7,4
8,2 | 5,1
6,0
6,9
7,8
8,7 | 5,2
7,1
8,1
9,0 | 7,4
8,3
9,3 | 8,5
9,5 | 9,7 | | | | | | | | | | | | | | | | 5,1
6,2
7,4
8,5
9,7 | 6
7
8
9
10 | | 11
12
13
14
15 | 8,4
9,2
10,0
10,8
11,6 | 9,1
9,9
15,6
11,6
12,5 | 9,6
10,5
11,4
12,3
13,2 | 9,9
10,9
11,8
12,7
13,7 | 10,2
11,2
12,1
13,1
14,1 | 16,5
11,4
12,4
13,4
14,4 | 12,7 | | 15,6 | | | | | | | | | | | | | | 10,9
12,0
13,2
14,4
15,6 | 11
12
13
14
15 | | 16
17
18
19
20 | 13,2
14,0
14,8 | 13,4
14,2
15,1
16,0
16,8 | 15,0 | 14,6
15,5
16,5
17,4
18,4 | 16,0
17,0
17,9 | 15,4
16,4
17,3
18,3
19,3 | 15,7
16,7
17,7
18,7
19,7 | | 16,7
17,7
18,8
19,9
20,9 | 18,0
19,1
20,2
21,2 | 20,4 | 21,6 | | | | | | | | | | | 16,8
18,0
19,2
20,4
21,6 | 16
17
18
19
20 | | 21
22
23
24
25 | 17,1
17,9
18,6 |
17,7
18,6
19,5
20,3
21,2 | 18.6
19.5
20.5
21.4
22.3 | 19,3
25,3
21,2
22,2
23,1 | | 25,3
21,3
22,3
23,3
24,3 | 20,7
21,7
22,7
23,7
24,8 | 21,3
22,3
23,4
24,4
25,5 | 22,0
23,0
24,1
25,2
26,2 | 22,3
23,4
24,5
25,6
26,6 | 22,6
23,7
24,8
25,9
27,0 | 22,7
23,8
24,9
26,0
27,1 | 24,1
25,2
26,3
27,4 | 27,7 | | | | | | | | | 22,8
24,1
25,3
26,5
27,7 | 21
22
23
24
25 | | 26
27
28
29
30 | 21,0
21,7
22,5 | 22,0
22,9
23,7
24,6
25,4 | 24,1 | 24,1
25,0
26,0
26,9
27,9 | 24,7
25,7
26,7
27,7
28,7 | 25,3
26,3
27,3
28,3
29,3 | 25,8
26,8
27,8
28,8
29,8 | 27,5
28,6 | | 27,7
28,8
29,9
31,0
32,1 | 28,1
29,2
30,3
31,4
32,5 | 28,2
29,3
30,4
31,5
32,6 | 28,5
29,6
30,7
31,8
32,9 | 28,8
30,0
31,1
32,2
33,3 | 33,8 | | | | | | | | 28,9
30,2
31,4
32,6
33,8 | 26
27
28
29
30 | | 31
32
33
34
35 | 24,1
24,8
25,6
26,4
27,2 | 26,3
27,1
28,0
20,8
29,7 | 27,8
28,7
29,6
30,6
31,5 | 28,8
29,8
30,7
31,7
32,6 | 29,6
35,6
31,6
32,6
33,6 | 30,3
31,3
32,3
33,3
34,3 | | 31,7
32,8
33,8
34,9
35,9 | 33,7
34,8
35,9 | 33,2
34,2
35,3
36,4
37,5 | 33,6
34,7
35,8
36,9
38,0 | 33,7
34,8
35,9
37,0
38,2 | 34,1
35,2
36,3
37,4
38,5 | 34,5
35,6
36,7
37,8
38,9 | 35,0
36,1
37,3
38,4
39,5 | 40,0 | | | | | | | 35,1
36,3
37,5
38,8
40,0 | 31
32
33
34
35 | | 36
37
38
39
40 | 28.7
29.5 | 31,4 | 32,4
33,3
34,2
35,1
36,0 | 33,6
34,6
35,5
36,5
37,4 | 34,5
35,5
36,5
37,5
38,5 | 35,3
36,3
37,3
38,3
39,3 | | 38,0
39,1
40,1 | 39,1 | 38,6
39,7
40,8
41,9
43,0 | 39,1
40,2
41,3
42,4
43,5 | 40,4
41,5 | 39,6
40,7
41,8
43,0
44,1 | 40,1
41,2
42,3
43,5
44,6 | 40,7
41,8
43,0
44,1
45,2 | 41,1
42,3
43,4
44,6
45,7 | 46,1 | | | | | | 41,2
42,4
43,7
44,9
46,1 | 36
37
38
39
40 | | 41
42
43
44
45 | 32,6
33,4
34,2 | 34,8
35,6
36,5
37,3
38,2 | 36,9
37.8
38.7
39.6
40.5 | 39,3
45,3 | 39,5
44,4
41,4
42,4
43,4 | 45,3
41,3
42,3
43,4
44,4 | 41,1
42,1
43,1
44,1
45,2 | 43,2
44,3
45,4 | 43,4
44,5
45,6
46,7
47,7 | 44,1
45,1
46,2
47,3
48,4 | 44,6
45,7
46,8
47,9
49,0 | 44,8
45,9
47,0
48,1
49,2 | 45,2
46,3
47,4
48,6
49,7 | 45,7
46,8
48,0
49,1
50,2 | 46,4
47,5
48,7
49,8
50,9 | 46,9
48,0
49,2
50,4
51,5 | 47,3
48,5
49,6
50,8
52,0 | | | | | | 47,4
48,6
49,9
51,1
52,3 | 41
42
43
44
45 | | 46
47
48
49
50 | 36,5
37,3
38,0 | 39,8
40,7
41,5 | 42,3
43,2
44,1 | | 45,4
46,4
47,3 | | 46,2
47,2
48,2
49,3
50,3 | 48,5
49,6
50,6 | 52,1 | 49,5
50,6
51,7
52,8
53,9 | 50,1
51,2
52,3
53,4
54,5 | | | 54.7 | | 53,8
55,0
54,1 | 53,1
54,3
55,4
56,6
57,8 | 58,5 | | | | | 53,6
54,8
56,0
57,3
58,5 | 46
47
48
49
56 | B = 20.0 % A = offered random traffic B = probability of loss k = accessibility n = number of trunks A in Erl B=20.0 % | L K | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 60 | 70 | 96 | ₁₁₀ k=n | n | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|---|-------|---|-----------------------------| | 58 | 38,8 | 42,4 | 45,6 | 47,0 | 48.3 | 49,4 | 50.3 | 51.7 | 53,1 | 53,9 | 54,5 | 54.8 | 55,3 | 55,9 | 56,7 | 57,3 | 57,8 | 58,5 | | *************************************** | | 58,5 | 56 | | 51
52
53
54
55 | 39,6
40,4
41,1
41,9
42,7 | 43,2
44,1
44,9
45,8
46,6 | 45.9
46.8
47.7
48.6
49.5 | 47,9
48,9
49,8
50,7
51,7 | 49,3
50,3
51,3
52,3
53,3 | 50,4
51,4
52,4
53,4
54,4 | 51,3
52,3
53,4
54,4
55,4 | 52,7
53,8
54,8
55,9
56,9 | 54,2
55,3
56,4
57,5
58,6 | 55,0
56,1
57,2
58,3
59,4 | 55,6
56,7
57,8
58,9
60,0 | 55,9
57,0
58,1
59,2
66,3 | 56,4
57,5
58,6
59,7
66,9 | 57,0
58,1
59,3
60,4
61,5 | 57,8
59,0
60,1
61,2
62,4 | 60,7
61,9 | 58,9
60,1
61,3
62,4
63,6 | 59,7
60,9
62,0
63,2
64,4 | | | | 59,7
61,0
62,2
63,5
64,7 | 51
52
53
54
55 | | 56
57
58
59
60 | | 47,5
48,3
49,2
50,0
50,9 | 50,4
51,3
52,2
53,1
54,0 | 52,6
53,6
54,5
55,4
56,4 | 54,2
55,2
56,2
57,2
58,2 | 55,4
56,4
57,5
58,5
59,5 | 56,4
57,5
58,5
59,5
60,5 | 58,0
59,0
65,1
61,2
62,2 | 59,6
60,7
61,8
62,9
64,0 | 60,5
61,6
62,7
63,8
64,9 | 61,2
62,3
63,4
64,5
65,6 | 61,5
62,6
63,7
64,8
65,9 | 62,5
63,1
64,2
65,4
66,5 | 62,7
63,8
64,9
66,1
67,2 | 63,5
64,7
65,8
67,0
68,1 | 64,2
65,4
66,5
67,7
68,8 | 68,2 | 65,6
66,7
67,9
69,1
70,3 | 70,9 | | | 65,9
67,2
68,4
69,7
70,9 | 56
57
58
59
60 | | 61
62
63
64
65 | 47,4
48,1
48,9
49,7
50,5 | 51,7
52,6
53,4
54,3
55,1 | 54,9
55,8
56,7
57,6
58,5 | 58,3
59,2
60,1 | 59,2
60,2
61,1
62,1
63,1 | 60,5
61,5
62,5
63,5
64,5 | 61,6
62,6
63,6
64,6
65,7 | 63,3
64,3
65,4
66,4
67,5 | 68,3 | 66,0
67,1
68,2
69,3
70,4 | | 67,0
68,1
69,3
70,4
71,5 | 67,6
68,7
69,8
71,0
72,1 | 68,3
69,5
70,6
71,7
72,9 | 69,3
70,4
71,6
72,7
73,9 | 70,0
71,2
72,3
73,5
74,6 | 71.7
72.9
74.1 | 71.5
72.6
73.8
75.0
76.2 | 72,1
73,3
74,5
75,6
76,8 | | | 72,1
73,4
74,6
75,9
77,1 | 61
62
63
64
65 | | 66
67
68
69
70 | | 58,5 | 59,4
60:3
61:2
62:1
63:0 | | 64,1
65,0
66,0
67,0
67,9 | 65,5
66,5
67,5
68,6
69,6 | 66,7
67,7
68,8
69,8
70,8 | 68,5
69,6
75,7
71,7
72,8 | | 71,5
72,6
73,7
74,8
75,9 | 73,4
74,5
75,6 | 72,6
73,7
74,8
75,9
77,1 | 73,2
74,3
75,5
76,6
77,7 | 74,0
75,1
76,3
77,4
78,5 | 75,0
76,2
77,3
78,5
79,6 | 75,8
76,9
78,1
79,3
80,4 | 77.6
78.7
79.9 | 77,3
78,5
79,7
80,9
82,1 | 78,0
79,2
80,4
81,6
82,8 | 83,3 | | 78,3
79,6
80,8
82,1
83,3 | 66
67
68
69
70 | | 71
72
73
74
75 | 55,1
55,9
56,7
57,5
58,2 | 62,7 | 63,9
64,8
65,7
66,6
67,5 | 66.7
67.7
68.6
69.5
70.5 | 68,9
69,9
70,9
71,8
72,8 | 71,6
72,6 | 71,8
72,9
73,9
74,9
76,0 | 73,8
74,9
75,9
77,0
78,0 | 75,9
77,0
78,1
79,2
80,3 | 77,0
78,1
79,2
80,3
81,4 | | 78,2
79,3
80,4
81,5
82,6 | | 80,8
81,9 | 80,7
81,9
83,6
84,2
85,3 | 81,6
82,7
83,9
85,1
86,2 | 83,4
84,6
85,7 | 83,2
84,4
85,6
86,8
87,9 | 84,0
85:1
86,3
87:5
88,7 | 84,5
85,7
86,9
88,1
89,3 | | 84,6
85,8
87,0
88,3
89,5 | 71
72
73
74
75 | | 76
77
78
79
86 | 59.0
59.8
60.6
61.3
62.1 | 65,3
66,1
67,0 | 68,4
69,3
70,2
71,1
72,0 | 71,4
72,3
73,3
74,2
75,2 | 73,8
74,7
75,7
76,7
77,7 | 75,6
76,6
77,6
78,6
79,6 | 77,0
78,0
79,0
80,1
81,1 | 79,1
80,2
81,2
82,3
83,3 | 81,3
82,4
83,5
84,6
85,7 | 82,5
83,6
84,7
85,8
86,9 | | 83,8
84,9
86,0
87,1
88,2 | | 87.6 | 86,5
87,6
88,8
89,9
91,1 | 87,4
88,5
89,7
90,9
92,0 | 89,2
90,4
91,6 | 90,3
91,5 | | 90.5
91.7
92.9
94.1
95.3 | | 90,8
92,0
93,3
94,5
95,7 | 76
77
78
79
80 | | 81
82
83
84
85 | 62,9
63,7
64,4
65,2
66,0 | 68,7
69,5
70,4
71,2
72,1 | 72,9
73,8
74,7
75,6
76,5 | 76,1
77,0
78,0
78,9
79,9 | 78,6
79,6
80,6
81,5
82,5 | 85,7
81,7
82,6
83,6
84,6 | | 84,4
85,4
86,5
87,6
88,6 | 86,8
87,9
89,0
90,0 | 88,0
89,1
90,2
91,3
92,4 | 90,0
91,2
92,3 | 89,3
90,5
91,6
92,7
93,8 | | | 92,2
93,4
94,5
95,7
96,8 | 93,2
94,3
95,5
96,7
97,8 | 95,1
96,2
97,4 | 97,4
98,6 | | 98,8
100.0 | | 97,0
98,2
99,5
100,7
102,0 | 81
82
83
84
85 | | 86
87
88
89
90 | 66,8
67,5
68,3
69,1
69,9 | 74,6 | 77,4
78,3
79,2
85,1
81,0 | 81,7
82,7
83,6 | 83,5
84,5
85,4
86,4
87,4 | 86,6
87,6 | 88,3
89,3
90,3 |
89,7
90,7
91,8
92,8
93,9 | | 94,6
95,7
96,8 | 95,6
96,7
97,8 | 96,1
97,2
98,3 | 96,9
98,6
99,1 | 100.1 | 99,1
100,3 | 100,1 | 100,9
102,1
103.3 | 102,1 | 101,8
103,0
104,2
105,3
106,5 | 103,6 | | 103,2
104,5
105,7
106,9
108,2 | 86
87
88
89
90 | | 91
923
94
95 | 70:7
71:4
72:2
73:0
73:8 | 78,8
79,7 | 81,9
82,8
83,7
84,6
85,5 | 85,5
86,4
87,4
88,3
89,3 | 88,3
89,3
90,3
91,2
92,2 | 91.6
92.6
93.6 | 92,4
93,4
94,4
95,5
96,5 | 96.0
97.1
98.1 | 98,7
99,8
100,9 | 100,1
101,2
102,3 | 100,1
101,2
102,3
103,4
104,5 | 101,7
102,8
103,9 | 102,5
103,6
104,8 | 103,5
104,7
105,8 | 104,9
106,1 | 105,9 | 106,8 | 108,0 | 108.9 | 109.6 | 110.6 | 109,4
110,7
111,9
113,2
114,4 | 91
92
93
94
95 | | 96
97
98
99
100 | 76,1
76,9 | 81:4
82:2
83:1
83:9
84:8 | 87,3
88,2
89,1 | 91.1
92.1
93.6 | 93,2
94,2
95,1
96,1
97,1 | 97,6 | 99,6 | 101,3 | 104,2 | 100,6 | 11 M9 . M | 107,3 | 108,1 | 109,2 | 110,7 | 111,8 | 112.6 | 113.9 | 114,9 | 115,6 | 116.6 | 115,7
116,9
118,2
119,4
120,6 | 96
97
98
99
100 | Table 1 -35 A = offered random traffic B = probability of loss k = accessibility n = number of trunks | n k | 4 | 5 | 6 |) | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 1,9 | 26 | 22 | 25 | 3 36 | 35 | 46 | 56 | 65 | 76 | 96 | 116 | k=n | | |------------|--------|-------|-------|------|----------------|---------|------|-------|-------|-------|---------|-------|-------|--------|---------|-------|--------|-------|-------|-------|-------|--------------|-------|--------------------|--| | 100 | 77,6 | 84,8 | 96,6 | 94, | 6 97 | .1 | 99,6 | 161,6 | 104.5 | 107.5 | 108,9 | 110,1 | 110.6 | 111.5 | 112. | 114.1 | 115,2 | 116,1 | 117.5 | 118,4 | 119,2 | 125,2 | | 125,6 | | | 162 | 79,2 | 86,5 | 91,8 | 95. | 8 99 | , 0 i | 01,6 | 103,7 | 106,6 | 109.6 | 111:1 | 112,3 | 112,9 | 113,8 | 114.9 | 116.4 | 117,6 | 118,5 | 119,8 | 126,8 | 121,6 | 122,7 | | 123.1 | | | 164
166 | 86,7 | 88,2 | 93,6 | 97, | 7 161 | 0 10 | 03,6 | 105.7 | 108,7 | 111.8 | 113.3 | 114,6 | 115.1 | 116.0 | 117.2 | 118,7 | 119,9 | 126.8 | 122,2 | 125.2 | 124.6 | 125,1 | | 125,6 | September | | 158 | 83.9 | 91,6 | 97.2 | 161 | 5 104 | ,8 1 | 07,5 | 109,8 | 112.9 | 116,2 | 117.7 | 119.0 | 117,3 | 120,6 | 121.8 | 123,3 | 124,5 | 125,5 | 126,9 | 128,6 | 128.7 | 129.9 | | 128,1
136,6 | 1 | | 110 | 85,4 | 93,3 | 99,6 | 163, | 4 106 | 8 10 | 09,5 | 111,8 | 115,1 | 118.3 | 119.9 | 121.2 | 121.8 | 122,8 | 124.1 | 125,7 | 126.9 | 127.8 | 129,3 | 130,3 | 131.1 | 132,3 | 133.1 | 133,1 | | | 112 | 87.0 | 95,5 | 100.8 | 105, | 2 108 | .7 11 | 11,5 | 113,8 | 117,2 | 126,5 | 122.2 | 123,5 | 124,1 | 125,1 | 126.3 | 128,6 | 129,2 | 130.2 | 131.6 | 132.7 | 133,5 | 134.7 | 135,5 | 135,6 | | | 114 | 88.5 | 96,7 | 102,6 | 107. | 1 116 | .7 1 | 13.5 | 115,9 | 119.3 | 122.7 | 124.4 | 125.7 | 126.3 | 127.3 | 128,6 | 130,3 | 131,5 | 132.5 | 134.6 | 135,1 | 135,9 | 137.1 | 138.0 | 138,1 | 2000 | | 116
118 | 91.6 | 186.6 | 104:4 | 109. | 0 112 | 5 4 1 | 15,5 | 117,9 | 121.4 | 124.9 | 126 / 6 | 127,9 | 128,5 | 129,6 | 130,9 | 132,6 | 133,9 | 134,9 | 136,4 | 137.5 | 138:3 | 139,5 | 145,4 | 140.6 | The same | | 120 | 93.2 | 101,7 | 108.0 | 112. | 8 116 | ,5 1 | 19.5 | 122.0 | 125,6 | 129.2 | 131.0 | 132,4 | 133.5 | 134.1 | 135,5 | 137.2 | 138,5 | 139.5 | 141.1 | 142.2 | 143,1 | 144,4 | 145,2 | 145.6 | SOCIETIES | | 122 | 94,7 | 103,4 | 109.8 | 114, | 6 118 | , 4 12 | 21,5 | 124,6 | 127.7 | 131,4 | 133,2 | 134,6 | 135.3 | 136,4 | 137,7 | 139,5 | 140,8 | 141,9 | 143,5 | 144,6 | 145,5 | 146,8 | 147.6 | 148.1 | 1 | | 124 | 96.3 | 105.1 | 111:6 | 116, | 5 126 | ,4 12 | 23,5 | 126,5 | 129.8 | 133,6 | 135,4 | 136,9 | 137,5 | 138,6 | 140 . 0 | 141.8 | 143,2 | 144.2 | 145.8 | 147.0 | 147.9 | 149.2 | 150.1 | 150,6 | | | 126
128 | 97,8 | 106,8 | 113.4 | 118, | 4 122 | ,3 12 | 25,5 | 128,1 | 131,9 | 135.8 | 137.6 | 139,1 | 139.8 | 140,9 | 142.3 | 144.1 | 145,5 | 146,6 | 148,2 | 149.4 | 150,3 | 151:6 | 152.5 | 153.6 | | | 130 | 100.9 | 110,2 | 117.0 | 122, | 1 126 | .2 12 | 29,4 | 132,1 | 136,1 | 140.1 | 142,6 | 143,6 | 144,2 | 145,4 | 146,9 | 148,7 | 156.2 | 151.3 | 152,9 | 154,2 | 155.1 | 156,4 | 157.4 | 155.5
158.5 | denten | | 132 | 102.5 | 111,9 | 118.8 | Ĩ24, | đ 128 | .1 13 | 31,4 | 134,2 | 138.2 | 142.3 | 144.2 | 145,8 | 146.5 | 147.7 | 149,2 | 151.4 | 152.5 | 153.6 | 155.3 | 156,5 | 157.5 | 158.8 | 159.8 | 166.5 | demode | | 134 | 104.0 | 113,6 | 120:6 | 125, | 9 136 | ,1 13 | 33,4 | 136,2 | 146,3 | 144,5 | 146,4 | 148,6 | 148,7 | 149,9 | 151.4 | 153,4 | 154,8 | 156,0 | 157,7 | 158,9 | 159,9 | 161,2 | 162.2 | 163.6 | No. | | 136
138 | 105.6 | 115,3 | 122.4 | 127. | 8 132 | .0 13 | 35,4 | 138,2 | 142,4 | 146.6 | 148.7 | 150,3 | 151.6 | 152.2 | 153.7 | 155.7 | 157,1 | 158,3 | 166,6 | 161.3 | 162.3 | 163,7 | 164.6 | 165,5
168,5 | | | 146 | 108.7 | 118,7 | 126,0 | 131, | 7 139
5 135 | 9 13 | 39,4 | 142,3 | 146.6 | 151.0 | 153,1 | 154.7 | 155,5 | 156.7 | 158,3 | 100.0 | 161.8 | 163,0 | 164,8 | 166,1 | 167.1 | 168,5 | 169,5 | 170.5 | No. | | 142 | | | | | | | | | | | | 1 | | | | | + | | | 168,5 | | | | | - | | 144 | 111,8 | 122:1 | 129.6 | 135, | 3 139 | ,8 14 | 43,4 | 146,4 | 156.7 | 155.4 | 157,5 | 159,2 | 160.0 | 161,3 | 162,9 | 164,9 | 166,5 | 167.7 | 169,5 | 170.8 | 171,9 | 173,3 | 174,3 | 175,5 | | | 146
148 | 113,4 | 123,8 | 131 4 | 137, | 2 141 | 7 14 | 45,4 | 148,4 | 152.8 | 157.5 | 159.7 | 161,4 | 162.2 | 163,5 | 165.2 | 167.2 | 168,8 | 170.0 | 171.9 | 173.2 | 174.3 | 175.7 | 176.8 | 1 ⁷⁸ ,5 | est (Control | | 150 | 183,5 | Table 1 | | 152 | 118,0 | 128,9 | 136,8 | Ĩ42, | 8 147 | ,5 15 | 51.4 | 154,5 | 159.1 | 164.5 | 166.3 | 168.1 | 168.9 | 176.3 | 172.0 | 174.2 | 175.8 | 177.1 | 179.6 | 185,4 | 181.4 | 183.6 | 184.6 | 485.5 | STEEN STATE OF THE | | 154 | 119:0 | 130,6 | 138,6 | 144, | 7 149 | ,5 115 | 53,3 | 156,5 | 161,2 | 166,2 | 168,5 | 170.4 | 171.2 | 172.6 | 174.3 | 176.5 | 178,1 | 179.4 | 181,4 | 182.8 | 183,8 | 185.4 | 186.5 | 488.6 | - Andrews | | 156
158 | 121:1 | 132:3 | 140:4 | 146, | 6 151 | ,4 15 | 55,3 | 158,5 | 163,3 | 168.4 | 170:7 | 172,6 | 173.4 | 174.8 | 176:6 | 178,8 | 186,5 | 181,8 | 183.7 | 185,2 | 186,2 | 187.8 | 188,9 | 196.5 | planter | | 160 | 124.2 | 135,7 | 144.6 | 150, | 3 155 | , 3 15 | 59.3 | 162,6 | 167,5 | 172,7 | 175,2 | 177,1 | 177.9 | 179.4 | 181:2 | 183,4 | 185.1 | 186.5 | 188,5 | 189.9 | 191.0 | 190:2 | 191,3 | 193,5
195,5 | ONTEREST | | 162 | 125,8 | 137,4 | 145,8 | 152. | 2 157 | ,3 16 | 51.3 | 164,6 | 169.6 | 174.8 | 177.4 | 179.3 | 180.2 | 181,6 | 183.4 | 185.7 | 187.5 | 188.8 | 196.9 | 192:3 | 193.4 | 195.6 | 196.2 | 198.6 | + | | 164 | 127.3 | 139,0 | 147.6 | 154. | 1 159 | ,2 16 | 53,3 | 166.7 | 171.7 | 177.0 | 179,6 | 181,6 | 182:4 | 183,9 | 185.7 | 188,1 | 1,89,8 | 191:2 | 193.2 | 194,7 | 195,8 | 197.5 | 198,6 | 200,4 | - | | 166
168 | 128:9 | 140,7 | 149.4 | 156. | 0 161 | 1 16 | 55,3 | 168,7 | 173.8 | 179.2 | 181.8 | 183,8 | 184.7 | 186,2 | 188,5 | 190.4 | 192,1 | 193.5 | 195,6 | 197.1 | 198,2 | 199,9 | 201.0 | 202.9 | Name of Street | | 170 | 132.0 | 144,1 | 153.0 | 159, | 7 165 | ,0 16 | 59,3 | 172.8 | 178.0 | 183.5 | 186,2 | 188,3 | 189.1 | 190,7 | 192.6 | 195,5 | 196,8 | 198,2 | 200.3 | 199,5 | 200,0 | 202,3 | 203,9 | 205,4 | STATE OF THE PARTY | | 172 | 133,5 | 145.8 | 154.8 | í61. | 6 167 | .0 17 | 71.3 | 174.8 | 188.1 | 185.6 | 188.4 | 196.5 | 491.4 | 193.0 | 194.9 | 197.3 | 199.1 | 266.6 | 282.7 | 204:2 | 285.4 | 267.4 | 268.3 | 216.4 | STEEDING . | | 174 | 135,1 | 147,5 | 156,6 | 163, | 5 168 | ,9 17 | 73.5 | 176,8 | 182.1 | 187.8 | 190,6 | 192.7 | 193.6 | 195,2 | 197,2 | 199,6 | 261,5 | 202,9 | 265.1 | 206:6 | 207,8 | 269,5 | 218,7 | 212,9 | Maga | | 176
178 |
1,36,6 | 149.2 | 158.4 | 165, | 4 170 | ,8 17 | 75.3 | 178,9 | 184,2 | 189,9 | 192,8 | 195,0 | 195.9 | 1,97,5 | 199,5 | 201.9 | 203,8 | 205,3 | 207.5 | 269:6 | 210,2 | 212:5 | 213,2 | 215.4 | | | 186 | 139,8 | 152,6 | 162.0 | 169, | 1 174 | ,7 17 | 79,2 | 182,9 | 188,4 | 192:1 | 197,2 | 199,4 | 200,4 | 202,0 | 201.7 | 204.3 | 208,5 | 207.6 | 209.8 | 211,4 | 212,0 | 214.4 | 215,6 | 217,9 | CONCENSION | | 182 | 216,2 | | 1 | | | + | | 184 | 142,9 | 156,6 | 165.6 | 172. | 9 178 | ,6 18 | 33,2 | 187.0 | 192.6 | 198,6 | 201.5 | 203.9 | 204.9 | 206:5 | 208 . 6 | 211,2 | 213,2 | 214,7 | 216,9 | 218,6 | 219,8 | 221 . 6 | 222.9 | 225.4 | CONTRACTOR OF THE PERSON TH | | 186 | 144.4 | 157,7 | 167.4 | 174. | 8 186 | .5 18 | 35.2 | 189.0 | 194.7 | 266.7 | 263.7 | 266.1 | 267.1 | 258.8 | 210.9 | 213.5 | 215.5 | 217.6 | 219.3 | 221.6 | 222.2 | 224 A | 225.3 | 227.9 | ND COLORS | | 196 | 147.5 | 161.1 | 171.0 | 178, | 5 184 | 4 18 | 39,2 | 193,1 | 198,9 | 202.9 | 205:9 | 210,6 | 209,4 | 211,1 | 215.5 | 210.8 | 217,8 | 219.4 | 221,7 | 223.4 | 224,6 | 226,5 | 227,7 | 230,4
232,9 | STOCKED TO STOCK S | | 192 | | | | | | - 1 | | | | | | | | | | | | | | 228,1 | | | | | TOSTPITATION | | 194 | 150,6 | 164.5 | 174,6 | 182, | 3 188 | ,3 19 | 93,2 | 197,2 | 203,1 | 209,4 | 212:5 | 215.0 | 216,1 | 217:9 | 220.0 | 222,8 | 224,8 | 226.4 | 228,8 | 230.5 | 231.8 | 233.7 | 235.0 | 237,9 | CHARLES | | 196
198 | 12512 | 166,2 | 176,4 | 184. | 2 190 | ,3 19 | 95,2 | 199,2 | 205,2 | 211.5 | 214.7 | 217,3 | 218,3 | 220:1 | 222,3 | 225,1 | 227,2 | 228,8 | 231,2 | 232.9 | 234,2 | 236,1 | 237,4 | 240.4 | Michaelan | | 200 | 155,3 | 169.6 | 186.6 | 185 | 0 192 | 1 2 2 | 77,2 | 201,2 | 207,3 | 213,7 | 216:9 | 219:5 | 220,6 | 222:4 | 224,6 | 227,4 | 229,5 | 231.1 | 233,6 | 235:3 | 236,6 | 238,5 | 239,9 | 242,9 | 2000 | A = offered random traffic B = probability of loss k = accessibility n = number of trunks | T | | | dess (construction | onanamananana | on the second | | Martin de la constanta | | | nonasan pakerin | Transition of the State | | | nielekovanie sanatak | - | and the second second | | | the contract of o | and an and a second | | in and the second second | orinomental political recommendation | own and the later of | - | | |----------|---------|-------|-------------------------------|-----------------|------------------|---------|------------------------|----------|-------|-----------------|---|----------|-----------|----------------------|----------------|---|----------|-----------|--|---------------------|--------|--------------------------|--------------------------------------|----------------------|------------|---| | n k | 4 | 5 | 6 | | 7 | 3 | 9 | 10 | 12 | 15 | 17 | 19 | 26 | 22 | 25 | 30 | 35 | 40 | 50 | 6 6 | 76 | 96 | 110 | k=n | n | | | 200 | 155,3 | 169,6 | 186,6 | 187, | 9 194, | 1 199. | 1 2 | 03,3 | 209,4 | 215,9 | 219.1 | 221.7 | 222,8 | 224.7 | 226.9 | 229,7 | 231,8 | 233,5 | 235,9 | 237,7 | 239.0 | 241.0 | 242.3 | 245,4 | 200 | • | | 202 | 156.8 | 171.3 | 181.8 | 189, | B 196, | 1 201. | 1 2 | 95,3 | 211.5 | 218.0 | 221,3 | 223,9 | 225,1 | 226,9 | 229,2 | 232.1 | 234.2 | 235.8 | 238,3 | 240.1 | 241.4 | 243.4 | 244.7 | 247.9 | 202 | | | 04 | 128,4 | 1/3:0 | 103,6 | 191. | 7 198. | 91203. | . 1 2 | 67,3 | 213.6 | 226.2 | 223.4 | 1226.1 | 227.3 | 229.2 | 231.5 | 234.4 | 274.5 | 238.2 | 248.7 | 242 5 | 247 8 | 045 9 | 047 0 | 056 4 | 204 | | | 06 | 12919 | 1/4,/ | 100,4 | 193:1 | 6 200. | 31205. | .12 | 99,4 | 215.0 | 222.3 | 225.6 | 1228.3 | 229.5 | 234.5 | 233.8 | 236.7 | 1278.9 | 248.6 | 248.4 | 244.0 | 246 2 | 348 0 | 040 6 | #50 B | 206 | | | 08
10 | 101:0 | 1/0,4 | 187,2 | 195 | 4 201, | 207, | 1 2 | 11:4 | 217,7 | 224,5 | 227,8 | 230,6 | 231.7 | 233,7 | 236.1 | 239,6 | 241.2 | 242.9 | 245,4 | 247:2 | 248,6 | 250,6 | 252.0 | 255,4 | 258 | | | | | | | | | | | | | | | 1 | | | | | 1 | | | | | i | | 257,9 | 216 | | | 12
14 | 104,0 | 1/9:/ | 190,8 | 199, | 2 205, | 211, | 1 2 | 15,5 | 221,9 | 228,8 | 232,2 | 235,6 | 236,2 | 238,3 | 240,6 | 243,6 | 245,9 | 247,6 | 250:2 | 252,0 | 253,4 | 255.5 | 256.9 | 266.4 | 212 | | | 16 | 167.7 | 187.1 | 192:0 | 201, | 1 20/ | 213 | 1 2 | 11/12 | 224.0 | 231.0 | 234.4 | 237 2 | 238,4 | 240,5 | 242.9 | 246,6 | 248,2 | 250.0 | 252.6 | 254.4 | 255,8 | 257.9 | 259,3 | 262.9 | 214 | | | 18 | 169.3 | 184.8 | 196.5 | 2031 | 0 207;
8 911. | 6 017 | 1 2 | 1212 | 228 2 | 233:1 | 23010 | 239:4 | 240,0 | 242:8 | 242:2 | 240,3 | 250.5 | 252,3 | 254.9 | 256.8 | 258.2 | 260.3 | 261,7 | 265,4 | 216 | | | 20 | 176,8 | 186,5 | 198.6 | 206. | 7 213. | 6 219 | 1 2 | 23.6 | 236.3 | 237.4 | 241.8 | 243.9 | 945.4 | 247.3 | 249.8 | 252.0 | 255.2 | 257 8 | 22/13 | 227:2 | 200:0 | 202:7 | 204 2 | 270,4 | 218 | | | 22 | | | | | | | | | | | | 1 | | | | | 1 | | | | | Į. | | | 225 | _ | | 24 | 1/3/9 | 109,9 | 201,6 | 216. | 5 217. | 41223. | .8 2 | 27.7 | 234.5 | 241.8 | 245.4 | 248.3 | 249.4 | 254.8 | 254.4 | 257 6 | 250 9 | 264 7 | 264 4 | 266 4 | 047 0 | 076 6 | 07: 4 | 272,9 | 222 | | | 26 | 1 1/2/2 | 17110 | 203,4 | 212, | 3 219, | 41225 | . O 2 | 779,/ | 236.6 | 243.9 | 247.5 | 1258.5 | 251.8 | 254.1 | 256.7 | 259.0 | 1262.2 | 264.4 | 266.8 | 268.8 | 27# 2 | 272 4 | 977 0 | 077 0 | 224
226 | | | 28 | 1//10 | 12010 | 20002 | 214, | 2 221, | 31227 | . O 2 | 31 1/ | 238.7 | 246.1 | 249.7 | 1252.7 | 254.6 | 254.3 | 259.8 | 262.2 | 1264.6 | 266.4 | 260.2 | 274.3 | 272 6 | 274 0 | 074 7 | 080 7 | 228 | | | 30 | 178,6 | 195.0 | 207.0 | 216, | 1 223, | 3 229, | .02 | 33,8 | 245,8 | 248,2 | 251.9 | 254,9 | 256:2 | 258.6 | 261.2 | 264.5 | 266.9 | 268,8 | 271.6 | 273,5 | 275.0 | 277.2 | 278.7 | 282.8 | 236 | | | 32 | 186.1 | 196,7 | 208,8 | 218, | 0 225, | 2 231, | 0 2 | 35,8 | 242,9 | 250,4 | 254.1 | 257,2 | 258,5 | 260.8 | 263,5 | 266,8 | 269,3 | 271:1 | 273,9 | 275,9 | 277,5 | 279.6 | 281,2 | 285,3 |
232 | | | 34 | 187.2 | 170,4 | 210.6 | 219, | 9 227, | 1 233, | .02 | 237,8 | 245.6 | 252.5 | 256.3 | 259,4 | 260.7 | 263.0 | 265.8 | 269,1 | 271.6 | 273.5 | 276.3 | 278:3 | 279:9 | 282:1 | 283,6 | 287.8 | 234 | | | 38 | 184.8 | 20011 | 214.5 | 221: | / 227; | 1 235 | .02 | 39,9 | 247.1 | 254.7 | 258:5 | 201,6 | 262:9 | 265:3 | 208:1 | 271.5 | 273,9 | 275.9 | 278,7 | 286,7 | 282.3 | 284.5 | 286,6 | 290.3 | 236 | | | 40 | 186.3 | 203,5 | 216.6 | 225, | 5 233, | 0 239 | ,0 2 | 43,9 | 251.2 | 259.0 | 262.9 | 266.0 | 267.4 | 269.8 | 272.7 | 276.1 | 278,6 | 280.6 | 283,4 | 285,5 | 284.7 | 289.3 | 288,5 | 292.8 | 238
240 | | | 42 | 187,9 | 205,2 | 217,8 | 227, | 4 234, | 9 241 | ,02 | 46,5 | 253,3 | 261,2 | 265.1 | 268.2 | 269.6 | 272.0 | 275.0 | 278.4 | 281.6 | 282.9 | 285.8 | 287.0 | 280.5 | 201.7 | 202.2 | 1 207 8 | 242 | - | | 244 | 70314 | 20019 | 21900 | 229, | 3 230 s | 01243. | • M 2 | 48,0 | 255.4 | 203.3 | 267,3 | 1278.5 | 271.R | 274.3 | 277.3 | 284.7 | 1283.3 | 288.3 | 288.2 | 20 B. 7 | 201 0 | m04 a | 60 E ' 7 | TO PAGE TO | 244 | | | 46 | 17110 | 200:0 | 221,4 | 1 231 ₁ | 1 238, | 01245. | , fi 2 | วริส.ส | 257.5 | 265.5 | 269.4 | 1272.7 | 274.4 | 274.5 | 279.6 | 283.4 | DRK. A | 287.6 | 200.4 | 200.7 | 004 9 | 204 4 | 000' | | 246 | | | 48
50 | 1 17212 | 21010 | 26317 | 7 233; | 0 240: | / 12461 | , 9 2 | ソラフォリ | 728.0 | 267.7 | 271 . 6 | 1274.9 | 276.3 | 278.8 | 281.8 | 285.4 | 1288.8 | 208.8 | 202 8 | 205 4 | 204 9 | 200 0 | 766 / | 7 M C 7 | 248 | | | 1 | 9.776 | 6.848 | 6.056 | 234, | 9 242,
e e 01 | 7 248 | 192 | 254:1 | 201,7 | 209,8 | 273.8 | 277,1 | 278.5 | 281.6 | 284.1 | 287,7 | 296,3 | 292,3 | 295,3 | 297.5 | 299.1 | 361.4 | 303,6 | 307.8 | 250 | | | | i . | | | | | | | | | | | 1 | | | | | 1 | | | | | 1 | | 1,249 | 1 | | | 300 | 232.9 | 254,4 | 270.6 | 281, | 9 291, | 2 298 | ,7 3 | 304,9 | 314,0 | 323,8 | 328,6 | 332,5 | 334,2 | 337:2 | 341.0 | 345,7 | 348,8 | 351.2 | 354,8 | 357.3 | 359,2 | 361.9 | 363,8 | 370,3 | 300 | | | 1 | 0.776 | 0,848 | 0,900 | 9,94 | 0 0,97 | 1 0.99 | 96 1 | .016 | 1.047 | 1:079 | 1.095 | 1:108 | 1,114 | 1,124 | 1:137 | 1:152 | 1.171 | 1:179 | 1,190 | 1,198 | 1,203 | 1.211 | 1,216 | 1,249 | 1 | | | 35a | | | | | | 1 | | | | | | 1 | | | | | 1 | | | | | 1 | | 432.7 | | | | 1 | 0.776 | 0.848 | 0.900 | 1 8.94 | л дол.
п п.97 | 1 8.00 | 96 1 | 1.816 | 1.647 | 4.470 | 4 . # 0 # | 1 - 1 68 | 309,9 | 4 4 9 4 | 4 4 3 7 | 403,3 | 407.4 | 410.2 | 414.3 | 417:2 | 419.4 | 422,5 | 424.6 | 1 1 2 4 9 | 356 | | | | | | | | | | | | | | | | | | | *************************************** | | | | | | 1 | | | 1 | _ | | 400 | 310:0 | 337,1 | 300,0 | 375, | 8 388, | 3 398 | .3 4 | 466,5 | 418.7 | 431.7 | 438,1 | 443,4 | 445.6 | 449,7 | 454.6 | 460,9 | 465,6 | 469,2 | 473,8 | 477 . 1 | 479.6 | 483.0 | 485.5 | 495.2 | 400 | | | 1 | ł . | | | | | 1 | | | | | | 1 | | | | | 1 | | | | | 1 | | 7 1,256 | 1 | | | 500 | 388,2 | 423,9 | 450.0 | 5 469, | 8 485, | 3 497 | , 9 5 | 308,2 | 523,4 | 539,6 | 547,7 | 554.2 | 557:1 | 562,1 | 568.3 | 576,1 | 581.9 | 586.5 | 593.0 | 597.6 | 666.6 | 664.3 | 667.3 | 2 620.2 | 500 | | | 1. | 0,776 | 0,848 | 0,900 | 0,94 | 0 0,97 | 1 6.99 | 96 1 | 1.016 | 1:547 | 1.079 | 1.095 | 1,108 | 1,114 | 1:124 | 1.137 | 1,152 | 1,164 | 1.173 | 1,186 | 1.200 | 1,266 | 1,213 | 1,218 | 3 1,256 | 1 | | | 600 | Į. | | | | | | | | | | | 1 | | | | | 1 | | | | | | | | | | | 1 | 0,776 | 6,848 | 7 Q 6 | 9 003,
9 004 | 0 202: | 1 8.00 | 14 6 | 1 . 61 4 | 1.847 | 04/16 | 007:2 | 1000:1 | 668.5 | 6/4:5 | 681.9 | 691.3 | 698,3 | 763.7 | 711.6 | 717.1 | 725.6 | 725,6 | 729,0 | 745.1 | 600 | | | - | 1.250 | 1 | | | 700 | 543.5 | 593,5 | 630. | 3 657, | 7 679, | 5 697 | . 6 7 | 711.4 | 732,8 | 755.5 | 766.7 | 775,9 | 779.9 | 786,9 | 795,6 | 806.6 | 814,7 | 821.0 | 830,2 | 836.6 | 841.3 | 847.6 | 858.9 | 870.1 | 700 | | | 1 | 0.776 | 0,848 | 0,90 | 5 6,94 | 0 0:97 | 1 6,9 | 96 1 | 1,016 | 1:047 | 1.079 | 1,095 | 1:108 | 1.114 | 1,124 | 1.137 | 1:152 | 1,164 | 1:173 | 1,186 | 1.195 | 1.202 | 1.215 | 1 . 21 | 1,250 | 1 | | | 800 | 1 | | 995,1 | - | - | | 1 | 0.776 | 0,848 | 0.90 | 5 6,94 | 0 0.97 | 1 0.9 | 96 1 | 1.016 | 1,647 | 1.679 | 1.695 | 1.168 | 1.114 | 4.124 | 1.137 | . 921:0 | 1.166 | . 938:3 | 948.8 | 956:1 | 961.4 | 908:5 | 972,9 | 9 995,1 | 800 | | | | 1 | | | | | - 1 | | | | | | 1 | | | | | | | | | | i | | | 1 | | | 900 | 698,8 | 763.1 | 810. | 845 | 6 873, | 6 896 | , 2 9 | 914,7 | 942.1 | 971.3 | 985,8 | 997:6 | 1003 | 1012 | 1023 | 1,037 | 1647 | 1056 | 1067 | 1076 | 1082 | 1096 | 169 | 5 1126 | 966 | | | 1 | 0,776 | 0,848 | 0.90 | 9 9,94 | 0 0,97 | 1 0.9 | 96 1 | 1,016 | 1:047 | 1.079 | 1.095 | 1:108 | 1.114 | 1.124 | 1,137 | 1.152 | 1,164 | 1,173 | 1.186 | 1,195 | 1.262 | 1 . 211 | 1,22 | 5 1,250 | 1 | | | 100 | 1 | | | | | 1 | | | | | | 1 | | | | | 1 | | | | | 1 | | 9 1376 | No. | | | 1 | 0.776 | 0.848 | 0.90 | g g,94 | g g,97 | 1 5.9 | 96 1 | 1,616 | 1,647 | 1.679 | 1.698 | 1.158 | 1.114 | 1.404 | 1420
11.135 | 1207 | 1280 | 1290 | 1.305 | 1315 | 1322 | 1332 | 133 | 9 1376
7 1,256 | 1100 | | | | | | - | | | 1 - ' | | | | 2.0// | 2.0/2 | 1 | 4 - 4 4 " | **** | | 70475 | 1 4, 20, | T = T / C | TITOO | ・ TiTょこ | 111202 | 120673 | 1,21 | 1 1 2 2 3 3 | 1 1 | | Table 1-38 B = 30.0 % B = probability of loss k = accessibility n = number of trunks | n k | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 40 | 50 | 66 | 76 | 96 | ï10 | k=n | U | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|--|----|----|-----|--------------------------------------|----------------------------| | 1
2
3
4
5 | 3,9
4,9 | 5,2 | 0,43
1,4
2,6
3,9
5,2 | 1
2
3
4
5 | | 6
7
8
9 | 5,9
6,9
7,9
8,9
9,9 | 6,2
7,3
8,4
9,4
10,5 | 6,5
7,6
8,7
9,8
10,9 | 7,9
9,0
10,1
11,3 | .9,2
10,4
11,5 | 10,6 | 12,6 | | | | | | | | | | | | | | | | 6,5
7,9
9,2
10,6
12,0 | 6
7
8
9
10 | | 11
12
13
14
15 | 10,9
11,9
12,9
14,0
15,0 | 11,6
12,6
13,7
14,8
15,9 | 12,1
13,2
14,3
15,4
16,5 | 12,4
13,6
14,7
15,9
17,0 | 12,7
13,9
15,1
16,2
17,4 | | | 17,2 | 18,9 | | | | | | | | | | | | | | 13,3
14,7
16,1
17,5
18,9 | 11
12
13
14
15 | | 16
17
18
19
20 | 17,0
18,0 | 18,6 | 17,6
18,8
19,9
21,0
22,1 | 19,3 | 18,6
19,8
20,9
22,1
23,3 | 18,9
20,1
21,3
22,5
23,7 | 19,2
20,4
21,7
22,9
24,1 | 20,9
22,2
23,4 | 20,2
21,4
22,7
24,0
25,3 | | 24.5
25.8 | 25,9 | | | | | | | | | | | 26,3
21,7
23,1
24,5
25,9 | 16
17
18
19
20 | | 21
22
23
24
25 | 21,0
22,0
23,0
24,0
25,0 | 22,4
23,5
24,5
25,6
26,7 | 23,3
24,4
25,5
26,6
27,8 | 23,9
25,1
26,3
27,4
28,6 | 24,5
25,7
26,9
28,0
29,2 | 24,9
26,1
27,3
28,5
29,7 | 25,3
26,5
27,7
29,0
30,2 | 27,1
28,4
29,6 | 26,5
27,8
29,1
30,3
31,6 | 26,8
28,1
29,4
30,7
32,0 | 27,1
28,4
29,7
31,0
32,3 | 27,2
28,5
29,8
31,1
32,4 |
28,7
30,0
31,4
32,7 | 33,0 | | | | | | | | | 27,3
28,7
30,1
31,6
33,6 | 21
22
23
24
25 | | 26
27
28
29
30 | | 27,8
28,8
29,9
31,0
32,1 | 31,2
32,3 | 29,7
30,9
32,1
33,2
34,4 | 30,4
31,6
32,8
34,0
35,2 | | | 33,4
34,6
35,9 | 35,4 | 34,6
35,9 | 33,6
34,9
36,2
37,5
38,8 | 33,7
35,6
36,3
37,7
39,6 | 34,6
35,3
36,6
37,9
39,2 | 34,3
35,6
36,9
38,3
39,6 | 40, 0 | | | | | | | | 34,4
35,8
37,2
38,6
40,0 | 26
27
28
29
30 | | 31
32
33
34
35 | 33,5
34,5 | 33,1
34,2
35,3
36,3
37,4 | 34,6
35,7
36,8
38,0
39,1 | 35,6
36,7
37,9
39,1
45,2 | 36,4
37,5
38,7
39,9
41,1 | | 37,5
38,8
40,0
41,2
42,4 | | 40.5
41.8 | 39,7
41,0
42,3
43,6
44,9 | 40,1
41,4
42,7
44,0
45,3 | 40,3
41,6
42,9
44,2
45,5 | 40,6
41,9
43,2
44,5
45,8 | 40,9
42,2
43,6
44,9
46,2 | | 47,1 | | | | | | | 41,5
42,9
44,3
45,7 | 31
32
33
34
35 | | 36
37
38
39
40 | 37,0
38,0
39,0 | | | 41,4
42,6
43,7
44,9
46,1 | 42,3
43,5
44,7
45,9
47,1 | 45,5 | 43,7
44,9
46,1
47,3
48,6 | 45,9
47,1
48,4 | | 46,2
47,5
48,8
50,1
51,4 | 46,6
47,9
49,2
50,5
51,8 | 46,8
48,1
49,4
50,7
52,0 | 47,1
48,4
49,8
51,1
52,4 | 47,5
48,9
50,2
51,5
52,9 | 48,1
49,4
50,8
52,1
53,4 | 48,5
49,8
51,2
52,5
53,9 | 54,2 | | | | | | 48,6
50,0
51,4
52,8
54,2 | 36
37
38
39
40 | | 41
42
43
44
45 | 43,5
44,6 | | 45,8
46,9
48,1
49,2
50,3 | 47,2
48,4
49,6
50,7
51,9 | 48,3
49,5
50,6
51,8
53,0 | 51,5
52,7 | 53,5 | 52,1
53,4
54,7 | 54,6
55,9 | 53,9
55,2 | 53,1
54,4
55,7
57,0
58,4 | 53,3
54,7
56,0
57,3
58,6 | 53,7
55,0
56,4
57,7
59,0 | 54,2
55,5
56,8
58,2
59,5 | 56,1
57,5 | 55,2
56,6
57,9
59,3
60,6 | 55,6
57,0
58,3
59,7
61,0 | | · in an annual control of the contro | | | | 55,7
57,1
58,5
59,9
61,3 | 41
42
43
44
45 | | 46
47
48
49
50 | 47,0
48,0
49,0 | 50,2
51,3
52,4 | | 54,2
55,4
56,6 | | 57,6
58,8 | 59,6 | 58,4
59,7
60,9 | 58,5
59,7
61,0
62,3
63,6 | 60,4
61,7
63,0 | 59,7
61,0
62,3
63,6
64,9 | 61,2
62,5
63,8 | 61,6
62,9
64,3 | 64.8 | 61,5
62,8
64,2
65,5
66,9 | 62,0
63,3
64,7
66,1
67,4 | 62,4
63,8
65,1
66,5
67,8 | 68,5 | | | | | 62,8
64,2
65,6
67,0
68,5 | 46
47
48
49
50 | B=30.0 % A = offered random traffic B = probability of loss k = accessibility n = number of trunks B = 30.0 % A in Erl | D K | 4 | 5 | 6 | 7 | 8 | 9 | 15 | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 30 | 35 | 40 | 50 | 60 | 76 | 96 | 110 k=n | n | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|-------------------------|-------------------------|---|-----------------------------| | 50 | 50,0 | 53,4 | 55,9 | 57,7 | 59,0 | 60,0 | 60,9 | 62,2 | 63,6 | 64,3 | 64,9 | 65,1 | 65,6 | 66,1 | 66,9 | 67,4 | 67,8 | 68,5 | all Released to the second | | | 68,5 | 56 | | 51
52
53
55
55 | 51,0
52,0
53,0
54,0
55,0 | 54,5
55,6
56,6
57,7
58,8 | 57,0
58,1
59,2
60,3
61,5 | 58,9
60,0
61,2
62,3
63,5 | 60,2
61,4
62,6
63,8
65,0 | 61,2
62,4
63,7
64,9
66,1 | 62,1
63,3
64,6
65,8
67,0 | 63,4
64,7
66,0
67,2
68,5 | 68,7 | 65,6
66,9
68,2
69,5
70,8 | 66,2
67,5
68,8
70,1
71,4 | 67,8
69,1 | 66,9
68,2
69,5
70,9
72,2 | 67,5
68,8
70,1
71,5
72,8 | 68,2
69,5
70,9
72,2
73,6 | 68,8
70,1
71,5
72,8
74,2 | 69,2
70,6
71,9
73,3
74,6 | 69,8
71,2
72,6
73,9
75,3 | | | | 69,9
71,3
72,7
74,2
75,6 | 51
52
53
54
55 | | 56
57
58
59
60 | 56,0
57,0
58,0
59,0
60,0 | 59,8
60,9
62,0
63,0
64,1 | 62,6
63,7
64,8
65,9
67,0 | 64,6
65,8
67,0
68,1
69,3 | 66,2
67,4
68,6
69,7
70,9 | | | 69,7
71,0
72,2
73,5
74,8 | 71,3
72,6
73,9
75,1
76,4 | 72,1
73,4
74,7
76,0
77,3 | 72,7
74,0
75,3
76,6
78,0 | 76,9 | 73,5
74,8
76,1
77,5
78,8 | 74,1
75,4
76,8
78,1
79,4 | 74,9
76,3
77,6
78,9
80,3 | 75,5
76,9
78,2
79,6
86,9 | 78,7 | 76,7
78,1
79,4
80,8
82,2 | 82,7 | | | 77,0
78,4
79,8
81,3
82,7 | 56
57
58
59
60 | | 61
62
63
64
65 | 61,0
62,0
63,0
64,0
65,0 | 65,2
66,2
67,3
68,4
69,4 | 68,2
69,3
70,4
71,5
72,6 | 70,4
71,6
72,7
73,9
75,0 | 72,1
73,3
74,5
75,7
76,9 | 73,4
74,6
75,8
77,0
78,2 | 74,4
75,6
76,9
78,1
79,3 | 76,0
77,3
78,5
79,8
81,0 | 77,7
79,0
80,3
81,6
82,9 | 78,6
79,9
81,2
82:5
83,8 | | 80,9
82,2
83,5 | 80,1
81,4
82,7
84,1
85,4 | 80,8
82,1
83,4
84,8
86,1 | 81,6
83,0
84,3
85,7
87,3 | 82,3
83,6
85,0
86,3
87,7 | 82,8
84,2
85,5
86,9
88,2 | 86,3
87,7 | 84,1
85,5
86,8
88,2
89,6 | | | 84,1
85,5
87,0
88,4
89,8 | 61
62
63
64
65 | | 66
67
68
69
70 | 66,0
67,0
68,0
69,0
70,0 | 70,5
71,6
72,7
73,7
74,8 | 73,8
74,9
76,0
77,1
78,2 | 76,2
77,3
78,5
79,7
80,8 | 78,1
79,3
80,5
81,6
82,8 | | 80,6
81,8
83,0
84,3
85,5 | 82,3
83,6
84,8
86,1
87,3 | 86,7
88,6 | 85,1
86,4
87,7
89,0
90,3 | 88,4 | 90,1 | 86,7
88,0
89,4
90,7
92,0 | 87,4
88,8
90,1
91,4
92,8 | 88,4
89,7
91,0
92,4
93,7 | 89,1
90,4
91,8
93,1
94,5 | | 91.8
93.2 | 92,4
93,7
95,1 | 96.9 | | 91,2
92,7
94,1
95,5
96,9 | 66
67
68
69
70 | | 71
72
73
74
75 | 71,0
72,0
73,0
74,0
75,0 | 75,9
76,9
78,0
79,1
80,1 | | 83,1
84,3 | | 88,0
89,2 | 90,4 | 88,6
89,9
91,1
92,4
93,6 | 91,9
93,1
94,4 | 95,5 | 95,0 | 94.0 | 94,6
96,5
97,3 | 95,4
96,8
98,1 | 95,1
96,4
97,8
99,1
100,5 | 99,9 | 99,1
100,5 | 98,6
100,0
101,4 | 97,9
99,3
100,6
102,0
103,4 | 101.1 | | 98,4
99,8
101,2
102,7
104,1 | 71
72
73
74
75 | | 76
77
78
79
80 | 76,0
77,0
78,0
79,0
80,0 | 82,3
83,3 | 84,9
86,0
87,2
88,3
89,4 | 88,9
90,0 | 91,1
92,3
93,5 | 92,8
94,1
95,3 | 94,1
95,4
96,6 | 97,4
98,7 | 98,3
99,6
100,9 | 99,4
100,7
102,0 | 100,2
101,5
102,8 | 100,6
101,9
103,2 | 101,3
102,6
103,9 | 102,1
103,4
104,7 | 103,1
104,5
105,8 | 103,9
105,3
106,7 | 104,6
105,9
107,3 | 105,5
106,9
108,3 | 104,8
106,2
107,5
108,9
110,3 | 106.7
108.0
109.4 | | 105,5
106,9
108,4
109,8
111,2 | 76
77
78
79
80 | | 81
82
83
84
85 | | | 93,9 | | 97,0
98,2
99,4 | 98,9
100,1
101,3 | 100,3
101,5
102,8 | 102,5
103,7
105,0 | 104,7
106,0
107,3 | 105,9
107,2
108,5 | 106,8
108,1
109,4 | 107,2
108,5
109,8 | 107,9
109,2
110,5 | 108,7
110,1
111,4 | 109,9
111,2
112,6 | 110,7
112,1
113,4 | 111,4
112,7
114,1 | 112,4
113,7
115,1 | 111,7
113,1
114,4
115,8
117,2 | 113,6
115,0
116,4 | | 112,6
114,1
115,5
116,9
118,3 | 81
82
83
84
85 | | 86
87
88
89
90 | 86,0
87,0
88,0
89,0
90,0 | 94.6
95.1 | 97,2
98,3
99,5 | 100,4
101,6
102,7 | 102,9
104,1
105,3 | 104,9
106,2
107,4 | 106,5
107,7
108,9 | 108,8
110,0
111,3 | 111,2
112,5
113,7 | 112,4
113,7
115,6 | 113,3
114,6
115,9 | 113,7
115,1
116,4 | 114,5
115,8
117,1 | 115,4
116,7
118,1 | 116,6
117,9
119,3 | 117,5
118,9
125,2 | 118,2
119,6
120,9 | 119,2
120,6
122,0 | 118.6
120.0
121.4
122.7
124.1 | 120,5
121,9
123,3 | | 119,8
121,2
122,6
124,0
125,5 | 86
87
88
89
90 | | 91
92
93
94
95 | 94,0 | 98,3
99,4
100,4 | 102,8
103,9
105,6 | 106,2
107,4
108,5 | 108,9
115,0
111,2 | 111,0
112,2
113,4 | 112,7
113,9
115,1 | 115,1
116,3
117,6 | 117,6
118,9
120,2 | 118,9
120,2
121,5 | 119,9
121,2
122,5 | 125,3
121,6
123,6 | 121,1
122,4
123,8 | 122,1
123,4
124,8 | 123,3
124,7
126,0 | 124,3
125,6
127,0 | 125,0
126,4
127,7 | 126,1
127,5
128,9 | 125,5
126,9
128,3
129,6
131,6 | 127.5
128.8
136.2 | 128.3
129.7
131.6 | 126,9
128,3
129,7
131,2
132,6 | 91
92
93
94
95 | | 96
97
98
99
100
 97.0
98.0
99.0 | 103,6
104,7
105,8 | 108,4
109,5
110,6 | 112.0
113.1
114.3 | 114,8
116.0
117,1 | 117,0
118,2
119,4 | 118,8
120,1
121,3 | 121,4
122,6
123,9 | 124,1
125,3
126,6 | 125,4
126,7
128,0 | 126,4
127,8
129,1 | 126,9
128,2
129,5 | 127,7
129,1
130,4 | 128.8
130.1
131.4 | 130,1
131,4
132,8 | 131,1
132,4
133,8 | 131,8
133,2
134,6 | 133,0
134,3
135,7 | 132,4
133,8
135,2
136,5
137,9 | 134,4
135,8
137,2 | 135,2
136,6
138,6 | 134,0
135,5
136,9
138,3
139,7 | 96
97
98
99
100 | B = 30.0 % Table 1 - 40 A = offered random traffic B = probability of loss k = accessibility n = number of trunks A in Erl B=30.0 % | C
K | . 4 | 5 | 6 |) 7 | 8 | g | 15 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 36 | 35 | 46 | 50 | 69 | 76 | 95 | 116 | k=n | n | |---------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|---|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|----------------------------------|--|--| | 100 | 100,0 | 106,8 | 111,7 | 115,4 | 118,3 | 120.6 | 122,5 | 125,2 | 127.9 | 129,5 | 130,4 | 130,9 | 131,7 | 132,8 | 134,1 | 135,1 | 135.9 | 137.1 | 137,9 | 138,5 | 139.4 | | 139,7 | 100 | | 102
104
106
108
110 | 104.6
106.6
108.6 | 111,1
113,3
115,4 | 116,2
118,4
126,7 | 120.1
122.4
124.7 | 125.7
123.0
125.4
127.8 | 125,5 | 127,4
129,9
132,3 | 136,2
132,7
135,2 | 133,1
135,7
138,2 | 134.5
137.1
139.7 | 135,6
138,3
140,9 | 136.1
138.8
141.4 | 137,0
139,7
142,3 | 138,1
140,8
143,4 | 139,5
142,2
144,9 | 140,5
143,3
146,6 | 141,4
144,1
146,8 | 142,6
145,3
148,1 | 143.5
146,2
149.0 | 144,1 | 145.0
147.8
150.6 | 4 5 4 6 | 142.6
145.4
148.3
151.1 | 152
154
156
158 | | 112
114
116
118
120 | 112,0
114,0
116,0
118,0 | 119.7
121.8
123.9
126.1 | 125,2
127,4
129,6
131,9 | 129,3
131,6
133,9 | 132.5
134.9
137.2
139.6 | 135,1
137,5
139,9 | 137:2
139:7
142:1
144:6 | 140,3
142,8
145,3
147,9 | 143.4
146.0
148.5
151.1 | 144,9
147,5
150:1
152:7 | 146,1
148,8
151,4
154,0 | 146,7
149,3
151,9 | 147,6
150,3
152,9
155,6 | 148.8
151.5
154.1
156.8 | 150,3
153,6
155,7
158,4 | 151,4
154,1
156,8
159,5 | 152.3
155.0
157.7
160.5 | 153,6
156,3
159,1
161,6 | 154:5
157:3
160:0 | 155,2
158,0
160,7 | 156,2
159.6
161.7 | 156,8
159,6
162,4
165,2 | 156,9
159,7
162,6 | 110
112
114
116
118
120 | | 122
124
126
128
136 | 124,0
126,0
128,0 | 132,5
134,6
136,8 | 138,6
140,8
143,0 | 143,1
145,5
147,8 | 144,3
146,7
149,1
151,4 | 149,6
152,0
154,4 | 151,9
154,4
156,8 | 155,4
157,9
165,4 | 158,9
161,4
164,6 | 165,5
163,1
165,8 | 161,9
164,5
167,2 | 162,5
165,1
167,8 | 163,5
166,2
168,8 | 164.8
167.5
170.2 | 166,5
169,1
171,8 | 167,7
176,4
173,1 | 168.6
171.4
174.1 | 170,1
172.8
175.6 | 171:1
173:9 | 171,8
174,6 | 172,9
175,7 | 173.6
176.4
179.2 | 174.0
176.8 | 122
124
126
128
130 | | 132
134
136
138
140 | 134,0
136,0
138,0 | 143,2
145,3
147,4 | 149,7
152,5
154,2 | 154,7
157,6
159,3 | 156,2
158,5
165,9
165,6 | 161.6
164.1
166.5 | 164,2
166,6
169,1 | 167,9
176,4
172,9 | 171.8
174.3
176.9 | 173:6
176:2
178:8 | 175,0
177,7
180,3 | 175.7
178.3
181.0 | 176,8
179,5
182:1 | 178.2
180.9
183.5 | 179,9
182,6
185,3 | 181,3
184,6
186,7 | 182.3
185.0
187.8 | 183.8
186.6
189.3 | 184.9
187.7
190.4 | 185.7
188,5
191.3 | 186,9
189,7
192,4 | 187,6
196,4
193,2 | 188,3
191,1
194,6 | 132
134
136
138
140 | | 142
144
146
148
150 | 144.0
146.0
148.0 | 153,9
156,0
158,1 | 160,9
163,1
165,4 | 166,2
168,5
170,8 | 168.0
170.4
172.7
175.1
177.5 | 173,7
176,1
178,5 | 176,4
178,9
181,3 | 185,5
185,5 | 184.7
187.2
189.8 | 186,6
189,2
191,8 | 188,2
190,8
193,4 | 188.9
191.5
194.1 | 196,1
192,7
195,4 | 191.5
194.2
196.9 | 193,4
196,1
198,8 | 194,8
197,6
200,3 | 195,9
198,7
201.4 | 197,6
200,3
203,1 | 198,7
201,5
204,3 | 199,6 | 255.6 | 201,6 | 202,5
205,4
208,2 | 142
144
146
148
150 | | 152
154
156
158
160 | 154,0
156,0
158,0 | 166,7
168,8 | 172,1
174.3
176.6 | 177.8
180.1
182.4 | 179,8
182,2
184,6
186,9
189,3 | 185,8
188,2
190,6 | 188,7
191,1
193,6 | 193,6
195,5
198,6 | 197.5
200.1
202.7 | 199,7
202:3
204:9 | 201.3 | 202:1
204:7
207:3 | 203,3
206,0
208,7 | 204.9
207.6
210.3 | 206,9 | 208,4
211,1
213,9 | 209,6
212,3
215,1 | 211.3
214.1
216.8 | 212:6
215:3
218:1 | 213,5 | 214.8 | 215,6
218,4
221,2 | 216,8
219,7
222.5 | 152
154
156
158
160 | | 162
164
166
168
170 | 166.0 | 177,4 | 183,3
185,5
187,7 | 189,3
191,6
193,9 | 191.7
194.0
196.4
198.8
201.1 | 197,8
200,2
202,7 | 200,9 | 205,5
208,6
216.5 | 210,4
212,9
215,5 | 212:7
215:3
217:9 | 214,5 | 215,3 | 216,6 | 218.3
221.0
223.7 | 220,4 | 222,6
224,7
227.5 | 223,3 | 225,1
227,8
235,6 | 226,4 | 227,4 | 228,7 | 229,7 | 231,1 | 162
164
166
168
170 | | 172
174
176
178
180 | 176:0 | 188,0 | 194,4
196,7
198,9 | 200,9
203,2
205,5 | 203,5
205,9
208,2
210,6
213,0 | 209,9
212,3
214,7 | 213,2
215,6
218,1 | 218,1
225,6
223,1 | 223,2
225,8
228,3 | 225:7
228:3
230:9 | 230,3 | 228.5 | 229,9 | 231.7
234.4
237.6 | 233,9 | 235,6
238,3
241.0 | 236,9
239,7
242,4 | 238,9
241,6
244.4 | 240:2
243:6
245.8 | 241,3
244.0
246.8 | 242:7 | 243,7
246,5
249,3 | 245,4
248,2
251.4 | 172
174
176
178
180 | | 182
184
186
188
190 | 184,0
186,0
188,0 | 196,6
198,7
200,9 | 205;6
207;8
210;1 | 212,4
214,7
217,6 | 215,3
217,7
220,1
222,4
224,8 | 222.6
224.4
226.8 | 225,4 227,9 230,3 | 230,6
233,1
235,6 | 236,0
238,6
241,1 | 238:7
241:3
243:9 | 245,8 | 241,7 | 243,2
245,8
248,5 | 245:1
247:7
250:4 | 250.1 | 249,2
251,9
254.6 | 250,6
253,3
256.1 | 252,6
255,4
258.1 | 254,1
256,8
259,6 | 255:1
257:9
266:7 | 256.7
259.5
262.2 | 257.7
260.5
263.3 | 259,6
262,5 | 182
184
186
188
190 | | 192
194
196
198
200 | 194.0
196.0
198.0 | 207.3
209.4
211.5 | 216.8
219.0
221.3 | 223,9
226,3
228,6 | 227,2
229,5
231,9
234,3
236,6 | 234.0
236,4
238,8 | 237,7
240,1
242,6 | 243,1
245,6
248,1 | 248.8
251.4
254.6 | 251:6
254:2
256:8 | 253,9
256,5
259,2 | 254.9
257.5
265.2 | 256.5
259.1
261.8 | 258,5
261,1
263,8 | 263,6 | 262,8
265,5
268,2 | 264.3
267.0
269.7 | 266,4
269,1
271,9 | 267.9
275.7
273.4 | 269.0
271,8
274.6 | 270.6 | 271.7
274.5
277.3 | 2 ⁷ 3,9
2 ⁷ 6,8 | 192
194
196
198
200 | A in Erl B = 30.0 % A = offered random traffic B = probability of loss k = accessibility n = number of trunks | | | 4 | 5 | 6 | • | 7 | 8 | 9 | 1 | đ | 12 | 15 | 17 | 19 | 25 | 22 | 25 | 36 | 35 | 46 | 56 | 6 ტ | 76 | 90 | 110 | k=n | U | | |------------|---------|-------------|---------|---------|-------|--------|-------|--------|------------------|--------------|-------|-------|--------|--------------|-------|---------|----------------|-------|----------|---------|--------|--------------|----------------|--------|---------------|-----------|------------|---| | 200 | 200:0 | 21 | 3,7 | 223,5 | 236 | 0,9 | 236,6 | 241,3 | 245, | 0 25 | 6,6 | 256,5 | 259,4 | 261,8 | 262.8 | 264,5 | 266,5 | 269,1 | 271,6 | 272.5 | 274.6 | 276,2 | 277,4 | 279,6 | 286.1 | 282,5 | 200 | | | 202
204 | 202,0 | 9 21 | 5,8 | 225,7 | 233 | 3,2 | 239,0 | 243,7 | 247, | 5 25
9 25 | 3,1 | 259,1 | 262:0 | 264,4 | 265,4 | 267,1 | 269,2 | 271,8 | 273,7 | 275,2 | 277.4 | 279.6 | 280.1
282.9 | 281,8 | 282,9 | 285,4 | 252 | | | 206 | 204,0 | 7 22 | 0.1 | 238.0 | 23 | 7.8 | 243.7 | 248.5 | 252 | 4 25 | R. 2 | 264.2 | 267.3 | 269.6 | 20010 | 272.4 | 274.5 | 274 2 | 270 4 | 2//:9 | 200:2 | 201:7 | 285.7 | 204,6 | 285,7 | 208,2 | 204 | | | 208 | 208 1 | 7 22 | 22+2 | 252:4 | 240 | ð:1 | 240,1 | 1258,9 | 254, | 8 26 | 6.7 | 266.8 | 269.8 | 272,2 | 273.3 | 275 * 1 | 277.2 | 279.9 | 1284 . 8 | 283.4 | 285.7 | 287.3 | 288.5 | 298.2 | 204.3 | 97.0 | 206
208 | | | 210 | 210,0 | 9 22 | 4,4 | 234,7 | 242 | 2 , 4 | 248,5 | 253,3 | 257, | 3 26 | 3.2 | 269,4 | 27214 | 274,9 | 275,9 | 277.7 | 279.9 | 282.6 | 284,6 | 286,1 | 288.4 | 296.6 | 291.3 | 293.0 | 294,1 | 296.8 | 210 | | | 212
214 | 212, | 9 22 | 26.5 | 236,9 | 24 | 4,7 | 250,8 | 255,7 | 259 | 7 26 | 5,7 | 271.9 | 275.6 | 277,5 | 278.6 |
286.4 | 282,6 | 285,3 | 287,3 | 288.9 | 291.2 | 292,8 | 294.6 | 295.8 | 296,9 | 299,6 | 212 | | | 216 | 216. | 9 23 | . o , o | 241.4 | 24 | 9.3 | 255.6 | 266.6 | 264 | 7 27 | 0 , Z | 274:0 | 288.5 | 282.7 | 201:2 | 203:1 | 20212 | 200,0 | 290,0 | 291 : 0 | 293.9 | 29516 | 296.8 | 298.16 | 299,7 | 302.5 | 214 | | | 218 | 218 | 9 23 | 52,9 | 243.6 | 25 | 1.7 | 257.9 | 263.0 | 267 | 1 27 | 3.2 | 279.6 | 282.8 | 285.3 | 286.4 | 288.4 | 295.6 | 293.4 | 295.5 | 297.1 | 290,4 | 290:3 | 302.4 | 301:3 | 30245 | 305,3 | 216
218 | | | 220 | 220, | 9 23 | 35,1 | 245.8 | 25 | 4,0 | 260,3 | 265.4 | 269, | 6 27 | 5,7 | 282.2 | 285,4 | 288,6 | 289,1 | 291.0 | 293.3 | 296,1 | 298,2 | 299.8 | 302.2 | 303,9 | 305.1 | 306.9 | 308,1 | 311.1 | 220 | | | 222
224 | 222, | 0 23 | 37.2 | 248.1 | 25 | 6,3 | 262.7 | 267.8 | 272 | 0 27 | 8,2 | 284,8 | 288,0 | 290,6 | 291.7 | 293,7 | 295,9 | 298,8 | 300,9 | 302,5 | 304,9 | 366,6 | 307.9 | 369.7 | 310,9 | 313,9 | 222 | | | 226 | 2241 | 1 24 | 11.5 | 250:0 | 201 | O + O | 267 4 | 279.6 | 2/4/ | 0 28 | 7 .0 | 20/:3 | 29010 | 293,2 | 294,3 | 296,3 | 298,0 | 301,5 | 363,0 | 365,3 | 367.7 | 309 14 | 310,7 | 312,5 | 313.7 | 316,8 | 224 | | | 228 | 228, | 1 24 | 13.6 | 254.8 | 3 26 | 3.2 | 269.8 | 275.6 | 270, | 4 28 | 5.7 | 292.5 | 295.7 | 298.4 | 297:0 | 384.6 | 384.8 | 304,2 | 380.4 | 300:0 | 310:2 | 312:2 | 313,5 | 315.3 | 316,5 | 319,6 | 226
228 | | | 230 | 236, | 1 24 | 15,7 | 257.6 | 26 | 5,5 | 272.1 | 277.4 | 281 | 8 28 | 8,2 | 295.0 | 298,3 | 301,0 | 302.2 | 304,3 | 306.7 | 309,6 | 311,8 | 313.5 | 316.0 | 317.7 | 319.0 | 320,9 | 322,1 | 325,3 | 230 | | | 232
234 | 232, | 1 24 | 47,9 | 259:2 | 2 26 | 7.8 | 274,5 | 279,9 | 284 | 3 29 | 5.7 | 297.6 | 300,9 | 303.7 | 364,8 | 306,9 | 309,3 | 312,3 | 314,5 | 316.2 | 318.7 | 326.5 | 321,8
324,6 | 323,7 | 325 6 | 328,2 | 232 | | | 236 | 236. | 1 25 | 52.1 | 263.7 | 7 27 | 2.4 | 279.2 | 284.7 | 289 | 2 29 | 5.8 | 300,1 | 386.4 | 300,3 | 30/12 | 319.2 | 314.7 | 317.7 | 340.0 | 310,7 | 324.2 | 323:3 | 324:0 | 320,5 | 327,8 | 331,1 | 234
236 | | | 238 | 5381 | 1 2: | 74,5 | 200.0 | 27. | 4,7 | 281,6 | 1287,1 | 291 | 6 25 | 8.3 | 305,3 | 308,7 | 1311.5 | 312.7 | 314.8 | 317.4 | 328.4 | 1322.7 | 324.4 | 327.6 | 328.8 | 33A.9 | 777.4 | 333 4 | 2 3 A F F | 238 | | | 240 | 240, | 1 25 | 56,4 | 268,2 | 2 27 | 7,0 | 284,0 | 289,5 | 294 | 1 30 | 15,8 | 307.8 | 311.3 | 314,1 | 315.3 | 317.5 | 320.1 | 323.1 | 325,4 | 327,2 | 329.7 | 331,6 | 332,9 | 334,9 | 336,2 | 339,6 | 246 | | | 242
244 | 242, | 1 25 | 58,6 | 270.4 | 4 27 | 9,4 | 286,3 | 291,9 | 296 | 5 36 | 3,3 | 310,4 | 313,9 | 316,7 | 318,0 | 320,1 | 322:7 | 325,8 | 328,1 | 329,9 | 332,5 | 334,3 | 335.7 | 337.7 | 339.6 | 342,5 | 242 | | | 246 | 246. | 1 20 | 52.8 | 274.9 | 28 | 4.6 | 291.1 | 296.7 | 7 381. | 4 36 | 18.3 | 315.5 | 310.4 | 329.6 | 320:0 | 322:0 | 32714
328.4 | 320,5 | 337 6 | 332.0 | 335,2 | 337:1 | 338,5 | 340:5 | 341,8 | 345,3 | 244 | | | 248 | 248, | 120 | 55,0 | 277 : 1 | 28 | 6.3 | 293,4 | 1299,2 | 2 303 | ,931 | .6.8 | 318.1 | 321.7 | 324.6 | 325.9 | 328.1 | 336.8 | 333.9 | 336.3 | 778.1 | 34A. 8 | 342.6 | TAA. | 346.0 | 749 4 | 754 G | 248 | | | 250 | 2201 | 1 20 | 0/11 | 2/9,4 | 4 2 K | 8,6 | 295,8 | 1301.6 | 3 3 5 6 : | 3 31 | .3,3 | 320.7 | 324,3 | 1327,2 | 328,5 | 330,7 | 333:4 | 336.6 | 339.0 | 340.8 | 343.5 | 345.4 | 346.8 | 348.8 | 358.3 | 757 Q | 250 | | | 1 | 1,60 | 5 1. | ,068 | 1,117 | 7 1, | 154 | 1,183 | 1,200 | 1,22 | 25 1, | 253 | 1,283 | 1,297 | 1,309 | 1,314 | 1,323 | 1,334 | 1,352 | 1,362 | 1,368 | 1,378 | 1,385 | 1.390 | 1.397 | 1.402 | 1,428 | 1 | | | 300 | 300, | 1 3 | 20,5 | 335,2 | 2 34 | 6,3 | 355,0 | 361,9 | 367 | , 5 37 | 76,0 | 384,8 | 389:1 | 392.7 | 394,2 | 396,9 | 400.1 | 404,3 | 407,1 | 409.3 | 412.4 | 414,7 | 416.3 | 418.7 | 420.3 | 425.3 | 300 | | | 1 | 1,00 | 0 1 | ,068 | 1,117 | 7 Ī, | 154 | 1,183 | 1,200 | 1,27 | 25 1. | 253 | 1.283 | 1,297 | 1,309 | 1.314 | 1,323 | 1,334 | 1,348 | 1,362 | 1,369 | 1,379 | 1,386 | 1.391 | 1,398 | 1:402 | 1,428 | 1 | | | 35g | ₹5ო. | 1 3 | 73.9 | 391. | 1 48 | (A . A | 444 4 | 420 | 108 | 8 47 | 20 4 | 440 0 | 4E 4 @ | 450 4 | 450 0 | 447 0 | 166 0 | | 475 6 | | 40.4 | | 485,9 | | | | | | | 1 | 1,00 | 0 1 | ,068 | 1.111 | 7 i. | 154 | 1.183 | 1.200 | 5 1.22 | 95 1 | 253 | 1.283 | 1.297 | 1.369 | 4.712 | 4.323 | 4.334 | 4/110 | 1.358 | 4//*/ | 401:4 | 400:5 | 1,391 | 400:6 | 490.4 | 496,7 | 350 | | | 400 | | | | | | ~~~~ | | | | | | | | | | | | | | | | | 2 555,4 | 1 | | | 1 | | | 1 | 1,00 | 0 1 | , 568 | 1.11 | 7 1, | 154 | 1,183 | 1,200 | 1,2 | 25 1 | 253 | 1,283 | 1,297 | 1,309 | 1.314 | 1,323 | 1,334 | 1,348 | 1,358 | 1,365 | 1,380 | 1,387 | 1.392 | 1,398 | 1,463 | 1,428 | 466
1 | | | 500 | 50m, | 1 5 | 34,2 | 558. | 7 57 | 7.2 | 591.6 | 683. | 1 612 | . 6 62 | 24.6 | 641.3 | 648.6 | 654.4 | 457.6 | 664.4 | 666.9 | 473.8 | 678.5 | 482.7 | 488 4 | 601 6 | 694,6 | 408 = | 788 | 711 6 | 500 | | | 1 | 1,00 | 0 1 | .068 | 1.11 | 7 1. | 154 | 1,183 | 1,200 | 5 1,2 | 25 1 | 253 | 1.283 | 1,297 | 1,309 | 1,314 | 1.323 | 1:334 | 1,348 | 1.358 | 1,365 | 1,377 | 1,387 | 1,392 | 1,399 | 1,403 | 1,428 | 566
1 | | | 600 | 600, | 1 6 | 41.1 | 678. | 5 69 | 2.6 | 769.9 | 723.8 | 3 735 | .1 79 | 51.9 | 769.6 | 778.3 | 785.3 | 788.4 | 793.7 | 888.3 | 848.5 | 814.6 | 810.3 | 824.6 | 87A. | 833.8 | 838.0 | 042.4 | 957 0 | 6.00 | | | 1 | 1,00 | 0 1 | ,068 | 1,11 | 7 1, | 154 | 1,183 | 1,200 | 5 1,2 | 25 1 | 253 | 1.283 | 1,297 | 1,369 | 1.314 | 1.323 | 1.334 | 1.348 | 1.358 | 1.365 | 1.377 | 4.384 | 1.393 | 1.390 | 1 . 4 . 4 . 4 | 4 - 420 | 600 | | | | 8 | | | | | | | | | | | | | 1 | | | | | 1 | | | | | 1 | | | + | | | 700 | 700, | 2 7 | 47,9 | 782 | 2 80 | 18.1 | 828,2 | 844. | 4 857 | ,78 | 77.2 | 897,9 | 908.0 | 916.2 | 919,8 | 926,0 | 933.7 | 943.3 | 950.4 | 955,8 | 963.7 | 969.5 | 973.1 | 978,1 | 981.5 | 996,7 | 700 | | | 1 | 1,00 | 0 1 | ,000 | 1,11 | / 1, | 154 | 1:183 | 1.200 | 5 1,2 | 25 1. | 253 | 1:283 | 1,297 | 1:369 | 1,314 | 1,323 | 1,334 | 1,348 | 1,358 | 1,365 | 1.377 | 1,38 | 1,390 | 1.400 | 1 . 464 | 1,429 | 1 | | | 800 | 800. | 2 8 | 54,7 | 894. | 0 92 | 23,5 | 946,5 | 965. | 980 | , 2 | 1003 | 1026 | 1038 | 1047 | 1651 | 1058 | 1067 | 1078 | 1086 | 1692 | 1161 | 1155 | 3 1112 | 1115 | 1122 | 1148 | 800 | | | 1 | 1.00 | 0 1 | .068 | 1,11 | 7 į, | 154 | 1,183 | 1,20 | 6 1,2 | 25 1 | 253 | 1.283 | 1,297 | 1,369 | 1.314 | 1,323 | 1,334 | 1,348 | 1,358 | 1,365 | 1,377 | 1,38 | 1:390 | 1.466 | 1 1,484 | 1,429 | 1 | | | 000 | | | | | | | | 1 | | | | | | 1 | | | | | 1 | | | | | 1 | | | _ | | | 900 | 900 | 29 | 01,6 | 100 | 6 1 | 1039 | 1065 | 108 | 6 11 | 03 | 1128 | 1154 | 1167 | 1178 | 1183 | 1191 | 1200 | 1213 | 1222 | 1229 | 1239 | 124 | 1251 | 1258 | 1262 | 1282 | 900 | | | 1 | 1,00 | υ 1 | ,000 | 1:11 | / 1, | 154 | 1.183 | 1.20 | 0 1.2 | 20 1 | , 253 | 1,283 | 1,297 | 1,309 | 1.31 | 1,323 | 1,334 | 1,348 | 1,358 | 1,365 | 1,377 | 1,38 | 1,390 | 1.398 | 1 405 | 1,429 | 1 | | | .100 | 110 | Ø | 1175 | 122 | 9 1 | 1270 | 1361 | 132 | 7 13 | 48 | 1.379 | 1411 | 1427 | 1445 | 1445 | 1455 | 1467 | 1482 | 149 | 5 15m2 | 1514 | 152 | T 1529 | 1539 | 1 1545 | 1568 | 1160 | Т | | 1 | 1.00 | 19 1 | ,068 | 1,11 | 7 1, | 154 | 1,183 | 1.20 | 6 1,2 | 25 1 | 253 | 1,283 | 1.297 | 1,309 | 1.31 | 1,323 | 1,334 | 1.348 | 1,358 | 1,365 | 1,377 | 1.38 | 4 1,396 | 1,396 | 1.443 | 1,429 | 1100 | 1 | B = 50.0 % Table 1-42 A = offered random traffic B = probability of loss k = accessibility n = number of trunks B = 50.0 % A in Erl | | | yawana kamana | | | *********** | | commence di mondere | | | | | | | | | - | | | rania di manana m | | iplewickien meeters | | The party of the second | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|--|----|---------------------|--------------------------------------
--| | n | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 3€ | 35 | 40 | 50 | 66 | 76 | 95 | 118 k=n | n | | 1
2
3
4
5 | 6,5
8,1 | 8,4 | 1,0
2,7
4,6
6,5
8,4 | 1
2
3
4
5 | | 6
7
8
9
10 | 11,4
13,6
14,7 | 11,8
13,5 | 10,4
12,1
13,9
15,6
17,3 | 14,1 | 16,1 | | 18,3 | | | | | | | | | | | | | | | 10,4
12,4
14,3
16,3
18,3 | 6
7
8
9
10 | | 11
12
13
14
15 | 21,2 | 18,6
20,3
22,0
23,7
25,4 | 19,1
20,8
22,6
24,3
26,0 | 19,4
21,2
23,0
24,7
26,5 | 19,7
21,5
23,3
25,1
26,9 | 19,9
21,7
23,6
25,4
27,2 | 23,8 | 22,2
24,1
25,9
27,8 | 28,2 | | | | | | | | | | | | | 20,3
22,2
24,2
26,2
28,2 | 11
12
13
14
15 | | 16
17
18
19
20 | 27,8
29,5 | 27,1
28,8
30,5
32,2
33,9 | 27,8
29,5
31,3
33,6
34,8 | 28,3
35,1
31,8
33,6
35,4 | 26,7
30,5
32,3
34,1
35,9 | 29,0
30,8
32,6
34,5
36,3 | 29,3
31,1
32,9
34,8
36,6 | | 32.6
33,8
35,7 | 32,2
34,1
36,0
37,9 | 36,2
38,1 | 38,2 | | | | | | | | | | 30,2
32,2
34,2
36,2
38,2 | 16
17
18
19
20 | | 21
22
23
24
25 | 39,3 | 35,7
37,4
39,1
40,8
42,5 | 36,5
38,3
40,0
41,8
43,5 | 37,2
38,9
43,7
42,5
44,3 | 37,7
39,5
41,3
43,1
44,9 | 38,1
39,9
41,7
43,5
45,4 | 38,4
40,3
42,1
43,9
45,8 | 44,5 | 39,5
41,4
43,3
45,1
47,0 | 39,8
41,7
43,6
45,4
47,3 | 40,0
41,9
43,8
45,7
47,6 | 45,8 | 42,1
44,1
46,0
47,9 | 48,1 | | | | | | | | 40,2
42,1
44,1
46,1
48,1 | 21
22
23
24
25 | | 26
27
28
29
30 | 44,2
45,8 | 47,6
49,3 | 45,3
47,0
48,8
50,5
52,3 | 46,1
47,8
49,6
51,4
53,2 | 46,7
48,5
50,3
52,1
53,9 | 49,0
50,8 | | | | 51,1 | 49,5
51,4
53,3
55,2
57,1 | 51,5 | 49,8
51,7
53,6
55,6
57,5 | 50,1
52,0
53,9
55,8
57,8 | 58,1 | | | | | | | 50,1
52,1
54,1
56,1
58,1 | 26
27
28
29
30 | | 31
32
33
34
35 | 50,7
52,4
54,0
55,6
57,3 | | 54.0
55,8
57.5
59.3
61.0 | 55,0
56,7
58,5
60,3
62,1 | 55,7
57,5
59,3
61,1
62,9 | 56,3
58,1
59,9
61,8
63,6 | 58,6
60,4
62,3 | 57,5
59,4
61,3
63,1
65,0 | 62,1
64,0 | 60,6 | 59,0
60,9
62,8
64,7
66,7 | 59,2
61,1
63,0
64,9
66,8 | 59,4
61,3
63,2
65,2
67,1 | 59,7
61,6
63,5
65,5
67,4 | 60,1
62,0
63,9
65,9
67,8 | 68,1 | | | | | - | 60,1
62,1
64,1
66,1
68,1 | 31
32
33
34
35 | | 36
37
38
39
40 | 62,2
63,8 | 61,2
62,9
64,6
66,3
68,0 | 62,8
64,5
66,2
68,0
69,7 | 63,9
65,6
67,4
69,2
71,0 | 64,7
66,5
68,3
70,1
71,9 | 69,0
70,9 | 66,0
67,8
69,6
71,5
73,3 | 68,7
70,6 | 69,6
71,5
73,4 | 68,2
70,1
72,0
73,9
75,8 | 68,6
70,5
72,4
74,3
76,2 | 70,6
72,5 | 69,0
70,9
72,8
74,7
76,7 | 69,3
71,2
73,2
75,1
77,0 | 69,7
71,7
73,6
75,6
77,5 | 76,6
72,6
73,9
75,9
77,8 | 78,1 | | | | | 76,1
72,1
74,1
76,1
78,1 | 36
37
38
39
40 | | 41
42
43
44
45 | 72,0 | 69,7
71,4
73,1
74,8
76,5 | 71,5
73,2
75,0
76,7
78,4 | 72,8
74,5
76,3
78,1
79,9 | 73,7
75,5
77,3
79,1
80,9 | 76,3
78,2
86,0 | 77,0
78,8
80,7 | 76,1
78,5
79,9
81,7
83,6 | 79,1
86,9
82,8 | 79,6
81,5
83,4 | 78,1
80,0
81,9
83,8
85,7 | 78,3
80,2
82,1
84,0
85,9 | 78,6
80,5
82,4
84,3
86,3 | 79.0
80,9
82,8
84,7
86,7 | 79,4
81,4
83,3
85,2
87,2 | 79,8
81,7
83,7
85,6
87,6 | 80,0
82,0
83,9
85,9
87,9 | | | | | 80,1
82,1
84,1
86,1
88,1 | 41
42
43
44
45 | | 46
47
48
49
50 | 78,5
80,2 | 83,3 | 80,2
81,9
83,7
85,4
87,2 | 81,7
83,5
85,2
87,0
88,8 | 84,6
86,4
88,2 | 85,4
87,3
89,1 | 86,2
88,0
89,9 | 85,4
87,3
89,2
91,0
92,9 | 88,5
96,4
92,3 | 89,1
91,5
92,9 | 89,5
91,4
93,3 | 87,8
89,7
91,6
93,6
95,5 | 93,9 | 92,4 | 89,1
91,1
93,0
94,9
96,9 | 93,4 | 95.7 | 98,1 | | | | 90,1
92,1
94,1
96,1
98,1 | 46
47
48
49
50 | Table 1 - 43 A = offered random traffic B = probability of loss k = accessibility n = number of trunks | nk | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 12 | 15 | 17 | 19 | 20 | 22 | 25 | 30 | 35 | 45 | 50 | 60 | 76 | 96 | 110 k=n | n | |-----------------------------|----------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|---|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---|-----------------------|-------|---|-----------------------------| | 50 | 81,8 | 85,6 | 87,2 | 88,8 | 98,8 | 96,9 | 91,7 | 92,9 | 94,1 | 94,8 | 95,3 | 95,5 | 95,8 | 96,3 | 96,9 | 97,3 | 97,6 | 98,1 | | and the second second | | 98,1 | 50 | | 51
52
53
54
55 | 85 ± 1
86 ± 7 | | 90,6
92,4
94,1 | 92,3
94,1
95,9 | 95,4
97,2 | 94,6
96,4
98,2 | 95,4
97,2
99,6 | 98,5
105,3 | 97,9
99,8
101,7 | 98,6
100,5
102,4 | 99,1
101,0
102,9 | 99,3
101,2
103,1 | 97,8
99,7
101,6
103,5
105,4 | 100,2
102,1
104,0 | 100,8
102,7
104,6 | 101,2
103,1
105,1 | 101,5
103,5
105,4 | 102.0
104.0
105.9 | | | | 100.1
102.1
104.1
106.1
108.1 | 51
52
53
54
55 | | 56
57
58
59
60 | 93,3
94,9
96,5 | 98.6
100,3 | 99,4
101,1
102,9 | 101,2
103,0
104,8 | 102,6
104,4
106,2 | 103,7 | 104,6
106,4
108,2 | 105,9
107,8
109,7 | 107,4
109,2
111,1 | 108,6
109,9 | 108.6 | 108,8
110,8 | 107,4
109,3
111,2
113,1
115,0 | 109.8
111.7
113.6 | 110,4
112,4 | 110,9 | 111,3 | 111,8 | | | | 110.1
112.1
114.1
116.1
118.1 | 56
57
58
59
60 | | 61
62
63
64
65 | 101,5 | 107.0 | 108,1
109,8
111,6 | 110,1
111,9
113,7 | 111,/
113,5
115,3 | 112,8
114,6
116,5 | 113,8
115,6
117,4 | 115,2
117,1
119.0 | 116,8
118,7
125,6 | 117,5
119,4
121,3 | 118,1 | 118,4 | 116,9
118,9
120,8
122,7
124,6 | 119,4
121,4 | 120,1 | 120,7 | 121,0 | 121,6 | 124,6 | | | 120,1
122,1
124,1
126,1
128,1 | 61
62
63
64
65 | | 66
67
68
69
70 | 111,3 | 115,5
117,2 | 116,8
118,5
120,3 | 119,0
120,8
122,5 | 120,7
122,5
124,3 | 121,9
123,8
125,6 | 123,8 | 124,6
126,4
128.3 | 126,2
128,1 | 127,6
128,9 | 127,7 | 128,0 | 126,5
128,5
130,4
132,3
134,2 | 129,1 | 129,8 | 130,4 | 130,8 | 131,4 | 171 0 | 138,1 | | 130,1
132,1
134,1
136,1
138,1 | 66
67
68
69
70 | | 71
72
73
74
75 | 119,5 | 124,0 | 127,3 | 127,9 | 131,5 | 132,9 | 132,2 | 135,7
137.6 | 135,7 | 136,5 | 137,2 | 137,5 | 138,1 | 138,7 | 139,5 | 140,1 | 140,6 | 141,2 | 139,7
141,7
143,6
145,6
147,6 | 142,0 | | 140,1
142,1
144,1
146,1
148,0 | 71
72
73
74
75 | | 76
77
78
79
80 | 127,6 | 132,5 | 136.5 | 138,5 | 138,7 | 140,2 | 141,4 |
143,2
145,1
146.9 | 145,1 | 146,0 | 146,8 | 147,1 | 147,7 | 148,4 | 149,2 | 149,9 | 150,3 | 151,0 | 149.5
151.5
153.5
155.5
157.4 | 151,9 | | 150,0
152,0
154,0
156,0
158,0 | 76
77
78
79
80 | | 81
82
84
85 | 135,8 | 141,0 | 144,7 | 145,6 | 147,7
149,5
151,3 | 151,1
153,0 | 150,0
152,4
154,3 | 152,5
154,4
156,2 | 154,5
156,4
158,3 | 155,5
157,4
159,3 | 156,3
158,2 | 156,7
158,6 | 157,3
159,2 | 158,0
159,9 | 158,9
160,9 | 159,6 | 160,1 | 160,9 | 159,4
161,4
163,3
165,3
167,3 | 161,7 | | 160,0
162,0
164,0
166,0
168,0 | 81
82
83
84
85 | | 96
87
88
89
90 | 144,0 | 149,5 | 153.4 | 156.3
158.1 | 158,5
160,3 | 160,3 | 161,6 | 163,7 | 165,9 | 165,6 | 167,8 | 166,2 | 166,9
168,8 | 167,6 | 168,6 | 171,3 | 169,9 | 170,7 | 169,2
171,2
173,2
175,1
177,1 | 171,6 | | 170,0
172,0
174,0
176,0
178,0 | 86
87
88
89
96 | | 91
92
93
94
95 | 152,2
153,8 | 158.0 | 162,1 | 165,2
166,9 | 167,5
169,3 | 169.4 | 170,8 | 171,2
173,0
174.9 | 173,4 | 174,5
176,4 | 175,4 | 175,8 | 176,5 | 177,3 | 178,3 | 179,1 | 179,6 | 180,5 | 179,1
181,6
183,6
185,6
186,9 | 181,4 | 182,0 | 180,0
182,0
184,0
186,0 | 91
92
93
94
95 | | 96
97
98
99
100 | 160.4 | 166,5 | 170,8 | 172,3
174,6
175,8 | 174.7
176.5
178.3 | 178,5 | 178,2 | 180,5 | 182,9
184,8
186.6 | 184,0
185,9 | 184,9 | 185,4 | 186,1 | 186,9 | 188,5 | 188,8 | 189,4 | 190,3 | 188,9
190,9
192,8
194,8
196,8 | 191,3 | 191,9 | 190,0
192,0
194,0
196,0
198,0 | 96
97
98
99
100 | Table 1-44 B=50.0 % | | <u> </u> | distanta en estado de la constanta const | unideza en | DAMINE CONT | or the same | | oluje (* species) - | | the state of s | West and the second | denomination of the second | | uld-riverse week | | - | | | | | | 7 | | | | | Janes de Carres C | | | | | |---------------------------------|-------------------------|--|-------------------|------------------------|----------------------|----------------------|-------------------------|----------------------------|--|----------------------|----------------------------|-------------------|-------------------------|----------------------|-------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---|-------------------------|-------------------------|-------------------------|-------------------------|--|-------------------------|---|---|---------------------------------| | nk | 4 | 1 | 5 | | 6 | 7 | • | 8 | 9 | 1 | đ | 12 | 15 | 3 1 | 7 | 19 | 25 | 22 | 25 | 36 | 35 | 46 | 50 | 5 | 65 | 70 | 96 | 110 | k = n | n | | 100 | 163,6 | 169 | , 9 | 174, | 3 <u>ĩ</u> | 77.6 | 180, | 1 18 | 32.1 | 183, | 7 1,8 | 6.1 | 188,5 | 189, | 7 19 | 0.7 | Ĩ91,Ī | 191,8 | 192,7 | 193,8 | 194,6 | 195,3 | 196,2 | 2 19 | 6.8 | 197,2 | 197.8 | | 198,0 | 100 | | 102
104
106
108
110 | 170,2
173,5
176,7 | 2 176
3 186
3 183 | ,7
1,1 | 181,
184,
188, | 3 1 1 3 1 3 | 84,7
88,2
91,8 | 187,
190,
194, | 3 18
9 19
5 19 | 39,4 | 191,
194,
198, | 1 19
8 19
4 20 | 7,3 | 196,1 | 197;
201;
204; | 3 19
1 20
9 20 | 8,3
2,1
6,0 | 198.7
202.6
206.4 | 199,5
203,3
207,2 | 200.4
204.3
208.1 | 201,6
205,5
209,3 | 198,5
202,4
206,3
216,2
214,1 | 203,1
207,0
210,9 | 264.6 | 0 20
9 20
9 21 | 4,7
8,6
2,5 | 205,1
209,1
213,6 | 205,7 | | 202,0
206,0
216,0
214,0
218.0 | 102
104
106
108
110 | | 112
114
116
118
120 | 189,8 | 193
197
200 | .1 | 198,
202,
205, | 7 2 2 2 2 2 2 | 02,5
06,0
09,6 | 205,
208,
212, | 3 20
9 21
5 21 | 7.6
1.2 | 209;
213;
216; | 5 21
1 21
8 21 | 2,2
5,9
9,7 | 215.6
218.8
222.5 | 216.
220.
223. | 3 21
1 22
9 22 | 7,4
1:2
5:1 | 217.9
221.7
225.5 | 218,7
222,5
226,4 | 219:7
223:6
227:4 | 221,0
224,9
228,7 | 221,9 225,8 229,7 | 222,6
226,5
230,4 | 223,0 | 6 22
6 22
5 23 | 4:3
8:3
2:2 | 224,8
228.8
232,7 | 225,5 | 229,9 | 222.0
226.0
230.0
234.0
238.0 | 112
114
116
118
120 | | 122
124
126
128
130 | 202,9 | 210 | ,1 | 216.
219.
223. | 2 2
6 2
1 2 | 20,2
23,8
27,3 | 223,
226,
236, | 3 22
9 22
5 23 | 5,8
9,5 | 227;
231;
235; | 8 23
5 23
2 23 | 6,8
4,6
8,3 | 233:9
237:6
241:4 | 235;
239;
242; | 3 23
1 24
9 24 | 6,5
6,3
4,2 | 237.0 | 237,9
241,8
245,6 | 239.6
242.9
246.7 | 240,4
244,3
248,1 | 241,4 245.3 249,2 | 242,2
246,1
250,0 | 243.3
247.2
251.5 | 3 24
2 24
1 25 | 4,0 | 244,6
248,5
252,5 | 245,3 | 249,7 | 246,6
250,6
254,6 | 122
124
126
128
130 | | 132
134
136
138
140 | 219,3
222,6
225,8 | 227
231
234 | ,7
,1 | 233,
237,
246, | 6 2 | 38,6
41,5
45,1 | 241,
244,
248, | 3 24
9 24
5 25 | 4.0
7.7
1.3 | 246,
249,
253, | 2 24
9 25
6 25 | 9,5
3,2
6,9 | 252,8
256,5
266,3 | 254,
258,
262, | 3 25
1 25
5 26 | 5,6
9,4
3,3 | 256.2
260.0
263.8 | 257,1
261,0
264,8 | 258,3
262,2
266,6 | 259,8
263,7
267,5 | 265,9
264,8
268,7 | 261.7
265,6
269,5 | 262,9
266,8
270,7 | 9 263
3 263
7 273 | 3:7
7:6
1:6 |
264,3
268,2
272:2 | 265,1
269,5
273,5 | 261,6
265,6
269,6
273,5
277,5 | 266.5
2 ⁷ 5.5
2 ⁷ 4.5 | 132
134
136
138
140 | | 142
144
146
148
150 | 235,6
238,9
242,2 | 244
248
251 | ,7
,1
,5 | 251;
254;
258; | 6 25
5 25
6 20 | 55.7
59.3
62.8 | 259,
263,
266, | 4 26
0 26
6 26 | 5,9 | 264;
268;
271; | 6 26
3 27
9 27 | 8,1
1,8
5,5 | 271.7
275.4
279.2 | 273;
277;
281; | 4 27 6
2 27 6
6 28 | 4,7
8,5
2,4 | 275.3
279.1
283.0 | 276.3
285.2
284.5 | 277.6
281.5
285.3 | 279,2
283,1
286,9 | 280,3
284,2
288,1 | 281,2
285,1
289,6 | 282,5
286,4 | 5 283
4 283
4 293 | 3:4 | 284.0
288.0
291.9 | 284,9 | 289.4 | 282.5
286.5
295.5
294.5
298.5 | 142
144
146
148
150 | | 152
154
156
158
160 | 252,0
255,3
258,6 | 261
265
268 | ,7
,1
,5 | 268,
271,
275. | 5 2
9 2
4 2 | 73,5
77.6
86.6 | 277,
281,
284, | 4 28
5 28
6 28 | 0 . 4
4 . 1
7 . 7 | 283,
286,
290, | 5 28
6 29
3 29 | 6.7
6.4
4.1 | 296,6
294,3
298,1 | 292,
296,
300, | 4 293
2 293
5 303 | 3,8
7,7
1,5 | 294,5
298,3
302,1 | 295.6
299.4
303.2 | 296,9
300,8
304,6 | 298,6
302,5
306,3 | 299,8
303,7
307,6 | 300.8
304.7
308.6 | 302,1
306,1
310,0 | 1 363
1 363
3 310 | 7.0 | 363.7
367.7
311.6 | 304:7
308:6
312:6 | 313,2 | 302.0
306.0
310.0
314.0
318.0 | 152
154
156
158
160 | | 162
164
166
168
170 | 268:4
271:6
274:9 | 278
282
285 | .7
.1
.5 | 285.
289.
292. | 9 29
4 29
9 29 | 91,2
94,8
98,3 | 295,0
299,0
302,0 | 4 29
5 36
6 36 | 8,7
2,3
5,9 | 301;
305;
358; | 3 30
0 30
7 31 | 5,3
9,0
2.8 | 309,4
313,2
317,6 | 311;
315;
319; | 4 312
2 316
6 326 | 2:9
6:8
8:6 | 313.6
317.4
321.3 | 314,8
318,6
322,5 | 316,2
320,1
323,9 | 318,6
321,9
325.8 | 319,3
323,2
327.1 | 320,3
324,2
328,1 | 321.8
325.7
329.6 | 3 322
7 326
3 336 | 2:7
6:7
6:6 | 323:5
327:4
331.4 | 324,4 | 321,1
325,1
329,0
333,0
337,0 | 326,5
335,5 | 162
164
166
168
170 | | 172
174
176
178
180 | 284,7
288,0
291,3 | 295
299
302 | ,7
,1
,5 | 303,
306,
310, | 3 30
8 31
3 31 | 59,5
12,6
16,1 | 313,4
317,6
320,6 | 4 31
5 32
6 32 | 6,9 | 319,
323,
327, | 7 32
4 32
1 33 | 3,9
7,6
1,4 | 328,3
332,1
335,8 | 330;
334;
338; | 4 332
2 335
6 339 | 2:1
5:9
9:7 | 332.8
336.6
340.4 | 334.0
337.8
341.7 | 335,5
339,4
343,2 | 337,4
341,3
345,2 | 338,8
342,7
346,6 | 339,9
343,8
347,7 | 341.4 | 342
346
356 | 2:4
6:4
6:3 | 343:2 | 344,2 | 352.8 | 342.0
346.0
350.0
354.0
358.0 | 172
174
176
178
180 | | 182
184
186
188
190 | 301,1
304,4
307,7 | 312
316
319 | ,7
,1
,4 | 320.
324.;
327. | 8 32
2 33
7 33 | 26,8
30,3
33,9 | 331,
335,
338, | 4 33
5 33
6 34 | 5 · 1
8 · 7
2 · 4 | 338;
341;
345; | 1 34
8 34
4 35 | 2,5
6.3
5.0 | 347.2
350.9
354.7 | 349;
353;
357; | 4 35 5
2 35 5
6 35 6 | 1 . 2
5 . 5
8 . 8 | 351,9
355,7
359,6 | 353,2
357,1
360,9 | 354,8
358,7
362,5 | 356,8
360,7
364,6 | 358,3
362,2
366,1 | 359,4
363,3
367,2 | 361.0
364.9
368.9 | 3 362
3 366
3 376 | 2 / 1
6 / 1 | 362.9
366.9
376.8 | 364.5
368.5
371.9 | 365,8
364,7
368,7
372,6
376,6 | 366.0
370.0
374.6 | 182
184
186
188
190 | | 192
194
196
198
200 | 320:7
324:0 | 333
336 | ; 0
; 0
; 4 | 341.
345. | 2 34
7 34
2 35 | 44.5
48.1
51.6 | 353,0
356,0 | 4 35
6 35
6 36 | 5,3
6,9
0,6 | 356;
360;
363; | 5 36
1 36
8 36 | 1,2
4,9
8,6 | 369,8
373,6 | 368,
372,
376, | 4 376
2 374
5 377 | 5,3
4,1
7,9 | 371,1
374,9
378,7 | 372,4
376,3
386,1 | 374:1
378:5
381:8 | 376,2
380,1
384,0 | 377,8
381,7
385,5 | 378,9
382,8
386,8 | 385,6
384,6
388,5 | 381
385
389 | 1 , 8
5 : 7
9 : 7 | 382,6
386,6
396,5 | 383,8
387,8
391,7 | 380,6
384,5
388,5
392,5
396,4 | 386,8 | 192
194
196
198
200 | A = offered random traffic B = probability of loss k = accessibility n = number of trunks | | 327.3 | 5 | 6 | 7 | 8 | | | | | | ł | | | | | 1 | | | | | | | | R | | |------------|-------|-------|---------|---------|---|----------|-------|--------|-------|-------|--------|-------|-------|-------|-------|--------|-----------|-------|-------|---------|----------|-------------|---------|------------|------| | | 327.3 | | | | | 9 | 10 | 12 | 15 | 17 | 19 | 25 | 2.2 | 25 | 36 | 35 | 40 | 50 | 6 ტ | 76 | 90 | 116 | k=n | n | | | 202 | 42,70 | 339,8 | 348.6 | 355,2 | 365,2 | 364,2 | 367,5 | 372.3 | 377,3 | 379.8 | 381,7 | 382,6 | 384,5 | 385.7 | 387,9 | 389,4 | 396,7 | 392,4 | 393.6 | 394.5 | 395.7 | 396,4 | 398,6 | 200 | | | 204 | 330,6 | 343,2 | 352.1 | 358,7 | 363,8
367,4 | 367.9 | 371,2 | 376,0 | 381,1 | 383,6 | 385,5 | 386,4 | 387,8 | 389,6 | 391,7 | 393,3 | 394,6 | 396,3 | 397.6 | 398,4 | 399.6 | 400,4 | 402,6 | 262 | | | 206 | 337:1 | 350,0 | 359.1 | 365.8 | 371.0 | 1375 - 1 | 378,5 | 363.5 | 388.7 | 391.2 | 1393.2 | 394.6 | 395.5 | 397.3 | 399.5 | 484.1 | 482.4 | 484.3 | 485.4 | ARA. T | A 87 . E | A # 10 T | 41 a `a | 204
206 | | | 208 1 | 340,4 | 353,4 | 362.6 | 369.4 | 374.6 | 1378 . 8 | 382.2 | 387.2 | 390.4 | 395 A | 1397.0 | 397.9 | 790.7 | 461.1 | 483.4 | 485.8 | 4 M A . 3 | 448.4 | AMO.A | A 4 0 T | 144 E | 440 8 | 444 | 258 | | | ā | | | | | 378,2 | | | | | | l . | | | | | 1 | | | | | 1 | | | 210 | | | 212
214 | 356.2 | 363,6 | 373.1 | 3/0,5 | 381,8
385,4 | 389.7 | 389,2 | 398.4 | 400,0 | 402,6 | 404,6 | 405,5 | 407,0 | 408.9 | 411,2 | 412,8 | 414,1 | 416,0 | 417:2 | 418,2 | 419,4 | 420.2 | 422,6 | 212
214 | | | 210 | 32312 | 30/10 | 3/0,5 | 383,6 | 389,0 | 1373,4 | 396,9 | 402.1 | 407.5 | 410.1 | 412.3 | 413.2 | 414,7 | 416.6 | 418.9 | 142m.6 | 421.9 | 423.8 | 425.4 | 426.8 | 497.3 | 428 2 | 438 8 | 214 | | | 218 | 3261/ | 3/0:4 | 380,0 | 387,1 | 392,6 | 1397.0 | 400.5 | 405.8 | 411.3 | 413.9 | 416.1 | 417.6 | 418.6 | 420.4 | 422.8 | 1424.5 | 425.8 | 427.7 | 420.8 | 438.6 | 434.3 | 430 4 | 434 0 | 218 | | | | | | | | 396,2 | - | | | | | | | | ~ | | | | | | | ł | | | 226 | | | 222
224 | 366.6 | 380.6 | 397.g | 394,2 | 399,8 | 404,3 | 407,9 | 417.6 | 418,8 | 421,5 | 423,7 | 424,6 | 426,3 | 428,2 | 430,6 | 432,3 | 433,7 | 435,6 | 436,9 | 437,9 | 439,2 | 440.0 | 442.6 | 222 | | | 220 B | 309,0 | 304,0 | 374,0 | 401.4 | 40/.0 | 1411.6 | 415,2 | 428.7 | 426.4 | 429.1 | 1434.3 | 432.3 | 433.9 | 435.9 | 438.3 | 1448.1 | 444.5 | 443.4 | 444.8 | 445 8 | 1447 4 | 449 8 | 450 0 | 224
226 | | | 228 | 3/3/1 | 38/:4 | 397,5 | 464,9 | 410,6 | 1415.2 | 418,9 | 424.5 | 436.2 | 432.9 | 435,2 | 436.1 | 437,8 | 439.8 | 442.2 | 1444.6 | 445.4 | 447.4 | 448.7 | 440.7 | 451.4 | 45. 0 | 45 4 m | 228 | | | 1 | | | | | 414.2 | | | | | | 1 | | | | | 1 | | | | | l | | | 236 | | | 232 | 379,7 | 394,2 | 404.4 | 412.0 | 417,8 | 422,5 | 426,3 | 431,9 | 437,7 | 440,5 | 442,8 | 443.8 | 445,5 | 447,5 | 450,0 | 451,8 | 453,2 | 455,2 | 456,6 | 457,6 | 459,6 | 459,9 | 462,0 | 232 | | | 234
236 | 386.2 | 39/,6 | 407.9 | 415,6 | 421,4 | 426.1 | 429,9 | 435,6 | 441,5 | 444.3 | 446,6 | 447.6 | 449.3 | 451.3 | 453,9 | 455,7 | 457.1 | 459,2 | 466.5 | 461.6 | 462,9 | 463.8 | 466,6 | 234 | | | 238 | 389:5 | 404:4 | 414,9 | 422.7 | 428.7 | 1433.4 | 437.3 | 443.1 | 449.8 | 451.9 | 454.2 | 455.2 | 457.6 | 459.1 | 461.6 | 463.5 | 464.0 | 467.8 | 468.4 | 460 5 | 178 O | 474 8 | 474 6 | 236
238 | | | 240 | 392.7 | 407.8 | 418.4 | 426,2 | 432,3 | 437.1 | 441,0 | 446,8 | 452,8 | 455.7 | 458,1 | 459.1 | 460,8 | 462.9 | 465,5 | 467,4 | 468,8 | 470.9 | 472.4 | 473.4 | 474.8 | 475.7 | 478.6 | 240 | | | 242 | 396.0 | 411,2 | 421,9 | 429,8 | 435,9 | 440,7 | 444,6 | 456.5 | 456,6 | 459,5 | 461,9 | 462,9 | 464,7 | 466,8 | 469,4 | 471,3 | 472,8 | 474,9 | 476,3 | 477.3 | 478,8 | 479.7 | 482.5 | 242 | | | 244 | 399,3 | 414,6 | 425 4 | 433,3 | 439,5 | 444.3 | 448.3 | 454.2 | 468.4 | 463.3 | 465.7 | 466.7 | 468.5 | 476.7 | 473.3 | 475.2 | 476.7 | 478.R | 488.3 | 484.7 | 489.7 | 4 B 72 ' 78 | 484 6 | 244 | | | 248 # | 40518 | 421,4 | 432,3 | 440,4 | 443,1 | 1451,6 | 455.7 | 461.7 | 467.9 | 478.9 | 1473.3 | 474.4 | 476.2 | 478.4 | 481.6 | 1483.6 | 484.5 | 486.6 | 488.4 | 480.2 | AGR.A | 10 a A | 494 8 | 246
248 | | | 250 | 409:1 | 424,8 | 435 + 8 | 444,6 | 450.3 | 1455,3 | 459:3 | 465.4 | 471.7 | 474.7 | 477.1 | 478.2 | 480.0 | 482.2 | 484.9 | 1486.9 | 488.4 | 498.6 | 492.8 | 407.4 | 494.6 | A OR A | 498 m | 256 | | | 1 | 1,636 | 1,099 | 1 : 743 | 1,776 | 1,801 | 1,821 | 1,837 | 1:862 | 1.887 | 1,899 | 1,909 | 1.913 | 1,925 | 1,929 | 1,942 | 1,949 | 1,955 | 1,963 | 1,969 | 1,973 | 1,979 | 1,982 | 2,000 | 1 | | | 300 | 490,9 | 509,8 | 523.6 | 532.8 | 540,3 | 546.3 | 551,2 | 558,5 | 566.0 | 569,7 | 572,6 | 573.8 | 576,9 | 578.7 | 582,6 | 584,3 | 586,1 | 588,7 | 590.5 | 591,8 | 593,5 | 594,7 | 598.0 | 300 | | | 1 | 1,636 | 1,699 | 1,743 | 1,776 | 1.861 | 1,821 | 1,837 | 1,862 | 1,887 | 1,899 | 1,909 | 1,913 | 1,925 | 1,929 | 1.940 | 1,949 | 1,955 | 1,963 | 1,969 | 1,973 | 1.979 | 1,982 | 2,666 | 1. | | | 350 | 572,8 | 594.7 | 610.1 | 621,6 | 6 630,4 | 637.4 | 643,1 | 651,6 | 660,3 | 664,6 | 668,6 | 669,5 | 672,5 | 675.1 | 679,0 | 681,8 | 683,9 | 686,9 | 688,9 | 690,4 | 692.5 | 693,8 | 698.0 | 356 | | | | | | | | 1,861 | | | | | | | | | | | | | | | | | | | 1 | | | 400 | 654,6 | 679,7 | 697,3 | 710,4 | 725.4 | 728.4
 735,0 | 744,7 | 754,7 | 759,5 | 763,4 | 765.1 | 768,0 | 771.6 | 776,0 | 779,2 | 781.7 | 785.1 | 787.4 | 789.1 | 791,4 | 792.9 | 798.0 | 450 | | | 2 | | | | | 1,861 | } | | | | | } | | | | | 1 | | | | | | | | 1 | | | 500 | 818.2 | 849,6 | 871.6 | 887.9 | 9 | 916.5 | 918.7 | 936,8 | 943,4 | 949.4 | 954,3 | 956.4 | 960,0 | 964.5 | 976.6 | 974,5 | 977,1 | 981.4 | 984.3 | 986,4 | 989,3 | 991.2 | 998,0 | 500 | | | 1 | | | | | 5 1,881 | 1 | | | | | 1 | | | | | 1 | | | | | | | | 1 | | | 600 | 981.9 | 1020 | 1046 | 1066 | 1081 | 1093 | 1102 | 1117 | 1132 | 1139 | 1145 | 1148 | 1152 | 1157 | 1164 | 1169 | 1172 | 1178 | 1181 | 1184 | 1187 | 1189 | 1198 | 600 | | | 1 | | | | | 5 1,801 | 1 | | | | | | | | | | 1 | | | | | | | | 1 | | | 700 | 1146 | 1189 | 1226 | 1243 | 3 1261 | 1275 | 1286 | 1303 | 1321 | 1329 | 1336 | 1339 | 1344 | 1350 | 1358 | 1364 | 1368 | 1374 | 1378 | 1381 | 1,385 | 1388 | 1398 | 766 | | | 1. | 1,636 | 1,699 | 1,743 | 1,776 | 5 1,861 | 1.821 | 1,837 | 1,862 | 1,887 | 1,899 | 1,909 | 1,913 | 1,920 | 1,929 | 1,940 | 1,948 | 1,954 | 1,963 | 1,969 | 1,973 | 1,979 | 1,983 | 2,000 | 1 | | | 800 | 1309 | 1359 | 1395 | 142: | 1 1441 | 1457 | 1470 | 1489 | 1559 | 1519 | 1527 | 1530 | 1536 | 1543 | 1552 | 1558 | 1563 | 1570 | 1575 | 1578 | 1583 | 1586 | 1598 | 800 | | | 1 | 1,636 | 1,699 | 1,743 | 5 1.776 | 5 1,801 | 1.821 | 1.837 | 1,862 | 1.887 | 1,899 | 1,909 | 1,913 | 1,920 | 1,929 | 1,940 | 1,948 | 1,954 | 1,963 | 1,969 | 1.973 | 1,979 | 1,983 | 2,000 | 1 | | | 900 | 1473 | 1529 | 1569 | 159 | 8 1621 | 1639 | 1654 | 1675 | 1698 | 1709 | 1718 | 1721 | 1728 | 1,736 | 1746 | 1753 | 1759 | 1767 | 1772 | 1776 | 1781 | 1784 | 1798 | 900 | | | 1 | 1,636 | 1,699 | 1,743 | 3 1.77 | 6 1.861 | 1.821 | 1,837 | 1:862 | 1.887 | 1,899 | 1:909 | 1,913 | 1,920 | 1,929 | 1,940 | 1.948 | 1,954 | 1,963 | 1,969 | 1,973 | 1.979 | 1.983 | 2,000 | 1 | | | 1100 | 1800 | 1869 | 1918 | 3 195 | 3 1981 | 2503 | 2021 | . 2548 | 2575 | 2589 | 2099 | 2104 | 2112 | 2122 | 2134 | 2143 | 2156 | 2159 | 2166 | 2176 | 2177 | 2181 | 2198 | 1100 | Tabl | | 1 | 1,636 | 1,699 | 1:74 | 3 1,77 | 6 1,801 | 1.821 | 1,837 | 1,862 | 1.887 | 1,899 | 1,909 | 1,913 | 1.920 | 1,929 | 1,940 | 1,948 | 1,954 | 1,963 | 1,969 | 1,973 | 1.979 | 1,983 | 2,000 | 1 | 1 - | ## TABELLE 2 Bestimmung des angebotenen Zufallsverkehrs A als Funktion der Belastung Y, der Erreichbarkeit k und der Leitungszahl n ## TABLE 2 Determination of the offered random traffic A as a function of the carried traffic Y, the accessibility k and the number of trunks n ## Parameter: - a) Accessibility Erreichbarkeit - b) Number of Trunks Leitungszahl - c) Offered Random Traffic Angebotener Zufallsverkehr - k = 6, 8, 10, 15, 20, 30, 50, 80, 110, k=n - n = 1, 2, ... 30, 32, ... 110, 115, ... 210 - A = 1, 2,...50, 52,...120, 125,...190, 200 Erl - How to use the table - Ablesemethode | | Y in Erl k=10 | | |-----|--------------------|---| | An | 1 · · · n · · · 21 | 0 | | 1 | | | | • | • | | | • | . | | | A | Y , | | | • | | | | • | • | | | 200 | | | | | | | ## Contents: Inhalt: | k | Table | |-----|-------| | 6 | 2-02 | | 8 | 06 | | 10 | 10 | | 15 | 14 | | 20 | 18 | | 30 | 22 | | 50 | 26 | | 80 | 29 | | 110 | 31 | | k=n | 32 | k = 6 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 6 | A n | 1 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |----------------------------|-----|---|---|---|---|----------------------|----------------------|---|---|------|------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---|----------------------|----------------------|----------------------|----------------------|--|--------------------------------------|----------------------|----------------------|----------------------|----------------| | 1
2
3
4
5 | | | | [| 2,84
3,53 | 3.75 | 2,96 | 2,98 | 3 2.99
3,93
3 4,79 | 3.96 | 3,98 | | | 4,98 | 4,99 | | | | ر المعادل المادي ا
المادي المادي الماد | 12 | | | | م معرف الماري المار | | | | | | | 6
7
8
9 | | | | | 4,68
4,88
5,64 | 5.43
5.64 | 9,55
9,90
6,18 | 5,88
6,36
6,65 | 5,53
6,14
6,65
7,06
7,39 | 6.36 | 6,53
7,17
7,72 | 6,66
7,37
7,98 | 6.75
7.52
8.19 | 6,83
7,64
8,37 | 6.88
7.74
8.52 | 6,91
7,81
8,63 | 6,94
7,86
8,72 | 6,96
7,95
8,79 | 6,97
7,93
8,84 | 7.95 | 7,96 | 7,97 | 8.95 | 8.96 | 8,97 | 8.98
9.95 | 8,98
10,6 | 10,0 | 10 | | 11
12
13
14
15 | | | | | 5,33
5,39
5,44 | 6,14 | 6,72
6,84
6,94 | 7,34
7,56
7,63 | 7,67
7,91
8,16
8,27
8,41 | 8,42 | 8,89
9,18
9,42 | 9,32
9,65
9,93 | 9,76
16,1
16,4 | 10,0
10,5
10,8 | 16,4
16,8
11,2 | 10.6 | 10,9
11,4
11.9 | 11,1 | 11.2 | 11.4 | 11.5 | 11,6 | 11.7 | 11.7 | 11.8 | 12.7 | 11.9
12.8 | 11.9 | 11 | | 16
17
18
19
20 | | | | | 5,56
5,59
5,61 | 6.38
6.42
6.46 | 7.17
7.23
7.28 | 7,92
8,00
8,00 | 8,53
8,64
8,73
8,81
8,88 | 9,32 | 16.5
16.1
16.2 | 16,6
16,7
16,9 | 11.1
11.3
11.5 | 11.7
11.9
12.1 | 12,2
12,4
12,7 | 12.7
12.9
13.2 | 13,1 | 13,5
13,9
14,2 | 13.9
14.3
14.6 | 14,7 | 14,6
15,6
15,4 | 14,9
15,3
15,8 | 15.1 | 15,4
15,9
16,4 | 15.6
16.2
16.7 | 15.8
16.4
17.6 | 16.6
16.6 | 16.1 | 16 | | 21
22
23
24
25 | | | | | مدسردر
سدد د | | | | | | مستندن مستدر در د
ساخت با مدد م | | 11.9 | 12.6
12.7
12.8 | 13,2
13,4
13,5 | 13,8
14,0
14,1 | 14,4
14,6
14,7 | 14,9
15,1
15,3 | 15.5
15.7
15.9 | 16.0
16.2
16.5 | 16.4
16.7
17.6 | 16.9
17.2
17.5 | 17.3
17.7
18.6 | 17,7
18,1
18,4 | 17,7
18,1
18,5
18,8
19,2 | 18.5
18.9
19.3 | 18,8
19,2
19,6 | 19.1
19.6
20.0 | 19
19
20 | | 26
27
28
29
30 | | | | | | | | | | | | | | 13,6 | | 14,5 | 15,2
15,3
15,4 | 15.8
16.5
16.1 | 16:4
16:6
16:7 | 17.1
17.2
17.4 | 17.6
17.8
18.0 | 18,2
18,4
18,6 | 18:7
19:0
19:2 | 19,3
19,5
19,7 | 19,5
19,8
20,0
20,3
20,5 | 25,2
25,5
25,8 | 20,7
21,6
21,3 | 21.1
21.5
21.8 | 21
21
22 | | 31
32
33
34
35 | | | | | منطق المستحد
المراجع المستحد المستحد المراجع المستحد | | | | ر ده مستورد
ماراند مستورد
ماراند رساوان
ماراند مراسوان | | | | | | jan-ja
Jana | | 15.6 | 16,4 | 17:1
17:2 | 17,8
17,9
18,6 | 18.4
18.6
18.7 | 19,1
19,2
19,4 | 19,7
19,9
20,6 | 26,3
26,5
26,6 | 20,7
20,9
21,1
21,2
21,4 | 21.5
21.7
21.8 | 22,6
22,2
22,4 | 22,5
22,8
23,6 | 23
23
23 | | 36
37
38
39
40 | 18,2 | 19,0 | 19,7
19,8
19,9 | 20.4
20.5
25.6 | 21,1
21,2
21,3 | 21,6
21,7
21,8
22,0
22,1 | 22.5
22.5
22.6 | 23,6
23,1
23,3 | 23,6
23,7
23,9 | 24 | | 41
42
43
44
45 | | | | | | | | مسترده در | | Æ. | | | | | á. | | | | | | | | 20.8 | 21.6 | 22,2
22,3
22,4
22,5
22,6 | 23,6
23,1
23,2 | 23,7 23,8 23,9 | 24.3
24.5
24.6 | 25
25
25 | | 46
47
48
49
50 | | | | | | | | | |
 | | | | | | | | | | | | | | مهومین
درمدید ۲ | | 24,1
24,2
24,3 | 24,9 | 25,
25, | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | 70 | 32 | | 34 | 36 | | 38 | 45 | 4 | 2 | 44 | | 46 | 48 | 5 | 6 | 52 | 54 | | 56 | 58 | 66 | | 62 | 64 | 66 | | 68 | 76 | 72 | 7 | 4 | 76 | 78 | 80 | 82 | 84 | 4 | 86 | 88 | 90 | |----------------------------|--------------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------|----------------------------------|-----|-------------------|---|--------------------------|-------------------|------------------------------|---------|----------------------|--------------------------|--------------------------|-------------------|------------------------------|-----------------------|-------------------|--------------------------|----------------------|-------------------|---|----------------------|----------------------|-----|----------------------|-----|----------------------|------|-------------------|--|----------------|-----|----------------------|------|-------------------| | 1
2
3
4
5 | 6
7
8
9
10 | 11,6
11,9
12,9
13,8 | 9 18
9 18
3 18 | 2,6 | 12,
13, | 9 1
9 1 | 3,9 | 14,6 | 14 | | 15, | 6 1 | 5,6 | 17
18
19 | 15.6
16.4
17.2
18.6
18.7 | 4 10
2 13
5 10 | 5.6
7.4
8.2 | 16,
17,
18, | 7 1
6 1
4 1 | 6,8
7,7
8,6 | 16,8
17,8
18,7 | 3 16
3 17
7 18 | 7.8 | 15. | 9 1 1 1 1 1 A | 6,9
7,9 | 16. | 17
17
18 | . 9 | 17,9 | 18. | 9 1 | g.9 | 19.6 | 20.1 | 6 2 | 6,6 | | | | | | | | | | | | | | | | | | | 21
22
23
24
25 | 19.9
20.5
21.0 | 9 2(
5 2(
5 2) | 3,3
3,9
1,5 | 20, 21, 22, | 72
42
62 | 1,5
1,7
2,4 | 21.9 | 2 21 | 2.2 | 21, | 9 2 2 | 1,6
2,5
3,3 | 21, | 7 21
5 22
5 23 | 7 7 9 | 21.8 | 21, | 8 2
8 2
7 2 | 1:9 | 21.5 | 20,9 | 9 2 | 1,9 | 21,9 | 21, | 9 2 | 22,9 | 98.0 | 9.7 |) 23
) 24 | . 9 | 24,9 | | | | | | | | | | 26
27
28
29
30 | 21.9
22.3
22.7
23.1 | 9 23
3 23
7 23
1 23 | 2,6
3,6
3,5
3,9 | 23,
23,
24,
24, | 1 2
6 2
1 2
6 2 | 3.6
4.2
4.7
5.2 | 24.6 | 24 25 25 25 26 26 | 3.6 | 24. | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4,9
5,6
6,4
7,6 | 25, | 25
26
3 26
3 27 | .3 | 29.4
26.2
27.0 | 25,
26,
27,
28, | 5 2
4 2
2 2 | 5,6
6,5
7,3 | 25.7
26.6
27.5
28.3 | 25,1
26,0
27,1 | 7 2 2 2 2 2 | 5,8
6,7
7,6
8.5 | 29,8
26,7
27,7 | 25,
26,
27, | 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 29,9
26.8
27.8 | 25.9
26.8
27.8 | 25. | 9 25
9 26
3 27 | , 9 | 25.9
26.9
27.9 | 26,9 | 26.
27. | 26.5 | 27 | 9 2 | | 28.9 | 28, | | 31
32
33
34
35 | 25.7 | 7 20
7 20
3 21
6 21 | 4,6 | 25,
25,
26,
26, | 4 2
8 2
1 2
5 2 | 6,1
6,5
6,9
7,3 | 26,8
27,2
27,6 | 2 27
2 27
3 28 | 7.8 | 27,
28,
28, | 8 2 2 2 3 | 8,3
8,9
9,4 | 28,
29,
29, | 7 29
3 29
9 36
3 36 | .07 | 29.3
30.0
30.7 | 29,
30,
31, | 6 2
3 3
6 3
7 3 | 9,8
5,6
1,3 | 30.6 | 36,: | 1 3 3 3 3 5 3 | 6,3
1,1
1,9 | 30.4 | 36,
31,
32, | 5000 | 50.6
51.5
52.3 | 30.6 | 30. | 7 36 51 52 52 | .7 | 35.8
31.7
32.6 | 36.8 | 36,
31,
32, | 3 30.6
3 31.6
7 32.6
7 33.7
3 34.6 | 36 | 9 3 | 10.9 | 30,9 | 30, | | 36
37
38
39
40 | 25,5 | 1 20
3 20
5 20
7 20 | 6,1
6,3
6,6
6,8 | 27:
27:
27:
27: | 1 2
4 2
6 2
9 2 | 8,5
8,3
8,6
8,9 | 28,8 | 2 2 9
1 2 9
5 3 6
3 3 6 | 9.6 | 30, | 3 3 3 3 3 3 | 6.9
1.4
1.8
2.2 | 31, | 9 32
5 32
9 33 | . 5 | 32,5 | 33,
33,
34, | 0 3
6 3
1 3
7 3 | 3,4
4,6
4,6 | 33,7 | 34.
34.
35. | 0 3
7 3
4 3 | 4,3
5,6
5,7 | 34.9
39.3
36.0 | 34,
35,
36, | 7 3 3 3 3 3 | 34,9
58,7
36,8 | 35,6 | 35, | 2 35
5 36
3 37 | .3 | 35,4
36,2
37,1 | 35,4 | 35,
36,
37, | 35.6
36.5
37.6
38.3 | 35
36
37 | 6 3 | 15.7
16.6
17.9 | 39.7 | 35, | | 41
42
43
44
45 | 26.0
26.2 | 5 2 2 2 4 2 5 | 7,2
7,4
7,6
7,8 | 28,
28,
28,
28, | 3 2
5 2
8 3 | 9,4
9,6
9,8 | 30,6
30,6
30,9 | 4 31
5 31
9 31 | 1.6 | 32, | 2 3 3 3 3 3 3 | 3.6 | 33:
34:
34: | 7 34
1 34
3 35
3 35 | . 9 | 39,1
39,5
36,6 | 35,
36,
36, | 7 3
2 3
6 3
1 3 | 6,3
6,8
7,3 | 36,8
37,3
37,8 | 37,
37,
38, | 2 3 3 4 3 9 3 | 7,7 | 38.7 | 38,
39, | 4 3 7 7 7 7 | 38,7
39,4
40,6 | 39,6 | 39, | 2 39
9 46
7 46 | . 2 | 39,6
46,4
41,2 | 39,8 | 39,
46,
41, | 40.9
40.9
41.9
42.9 | 45 | 1 6 | 10,2 | 40.3 | 40, | | 46
47
48
49
50 | 26.5
26.5
27.5 | 8 2
9 2
1 2
2 2 | 8,1
8,2
8,4
8,5 | 29, 29, 29, | 3 3
5 3
6 3
8 3 | 0,5
0,7
0,8 | 31,6
31,6
32,6 | 5 32
8 32
8 33
2 33 | 2.6 | 33, | 6 9 9 9 9 | 4.6
4.9
5.1 | 35,
35,
36, | 5 36
8 36
1 37
4 37 | 3 7 6 3 | 37.2
37.5
37.9 | 37,
38,
38, | 93373 | 8,6
9.0
9.4 | 39.3 | 39,
7 40,
1 40, | 9 4 4 8 4 | 1.0 | 41.5 | 41, | 5 6 6 | 41.9 | 42.3 | 42, | 7 43
3 43
6 44 | .7 | 43,4
44.6
44.7 | 43.6 | 43, | 9 44.5
6 44.6
3 45.6
5 46.3
7 47.6 | 44 | 3 4 | 14.5 | 44.6 | 44,
45,
46, | k = 6 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 6 | \sqrt{n} | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 68 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 | 96 | |---------------------------------|--------------|------|----------------------|----------------------|------|--------------------------------------|----------------------|----------------------| | 52
54
56
58
60 | 27,5
27,7 | 29,1 | 30,5
30,7
30,9 | 31,8
32,6
32,3 | 33,6 | 34,3 | 35,4
35,8
36,1 | 36,5
36,9
37,3 | 37,6
38,1
38,5 | 38,7
39,1
39,6 | 39,7
46,2
46,7 | 40,6
41,2
41,7 | 41,5
42,1
42,7 | 42,4
43.0
43.6 | 43,2
43,9
44,5 | 44,7 | 44.7
45.5
46.2 | 45,4
46,2
47.6 | 46,1 | 46,7
47,6 | 47.3 | 47,8
48,8
49.8 | 48,3 | 48,8 | 49,3
56,4 | 49,7
56,9 | 50.0
51.3 | 49,6
56,4
51,7
52,9
54,1 | 50.7
52.1 | 51.6
52.4
53.7 | | 62
64
66
68
70 | | | 31,3 | 32,9 | 34,3 | 35,7
35,9
36,1 | 37,6
37,2
37,5 | 38,3
38,6
38,8 | 39,5
39,8
40,1 | 46,7
41,1
41.4 | 41,9
42,3
42,6 | 43,6
43,4
43,8 | 44,5
44,9 | 45,2
45,6
46,1 | 46,2
46,7
47,1 | 47,2 | 48,1
48,7
49,2 | 49,6
49,6
50,2 | 49,9
50,5 | 50.7
51.4
52.0 | 51,6
52,3
52,9 | 52.3
53.1
53.8 | 53,1
53,8
54,6 | 53.8
54.6
55.4 | 54,4
55,3 | 55,6
56,6
56.8 | 55,7
56,6
57.5 | 55,2
56,2
57,2
58,1
59,6 | 56,8
57,8
58,8 | 57.3
58.3
59.3 | | 72
74
76
78
80 | | | | | | 36,5 | 38,1 | 39,5
39,7
39,9 | 40,9
41,1
41,3 | 42,2
42,4
42,7 | 43,5
43,8
44,6 | 44,8
45,1
45,3 | 46,0
46,3
46,6 | 47.2
47.5
47.9 | 48,4
48,7
49,1 | 49,5 | 50,6
51,6
51,4 | 51,7
52,1
52,5 | 52,7
53,2
53,6 | 53.7
54.2
54.7 | 54,7
55,2
55,7 | 55,6
56,2
56,7 | 56,6
57,2
57,7 | 57,4
58,1 | 58,3
58,9
59,6 | 59,1
59,8 | 59,9
65,6 | 59,9
60,7
61,4
62,1
62,8 | 61,4
62,2
62,9 | 62,1
62,9
63,7 | | 82
84
86
88
90 | | | | | | | | | 41.7 | 43,3 | 44,7
44,9
45,1 | 46,1
46,3
46,5 | 47,4
47,6
47,9 | 48.7
49.5
49.2 | 50,0
50,3
50,5 | 51,5
51,5 | 52,5
52,8
53,1 | 53,7
54,6
54,3 | 54,8
55,2
55,6 | 56.6
56.4
56.7 | 57.1
57.5
57.9 | 58,2
58,6
59.6 | 59.2
59.7
60.1 | 65.3
65.7
61.2 | 61,3
61,8
62,3 | 62,2
62,8
63,3 | 63,2
63,7
64,3 | 63,5
64,1
64,7
65,2
65,8 | 65,6 | 65,8
66,5
67,1 | | 92
94
96
98
100 | | | | | | | | | | | | 46,9
47,1 | 48,5 | 49,9
50,1
50,3 | 51,3
51,5
51,7 | 52,6
52,8
53,1 | 53,9
54,2
54,4 | 55,2
55,5
55,7 | 56,5
56,8
57,6 | 57.7
58.6
58.3 | 59,6
59,3 | 66,1
66,5
66,8 | 61.3
61.7
62.0 | 62.5
62.8
63.2 | 63.6
64.6
64.4 | 64,7
65,1
65,5 | 65.7
66.2
66.6 | 66,8
66,8
67,2
67,7
68,1 | 67,8
68,3
68,8 | 68,8
69,3
69,8 | | 102
104
106
108
110 | | | | | | | | | | | | | | | | 53,7
53,9 | 55,1
55,3
55,5 | 56,4
56,7
56,9 | 57,8
58,6
58,2 | 59,1
59,4
59,6 | 60.4
60.7
60.9 | 61.7
62.6
62.3 | 63,0
63,3
63,6 | 64.2
64.5
64.8 | 65,4
65,8
66,1 | 66,6
67,0
67,3 | 67,8
68,2
68,5 |
68,5
68,9
69,3
69,7
70,0 | 76.1
76.5
76.8 | 71,2
71,6
72,0 | | 112
114
116
118
120 | | | | | | | | | | | | | | | | | and the second | | 58,9
59,6 | 60.3
60.5
60.6 | 61.6
61.8
62.1 | 63,6
63,2
63,4 | 64.3
64.6
64.8 | 65.6
65.9
66.1 | 66,9
67.2
67,5 | 68,2
68,5
68,8 | 69.5
69.8
76.1 | 70,4
70,7
71,0
71,3
71,6 | 71.9
72.2
72.6 | 73,1
73,4
73,8 | | 125
130
135
140
145 | 62,7 | 64.1 | | 67,4 | 68,8 | 70.2
70.7 | 71,6
72,1
72,6 | 72,3
72,9
73,5
74,6
74,5 | 74,2
74,8
75,4 | 75,5
76,2
76,8 | | 150
155
160
165
170 | 76,4 | 77,8
78,3 | | 175
180
185
190
200 | Table 2-05 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | A A | 92 94 96 98 166 162 164 166 168 116 | 119 120 | |---------------------------------|--|-------------------------------------| | 52
54
56
58
60 | 49.8 50.0 50.2 50.4 50.5 50.7 50.8 50.9 51.0 51.1 51.3 51.5 51.7 52.0 52.1 52.3 52.5 52.6 52.7 52.8 52.7 53.0 53.3 53.5 53.7 53.9 54.3 54.4 54.6 54.7 54.4 54.7 55.0 55.2 55.5 55.7 55.9 56.1 56.2 55.4 55.7 56.1 56.4 56.7 56.9 57.2 57.4 57.6 57.8 | 53.3
54.9 55.1
56.6 56.9 | | 62
64
66
68
70 | 56,6 57,0 57,4 57,7 58,1 58,4 58,7 58,9 59,2 59,4 57,7 58,2 58,6 59,0 59,4 59,7 60,1 60,4 60,6 60,9 58,9 59,3 59,8 60,2 60,7 61,0 61,4 61,7 62,0 62,3 59,9 60,4 60,9 61,4 61,9 62,3 62,7 63,1 63,4 63,7 65,1 60,9 61,5 62,0 62,5 63,0 63,5 63,9 64,3 64,7 65,1 | 61.5 61.9
63.5
64.5 65.1 | | 72
74
76
78
80 | 61,9 62,5 63,0 63,6 64,1 64,6 65,1 65,5 65,9 66,3 62,8 63,4 64,0 64,6 65,2 65,7 66,2 66,7 67,1 67,6 63,6 64,3 64,9 65,6 66,2 66,7 67,3 67,8 68,3 68,7 64,4 65,1 65,8 66,5 67,1 67,7 68,3 68,8 69,4 69,9 65,2 66,0 66,7 67,4 68,0 68,7 69,3 69,9 70,4 70,9 | 68.6 69.4
69.8 70.7
71.0 72.0 | | 82
84
86
88
90 | 66,0 66,7 67,5 68,2 68,9 69,6 76,2 70,8 71,4 72,6 66,7 67,5 68,2 69,0 69,7 70,4 71,1 71,7 72,4 73,0 67,3 68,2 69,0 69,8 70,5 71,2 71,9 72,6 73,3 73,9 68,0 68,8 69,7 70,5 71,3 72,0 72,8 73,5 74,2 74,8 68,6 69,5 70,3 71,2 72,0 72,8 73,6 74,3 75,0 75,7 | 74.4 75.6
75.4 76.7
76.4 77.8 | | 92
94
96
98
100 | 69,2 70,1 71,0 71,9 72,7 73,9 74,3 78,1 78,8 76,5 69,7 76,7 71,6 72,5 73,4 74,2 78,0 78,8 76,6 77,3 70,3 71,3 72,2 73,1 74,0 76,7 76,5 77,3 78,1 70,8 71,8 72,8 73,7 74,6 75,9 76,4 77,2 78,0 78,8 71,3 72,3 73,3 74,3 75,2 76,1 77,0 77,9 78,7 79,6 | 79.1 88.7
79.9 81.6
88.7 82.5 | | 102
104
106
108
110 | 71,8 72,8 73,8 74,8 75,8 76,7 77,6 78,5 79,4 86,2 72,2 73,3 74,3 75,3 76,3 77,3 78,2 79,1 86,6 86,9 72,7 73,7 74,8 75,8 76,8 77,8 78,8 79,7 86,6 81,5 73,1 74,2 75,3 76,3 77,3 78,3 79,3 86,3 81,2 82,7 73,5 74,6 75,7 76,8 77,8 78,8 79,8 86,8 81,8 82,7 | 83.0 84.9
83.7 85.7
84.3 86.4 | | 112
114
116
118
120 | 73,9 75,0 76,1 77,2 78,3 79,3 80,3 81,3 82,3 83,3 74,3 75,4 76,5 77,6 78,7 79,8 80,8 81,9 82,9 83,8 75,6 75,5 76,2 77,3 78,5 79,6 80,2 81,3 82,3 83,4 84,4 75,0 76,2 77,3 78,5 79,6 80,7 81,8 82,8 83,8 84,9 75,3 76,5 77,7 78,8 80,0 81,1 82,2 83,3 84,3 85,4 | 86.2 88.4
86.8 89.0
87.3 89.7 | | 125
130
135
140
145 | 76,1 77,3 78,6 79,7 86,9 82,1 83,2 84,3 85,4 86,5 76,8 78,1 79,3 86,6 81,8 83,6 84,2 85,3 86,5 87,6 77,5 78,8 86,1 81,3 82,6 83,8 85,6 86,2 87,4 88,6 78,1 79,4 86,8 82,6 83,8 84,6 85,8 87,1 88,3 89,5 78,7 86,6 81,4 82,7 84,6 85,8 87,8 87,1 88,3 89,5 | 96.3 92.9
91.4 94.1
92.4 95.2 | | 150
155
160
165
170 | 79,2 80,6 82,0 83,3 84,6 86,0 87,3 88,6 89,8 91,1 79,7 81,1 82,5 83,9 85,2 86,6 87,9 89,2 90,5 91,8 80,2 81,6 83,0 84,4 85,8 87,1 88,5 89,8 91,2 92,5 83,5 84,9 86,3 87,7 89,1 90,4 91,8 93,1 85,3 86,8 88,2 89,6 91,0 92,3 93,7 | 94,9 98.0
95,7 98.8
96,4 99.6 | | 175
180
185
190
200 | | 98,2 182 | Table 2-06 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | 1 | 2 | 3 | 4 | 1211-1211-141-14 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |----------------------------|-----------------------|---|---|---|------------------|---|------------|---|----------------------|--|----------------------|----------------------|--|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---|--------------------------------------|--|------------------------------| | 1
2
3
4
5 | | | | | | | | | 3,88 | | 3,97 | | 3.99 | 4,98 | 4,99 | | 525 | | | | | | | | | | | اران در | | ر در استان استان استار
در استان ا | رده سندرر | | 6
7
8
9 | | | | | | | | | 5,75
6,12
6,45 | 6,07
6,53
6,89 | 6,33
6,87
7,31 | 6,53
7,15
7,67 | 6,68
7,38
7,97 | 6,78
7,55
8,22 | 6,86
7,69
8,42 | 7,79
8,58 | 5,98
6,94
7,86
8,70
9,45 | 7,91
8,79 | 7,94
8,85 | 8,90 | 8,93 | 8,96 | 8,97
9,93 | 8,98
10,6 | 16,6 | 16,6 | | | | | | | 11
12
13
14
15 | | | | | | | E | 13 - Jan - J.
- 15 - Jan -
- 15 - Jan - | 6,93
7,64
7,13 | 7,58
7,73
7,86 | 8,18
8,37
8,93 | 8.73
8.96
9.16 | 9,22
9,51
9,75 | 9,66
10,0
10,3 | 10.1
10.4
10.8 | 10.4
16.8
11.2 | 10.1
10.7
11.2
11.6
12.0 | 11,6
11,5
12,6 | 11.2
11.8
12.3 | 11.4
12.6
12.6 | 11.5
12.2
12.9 | 11.6
12.4
13.1 | 11.7
12.5
13.3 | 11.8
12.6
13.4 | 11.8
12.7
13.5 | 11,9
12,8
13,7 | 11,9 | 11,9
12,9
13,8 | 12,9 | 12,9 | 13,9 | | 16
17
18
19
20 | | | | | | | | | 7.33
7.38
7.42 | 8,12
8,19
8,24 | 8,88
8,96
9,63 | 9.66
9.76
9.79 | 16,3
16,4
16,5 | 16.9
11.1
11.2 | 11.5
11.7
11.8 | 12,1
12,3
12,5 | 12.3
12.6
12.9
13.1
13.3 | 13.4
13.7 | 13.6
13.9
14.2 | 14.6 | 14.4 | 14,7
15,2
15,6 | 15.1
15.6
16.0 | 15,4
15,9
16,4 | 15.6
16.2
16.7 | 15,8
16,5
17,6 | 16,0 | 16,2
16,9
17,5 | 16,4
17,1
17,8 | 16,5
17,3
18,6 | 16,6
17,4
18,1 | | 21
22
23
24
25 | | | | | | | | | | January en | | , | 16.7 | 11.5 | 12.3
12.4
12.5 | 13,6
13,1
13,2 | 13,5
13,6
13,8
13,9
14,6 | 14.3 | 14,9
15,1
15,2 | 15.5
15.7
15.9 | 16.6
16.2
16.5 | 16.5
16.8
17.0 | 17.6
17.3
17.6 | 17,5
17,8
18,1 | 18,5
18,3
18,6 | 18,4 | 18,8 | 19,1
19,6
26,6 | 19,5
19,9
20,4 | 19.8
25.3
25.7 | 20,1
20,6
21,1 | | 26
27
28
29
30 | | | | | | | | | | | | | | | | 13,4 | | 14.9 | 15,6
15,8
15,9 | 16.3
16.4
16.6 | 17.6
17.1
17.3 | 17.6
17.8
17.9 | 18.2
18.4
18.6 | 18.8
19.0
19.2 | 19.4 | 19.9
20.2
20.4 | 20,5
20,7
21,6 | 21,5
21,5 | 21,1
21,5
21,8
22,6
22,3 | 21.9
22.2
22.6 | 22,3
22,7
23,0 | | 31
32
33
34
35 | | | مارد میشود.
مارد میشود.
مارد میشود این مارد
مارد میشود این این مارد م | | | | 771
771 | | | | | j. | از استان که دست
میسی برای در
در استان این استان
در استان این استان
در در این استان این استان | | | | Ž. | | 16,6 | 16,8
16,9
17,6 | 17,5
17,6
17,7
17,8 | 18,2
18,3
18,4
18,5 | 18,9
19,6
19,1
19,2 | 19,5
19,7
19,8
19,9 | 20,2
20,3
20,5
20,6 | 26.8
21.6
21.1
21.3 | 21.4
21.6
21.8
21.9 | 22.0
22.2
22.4
22.6 | 22,6
22,8
23,0
23,2
23,4 | 23,1
23,3
23,6
23,8 | 23,6
23,9
24,1
24,4 | | 36
37
38
39
40 | 18,7
18,8 | 19,5 | 26,3
26,4
26,5 | 21.0
21.1
21.2 | 21.7
21.8
21.9 | 22,4
22,5
22,6 | 23,1
23,2
23,3 | 23,5
23,7
23,9
24,6
24,1 | 24,5
24,5
24,7 | 25,5
25,1
25,3 | | 41
42
43
44
45 | سره اسر
مراجعه کار | | | | | | i. | | | | | | | | | | | | | | | ŝ | | 20,6 | 21.5 | 22,2 | 22,9
23,6
23,1 | 23,7
23,8
23,9 | 24,3
24,4
24,5
24,6
24,7 | 25.1
25.2
25.3 | 25,8
25,9
26,0 | | 46
47
48
49
50 | 23,3 | 24,1 | | 25,6 | 26,3
26,4
26,5 | Y in Erl k = 8 K = 8 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | A D | 32 | ` | 34 | 36 | 3 | 8 | 46 | 42 | 2 | 44 | 4 | 6 | 48 | 5 | 6 | 82 | 5 | 4 | 56 | 56 | | 66 | 62 | 64 | | 66 | 68 | 78 | | 72 | 74 | 76 | 7 | 3 | 80 | 82 | 84 | 8 | 6 | 88 | 90 | |----------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------------------
-------------------|--------------------------------------|----------------------|--------|----------------------|------------------------------|-----------------|----------------------|---------------------------------------|-------------------|-------------------|------------------------------|-------------------|----------------------|----------------------|-------------|------------------------------|------------------------------|----------------|-----|----------------------|----------------------|---|---------------|----------------------|------|-----|----------------------|----------------|----------------------|------|-------------------|----------------------|------|-----|---| | 1
2
3 | 4
5 | 6
7
8 | 16 | 1 | | | | | | | | | | | | | | 11
12
13
14
15 | 13,6
13,9
14,9 | 9 1 | | 15,6 | ı | 16
17
18
19
20 | 15.8
16.7
17.6
18.4 | 7 16
6 13
4 16 | 5,8
7,7
8,6 | 16,9
17,8
18,7 | 16 | 7,9 | | 18 | 9 | 18,9
19,9 |)
) 19 | , 9 | 20,6 | 1 | 21
22
23
24
25 | 26,5 | 5 20
1 2:
7 2: | 3,9
1,6
2,2 | 21,2 | 2 21 | ,5
2,3 | 20,7
21,6
22,5
23,3
24,1 | 21
22
23 | 7 | 21.6
22.7
23.6 | 21
22
23 | .8 | 21,9 | 21 | 9 | 23, | 22 | , 9 | 23,9 | 24, | 9 | 26
27
28
29
30 | 23,0 | 1 2
6 2
9 2 | 3,9:
4,3
4,8 | 25,0 | 5 25
5 25
5 26 | 5,6 | 26,1
26,7 | 25
26
27 | 8 5 | 26.9
26.9
27.6 | 26
27
3 27 | .1 | 26,5 | 5 26
5 27
2 28 | 7.5 | 26.
27.
28. | 7 26
6 27
5 28 | .8
.7 | 26.8
27.8
28.7 | 26
27
28 | 8 | 26.9
27.9
28.8 | 26,9
27,9
28,9
29,8 | 27 | 9 2 | 8.8 | 28,9 |)
) 29, | 9 | | | | | | | | | | | | | | 31
32
33
34
35 | 24,0
24,9
25,1 | 6 2
9 2
2 2
5 2 | 5,5
5,9
6,2 | 26,
26,
27,
27, | 7 27
L 21
5 21 | 7,1
7,5
3,6 | 27,8
28,3
28,7
29,2 | 28
28
29
29 | .4 | 28,9
29,9
30,6 | 9 29
3 36
3 36
3 31 | 3.6 | 29.7
36,4
31,6 | 7 30
6 30
9 31
6 32 | 3.8 | 30, | 2 36
6 31
7 32
5 32 | . 2 | 30,5
31,4
32,2 | 30
31
32
33 | 6 5 | 36,7
31,6
32,9 | 30,8 | 30, | 8 3 | 56,9
51,8
52,8 | 30,9 | 30, | 9 3 9 3 8 8 9 | 1,9 | 32.9 | 32: | 9 32 | . o : | 33.9 | 34,9 | | | | | | | 36
37
38
39
40 | 25,9
26,2 | 9 2
2 2
4 2
6 2 | 7.0
7.3
7.5
7.8 | 28,
28,
28, | 1 29
4 29
5 29 | 9,6 | 29,9
30,3
30,6
30,9 | 36
31
31
31 | 8 25 9 | 31,9 | 32
32
33
33 | .7 | 32.8 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3.3 | 33, | 8 34
4 34
6 35
6 36 | ,2 | 34,5
35,3
35,9 | 34
35
36
37 | 8
6
3 | 35,1
35,8
36,6 | 35,2
36,1
36,9 | 35
36
37 | 2 3 | 35,5
36,4
37,2 | 35.0
36.5
37.0 | 35,
36,
37, | 7 6 3 5 6 3 | 55.7
56.7
57.6 | 35.8 | 35, | 8 35
8 36
7 37 | 9 8 8 | 35,9
36,8
37,8 | 35,9 | 35. | 9 36
9 37 | ,93 | 7.9 | 710 | | 41
42
43
44 | 26,9
27,1
27,1 | 9 2
1 2
2 2
4 2 | 8,2
8,3
8,5
8,7 | 29, | 3 3 (
5 3 (
7 3 (
9 3) | 5,5
5,7
5,9 | 31,5
31,8
32,6 | 32
32
33 | .5 | 33,8 | 34 | 3
1.7
3.1 | 35,6 | 35 | 5.9
5.4
5.8 | 36,
37,
37, | 6 37
1 37
5 38 | 7,2 | 37,8
38,3
38,9 | 38
38
39 | 3 9 | 38,7
39,4
40,6 | 39,8 | 40 | 4 3 | 39,7
46,4
41,2 | 39,9 | 7 40 | 1 4 7 4 | 1.1 | 46,4 | 40, | 5 46
4 41
2 42 | .6 | 46,6
41,6
42,5 | 40.7 | 40: | 7 40
7 41
6 42 | ,8 4 | 1.8 | 40,41,42,42,42,42,42,42,42,42,42,42,42,42,42, | | 46
47
48
49 | 27, | 6 2
8 2
9 2
0 2 | 9,0
9,1
9,3 | 30,
30,
30, | 3 3:
4 3:
5 3:
7 3: | 1,5 | 32,7
32,9
33,1
33,3 | 33
34
34
34 | .9 | 35, | 3 36
3 36
7 36 | 5,5 | 37.0
37.0
37.0 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 7,9 | 38,
39,
39, | 8 39
1 46
5 46
8 46 | 7,6
3,6
3,4 | 46,8
46,8
41,2 | 41
41
41
42 | 5 | 41,6
42,2
42,6
43,4 | 42,8 | 42 | 3 4 | 43,2
43,8
44,4 | 43,0 | 5 43 45 45 45 45 45 45 45 45 45 45 45 45 45 | 9 4 3 4 | 4.2
15.6
15.7 | 44,5 | 44, | 7 44
9 45
3 46 | ,9
.7
.5 | 45,1
45,9
46,8 | 45,2 | 45,
46,
47, | 4 45 2 46 47 | ,5 4 | 5.5 | 45,
46,
47, | k = 8 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 8 | Community of the Commun | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 66 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 | 98 | |--|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|--|----------------------|----------------------
----------------------|----------------------|-------------------| | 2468 | 28,5 | 29,9
30,1
30,3 | 31,4
31,6
31,8 | 32,8
33,6
33,2 | 34,4
34,7 | 35,4
35,7
36,6 | 36,7
37,6
37,4 | 37.9
38.3
38.6 | 39,1
39,5
39,9 | 40,2
40,7
41,1 | 40.7
41.3
41.8
42.3
42.7 | 42,3
42,9
43,4 | 43.3
43.9
44.5 | 44.9
44.9
45.5 | 45,1
45,8
46,5 | 46,6 | 46,8
47,6
48,3 | 47,5
48,4
49,2 | 48,2
49,1
50,0 | 48.8
49.8
50.7 | 49,4
56,4
51,4 | 49,9
51.0
52.0 | 50,4
51,6
52,7 | 56.8
52.1
53.2 | 51.2
52.5
53.7 | 51,6
52,9
54,2 | 51.9
53.3
54.6 | 52,1
53,6
55,6 | 52.4
53.9
55.4 | 52,
54,
55, | | 2
4
6
8
D | | | 32,1
32,3 | 33,8
34,6 | 35,3
35,5
35,7 | 36,7
37,6
37,1 | 38,2
38,4
38,6 | 39.5
39.8
46.6 | 40,9
41,2
41,4 | 42.2
42.5
42.8 | 43.1
43.5
43.8
44.1
44.4 | 44.7
45.1
45.4 | 45,9
46,3
46,7 | 47.5
47.5
47.9 | 48,1
48,6
49,1 | 49,2
49,7
56,2 | 56.3
56.8
51.3 | 51.2
51.8
52.4 | 52,2
52,8
53,4 | 53:1
53:7
54:4 | 53.9
54.6
55.3 | 54.7
55.5
56.2 | 55,5
56,3
57,1 | 56.2
57.1
57.9 | 56.9
57.8
58,7 | 57,5
58,5
59,4 | 58,1
59,2
66,1 | 58,7
59,8
60,8 | 59.2
65.3
61.4 | 59,
60,
62, | | 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | | 39,2
39,3 | 40.7
40.8
41.0 | 42,1
42,3
42,5 | 43.5
43.8
44.0 | 44.9
49.2
45.4
49.6 | 46.5
46.6
46.8 | 47.6
47.9
48.2 | 48,9
49,3
49.6 | 50,2
50,6
50,9 | 51,5
51,8
52,2 | 52.7
53,1
53,4 | 53,8
54,2
54,6 | 54,9
55,4
55,8 | 56.6
56.5
57.6 | 57.1
57.6
58.1 | 58,1
58.7
59.2 | 59,1
59,7
60,2 | 60:0
60:7
61:2 | 60,9
61,6
62,2 | 61,8
62,5
63,2 | 62,6 | 63,4
64,2
65,6 | 64,2
65,6 | 64,
65,
66, | | 2 4 6 8 | | | | | | | | 41.3 | 43,6 | 44.5 | 45.8
46.0
46.2
46.4
46.5 | 47.5
47.7
47.9 | 48,9
49,1
49,3 | 50,3
50,6
50,8 | 51.7
52.6 | 53,1
53,4
53,6 | 54.4
54.7
55.0 | 55,7
56,6
56,3 | 57.6
57.3
57.6 | 58:2
58:6
58:9 | 59,4
59,8
60,2 | 60.6
61.0
61.4 | 61.7
62.2
62.6 | 62.8
63.3
63.7 | 63,9
64,4
64,9 | 64.9
65.5
66.0 | 66,5
66,5 | 66,9
67,5
68,1 | 67,9
68,5
69,1 | 68,
69,
75, | | 2 4 5 3 5 | | | | | | | | | | | 46.7 | 48.4 | 49,9
55,5
55,2 | 51.4
51.6
51.7 | 52.6
52.8
53.6
53.2
53.4 | 54,3
54,5
54,7 | 55.7
55.9
56.2 | 57.1
57.4
57.6 | 58,5
58,7
59,6 | 59.8
60.1
60.4 | 61.4 | 62.6
62.7
63.6 | 63.7
64.0
64.3 | 64.9
65.3
65.6 | 66,1
66,5
66,9 | 67.3
67,7
68,1 | 68,9
68,3 | 69,6
70,6
70,5 | 76.7
71.2
71.6 | 71,
72,
72, | | 3 | | | | | | | | | | | | | | 52.2
52.2 | 53,6
53,7
53,9
54,6 | 55,2
55,4
55,6 | 56.7
56.9
57.1 | 56,2
58,4
58,6 | 59.7
59.9
60.1 | 61.1
61.3
61.5 | 62.5
62.7
62.9 | 63,9
64.1
64.3 | 64,9
65,2
65,5
65,7
66,6 | 66,6
66,8
67,1 | 67.9
68.2
68.4 | 69,1
69,5
69,8 | 76.4
76.7
71.1 | 71,6
72,6
72,3 | 72.9
73.2
73.6 | 74.
74. | | Antidos con antidos de destacamentos de la constante con | | | | | | | | | | | 52 | | | | | مستر
استان کا | | 59,1
59,2 | 60,6
60,8
60,9 | 62:1
62:3
62:4 | 63.6
63.7
63.9 | 65,6
65,2
65,4 | 66,2
66,4
66,6
66,9
67,0 | 67.8
68.1
68.3 | 69,2
69,5
69,7 | 76,6
76.9
71.1 | 72.0
72.2
72.5 | 73.3
73.6
73.8 | 74.6
74.9
75.2 | 75
76 | | STANSFORMATION OF THE PROPERTY | 63,6 | 64.5 | | 67,5
67,9
68,3 | 69.4 | 76,9
71,4 | 72,4
72,6
73,3 | | 75,3
75,8
76,3 | 76.7
77.2
77.7 | 78,
78,
79, | | | | | | | | | | | | | | | | | | George | امران دوران
در را اسمان کامر
در را اسمان کامران | | | | | | | | erine para para para Perine Pe | | 75,6 | 77.1 | 78,6
79.6 | | | 5 | A = offered random traffic Y = carried traffic k = accessibility | า = | numbe | r of | tru | inks | |-----|-------|------|-----|------| | | | | | | | \n
A | 92 | 94 | 9 | 6 | 98 | 100 | 162 | 164 | ï | 76 | 168 | 110 | 115 | 120 | 125 | 130 | 139 | 146 | 149 | 190 | 195 | 160 | | |----------------------------|----------------------|-------------------|----------------------|----|----------------------|----------------------|----------------------|-------------------------|---|-------------------|----------------------|------------------------------|----------------------|----------------------|-------------------|---|--------------------------------------|-------------------|-------------------|-------------------|-------------------|--|--| | 52
54
56
58
60 | 52,8
54,4
56,0 | 54,
54, | 9 53
6 54
2 56 | ,6 | 53,2
54,9
56,6 | 53.3
55.1
56.8 | 53.4
55.2
56.9 | 6 53,
2 55,
3 57, | 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 | 3.5
5.4
7.2 | 53.6
55,5
57.3 | 97.4 | 53.8
59.7
57.5 | 53.8
55.8
57.7 | 93.9
95.8 | 55.9
57.8 | 97.9
97.8 | 59.9 | | | | | | | 62
64
66
68
70 | 61,4 | 60,
61, | 5 60
8 62
0 63 | .2 | 61,2
62,6
63,9 | 61,5
63,6
64,3 | 63, | 8 62,
8 63,
7 65, | 1 63
6 63 | 3.8 | 62.5
64.1
65.6 | 62,6
64,3 | 65.6 | 63,3 | 65.3 | 65.5 | 61.8
63.7
65.6
67.8
69.3 | 63.8 | 63.8 | 65,8 | 67.8 | 47.0 | | | 72
74
76
78 | 66.5 | 67, | 3 66
2 67
1 68 | ,9 | 68,5 | 69,1 | 69. | 7 70,
7 71, | 9 95
2 76 | 7,4
3,7 | 71.1
72.6 | 70,2 | 71.1 | 71.7 | 72.2 | 74.3 | 71,2
73,0
74,7
76,4
78,1 | 73,2 | 75.4 | 73,9 | 75.6 | 73.7 | | | 82
84
86
88
96 | 76.4 | 71, | 6 /1
3 72
6 72 | 11 | 72.2
73.0
73.7 | 72.9 | 74. | 9 76,
9 79,
9 76, | 3 70 | 9.6
5.6 | 79.6
76.6
77.6 | 76,2 | 77:6 | 78.8
80.0 | 79,6 | 82.6 | 79,7
61,3
62,8
64,2
65,6 | 81.6 | 82.3 | 82.6 | 84,7 | 83.1 | | | 96
98 | 73.3 | 74, | 0 74
4 75
9 75 | .4 | 76,4
77,6 | 77.3 | 78 . | 3 79,
3 79, | 2 80
2 80 | 7.3
5.6
3.7 | 80.1
85.9 | 81.7 | 83.6 | 84.4 | 85,9
86,9 | 87,2 | 87.6
88.3
89.8
90.7 | 89.3 | 96.1 | 90,8 | 91.4 | 91.9 | | | 02
04
06
08
10 | 79.2
79.6
76.0 | 76.
76.
77. | 4 77
8 77
2 78 | ,9 | 78,6
79,6
79,5 | 79.6
86.1 | 85. | 7 81.
2 82.
7 82. | 7 92 | 3.6 | 84.2 | 84,5 | 86.8 | 88.8 | 91.0 | 92.5 | 93.6
94.6
95.6
95.6
96.6 | 95,4 | 96.7 | 97.8 | 98,8 | 00.4 | | | 12
14
16
18
20 | 77.5 | 78.
78. | 4 /9
7 86
1 86 | .0 | 81,2
81,6 | 82.4 | 83. | 1 84
5 84
9 85 | 7 91 | 9.3
9.8
6.3 | 86.4 | 87,9
88,6 | 90.6 | 93,6 | 94. | 7 96,8 | 97.8
98.7
99.8
2 106 | 161
161
162 | 102
103
104 | 104
109
106 | 109
106
107 | 106
107
109 | | | 25
30
35
40
45 | 79,5
80,1
80,6 | 80,
81,
82, | 8 62
5 82
1 83 | .9 | 83,5
84,2
84,9 | 84,8 | 86. | 1 87
9 88
6 88 | .4 86
.2 89 | 8,6
9,5 | 89,9
95,7
91,6 | 91.1 | 98.6 | 96,6 | 99, | 2 161
3 161
1 161
2 161
5 166 | 2 108
3 106
5 107 | 167
166
116 | 169
111
112 | 111
113
117 | 113 | 28 5 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 50
55
60
65
70 | 82.4 | 83, | 5 85
9 85
3 85 | ,5 | 86,5
86,9
87,4 | 87.9
88.4
88.9 | 89, | 4 96.
9 91.
4 91. | 8 9:
3 9: | 2.2 | 93.6 | 94.3
95.6
95.6
96.7 | 98.4 | 102
102
103 | 10:
10:
10: | 3 100 | 111
112
113 | 114
115
116 | 117
118
119 | 119
120
122 | 122
123
124 | 124
126
127 | | | 75
86
85
96 | | | | | 88,1 | 89.7 | 91, | 6 93 | . 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 4,6 | 96.1 | 97,8
97,6
98,1
98,5 | 101
102
102 | 105 | 100
100
110 | 3 113
3 113
9 113
1 114 | 2 115
2 116 | 118
119
125 | 122
123
123 | 125
126
126 | 128
129
136 | | | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | ī1 | 12 | 13 | 14 | 15 | 1,6 | 17 | .18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 2 7 | 28 | 29 | 30 | |--------------------------------------|---|---|---|--|---|---|---|---|--|--------------------------------------|------------------------------|--------------------------------------|------------------------------|----------------------|--------------------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------| | 1
3
4
5
6
7
8
9 | | | | | | | | | | 4,91
5,74
6,45
7,63
7,49 | 5.84
6.63
7.35
7.84 | 4,97
5,91
6,76
7,50
8,14 | 5,95
6,85
7,66
8,37 | 5.97
6.93
7.78 | 5,99
6,95
7,86
8,69
9,43 | 7,91 | 7.95 | 8,91 | 8,95 | | | 16.6 | 10.0 | | | | | | | | |
11
12
13
14
15 | | | | سی مانسد
در استری درد
درای سری مین
درای سری مین
درای سری مین | | | | | ر مستوری می استان از این استان از این استان از این استان از این استان این استان از این استان این استان این است
این استان از این استان | 8,14
8,38
8,56
8,72 | 8,65
8,94
9,18
9,37 | 9.69
9.45
9.74 | 9,47
9,89
16,2 | 9,86 | 10.1
10.6
11.1
11.5 | 16.3
16.9
11.5 | 16,5
11,2
11,8
12,3 | 10.6
11.4
12.6
12.6 | 10.7
11.5
12.2
12.9 | 10.8
11.7
12.4
13.1 | 10,9
11,8
12.6
13,3 | 10,9
11,8
12,7
13,5 | 10,9
11,9
12,8
13,6 | 11:9
12:8
13:7 | 11,9
12,9
13.8 | 12.6 | 13.9 | 13.9 | 13.9 | 14,6 | | 16
17
18
19
26 | | | | | | | | | | 9,04 | 9,79
9,89
16,6 | 10.5
10.6
10.7 | 11,2
11,3
11,4 | 11.6 | 12.1
12.4
12.6
12.8
13.6 | 12.9
13.2
13.4 | 13,4
13,7
14,6 | 13,9 | 14.3
14.7
15.6 | 14.7
15.2
15.5 | 15.1
15.5
16.6 | 15.4
15.9
16.4 | 15.7 | 15.9
16.5
17.1 | 16.1
16.8
17.4 | 16.3 | 16.5
17.2
17.9 | 16.6
17.4
18.1 | 16.7
17.5
18.3 | 16.8
17.6
18.4 | | 21
22
23
24
25 | | | | | | | | | | | | 16.9 | 11.8 | 12.5
12.6
12.7 | 13,1
13,2
13,3
13,4
13,5 | 13,9 | 14.6 | 15,2
15,4
15,6 | 15.8
16.0
16.2 | 16.4 | 16.9 | 17.5
17.8
18.5 | 17.9
18.3
18.6 | 18.4 | 18,8
19,2
19,6 | 19.2 | 19.6
26.6 | 19,9
20,4
20.8 | 20.2
20.7
21.2 | 20,5
21,0
21,6 | | 26
27
28
29
36 | | | | | | | | | | | | | | | 13,6 | 14,5 | 15,2
15,3
15,4 | 16,5
16,1
16,2 | 16.7
16.0
16.9 | 17,4
17,5
17,6 | 18.5
18.2
18.3 | 18.7
18.8
19.6 | 19.3
19.5
19.6 | 19,9
20,1
20,3 | 26,4
26,7
26,9 | 21.0 | 21.8
21.8
22.0 | 21,6
22,6
22,3
22,6
22,9 | 22,8 | 22,9
23,3
23,6 | | 31
32
33
34
35 | | | | | | | | | | | | | | | | 3 | 15.5 | | 17.2 | 17.9
18.0
18.1 | 18.7 | 19,4
19,5
19,6 | 20.2 | 20,8
20,9
21,1 | 21,5
21,6
21,8 | 22,1 22,3 22,4 | 22.7
22.9
23.1 | 23,1
23,3
23,5
23,7
23,9 | 23.9
24.1
24.3 | 24,5
24,7
24,9 | | 36
37
38
39
40 | 18.3 | 19.1 | 19,9
26,6
26,6 | 26,7
25,7
25,8 | 21.4
21.5
21.6 | 22,1 22,2 22,3 | 22,8
23,6
23,1 | 23,5
23,7
23,8 | 24,1
24,2
24,4
24,5
24,6 | 24.9
25.0
25.2 | 25,5
25,7
25,9 | | 41
42
43
44
45 | | | | | | | | | | | á. | | | | | 1 | | | | | £ | | | 21,8 | 22,6
22,7
22,8 | 23,4
23,5
23,5 | 24.1
24.2
24.3 | 24,7
24,9
25,0
25,1
25,2 | 25,6
25,7
25,8 | 26,3
26,4
26,5 | | 46
47
48
49
50 | 24,5 | 25,2
25,3
25,4
25,5
25,6 | 26,1
26,2
26,3 | 26,8
26,9 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | \n
A | 32 | 34 | 36 | 38 | 48 | 42 | 44 | 46 | 48 | 56 | 92 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 78 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |----------------------------|--------------------------------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|----------------------|------------------------------|------------------------------|--------------------------------------|----------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|------|-------------------|-------------------------|----------------------------|----------------------------|----------------------|------|----------------------|----------------------|----------------------| | 1
2
3
4 | 6
7
8 | 9
16 | 11
12
13
14
15 | 15,0 | 16
17
18
19
20 | 15,9
16,9
17,8
18,6
19,5 | 16,9
17,9
18,8 | 17,6
17,9
18,9 | 18,0
18,9 | 19,6 | | i | 21
22
23
24
25 | 20,9
21,6
22,2 | 21,3
22,0
22,7 | 21,5
22,3
23,1 | 21,7
22,6
23,4 | 21,8
22,7
23,6 | 22.8 | 21,9 | 22.5
22.9
23.9 | 23,9 | 24;9 | 26
27
28
29
36 | 23.7
24.1
24.5 | 24,4 | 25,6
25,6
26,1 | 25,5
26,1
26,7 | 25,9
26,6
27,3 | 26.2
27.6
27.7 | 26.5
27.3
28.1 | 26.6
27.5
28.3 | 26,8
27,7
28,9 | 25.9
26.8
27.8
28.7
29.6 | 26.9
27.8
28.8 | 27.9 | 28.9 | 28.9 | 29.9 | | | | | | | | | | | | | | | | | 31
32
33
34
35 | 25,2
25,5
25,8
26,1 | 26.2
26.5
26.8
27.2 | 27,6
27,6
27,8 | 27,7
28,2
28,6
29,6 | 28,4
28,9
29,4 | 29,6
29,6
36,1 | 29,5
30,1
30,7 | 29.8
30.5
31.2
31.8 | 30,2
30,9
31,6
32,3 | 30,4 | 30.6 | 36.7
31.6
32.4
33.3 | 30,8
31,7
32,6
33,5 | 30,8
31,8
32,7
33,6 | 30,9
31,8
32,8 | 31,9 | 31,9 | 32,9 | 77. |) 34,9 | | | | | | | | | | | | 36
37
38
39
40 | 26,6
26,8
27,0
27,2 | 27.7
26.6
26.2
26.4 | 28,8
29,1
29,3 | 29,8
30,1
30,4
30,7 | 36,7
31,6
31,4
31,7 | 31,9
31,9
32,3
32,7 | 32,3
32,7
33,2 | 32,9 | 33,9
34,1
34,6
35,1 | 34.7
34.7
39.2 | 34.5 | 34,8
35,6
36,2
36,9 | 35,1
35,9
36,6 | 35.3
36.2
36.9 | 35.9
36.4
37.2 | 35,6
36,5
37,4 | 39.7
36.6
37.9 | 35,8
36,7
37,7 | 35,1 | 35.9
36.9
37.8
38.7
38.7 | 35,9 | 36, | 37, | D TR. |)
39,9 | | | | | | | 41
42
43
44
45 | 27.5
27.7
27.8
28.0 | 28,8
29,6
29,2
29,3 | 30.0
30.2
30.4 | 31,2
31,4
31,7 | 32,3
32,6
32,6 | 33,3 | 34.5 | 35,2
35,6
35,9 | 36,6
36,8
36,8 | 36.8
37.3
37.7 | 37,5
38,6
38,5 | 38.1
38.6
39.2
39.7 | 38,6
39,2
39,8 | 39,1
39,7
40,4 | 39,8
40,8
40,8 | 39,8
40,6
41,3 | 40.1
40.9
41.6 | 40,3 | 40,1 | 3 45,6
3 41.5
1 42.3
9 43.2
7 44.6 | 45,7 | 40. | 7 40, | 8 45.8
8 41.8
7 42.8 | 8 46,9
3 41,8
8 42,8 | 40.9
41.9
42.8 | 42.9 | 48 0 | 43.9 | 44.9 | | 46
47
48
49
50 | 28,2
28,3
28,4
28,5 | 29,6
29,7
29,9
30,6 | 31.0
31.0
31.0 | 32,3
32,4
32,6 | 33,5 | 34.7 | 35,8
36,1
36,3 | 36.9
37.2
37.4 | 37,9
38,2
38,5 | 38.9 | 39,7
46,1
46,5 | 40,6
41,0
41,4
41,8 | 41,3
41,8
42,2
42,6 | 42.5
42.5
43.6 | 42,6 | 43,2
43,8
44,3 | 43,7
44,3
44,9 | 44,1 | 44.5
45.1
45.1 | 3 44,8
2 45,5
9 46,3
9 47,6
2 47,6 | 45.6 | 45,
46,
46, | 2 45.
1 46.
9 47. | 4 45; | 5 49,6
4 46.9
3 47.4 | 45.7
46.6
47.5 | 45.8 | 45,8
46,8
47,7 | 45.8
46.8
47.8 | 45,9
46,8
47,8 | k =10 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 10 | n | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 96 | |---|----------------------------------|----------------------|-------------------------------------|--|---|----------------------|---|----------------------|----------------------
---|----------------------|----------------------|----------------------|---|--------------------------------------|----------------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|---|----------------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|-------------------| | 52
54
56
58
56 | 29.0
29.1 | 30,5
30,7
30,8 | 32,0
32,2
32,4 | 33,4
33,7
33,9 | 34,9
35,1
35,4 | 36,2
36,5
36,8 | 37,5
37,9
38,2 | 38.8
39.2
39.5 | 40,6
40,4
40,8 | 41.2
41.7
42.1 | 42,3
42,8
43,3 | 43,4
43,9
44.5 | 44,4
45,0
45,6 | 45,4
46.5
46.7 | 45,5
46,3
47,6
47,7
48,3 | 47,2
47,9
48,7 | 48,6
48,8
49,6 | 48,7
49.6
50.5 | 49,4
50,4
51,3 | 50.0
51:1
52:1 | 50,6
51,7
52.8 | 51.1
52.3
53.4 | 51,6
52,9
54,6 | 52.6
53.3
54.6 | 52.3
53.7
55.1 | 52,6
54,1
55,5 | 52.8
54.4
55.9 | 93.1
94.7
96.2 | 53,2
54,9
56,5 | 53,
55,
56, | | 52
54
56
58
70 | | 31,1 | | 34,4
34,6 | 36,6
36,1
36,3 | 37,5
37,7
37,8 | 38,9
39,1
39,3 | 40,4
40,6
40,8 | 41,8
42,0
42,3 | 43,1
43,4
43,7 | 44,4
44,8
49,1 | 45.7
46.1
46.4 | 47,6
47,4
47,7 | 48.2
48.6
49.0 | 48,8
49,8
49,8
50,2
50,6 | 56,5
51,6
51,4 | 51,5
52,1
52,6 | 52,6
53,2
53,7 | 53,6
54,2
54,8 | 54,5
55,2
55,8 | 55,4
56,1
56,8 | 56,2
57,6
57,8 | 57,6
57,9
58,7 | 57.8
58.7
59.5 | 58,5
59,5
66,4 | 59.1
60.2
61.1 | 59.7
65.8
61.8 | 60.3
61.4
62.5 | 60,8
62,6
63,1 | 61,
62,
63, | | 72
74
76
78 | James S.
James S.
James S. | | | ارا
میداند مادر در از | 36,6 | 38,3 | 39,9
40,5
40,2 | 41,4
41,6
41,7 | 42,9
43,1
43,3 | 44.4
44.6
44.8 | 45.9
46.1
46.3 | 47.3
47.5
47.8 | 48,7
49.0
49.2 | 50.6
50.6 | 51.6
51.4
51.7
52.6
52.3 | 52.7
53.6
53.3 | 53,9
54,3
54,7 | 55,1
55,6
55,9 | 56.3
56.8
57.2 | 57,5
58.6
58.4 | 58,6
59.1
59.6 | 59.7
66.2
66.7 | 65.7
61.3
61.9 | 61.7
62.4
62.9 | 62,7
63,4
64,6 | 63,6
64,3
65,6 | 64.5
65.2
65.9 | 65,3
66,1
66,9 | 66:1
67:6
67:8 | 66,
67,
68, | | 34 | | | | | | | | | 43,7 | 45.5
45.6 | 46.9 | 48,4
48,6
48,7 | 49,9
56,1
56,3 | 51.3
51.6
51.8 | 52,5
52,6
53,6
53,5 | 54,2
54,5
54,7 | 55,6
55,9
56,1 | 57,0
57,3
57,5 | 58,3
58,6
58,9 | 59,6
59,9
65.3 | 61.2 | 62.1
62.5
62.9 | 63.3
63.7
64.1 | 64.5
64.9
65.4 | 65,6 | 66,7
67,3
67,8 | 67.8
68.4
68.9 | 68,9
69,5
70,6 | 69.9
75.5
71.1 | 76,
71,
72, | | 22 | | Tallian and Santa | معند مستورد درد.
درد معمود درساس | | | ميسر
مسين | ر در می است در می است | | | | | 49.2 | 56.8
56.9
51.1 | 52.5
52.5
52.6 | 53,7
53,8
54,6
54,2
54,3 | 55,4
55,5
55,7 | 56,8
57,0
57,2 | 58,3
58,5
58,7 | 59,7
60,6
60,2 | 61:1
61:4
61:6 | 62.5
62.8
63.1 | 63.9
64.2
64.5 | 65.2
65.5
65.8 | 66.5
66.9
67.2 | 67.8
68.2
68.5 | 69.1
69.4
69.8 | 76.3
76.7
71.1 | 71.5
71.9
72.3 | 72.6
73.1
73.6 | 73,
74,
74, | | 2 2 3 4 3 6 3 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | | | | | | | | | | | 51,3 | 53.1 | | 56,2
56,4
56,5 | 57.8
57.9
58.1 | 59,3
59,5
59,6 | 60.8
61.0
61.2 | 62.3
62.5
62.7 | 63.8
64.0
64.2 | 65.2
65.5
65.7 | 66.7 | 68,1
68,3
68,6 | 69.5
69.7
70.0 | 75.8
71.1
71.4 | 72.1
72.5
72.8 | 73.5
73.8
74.1 | 74.7
75.1
75,4 | 76,
76, | | .6 | | | | ارسیده و تاریخ
در این میشود.
در این میشود.
در میداد در این میشود. | مدراتان آگار
سامساس در درد.
اساس این اصور
در سام این است | | <u>- 111,111,111,111,111,111,111,111,111,11</u> | | | ر میزیده استان در در استان استان استان در استان استان در استان استان در اس | | | | | | 56.8 | 58,5 | 60,1
60,2
60,4 | 61.7
61.8
62.5 | 63,2
63,4
63,5 | 64,8
64,9
69,1 | 66.3
66.5
66.6 | 67,6
67,8
68,5
68,2
68,3 | 69.3 | 70,7
71.0
71.2 | 72.2
72.4
72.6 | 73.6
73.8
74.1 | 75,6
75,3
75,5 | 76:4
76:7
76:9 | 77,
78,
78, | | 5 5 5 5 5 5 | 65,6 | 67.2
67.6 | 68.8
69.1
69.5 | 70.3
70.7
71.1 | 71,8
72,3
72,7
73,6 | 73,4
73,8 | 74,9
75,3
75,8
76,2 | 76.3
76.8
77.3
77.7 | 77,8
78.3
78.8
79.3 | 79,
79,
80, | | 50 | | | | | مین میشاند.
میشین در دی | | رور در | | | | | | | ر استان استان
استان استان اس | | | <u> روست</u>
روست
روستار کردر روستا | | | | 45 | | ار در | | | 75,3 | 76.9 | | 86.1 | 82, | | 5050 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | 92 | 94 | 1 | 96 | 9 | 8 | 100 | 16 | J 2 | 164 | 1 | 6 6 | 108 | 116 | 115 | 126 | 1: | 25 | 136 | 135 | 140 | 145 | 15 | 6 : | 155 | 160 | 165 | 170 | 175 | 186 | 185 | 195 | 195 | 200 | 205 | 21.0 | |---------------------------------|--------------------------------------|----------------|-------------------|----------------------|----------------|------------|----------------------|------------------------|-------------------|-------------------|-------------------|-------------------|----------------------|---------------------------|----------------------|--------------------------------------|----------------------|-------------------|----------------------|--------------------------------------|-------------------|----------------------|----------------------|-------------------|----------------------------------|---------------------------------|-------------------|---------------------------------|-------------------|--------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------| | 56
58 | 51,6
53,5
55,3
57,6
58,6 | 53
55
57 | 6 | 33,6
55,5
37,3 | 53
55
57 | ,7 | 53,8
55,6
57,5 | 53
55
57 | 3.8
5.7
7.6 | 55,
55, | 8 5 5 6 | 5.8
7.7 | 55,8
57,7 | 57,8 | 57. |)
3 59, | 9 | 64
66
68 | 60,1
61,6
62,9
64,2
65,4 | 63 | 9 | 52,2
53,7
55,1 | 62
64
65 | ,5
,6 | 62.7
64.3
65.8 | 62 | 2.9 | 64, | 1 6
8 6
4 6 | 3,2
4,9
6,6 | 63,3 | 65.4
65.2 | 63.
65. | 63,
65,
67, | 7 6:
6 6:
5 6: | 3,8
5,8
7,7 | 67.8 | 67.8
69,8 | 69,8 | | | | | | | | | | | | | | | | | 72
74
76
78
86 | 67,5
68,5 | 68
69
70 | 2 | 58,8
59,9
75,9 | 69
70
71 | , 4 | 69,9
71,1
72,2 | 75 | 1.6 | 76.
72.
73. | 8 7 | 1,2 | 71,5 | 71,8
73.3 | 72, | 72,
74, | 9 7
6 7
2 7 | 3:2
5:0
6:7 | 73.5
75.3
77.1 | 71,7
73,6
75,5
77,3
79,2 | 73,7 | 73,1
75, | 8
7 75
7 77 | . 7 | 77.8
79.8 | 79,8 | | | | | | | | | | | | 84 | 71.6
71.8
72.5
73.1
73.8 | 72
73
74 | , 7
, 4
, 1 | 73.5
74.3
75.1 | 74
75
76 | ,2 | 75,1
76,5
76,8 | . 75
 76
 77 | 5,9
6,8
7,6 | 76.
77.
78. | 6 7
5 7
4 9 | 7,2
8,2
9,2 |
77,8
78,9
79,9 | 78,4 | 79 ,
80 ,
82 , | 7 80,
9 82,
1 83, | 7 8
1 8
4 8 | 1,5 | 82,2
83,8
85,3 | 82.7
84.3
86.8 | 83,6 | 85, | 3 83
1 85
9 87 | .3 | 83.6
85.5
87.4 | 83.7
85.6
87.5 | 83,8 | 87.7 | 87.8
89.7 | 89;8 | | | | | | | | 92
94
96
98
100 | 74,9
75,4
75,9 | 76
76
77 | , 5
, 6 | 77.0
77.6
78.2 | 78
78
79 | ,6 | 79,6
79,7
86,3 | 79
 86
 83 | 9,9
6,6
1,3 | 81, | 8 8
6 8
2 8 | 1,7 | 82,6
83,3
84,1 | 83.6 | 85, | 2 86,
1 87,
9 88. | 98
98
99 | 8,3
9,4 | 89.5
90.7
91.9 | 90,5
91,8
93.2 | 91,3 | 91,
93, | 9 92
5 94
6 95 | .4 | 92,8 | 93.1 | 93,3 | 93.5 | 93,6 | 91.7
93.7
95.6
97.5
99.4 | 93,8 | 93,8 | 07 8 | 99.8 | | | | 104 | 78,6 | 78
78
79 | , 5
, 9
, 3 | 79,6
80,1
80,5 | 80
81
81 | ,3 | 81,9
82,4
82,9 | 83 | 3,6 | 84, | 1 8
6 8
2 8 | 5.1
5.7
6.3 | 86,1 | 87
87
88 | 96. | 91,
1 92,
8 93, | 5 9
3 9
1 9 | 3,5
4,4
5,2 | 95.2
96.2
97.1 | 96,8 | 98,1
99,3 | 90. | 2 1
1 1
2 1 | 66
62
63 | 99.5
101
102
104
105 | 100
102
103
105
106 | 105 | 103 | 103
105
106 | 163
165
167 | 163
165
167 | 163
165
167 | 109 | 104
106
108 | 104
104
108 | | | 112
114
116
118
120 | 79.1
79.4
79.7 | 80
80
81 | , 4
, 7 | 81,7
82,6
82,4 | 83
83
83 | , 6
, 3 | 84,2
84,6
85,6 | 8 8 8 | 5,4
5,8
6,2 | 86,
87, | 6 8
6 8
5 8 | 7.8
8.2
8.7 | 88,9 | 89.5
90.5
91.5 | 92, | 7 95,
3 95,
8 96, | 2 9
8 9
4 9 | 7.5
8.2
8.9 | 99.7
100
101 | 162
163
163 | 104
104
105 | 10
10
10 | 5 1
6 1
7 1 | 09 | 107
108
109
110
111 | 108
109
110
112
113 | 111 | 111
112 | 111
113
114 | 112
114
115 | 112
114
116 | 113
114
116 | | 113
115
117 | 113
115
117 | 113 | | 125
136
135
140
145 | 81,3
81,8
82,3 | 82
83
83 | ,7
,3
,8 | 84,1
84,7
85,3 | 85
86
86 | ,5 | 86.9
87.6
88.2 | 8 8 8 | 8.3
9.6
9.6 | 89.
90. | 6 9 | 1.7 | 92,2
93,5
93,6 | 92. | 96, | 6 99,
6 16 | 6 | 162
164
165 | 165
166
168 | 168
169
111 | 116
112
113 | 1 11
1 11
1 11 | 2 1
4 1
6 1 | 14
16
18 | 118
116
119
126
122 | 116
118
120
123
125 | 126
122
125 | | 123
126
128 | 124
127
136 | 125
128
131 | 126
129
132 | 126
136
136 | 131 | 128
132
135 | 124
128
132
136
146 | | 150
155
160
165
170 | 83,6 | 85
85
85 | ,1
,5 | 86,7
87,1
87,5 | 88
88
89 | 3,7 | 89,8
90,2
90,6 | 3 9:
2 9:
5 9: | 1,3 | 92,
93, | 8 9 9 9 | 4.2 | 96. | 96, | 2 10
7 10
2 10 | 0 16
1 16
1 16
2 16
2 16 | 5 | | | 114
115
116 | 117
116
116 | 12
12
12 | 6 1
1 1
2 1 | 23 | 124
125
127
128
129 | 126
128
129
131
132 | 138 | | 135
137
138 | 137
139
141 | 139
141
143 | 141
143
145 | 942 | 144
146
149 | 148
148
151 | 143
147
156
152 | | 175
180
185
190
200 | | | | 88,1 | . 89
96 | 7,7
5.6 | 91.3
91.6 | 5 9 | 3.2 | 94, | 8 9 | 6.4 | 98,6 | 99;
99;
199;
10; | 16
16
16 | 3 16
4 16
4 16 | 17
18
18 | 111
111
112 | | 110
119 | 121
122
123 | 12
2 12
3 12 | 9 1
6 1
6 1 | .28
.29
.30 | 130
131
132
138 | 134
135 | 137
138
139 | 139
140
141
142
144 | 143
144
145 | 147 | 148
150
151 | 151
152
154 | 155 | 155 | 157
159
161 | 163 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | Ĩ1 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |----------------------------|---|---|---|---|---|---------|---|---|---|----|----|----|----|---|----------------------|------------------------------|---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | 12345 | | | | | | Ē | | | | | | | | | | 4 43 | | | | | | وران ورود ورود واستار | | | | | | | | | | 6
7
8
9 | | | | | | | | | | | | | | | | 7,96 | 8.94 | 8,96 | 8.98 | 10.0 | | | | | | | | | | | | 11
12
13
14
15 | | | | | | <i></i> | | | | | 3 | | | ر ما ما المارية
المارية
المركز عالمارية | 11.9 | 11.2
11.6
12.3 | 11.4 | 11,6
12,3
13,6 | 12.5 | 11.8 | 11.9 | 11.9 | 12,9 | 12.6 | 13,9 | 13.9 | 14.0 | 15.6 | 15.6 | | | 16
17
18
19
20 | | | | | | | | | | | | | | | 12.6 | 13.1
13.4
13.7
13.9 | 13.6 | 14.0
14.4
14.8
15.1 | 14.0
14.0
15.5 | 14.7
15.2
15.7
16:1 | 19.6 | 15.2
15.9
16.4
16.9 | 15.4
16.2
16.7
17.3 | 15.6
16.3
17.6
17.6
18.2 | 15.7
16.5
17.2 | 15.8 | 15,8
16,7
17,6
18.3 | 15,9
16,8
17,7 | 15.9
16.9
17.8
18.6 | 16,6
16,9
17,8
18,7 | | 21
22
23
24
25 | | | | | | | | | | | | | | | 13.5
13.6
13.7 | 14,2 | 14.9 | 15.6
15.8
15.9 | 16,2
16,4
16,6 | 16.8
17.6
17.3 | 17.3 | 17,8
18,1
18,4
18,7 | 16,2
18,6
19,6 | 19.15 | 19.5
19.5
19.9 | 19.3 | 19:6
25:2
25:7
25:9 | 19,9
20,5
21,1 | 20.1 | 26,3
21,6
21,7 | | 26
27
28
29
30 | | | | | | | | | | | | | | | 14.6 | 14.8
14.9
14.9 | 15.6
15.7
15.7
15.8 | 16.3
16.4
16.5
16.6 | 17.1 | 17.8
17.9
16.1
18.2 | 18.5
18.6
18.6
18.9 | 19:1 | 19.8
20.0
20.2
20.3 | 25,4
25,6
25,8
21,5
21,2 | 20.9
21.2
21.4
21.7 | 21.5 | 22.5 | 22.4
22.6
23.1
23.4 | 22,9 23,3 23,6 | 23,3
23.7
24,1
24,5 | | 31
32
33
34
35 | | | | | | | | | - مسرور در از | | | | | | | 6 | | 16.8 | 17.6
17.6
17.7
17.8 | 18.4 | 19.1
19.2
19.3 | 19,9
25,6
25,1
25,2 | 20.6
20.8
20.9
21.0 | 21:3
21:5
21:6
21:7
21:8 | 22,0
22,2
22,3
22,5 | 22.7
22.9
23.0
23.2 | 23,3
23,5
23,7
23,9 | 24.6
24.2
24.4
24.6 | 24,5
24,6
25,6
25,2 | 25,1
25,4
25,6
25,9 | | 36
37
38
39
40 | 18.7 | 19.5
19.6
19.7 | 20.4
20.4
20.5
20.6 | 21,2
21,2
21,3
21,4 | 21.9 | 22,7
22,8
22,9
23,0 | 23,5
23,6
23,7
23,8 | 24,2
24,3
24,4
24,5 | 24,9
25,6
25,2
25,3 | 25,6
25,7
25,9
26,6 | 26.3
26.4
26.6
26.7 | | 41
42
43
44
45 | | | | | | | | | | | | | | | | | ر از این از این | | | | unive
penne | | 21.5 | 22.3 | 23.2 | 24.6
24.6
24.1
24.2 | 24,7 | 25.6 | 26.3
26.4
26.8
26.6 | 27.6
27.1
27.2
27.3 | | 46
47
48
49
50 | 23.5 | 24.3 | 25.225.3 | 25.9
26.0 | 26.7
26.8
26.9
27.0 | 27,5
27,6
27,7
27,8 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | 32 34 | 36 | 38 | 46 | 4Ż | 44 | 46 | 48 | 90 | ġ2 | 54 | 96 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 9 | |----------------------------|---|-------------------------------|------------------------------------|------------------------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------|----------------------|----------------------|------|------|------|------|----|----|------| | 1
2
3
4 | 5 | 8
9
10 | 11
12
13
14
15 | 16
17
18
19
20 | 17.0
17.9
18.9 18
19.8 19 | | ſ | 21
22
23
24
25 | 26,6 26
21,4 21
22,1 22
22,8 23
23,4 23 | 7 21.6
5 22,7
2 23,5 | 21,9
22,8
23,7 | 22,9 | 23,9
24,9 | 24.9 | 26
27
28
29
36 | 24,5 25
25,6 25
25,4 26 | 2 25,7
7 26,4
2 26,9 | 26,2
26,9
27,5 | 26.5
27.2
28.6 | 26.7
27.5
28.3 | 26.8
27.7
28.6 | 26,9
27,8
28,8 | 28,9 | 31
32
33
34
35 | 26.5 27
26.8 27
27.1 28 | ,5 28,4
,9 28,8
,2 29,2 | 29,2
29,7
20,1 | 29,9
36,4
36,9 | 30,4 31,1 31,6 | 30,9 | 31.3
32.0
32.7 | 31,5
32,3
33,1 | 31.7
32.6
33.4 | 31.8
32.7
33.6 | 31.9
32.8
33.8 | 33,9 | 33,9 | 34,9 | | | | | | | | | | | | | | | | 36
37
38
39
40 | 27.5 28
27.8 29
27.9 29
28.1 29 | .7 29,9
.6 30,2
.2 30,4 | 36,9
31,2
31,5
31,8 | 31.8
32.2
32.6
32.9 | 32,6
33,1
33,9 | 33,4 |
34.6
34.6
39.1
39.6 | 34.9
35.2
35.8
36.3 | 35.7
35.7
36.3 | 39.3
36.1
36.8
37.5 | 35.5
36.4
37.1
37.9 | 35.7
36.6
37.4
38.2 | 35,8
36,7
37,6 | 35.9
36.8
37.8
38.7 | 37,8 | 38,9 | 38,9 | 39,9 | ı | | | | | | | | | | | 41
42
43
44
45 | 28,5 29
28,6 36
28,7 36
28,9 36 | .8 31,1
.6 31,3
.2 31,5 | 32,4
32,6
32,8
33,6 | 33.5
33.8
34.6
34.3 | 34.9 | 35,6
35,9
36,3 | 36,5
36,9
37,3
37,6 | 37,8
37,8
38,2
38,6 | 38.1
38.6
39.1
39.5 | 38.7 | 39.3
39.9
46.5
41.6 | 39.7
40.4
41.1
41.7 | 40.3
40.8
41.5
42.3 | 40.4
41.9
41.9 | 40.6
41.4
42.2
43.6 | 40,7
41,6
42,5
43,3 | 40,8
41,7
42,6
43,9 | 40,8
41,8
42,8
43,7 | 41.9 | 43.9 | 43.9 | | | | | | | | | 47
48
49 | 29.1 36
29.2 36
29.3 36
29.4 36
29.5 31 | ,6 32,6
,7 32,3
,8 32,3 | 33,4
2 33,6
3 33,7
4 33,9 | 34,7
34,9
35,1
35,3 | 36,6
36,2
36,4
36,6 | 37,2 | 38.3 | 39,3
39,7
40,0 | 40.3
40.7
41.6 | 41.6 | 42.5
42.9
43.3 | 42.8
43.3
43.8 | 43.4 | 44.8
44.6
45.2 | 44,5
45,1
45,8 | 44,9
45,6
46.3 | 45,2
46,5
46,7 | 45,4
46,3
47,9 | 45,6 | 45.7
46.6
47.5 | 45,8
46,8
47,7 | 46.8 | 47.8 | 48.0 | 48,9 | | | | k = 15 Table 2-16 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 15 | n
A | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 96 | |---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------|---|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------| | 52
54
56
58
60 | 29,8
29,9
30,0 | 31,4
31,5
31,7 | 33,0
33,1
33,3 | 34,5
34,7
34,9 | 36,8
36,2
36,4 | 37,4
37,7
38,0 | 38,8
39,1
39,4 | 40,2
40,5
40,9 | 41,5
41,9
42,2 | 42,7
43,2
43,6 | 43,9 | 45,6
45,6
46,1 | 46,1
46,7
47,3 | 47.1
47.8
48.4 | 48,8 | 48,9
49,8
56,5 | 49,7
50,6
51,5 | 56,5
51,5
52,4 | 51,1
52,2
53,2 | 51.7
52.9
54.0 | 52,2
53,5
54,6 | 52,6
54,6
55.3 | 52,9
54,4
55.8 | 53.2
54.8
56.3 | 53,4
55,1 | 93,6
95,3 | 53,7
55,5 | 51.9
53.8
55.6
57.4
59.1 | 55,7 | 55,6
57.7 | | 62
64
66
68
70 | | 31,9 | 33,7 | 35,3
35,5
35,6 | 37,0
37,1
37,2 | 38,6
38,7
38,9 | 40,1
40,3
40,5 | 41,6
41,9
42,1 | 43,1
43,4
43,6 | 44,6
44,8
45.1 | 46.0 | 47,4
47,7
48,6 | 48,7
49,1
49,4 | 50,0
50.4
50.8 | 51,2
51,6
52,1 | 52,4
52,9 | 53,5
54,1
54,6 | 54,6
55,2
55.8 | 55,6
56,3 | 56.6
57.3 | 57,5
58,3 | 58,4
59,2 | 59,2
60,1 | 59,9
60.9 | 60,6 | 61.2 | 63.6 | 60,7
62,2
63,5
64,7
65,9 | 62.5 | 62,9 | | 72
74
76
78
80 | | | | | 37,5
37,6 | 39,3 | 40,9
41,1
41,2 | 42.6 | 44,2
44,3
44,5 | 45,7
45,9
46,1 | 47:3 | 48,8
49,6
49,2 | 56,3
56,5
56,8 | 51,7
52,6
52,3 | 53,1
53,4
53,7 | 54,5
54,9
55,2 | 55,9
56,2
56,6 | 57,2
57,6
57,9 | 58,4
58,9
59,3 | 59,7
60,1
60,6 | 61,8 | 62,5
62,5 | 63.1 | 64.1
64.8
65.4 | 65,1
65,8
66,5 | 66,1 | 67.6
67.8
68.6 | 66,9
67,8
68,7
69,5
76,3 | 68,6
69,6
76,4 | 69,4
70,4
71,3 | | 82
84
86
88
90 | | | | | | | 41,4 | 43.2 | 44,9
45,6
45,1 | 46,5
46,6
46,8 | 48.1
48.3
48.4 | 49,8
49,9
56,1 | 51.3
51.5
51.7 | 52,9
53,1
53,3 | 54,4
54,7
54,8 | 56,0
56,2
56,4 | 57,4
57,7
57,9 | 58,9
59,2
59,4 | 60,3
60,6
60,9 | 61:7
62:0
62:3 | 63,1
63,4
63,7 | 64.4
64.8
65.1 | 65,7 | 66.9
67.4
67.8 | 68,1
68,6
69,1 | 69,3
69,8
70,3 | 70.5
71.6
71.5 | 76,9
71,6
72,2
72,7
73,2 | 72.6
73.3
73.9 | 73,7
74,3
75,6 | | 92
94
96
98
100 | | | | | | | | | | | 48.8 | 50,4
50,6
50,7 | 52,1
52,2
52,3 | 53.7
53.9
54.0 | 55,4
55,5
55,7 | 57,6
57,1
57,3 | 58,5
58,7
58,9 | 60,1
60,3
60,5 | 61.6
61.8
62.5 | 63,1
63,3
63,6 | 64,6
64,8
65,1 | 66,0
66,3
66,6 | 67,5
67,8
68,0 | 68,9
69,2
69,5 | 76,2
76,6
75,9 | 71.6
71.9
72.3 | 72.9
73.3
73.7 | 73.7
74.2
74.6
75.6
75.4 | 75,6
75,9
76.3 | 76.6
77.1
77.6 | | 102
104
106
108
110 | | | | | | | | | | | | | | 54.4
54.5 | 56,0
56,2
56,3 | 57,7
57,8
57,9 | 59,3
59,5
59,6 | 61,0
61,1
61,3 | 62.6
62.7
62.9 | 64,2
64,3
64,5 | 65.7
65.9
66.1 | 67.3
67.5
67.7 | 68,8
69,5
69,2 | 76.3
76.5
76.7 | 71.8
72.6
72.3 | 73.2
73.5
73.7 | 74.6
74.9
75.2 | 75.7
76.6
76.4
76.7
76.9 | 77.4
77.8
78.1 | 78,8
79,1
79,5 | | 112
114
116
118
120 | | | | | | | | | | | | | | | 56.5 | 58,3 | 60,0
60,1
60,2 | 61,6
61,7
61,9 | 63,3
63,4
63,5 | 64.9
65.1
65.2 | 66,6
66,7
66,8 | 68.2
68.3
68,5 | 69.8
69.9
70.1 | 71.3
71.5
71.7 | 72.9
73.1
73.3 | 74.4
74.6
74.8 | 76.6
76.2
76.4 | 77.2
77.4
77.7
77.9
78.1 | 78.9
79.2
79.4 | 80,4
80,7
80,9 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | | | 63,9 | | 67.6 | 69,2
69,5 | 75.9
71.2 | 72.6
72.9
73.2 | 74,2
74,5
74,8 | 75,9
76,2
76,5 | 77.5
77.8
78.2 | 78,6
79,1
79,5
79,8
80,1 | 86.7
81.1
81.5 | 82,2
82,7
83,1 | | 150
155
160
165
170 | | | | | uus
Groei | . 4 | | | ر در میدود در | ا استعماد بازید می
اگرین بازید می استان
اگرین بازید می استان | | | | | | 1775-174
1745-174
1745-174 | المن المن المن المن المن المن المن المن | مستورد سردرد.
المستورد وارد
المستورد وارد | | | Ž. | | | | 75,3 | 77,1 | | 80,4
80,7
80,9 | 82.4 | 84,1 | | 175
180
185
190
200 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | 92 | 94 | 9 | 76 | 98 | 166 | 102 | 104 | 10 | 36 | 168 | 116 | 115 | 126 | 125 | 130 | 135 | 146 | 145 | 15g | 155 | 165 | 165 | 176 | 175 | 185 | 185 | 196 | 195 | 200 | 265 | 210 | |---------------------------------|----------------------|-------------------------|----------------------|-------------------|----------------------|----------------------|--------------------------------------|-------------------|-------------------|-------------------|---------------------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------------------|-----------------------|--------------------------------------|----------------------|----------------------|-------------------|---------------------------------|-------------------|---------------------------------|--------------------------|---|---------------------------------|-------------------|------------------|---------------------------------|---------------------------------|------------| | 52
54
56
58
60 | 59,9
57,8
59,6 | 57, | | | 59,9 | 62
64
66
68
70 | 63,1
64,7
66,2 | 63,
65, | 3 63
5 63
6 6 | 3,5
5,2
5,9 | 63,6
65,4
67,1 | 63,7
65,6
67,3 | 61.9
63.8
65.7
67.5
69.2 | 63,
65, | 7 6 | 7.7 | 67.8 | 72
74
76
78
80 | 76,6
71,1
72,1 | 70,
71,
72, | 7 7:
8 7:
9 7: | 1,2
2,4
3,6 | 71,7
73,0
74,2 | 72.1
73.5
74.8 | 72,5
73,9
75,3 | 72,
74,
75, | 8 7
3 7
8 7 | 3,6
4,6
6,2 | 73,2
74,9
76,5 | 71.6
73.4
75.1
76.8
78.4 | 73.7
75.5
77.3 | 75,7 | 77,8 | 79.8 | | | | | | | | | | | | | | | | | | 82
84
86
88
90 | 74,6
75,4
76,1 | 75,
76,
77, | 6 7
4 7
1 7 | 6,5
7,3
8,1 | 77,3
78,2
79,6 | 78.1
79.6
79.9 | 78,8
79,8
85,8 | 79,
80, | 5 8 6 8 8 | 0.1
1.3
2.3 | 86,7
81,9
83,6 | 81,2
82,5
83,7 | 82.2
83.7
85.1 | 82,9
84,6
86,1 | 85,4 | 81,7
83,6
85,5
87,3 | 83.8
85.7
87.6 | 85,8 | 89,8 | | | | | | | | | | | | | | | 92
94
96
98 | 77,8
78,3
78,8 | 79,
79,
80, | 6 8
5 8
6 8 | 5:1
5:7
1:2 | 81,2
81,8
82,4 | 82,2
82,9
83,5 | 83.2
83.9
84.6 | 84, | 2 8 | 5,1
5,9
6,6 | 85,9
86,8
87,6 | 86.8
87.7
88.5 | 88,6 | 96,2
91,4
92,5 | 91,4
92,8
94,6 | 92.3
93.8
95.3 | 92,9
94.6
96.2 | 91.5
93.3
95.1
96.8
98.5 | 93.6
95.4
97.3 | 93.7
95.7
97.5 | 97.7 | 99.7 | | | | | | | | | | | | .02
.04
.06
.08 | 86,1
86,5
86,8 | 81,
81,
82, | 4 8
8 8
2 8 | 2,7
3,1
3,5 | 83,9
84,4
84,8 | 85,1
85,6
86,1 | 86.8 | 87,
88, | 5 8 6 8 |
8,6
9,2
9,7 | 89,7
96,3
96,9 | 96,7 | 93,2 | 95,4
96,3
97,1 | 97.4
98.4
99.3 | 97,9
99,1
180
181 | 160
162
163 | 163 | 162
164
165 | 103
109
106 | 103
108
107 | 102
104
105
107
109 | 167 | 106
108
110 | 108
116 | | | | | | | | | 12
14
16
18 | 81.8
82.1
82.4 | 83,
83, | 2 8
5 8
8 8 | 4,6
4,9
5,3 | 86,5
86,3
86,7 | 87,3
87,7
88,0 | 88,6 | 89.
90. | 9 9 9 9 9 | 1.2 | 92,4
92,9
93,3 | 93:1
93:6
94:1
94:6 | 96,5
97,1
97,6 | 99.2
99.9
100 | 102
102
103 | 104
105
106 | 166
167
168 | 169 | 109
111
112 | 111
112
113 | 112
113
116 | | | 111
113
115
117
110 | 112
113
115
117 | 112 112 112 112 112 112 112 112 112 112 | 114
116
118
119 | 118 | 126 | | | | | 125
136
135
140
145 | 83,8
84,3
84,7 | 85,
85,
86, | 3 8
8 8
3 8 | 6,8
7,4
7,9 | 88,3
88,9
89,4 | 89.8
90.4
91.0 | 91,9 | 92,
93,
94, | 7 9 | 4.2
4.9
5.5 | 95.6
96.3
97.6 | 96.9
96.7
98.7
98.1 | 100
101
102 | 164
169
166 | 107
108
109 | 7 116
3 111
7 112 | 112
. 114
! 118 | 115
117
118 | 117
119
121 | 120
122
123 | 121
124
126 | 123
126
128 | 128 | 132 | 127
136
134 | 135 | 124
128
132
136
139 | 129
133
137 | 138 | 125
129
134
138
142 | 136
134
139
143 | 134 | | 150
155
160
165
170 | 85.7
86.0
86.3 | 7 87,
5 87,
5 88, | 4 8
7 8
6 8 | 9,6
9,4
9,7 | 96,7
91,6
91,3 | 92,3
92,7
93,6 | 93.5 | 95
95
96 | 9 9 | 7.1 | 98,7 | 161 | 169
169 | 168
168
169 | 111
112
113 | 3 116 | 118
119
126 | 122
123
124 | 125
126
127 | 128
129
130 | 131
132
133 | 134
135
136 | 136
138
139 | 139
140
142 | 141
143
145 | 161
163
165
167
169 | 149149151 | 147
149
152 | 151 | 1,55 | 147
151
154
157
166 | 151
151 | | 175
186
185
196
266 | | 80, | | | | 93,9 | 95.5
95.6
95.6 | 97 | 2 9
5 9 | 8,9
9,2 | 100
101
101
101
102 | 162
163
163 | 166
167
167 | 116
111
111 | 114 | 1 116
1 116
3 116
5 116 | 122
123
123 | 126
126
127 | 129
130
131 | 133
134 | 137
138 | 140
141
141 | 146 | 146
147
148 | 149 | | | 157
159
160 | 141464
141663 | 160
162
164 | 162
164
166
168
172 | 166
169 | k = 20 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 20 | \n\ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |----------------------------|--------------------------------|---|--------------------------|----------------------|----------------|-----|------------------------|---|------------|-----------------|----|--|----|----|----|----|--|----|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|---|----------------------|----------------------| | 1
2
3 | Seedal See Day's | | <u>Biographical Indi</u> | tining steer in name | inamen (Sassin | | illing of the property | | anderstand | nerkinen provin | | | | | | | | | 0.554.0535265 | aus missioners | | Teinerseur | esereni Alas | | and mental services | e Managarina | girsas Abrasiani. | aritim est il | even dusci | | | 5 | | | | | | 1 5 | | | | | | | | | | E | | | | | | | | | | | | | | | | 7
8
9
10 | 11
12
13
14
15 | | | | | | | | | | | | ار این | | | | | | | | 12.8 | 11.9
12.8
13.7 | 13,8 | 12,9 | 13,6 | | | 15,6 | | | | | 16
17
18
19
20 | 15,5
16,6
16,5 | 15.9
16.4
16.9 | 16.1
16.7
17.3 | 16.3
17.0
17.6 | 16.5
17.2
17.9 | 16.6
17,4
18,2 | 16,6 | 15.9
16.8
17.7
18.5
19.3 | 16,9
17,8
18,6 | 16.9
17.9
18.8 | 17,9 | | 21
22
23
24
25 | Shirt
Shirt
Turk | | | | | | | | | | 49 | ا استان استان این در
آن ما استان این این این این این این این این این ا | | | | ź | | | | 17.4
17.6
17.8 | 18.0
18.3
18.5 | 18,5
18,8
19,1 | 19,6 | 19.5
19.9
25.2 | 19,9
20,3
20,7 | 26,8
26,8
21,2 | 20.6
20.6
21.1
21.6
22.1 | 20,9
21,5
22,6 | 21,1 21,7 22,3 | 21,3
22,6
22,6 | | 26
27
28
29
30 | 18.3
18.4
18.5 | 19.0
19.2
19.3 | 19.7
19.9
20.0 | 20,4
20,6
20,8 | 21.1
21.3
21.5 | 21.7
21.9
22.1 | 22,5 | 22.4
22.8
23.4
23.4
23.6 | 23,3
23,6
24,6 | 23,8
24,2
24,5 | 24,2
24,6
25,6 | | 31
32
33
34
35 | | | | | | | | | | | | | | | | | | | ماره مصر
مراد المراد المحادد،
راد المراد المارة المحاددة | 18,8
18,8
18,9 | 19,6
19,6
19,7 | 26,4
26,5
26,5 | 21.1
21.3
21.3 | 21,9
22,6
22,1 | 22,6
22,8
22,9 | 23,4 | 23,8
24,5
24,2
24,4
24,9 | 24.7
24.9
25.1 | 25,3
25,6
25,8 | 25,9
26,2
26,4 | | 36
37
38
39
40 | 19.0 | 19,9
19,9
25,6 | 20.7
20.8
20.9 | 21.6
21.7
21.7 | 22.4
22.5
22.6 | 23,2
23,3
23,4 | 24,0 | 24.7
24.8
24.9
25.1 | 25,5
25,7
25,8 | 26,3
26,4
26,5 | 27.0
27.1
27.3 | | 41
42
43
44
45 | yeri edi
garaken
garaken | | | | | Ź, | | | | | | وه در این است.
در در است سال در این | | | | | المنطقة المنطقة
المنطقة المنطقة | | | | <i>2</i> 7 | 26,9 | 21,9 | 22,7
22,8
22,8 | 23,6
23,6
23,7 | 24.4
24.5
24.5 | 25,2
25,3
25,4
25,4 | 26,1
26,1
26,2 | 26,9
26,9
27,0 | 27,6
27,7
27,8 | | 46
47
48
49
50 | 24,7 | 25.5
25.6
25.6
25.7
25.7 | 26,4 | 27:2
27:3
27:4 | 28,1
28,1
28,2 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n | 32 | 34 | 36 | | 38 | 46 | 42 | 6.6 | 1 | 46 | 48 | 56 | B2 | 54 | 5 | 6 | 58 | 60 | 62 | 6 | 4 | 66 | 68 | 70 | 8 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 8 | 5 81 | 96 | |----------------------------|------------------------------|----------------------------------|------------------------------|----------------------|--------------------------|------------------------------|----------------------|------------------------------|------------|------------------------------|----------------------|-------------------------|---|----------------------------------|----------------------|-------------------|------------------------------|------|-------------------|------------------------------|-------------------|----------------------|-------------------|------------------------------|-----|----------------------|------|-----|---------------|----|----|----|---|------|----| | 1
2
3
4 | 5
6
7 | 8
9
10 | 11
12
13
14
15 | 16
17
18
19
20 | 18,6
18,9
19,9 | | , | 21
22
23
24
25 | 21,6
22,4
23,1 | 20,
21,
22,
23,
24, | 3 21,
7 22,
5 23, | 9 2
8 2
7 2 | 2,9
3,9 | | 24,5 |) | 26
27
28
29
36 | 25,5
25,5 | 25,
25,
26,
26,
26, | 6 26,
2 26,
7 27, | 1 2
8 2
4 2 | 6,4
7,2
7,9 | 26,7
27,5
28,3 | 26.8
27.7
28.6 | 3 26
7 27
5 28 | . 8 | 28.9 | 31
32
33
34
35 | 27.1
27.4
27.7 | 4 28,
7 28, | 1 29
5 29
8 29 | 0 2
4 3
8 3 | 9,7
6,2
6,7 | 36.4
31.6
31.5 | 30,9 | 31
32
232 | .8 | 31.6
32.4
33.1 | 31,7 | 31, | 9 31.
8 32.
7 33.
5 34. | 9
8 33, | , 9
. 8 34 | 1,9 | 36
37
38
39
40 | 28,1
28,3
28,5
28,7 | 1 29,
3 29,
5 29,
7 30, | 4 36
6 36
9 31
1 31 | ,5 3
,8 3
,1 3 | 1,5
1,9
2,2
2,5 | 32,5
32,9
33,3
33,6 | 33, | 3 34
7 34
2 35
5 35 | . 6
. 5 | 34,5
35,2
35,7
36,3 | 35,6
35,7
36,3 | 35.
36.
36. | 3 39,
1 36,
8 37,
5 38, | 6 35,
4 36,
2 37,
6 38, | 8 35
6 36
5 37 | 5,9
5,8
7,7 | 36.9
37.8
38.7 | 37,9 | 38, | | | | | | | | | | | | | | | | | | 41
42
43
44
45 | 29,2 | 2 30,
3 30,
4 30, | 6 32
8 32
9 32 | .0 3
.2 3
.3 3 | 3,3
3,5
3,7 | 34,5
34,8
35,6 | 35,
36, | 7 36
8 37
2 37 | 79 | 37,7
38,1
38,4 | 38,5 | 39.
39.
40. | 7 39,
3 39,
8 46,
3 41,
7 41, | 9 40,
5 41,
1 41, | 5 46
1 41
7 42 | 1.7 | 41,3 | 41.5 | 41, | 7 41
6 42
4 43 | 2.8
2.8 | 42,9 | 43. | 9
8 44 | .,9 | | | | | | | | | | | | 49 | 29.5 | 6 31,
7 31,
8 31,
9
31, | 2 32
3 32
4 32
5 33 | ,7 3
,8 3
,9 3 | 4,1
4,2
4,4 | 35,4
35,6
35,8
36,6 | 36,
37,
37, | 7 38
5 38
2 38
4 38 | . 6 2 5 5 | 39,1
39,4
39,7 | 46.5 | 2 41;
5 41;
6 41; | 2 42. | 6 42,
5 43,
9 43, | 8 43
3 44
8 44 | 3,5
4,1
4,6 | 44.1
44.8
45.3
45.9 | 45.5 | 45,
45,
46, | 6 49
8 46
5 46
1 47 | 3,3
3,1
5,9 | 45,6
46,4
47,2 | 45,
46,
47, | 7 45
6 46
5 47
3 48 | .8 | 46.9
47.8
48.7 | 47.5 | AR. | 9
B | | | | | | | k = 20 Table 2-20 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 20 | A D | 32 | 34 | 36 | 38 | 46 | 42 | 44 | . 4 | \$6 | 48 | 56 | 92 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 96 | |---------------------------------|----------------------|----------------------|--------------------------------------|----------------------|-------------------|--|-------------------------|----------------------|----------------|----------------------|----------------------|------|--|------------------------------------|----------------------|---------------------------------|----------------------|--|----------------------|----------------------|----------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------| | 52
54
56
58
60 | 30,2
30,3
30,4 | 31,9
32,0
32,1 | 33,3
33,5
33,7
33,8
33,9 | 35,3
35,5 | 36,
36,
37, | 7 38 , ;
9 38 , ;
1 38 , ; | 2 39,
4 39,
7 46, | 9 41 | 1.0 · | 42,4
42,8
43,1 | 44.1 | 44.9 | 46,6
46,6 | 47.1
47.7
48.3 | 48.1
48.8
49.5 | 49,6 | 49,9
56,8 | 50,7
51,7
52.5 | 51,4
52,5 | 52,6
53,2 | 52,5
53.8 | 52.9 | 54.7 | 53,5
55,1 | 53.6
55.4 | 53,8
55,6 | 95,7 | 55,8 | 55,9
57.8
59.6 | 57.0
59.7 | 59.8 | | 62
64
66
68
76 | | 32,3
32,4 | 34,2 | 35,9
36,6
36,1 | 37,
37,
37, | 6 39 .
7 39 .
8 39 . | 2 40,
5 41,
5 41, | 8 42
0 42
1 42 | 2,4 | 43,9
44,2
44,4 | 45,4
45,7
45,9 | 46,9 | 48,3
48,7
48,9 | 49,7
56,1
58,4 | 51.6
51.4
51.8 | 52,3
52,7
53.2 | 53,5
54,6
54.5 | 54,7
55,2 | 55,8
56,4
57.6 | 56.8
57.5
58.1 | 57.8
58.6
59.2 | 58.7 | 59,5
65,5 | 60.3 | 61:6 | 61,6 | 62.1 | 62,6 | 61,3
62,9
64,4
65,8
67,1 | 63,2 | 65, | | 72
74
76
78
86 | | | | 36,2 | 38, | 1 39 , 8
2 39 , 9
40 , 6 | 41,
41,
41, | 5 43
6 43
7 43 | ,2 | 44.9
45.6
45.2 | 46,5
46,7
46.8 | 48:3 | 49,7
49,9
56.1 | 51,2
51,5 | 52.7
53.6
53.2 | 54,2
54,5
54.7 | 55,6
55,9 | 57,6
57,4 | 58,4
58,8 | 59,7
66,1 | 61.4 | 62.7 | 63.3 | 64.5 | 65,5 | 66,5 | 67.5 | 68,4 | 68.2
69.2
70.1
71.0
71.8 | 75.5 | 70,7 | | 82
84
86
88
90 | | | | | | | 41,
42, | 6 43 | 1,8 4
1,8 4 | 45,5
45,6
45,7 | 47.3 | 48.9 | 55,6
55,7
56,8 | 52,2
52,4
52,5 | 53.8
54.0
54.2 | 55,4
55,6
55,8 | 57,6
57,2
57.4 | 58,5
58,7
59,6 | 60,5
60,3 | 61.8 | 62,9
63,2
63,5 | 64.7 | 65.7 | 67,1
67,5 | 68.8 | 69,6
70:1 | 70.8 | 72.6 | 72,5
73.1
73.8
74.3
74.8 | 74.2 | 75,3
76,6 | | 92
94
96
98
100 | | | | | | | | | | | 47.6
47.7 | 49.4 | 51.2
51.3
51.3 | 52,9
53,6
53,1 | 54.6
54.7
54.8 | 56,2
56,4
56,5 | 57,9
58,6
58,2 | 59,5
59,7
59,8 | 61,1
61,3
61,5 | 62,7
62,9
63,1 | 64:3
64:5
64:7 | 65,8 | 67.3
67.6
67.8 | 68,8
69,1
69,3 | 76.2
76.6
76.8 | 71.7
72.6
72.3 | 73.1
73.4
73.8 | 74.8 | 75.3
75.8
76.2
76.6
76.9 | 77,9
77,9 | 78,3
78,8
79,2 | | 102
104
106
108
110 | | | | | | | | | | | | | 51,5 | 53.4 | 55,1
55,2
55,3 | 56.8
56.9
57.0 | 58,5
58,7
58,8 | 60,2
60,4
60,5 | 61,9
62,1
62,2 | 63,6
63,7
63,9 | 65.2
65.4
65.5 | 66.8 | 68,4
68,6
68,8 | 70.0
70.2
70.4 | 71.6
71.8
72.0 | 73.1
73.3
73.6 | 74.6
74.9
75.1 | 76.4
76.4
76.6 | 77.3
77.6
77.9
78.1
78.4 | 79,6
79,6 | 80,4
80,7
81,1 | | 112
114
116
118
120 | | | | | | | | | | | | | ر ماید مستورد ده
۱۳ کند مدرو امد
۱۳ کند مدرو امد | | | | 59,6 | 60,8
60,9
60,9 | 62,5
62,6
62,7 | 64.2
64.3
64.4 | 65,9
66,0
66,1 | 67.6
67.7
67.8 | 69.3
69.4
69.5 | 76.9
71.1
71.2 | 72.5
72.7
72.9 | 74,2
74,3
74,5 | 75,8
75,9
76,1 | 77.3
77.9
77.7 | 78.6
78.9
79.1
79.3
79.5 | 85,485,785,9 | 81,9
82,2
82,4 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | | | 63,0 | 64,7 | | 68,5 | 76.2
76.4
76.6 | 71.9
72.2
72.4 | 73.6
73.9
74.1 | 75,3
75,6
75,9 | 77.6
77.3
77.6 | 78.7
79.6
79.3 | 80,0
80,4
80,7
81,0
81,3 | 82.6
82.4
82.7 | 83,6
84,6
84,4 | | 150
155
160
165
170 | | | | | | | | | | | | S. | | ر
زامسان در در
تامرزانسان تا | | ر
در استوران
در استار این | 55 | مسرور مدرسور
در مرسور مسرور
در مرسور مسرور | | | | در احمال
المراجع المراجع | | | Rega | 76.3 | | 86,6 | 81,6
81,8
82,6 | 83,5 | 85,3
85,5 | | 175
185
185
196 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | A | 92 | 94 | 9 | 6 | 98 | 166 | 162 | 1 | 0 4 | 106 | 108 | 115 | 115 | 120 | 125 | 136 | 135 | 146 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 195 | 195 | 200 | 265 | 210 | |---------------------------------|----------------------|--------------------------|------------------------------|----------|------------------------------|------------------------------|-------------------|--------------------------|-------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|---------------------|----------------------|------------------------------------|-------------------|-------------------|--------------------------|-------------------|--------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|---------------------------------|---------------------------------|--------------------------| | 52
54
56
58
60 | 68 | 63,6
65,4
67,6 | 67, | 7 63
6 65
3 67 | ,7
,5 | 67,7 | 65,9
67,8
69,6 | 67. | | 9,8 | 74
76
78 | 71,3
72,5
73,5 | 71,
73,
74, | B 72
1 73
3 74 | ,3
,7 | 72,7
74,1
75,5 | 74,6
76,0 | 73,
74,
76, | 3 7
9 7
4 7 | 3,5
5,2
6,8 | 73,6
75,4
77,1 | 73,7
75,6
77,3 | 73.8
75.7
77.5
79.2 | 77,8 | 82
84
86
88
90 | 76,3 | 3 77,
3 78,
7 78, | 2 78
5 78
8 79 | ,1
,9 | 78,9
79,8
80,7 | 79,6
80,7
81,6 | 80.
81. | 3 8
4 8
4 8 | 1,0
2,1
3.2 | 81,5
82,8
83.9 | 82,0
83,3
84,6 | 80,9
82,4
83,9
85,2
86,4 | 83,2 | 83,6
85,4 | 83,8
85,7 | ,
5 87. | 9
7 | | | | | | | | | | | | | | | | | 92
94
96
98
100 | 80,0
80,0 | 80,
81,
81, | 7 81
3 82
8 83 | ,4 | 83,0
83,6
84,2 | 84,0
84,7
85.3 | 85,
85, | 0 8
8 8
4 8 | 6,5
6,8
7.5 | 86,9
87,7
88.5 | 87,8
88,7 | 88,6
89,5 | 90,3 | 91,7 | 92,7 | 93, | 91,8
3 93,6
5 95,5
6 97,2 | 95,7 | 07.8 | | | | | | | | | | | | | | | 102
104
106
108
110 | 81,4
81,8
82,2 | 82,
83,
83,
83, | 7 84
1 84
5 84
9 85 | ,5 | 85,3
85,7
86,2
86,6 | 86,5
87,0
87,5
87,9 | 87,
88,
88, | 7 8
2 8
7 9
2 9 | 8,8
9,4
0,6 | 89,9
90,6
91,1 | 91,6
91,7
92,3 | 92.0
92.7
93.4
94.6
94.6 | 94,4
95,2
96,6 | 96,5
97,5
98,4 | 98.2
99.4
100 | 99, | 5 101
1 102
2 104
3 105 | 101 | 102
103
105 | 162
164
166
167 | 106
108 | | | | | | | | | | | | | 112
114
116
118
120 | 83,7 | 84,
785,
85, | 9 86
2 86
5 86 | ,3 | 87,7
88,1
88,4 | 89,1
89,5
89,8 | 90, | 59
99
29 | 1,8
2,3
2.6 | 93,2
93,6
94.6 | 94,4 | 95,2
95,7
96,2
96,6
97,1 | 98,7 | 101
102 | 105 | 10 | 5 108
7 109
3 116 | 116
111
112 | 111
113
114 | 112
114 | 113
115
116 | 113
115
117 | 116
117 | 116
118
120 | 120 | | | | | | | | | 125
130
135
140
145 | 85.2
85.7 | 2 86,
7 87,
3 87, | 8 88
3 88
7 89 | ,4 | 90,0
90,5
90,9 | 91,5
92,1
92,6 | 93,
93,
94, | 6 9
6 9
1 9 | 4,5
5,2
5,7 | 96.5
96.7
97.3 | 97,5
98,2
98,8 | 98,1
98,9
99,7
100
101 | 162
163
164 | 106
107
108 | 109 | 9 11
3 11
1 11 | 2 115
3 116
5 118 | 115
115
121 | 120
122
124 | 122
124
126 | 124
127
129 | 126
129
131 | 127
130
133 | 124
128
132
135
138 | 129
133
136 | 129
134
137 | | 134 | 139 | 146
144 | 144 | 145 | | 150
155
160
165
170 | 87.2
87.2 | 88,
289,
589, | 7 90
6 90
2 90 | , 7 | 92,1
92,4
92,7 | 93,7
94,1
94,4 | 95,
95, | 4 9
8 9
1 9
 7,1
7,4
7.8 | 98,7
99,1 | 100 | 152 | 106 | | 114
114
115 | 11
11
5 11 | 7 121
3 122
9 122 | 125 | 128
129
130 | 129
131
132
133 | 132
134
135 | 135
137
138
140 | 138
139
141
143 | 146 | 142
144
146
148 | 144
146
149
151 | 145
148
151
153 | 147
150
153
155 | 148
151
154 | 148
152
156
159
162 | 149
153
157 | 149
154
158
162 | | 175
180
185
190
200 | 87,5 | 89, | | ,6 | 93,4 | 94.9
95.1
95.3
95.5 | 96, | 9 9
1 9 | 8,8 | 100
101
101 | 102
102
103 | 164
164 | 108
108
109 | 112
112
113 | 116
117 | 5 12
7 12
7 12 | 124 | 125 | 132
133
133 | 136
137 | 139
146
141 | 142
143
144 | 145
146
147 | 148
149
150 | 151
153
154
155 | 154
156
157 | 157
159
160 | 160
161
163 | 162
164
166 | 164
166
168 | 166
169
171
173
176 | 168
171
173
175 | Table 2-21 k = 30 Table 2-22 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 30 | n | 1 2 | 2 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 35 | |----------------------------|-----|-----|---|---|----------------------------|---|---|--|------------------|--------------|----|----|----|-------------------|-----|----|----|----------------|------------------|----|----|----|----|----|----|----|----|------------------|--------------------------------------| | 1
2
3
4
5 | | | | | | | | nes i preside | gundesprokensen. | | | | | 24672115 82232040 | | | | enoisettattain | 1165060451Access | | | | | | | | | Point All Connec | kiamuskinsettissä | X | | | | | | | | | | | 6
7
8
9
10 | 11
12
13
14
15 | | | | | | | | | | | | | | | i i | | | | | 1 | | | | | Š | | | | | | 16
17
18
19
20 | 18,6 | | 21 | | | | | | | | | | 14.
 15. | | | | | | | | | | | | | | | | | | | 18,0
18,9
19,8 | | 22
23
24
25 | | | | | 55 | | | | | S. | | | | | I z | | | | | 8 | | | | | | | | | 21,5
22,3
23,6
23,7 | | 26
27
28
29
30 | 24,3
24,8
25,3
25,7
26,0 | | 31
32
33
34
35 | | | | | . (3.1
(3.1) | | | | | S | | | | | | | | | | | | | | | | | | | 26,3
26,6
26,9
27,1
27,3 | | 36
37
38
39
40 | 27,5
27,6
27,8
27,9
28,0 | | 41
42
43
44
45 | | | | | #
#
#5. | | | ر در مصورت می از در مصورت می از در مصورت می از در | | | | | | | | | | | | | | | | | Į. | | | | 28,1
28,2
28,3
28,4
28,5 | | 46
47
48
49
50 | | | | | 53
53
53
53
53 | 28,5
28,6
28,7
28,7
28,8 | Table 2-23 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | A | 32 | 34 | 36 | 38 | 45 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |----------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|-------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------|------------------------|----------------------|----------------------|------------------------------|------------------------------|----------------------------|----------------------|--------------|-------|--------------|----|----|----|----|----|----|----|----|----| | 1
2
3
4 | 5
6 | 7
8
9
10 | 11
12
13
14
15 | 16
17
18
19
20 | 19,9 | 21
22
23
24
25 | 20,9
21,8
22,6
23,4
24,2 | 21,9
22,8
23,7 | 22,9 | | 24,9 | 26
27
28
29
30 | 24,9
25,5
26,1
26,6
27,0 | 26,0
26,7
27,3 | 26,4
27,2
27,9 | 26,7
27,5
28,3 | 26.8
27.7
28.6 | 26,9
27,9
28.8 | 28. | • | 9 | 31
32
33
34
35 | 27,4
27,8
28,1
28,4
28,6 | 28,8
29,2
29,5 | 29,6
30,1
30,6 | 36,3
36,9
31,4 | 36,9
31,5
32,1 | 31,3
32,6
32,7 | 31,0 | 31,
4 32,
2 33, | 8 31,
6 32,
5 33, | 9
B 32,4
7 33,1 | 33,9 |)
) | 36
37
38
39
40 | 28,9
29,1
29,3
29,4
29,6 | 30,4
30,6
30,8 | 31,6
31,9
32,2 | 32,7
33,1
33,4 | 33,7
34,1
34,5 | 34,5
35,6 | 35,
35, | 2 35,
8 36,
3 37. | 7 36,
4 36,
6 37, | 2 36,1
9 37, | 36,7
3 37,6 | 7 36,8
37,7
38.6 | 36,9
37,9 |)
38.9 | 39,9 | | | | | | | | | | | | | | | | | 41
42
43
44
45 | 30,0 | 31,4
31,5
31,6 | 32,8
33,0
33,1 | 34,2
34,4
34,6 | 35,4
35,7
35,9 | 36,6 | 37,
38,
38, | 6 38,
5 39,
3 39, | 6 39,
6 39,
4 40, | 4 40,
9 40,
3 41. | 1 40,6 | 41,1
41,8
42.5 | 42,2 | 41.6
42,5
43.3 | 41.8
42.7
43.6 | 41,9
42,8
43,7
44,6 | 43.0 | 14,9 | | | | | | | | | | | | | | 46
47
48
49
50 | 30,2
30,3 | 31,8
31,9
32,0
32,1 | 33,4
33,5
33,6
33,8 | 34,9
35,1
35,2
35,3 | 36,3
36,5
36,7
36,8 | 37,7
37,9
38,1 | 38,
39,
39, | 9 40,
2 40,
5 40,
7 41. | 1 41,
4 41,
7 41,
6 42, | 2 42,
5 42,
9 42,
2 43. | 1 43,6
6 43,5
9 43,9 | 43,7
44,3
44,8 | 44,3
44,9
45,5 | 44,8
45,5
46,2 | 45,2
46,0
46,7
47.4 | 45,5
46,3
47,1 | 45,7 4
46,6 4
47,4 4 | 15,8
16,7
17,6 | 46,9
47,8 | AR. R | 48,9
40.8 | | | | | | | | | | k = 30 Table 2-24 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 30 | \sqrt{n} | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 | 90 | |---------------------------------|--------------|----------------------|--|----------------------|----------------------|--|----------------------|----------------------
---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------| | 52
54
56
58
60 | 30,7
30,8 | 32,5
32,6
32,7 | 34,2
34,3
34,4 | 35,8
36,0
36,1 | 37,5
37,7
37,8 | 39,0
39,3
39,5 | 40,6
40,8
41,1 | 42,6
42,4
42,6 | 43,4
43,8
44,1 | 44,8
45,2
45,6 | 46,0
46,5
47,0 | 47,2
47,8
48,3 | 48,3
48,9
49,5 | 49,3
50,0
50,7 | 50,2
51,0
51,8 | 51,6
52,6
52,8 | 51,7
52,8
53,8 | 52,3
53,5
54,6 | 52,7
54.1
55,3 | 51.5
53.1
54.6
56.0
57.1 | 53,4
55,0
56,5 | 53,6
55,3
56,9 | 53.8
55.6
57.3 | 53.9
55.7
57.5 | 55,8
57,7 | 57,8 | | 59,9 | | | | 62
64
66
68
70 | | 32,8
32,9 | 34,7
34,8 | 36,5
36,6
36,6 | 38,2
38,3
38,4 | 39,9
40,1
40,2 | 41,6
41,8
41,9 | 43,3
43,5
43,6 | 44,9
45,1
45,3 | 46,5
46,7
46,9 | 48,6
48,3
48,5 | 49,5
49,8
50,1 | 56,9
51,3
51,6 | 52,3
52,7
53,1 | 53,6
54,1
54,5 | 54,9
55,4
55,8 | 56,6
56,6
57,1 | 57,1
57,8
58,4 | 58,2
58,9
59,6 | 58,2
59,1
60,0
60,7
61,4 | 60.0 | 65,8
61,8
62,7 | 61,5
62,6
63,6 | 62,1
63,3
64,4 | 62,6
63,9
65,1 | 63,6
64,4
65,8 | 63,3
64,9
66,3 | 63,5
65,2
66,8 | 63.7
65.5
67.1 | 63,8
65,7
67,4 | | 72
74
76
78
80 | | | | 36,8 | 38,6 | 40,4 | 42,2
42,3
42,4 | 44,0
44,1
44,2 | 45,7
45,8
45,9 | 47,4
47,6
47,7 | 49,1
49,2
49,4 | 50,7
50,9
51,1 | 52,3
52,5
52,7 | 53,9
54,2
54,4 | 55,5
55,7
56,6 | 57,6
57,2
57,5 | 58,4
58,7
59,0 | 59.8
60.2
60.5 | 61,2
61,6
62,0 | 61,9
62,5
62,9
63,4
63,8 | 64,2 | 64,9
65,5
66,0 | 66,0
66,7
67,3 | 67:1
67:8
68:5 | 68,1
68,9
69,6 | 69,6 | 69.9
70.8
71.7 | 70.6
-71.7
72.6 | 71.3
72.5
73.5 | 71,9
73,2
74,3 | | 82
84
86
88
90 | | | | | | 5 | 42,5
42,6 | 44,4 | 46,2
46,3
46,3 | 48,0
48,1
48,1 | 49,7
49,8
49,9 | 51,5
51,6
51,7 | 53,2
53,3
53,4 | 54,9
55,6
55,2 | 56,5
56,7
56,9 | 58,2
58,4
58,5 | 59,8
60,0
60,2 | 61,4
61,6
61,8 | 62,9
63,2
63,4 | 64,1
64,4
64,7
65,0
65,2 | 65,9
66,2
66,5 | 67,3
67,7
68,0 | 68,7
69,1
69,5 | 70.1
70.5
70.9 | 71,4
71,8
72,3 | 72,6
73,1
73,6 | 73.8
74.4
74.9 | 75,6
75,6
76,2 | 76,0
76,7
77,4 | 77,1
77,8
78,5 | | 92
94
96
98
100 | | | | | | 2007
2007
2008
2008
2008
2008 | | | 46,5 | 48,4 | 50,2
50,2
50,3 | 52,0
52,0
52,1 | 53,7
53,8
53,9 | 55,5
55,6
55,7 | 57,2
57,4
57,5 | 59,0
59,1
59,2 | 60,7
60,8
60,9 | 62,4
62,5
62,6 | 64,0
64,2
64,3 | 65,4
65,6
65,8
66,0
66,2 | 67,2
67,5
67,6 | 68,8
69,1
69,3 | 70,4
70,6
70,9 | 71,9
72,2
72,4 | 73,4
73,7
74,6 | 74,8
75,2
75,5 | 76.2
76.6
77.0 | 77,6
78,0
78,4 | 79,0
79,4
79,8 | 80,3
80,7
81,2 | | 102
104
106
108
110 | | | | | | | | | | | 57.
37. | | 54,1
54,2 | 55.9
56.0
56.1 | 57,7
57,8
57,9 | 59,5
59,6
59,7 | 61,3
61,4
61,5 | 63,0
63,1
63,2 | 64,7
64,9
65,0 | 66,3
66,5
66,6
66,7
66,8 | 68,1
68,3
68,4 | 69,8
75,5
75,1 | 71,5
71,6
71,8 | 73:1
73:3
73:5 | 74,7
74,9
75,1 | 76,3
76,5
76,7 | 77.8
78.1
78.3 | 79,4
79,6
79,9 | 80.9
81.2
81.4 | 82,3
82,6
83,0 | | 112
114
116
118
120 | | | اس
ایران میرود و در مرد
ایران و درود و درود
ایران میرود و درود
درود میرود و درود | | | | | | | | S. | | | 56,2 | 58,1 | 59,9
59,9
60,0 | 61,7
61,8
61,8 | 63,5
63,6
63,6 | 65,3
65,4
65,4 | 66,9
67,0
67,1
67,2
67,3 | 68,8
68,9
69,0 | 70,5
70,6
70,7 | 72,2
72,4
72,5 | 73.9
74.1
74.2 | 75,6
75,8
75,9 | 77,3
77,4
77,6 | 78,9
79,1
79,3 | 80,6
80,7
80,9 | 82,2
82,4
82,6 | 83,7
84,5
84,2 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | | 63,9 | | 67:5
67:7
67:8 | 69,5 | 71,3
71,4
71,6 | 73,1
73,3
73,4 | | 76,6
76,8
77,0 | 78,4
78,6
78,8 | 80.1
80.4
80.6 | 81,8
82,1
82,4 | 83,5
83,9
84,1 | 85,2
85,6
85,9 | | 150
155
160
165
170 | | | | | | | | | المراسطين المستوارين المستوارين المراسطين الم | | | | | | | | | | | | Á | | | | | 79,2
79,3 | 81.2 | | 84,8
85,0
85,1 | 86,6
86,8 | | 175
180
185
190
200 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n | 92 | 94 | 90 | \$ | 98 | 166 | 162 | 104 | 106 | 168 | 116 | 115 | 120 | 125 | 136 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 176 | 175 | 185 | 185 | 196 | 195 | 200 | 205 | 210 | |---------------------------------|----------------------|------------------------------|----------------|-------------------------|-------------------|----------------------|------------------------------|----------------------|-----------------------|----------------------------|--------------------------------------|--------------------------------------|---------------------------------|-------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|--------------------------|-------------------| | 52
54
56
58
60 | 62
64
66
68
70 | 67,6 | 65,9
67,7
69,5 | 67 | . 8
. 7 6 | 9,8 | 76
78 | 72,4
73,8
75,0 | 71,2
72,8
74,3
75,6 | 73
74
76 | 2 7
7 7
2 7 | 3,4
5,1
6,6 | 73,6
75,4
77,0 | 75,6 | 75.5 | 75,8 | 777,8 | 79,8 | 86 | 78,0
78,9
79,6 | 78,9
79,6
80,7 | 79
80
81 | , 8 8
, 7 8
, 6 8 | 1,6 | 81,2
82,3
83,4 | 81,8
83,6
84,2 | 82,3
83,6
84,9 | 82,
84, | 7 83,6
2 84,6
5 86,6 | 81,6
83,3
85,6
86,5
86,5 | 83.7 | 87,7
89,6 | 98 | 81,5
82,6
82,5 | 82,7
83,3
83,8 | 83
84
85 | , 9 E
, 5 E | 5,0 | 86,6
86,8
87,4 | 87,6
87,8 | 88,6
88,8 | 88,8
89,8 | 89,7
8 90,7 | 95,4
91,5 | 90,5
91,9
93,2
94,4
95,5 | 92,9
94,5
95.9 | 93,5 | 97.5 | 99.7 | | | | | | | | | | | | | | | | | 102
104
106
108
110 | 84,1 | 85,5
85,5 | 87 | 6 8
3 8 | 8,3
8,7 | 89.2
89.7
90.1 | 90.4 | 91,0 | 92,0 | 93,9
4 94,6
7 95,2 | 95,6
95,7 | 96,5
97,5
98,3
99,1
99,9 | 99,6
161 | 101
102 | 162
164
165 | 102
103
105
106
108 | 164
165
167
169 | 108
109 | | | | | | | | | | | | | | | 112
114
116
118
120 | 85,5
85,8 | 86,8
87,1
87,4 | . 88
. 88 | , 3 E
, 6 9 | 0,1 |
91,3
91,6
91,9 | 92,7 | 94, | 95,!
95,! | 96,8
997,2
397,7 | 97,6
98,1
98,6
99,6 | 101 | 103
104
105
105
106 | 107 | 169
110 | 169
111
112
113
114 | 110
112
113
115
116 | 111
113
114
116
117 | 112
113
115
117
118 | | 125 | | | | | | | | | | | | 125
130
135
140
145 | 86,9
87,3
87,6 | 88,6 | 90
90
91 | 2 9
6 9 | 1,9
2,3
2,7 | 93,5
94,6
94,4 | 95,1
95,6
96,6 | 96,6
97,1 | 98,2 | 99,7
3 100
3 101 | 100
101
102
103
103 | 105
106
106 | 167
168
169
116
111 | 113
114 | | 116
118
119
121
122 | 118
120
122
124
125 | 125
123
125
127
128 | 125
127 | 123
127
130
132
134 | 128
131
134 | 125
129
133
136
139 | 134
137 | 136
134
138
142 | | 146
144 | 144 | | | | | | 150
155
160
165
170 | 88,4
88,6
88,7 | 89,9
90,1
90,4
90,6 | 91
92
92 | ,9 9
,1 9
,3 9 | 3,7 | 95,4
95,7
95,9 | 97,1
97,4
97,7 | 98,9
99,9 | 2 10:
2 10:
10: | 1 102
1 103
1 103 | 105 | 168
169
169 | | 116
117
117 | 121
121 | 123
124
124
125
126 | 126
127
128
129
130 | 131 | 133
134
135
136
137 | 139
146 | 138
140
142
143
144 | 141
143
145
146
148 | 143
146
147
149
151 | 148 | 147
150
152
155
157 | 148
151
154
157
159 | | 154
157
161 | 156
154
158
162
165 | 155
159
163
167 | 160
164
168 | | 175
180
185
190
200 | 89,1 | 90,9
91,6 | 92 | , 9 9 | 4,7 | 96,5
96,7 | 98,1
98,3
98,5
98,6 | 100
100
100 | 10: | 2 104
2 104
2 104 | 105
106 | 110 | 114
114
114
115
115 | 118
119
119 | 123
123 | 126
127
127
128
128 | 131
131
132 | 134
135
135
136
137 | 146 | 142
142
143
144
145 | 146
147 | 149
150
151
151
153 | 152
153
154
155
157 | 155
157
158
159
161 | 158
160
161
162
164 | 161
163
164
165
168 | 164
166
167
169
171 | 168
176 | 168
171
173
175
178 | 173
175 | 177 | k = 50 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 50 | 1 2 | | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 66 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 | 90 | |----------------------------|--|----|--|-----|----------|----|----|----------------------|----------------------|---|----------------------|--------------------------------------|--|----------------------|----------------------|---|----|----|----------------|----|----|----|--------------------|------------|----|----|--|----| | 3
4 | | | | | | | | والمنا المساولات | | من در | | | | | | الله الله الله الله الله الله الله الله | | | | | | | | | | | را د در د | | | 5
6
7 | | | | | | | | | | | | | | | | | | | 35
52
33 | | | | | | | | | | | 8
9
10 | | | | 56 | | | | | 3 | | | | | | | | | | | | | | | 1 3.
2. | | | | | | 11
12
13
14
15 | | | مستورستان دارد
مستوستان دارد از
مستوستان دارد از | | | | | | <i>\$</i> | | | | | | | | | | Á | | | | | 1 | | | | | | 16
17
18
19
20 | 20
21
22
23
24 | | | | 963 | | | | | | | | | . سه سرز ریاسه
نموسور باید باید
<u>منتقر ما تا تامیس</u>
باید | | | | | | | | | | | | | | | | | 23
24
25
26 | | | | | | | | | 8 | 27
28
29
36 | | | | | | | | | 15.
15.
15. | 31
32
33
34 | | | aros. | | <u> </u> | | | 33,9 | | | | | | | | | | 43 | | | | | <u>and Salahan</u> | | | | <u>January</u> | | | 35
36 | | | | | | | | 34,9
35,8
36,7 | 35,9
36,9 | 37
38
39
40 | | | | | | | | 37.6
38.5
39.3 | 37.8
38.7
39.5 | 38,8 | 39,9 | | | | | | | | | | | | | | | | | | | 41
42
43
44
45 | | | | | | | | 40.7
41.4
42.0 | 41.9 | 42,3 | 41.7
42.6
43.4 | 40,9
41,8
42,7
43,6
44,5 | 42,9
43,8 | 43,9 | 44.0 | | | | | | | | | | | | | | | 46
47
48
49 | | | | | | | | 43,1
43,6
44,6 | 43.8
44.4
44.9 | 44,5
45,1
45,7 | 44,9
45,7
46,3 | 45.3
46.1
46.8
47.5 | 45,6
46,4
47,2 | 45,7
46,6
47,5 | 45,9
46,8
47,7 | 47,8 | | | | | | | | | | | | | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n | 32 34 36 38 46 | 42 44 46 48 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 90 | |-----------------------------------|----------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--| | 52
54
56
58
60 | | 45,9
46,4
46,7 | 47.7
47.7 | 48,4
49,0
49,5 | 49,4
50,2
50,8 | 50,4
51,3
52,0 | 51,2
52,2
53,1 | 51,9
53,1
54,0 | 52,5
53,8
54,9 | 52,9
54,4
55.6 | 53,3
54,8
56.2 | 51,8
53,6
55,2
56,7 | 53,7
55,5 | 55,7 | 57.6 | 57,8 | 57,9 | | | | | | | 62
64
66
68 | | 47,3
47,5
47,7
47,9 | 48,9
49,1
49,4
49,6 | 50,4
50,7
51,0
51,2 | 51,8
52,2
52,5
52,8 | 53,2
53,6
54,0
54,3 | 54,4
55,0
55,4
55,8 | 55,6
56,3
56,8
57,3 | 56,7
57,4
58,1
58,6 | 57,7
58,5
59,3
59,9 | 58,6
59,5
60,4
61,1 | 61,4 | 60,0
61,2
62,3
63,2 | 60,5
61,9
63,0
64.1 | 61,0
62,4
63,7
64.9 | 61,3
62,9
64,3 | 61,5
63,2
64,8 | 61,7
63,5
65,1
66,7 | 63,7 | 65,6 | 65,8 | 67.7 | | 70
72
74
76
78 | | 48,2
48,3
48,4
48,5 | 49,7
49,9
50,0
50,2
50,3 | 51,4
51,6
51,8
51,9
52,0 | 53,1
53,3
53,5
53,6
53,8 | 54,6
54,9
55,1
55,3 | 56,2
56,5
56,7
57,0 | 57,7
58,0
58,3
58,6
58,8 | 59,1
59,5
59,8
60,1
60,4 | 60,4
60,9
61,3
61,7
62.0 | 61,7
62,2
62,7
63,1
63,5 | 63,5
64,0
64,5 | 64,7
65,3
65,9 | 65,8
66,5
67,1 | 65,9
66,8
67,6
68,3 | 66,7
67,8
68,7
69,5 | 67,5
68,6
69,6
70,5 | 68,1
69,3
70,4
71,4 | 70.0
71.2
72.3 | 70,5
71,8
73,6 | 70,9
72,4
73,7 | 71,2
72,8
74,3 | | 80
82
84
86
88 | | 48,6
48,7
48,8
48,8 | 50,4
50,5
50,5
50,6
50,7 | 52,1
52,3
52,3
52,4
52,5 | 54,0
54,1
54,2
54,3 | 55,8
55,9
56,0
56,1 | 57.5
57.7
57.8
57.9 | 59,0
59,2
59,4
59,5 | 60,7
60,9
61,1
61,2 | 62,5
62,7
62,9
63.1 | 63,8
64,1
64,3
64,6 | 65,6
65,6
65,9
66,2 | 66,8
67,1
67,5
67,8 | 68,6
69,0
69,3 | 70,0
70,4
70,8 | 70,8
71,3
71,8
72,2 | 72,6
73,1
73,6 | 73,1
73,8
74,4
75,0 | 74,1
74,9
75,6
76,2 | 75,1
76,6
76,7
77,4 | 76,6
76,9
77,8
78,6 | 76,8
77,8
78,8
79,6 | | 90
92
94
96
98
100 | | 48,9
48,9
49,0
49,0 | 50,7
50,8
50,8
50,9
50,9 | 52,6
52,7
52,7
52,7 | 54,5
54,5
54,6
54,7 | 56,3
56,4
56,4
56,5 | 58,1
58,2
58,3
58,3 | 59,8
59,9
60,0
60,1
60,2 | 61,7
61,8
61,9
62,0 | 63,4
63,5
63,7
63,8 | 65,6
65,1
65,3
65,4 | 66,6
67,0
67,1
67,3 | 68,3
68,5
68,7
68,8 | 70,1
70,3
70,5
70,7 | 71,4
71,7
72,0
72,2
72,4 | 73,0
73,3
73,5
73,8 | 74,4
74,8
75,1
75,4 | 75,9
76,3
76,6
76,9 | 77,3
77,7
78,1
78,4 | 78,6
79,1
79,5
79,9 | 79,9
80,4
80,9
81,3 | 81,1
81,7
82,2
82,7 | | 102
104
106
108
110 | | | 21,0 | 52,9 | 54,8
54,8
54,8 | 56,6
56,7
56,7
56,8 | 58,5
58,5
58,6
58,6 | 60,4
60,4
60,5 | 62,1
62,2
62,3 | 64,0
64,0
64,1
64,2 | 65,7
65,8
65,9 | 67,5
67,6
67,7
67,8 | 69,3
69,4
69,5
69,6 | 71,0
71,2
71,3
71,4 | 72.7
72.9
73.0
73.2 | 74,4
74,6
74,7
74,9 | 76,1
76,3
76,5
76,6 | 77,7
77,9
78,1
78,3 | 79,3
79,6
79,8
86,6 | 80,9
81,2
81,4
81,6 | 82,4
82,7
83,6 | 83,6
83,9
84,3
84,6
84,8
85,1 | | 112
114
116
118
120 | | | | | | | 58,7
58,8 | 60,6
60,7
60,7
60,7 | 62,5
62,5
62,6 | 64,3
64,4
64,4 | 66,2
66,3
66,3 | 68,0
68,1
68,1
68,2 | 69,8
69,9
70,0 | 71,6
71,7
71,8
71,9 | 73,4
73,5
73,6
73,7 | 75,2
75,3
75,4
75,5 | 76,9
77,0
77,1
77,3 | 78,6
78,8
78,9
79,0 | 80,3
80,5
80,6
80,8 | 82,0
82,2
82,4
82,5 | 83,7
83,9
84,9 | 85,3
85,5
85,7
85,9
86,1 | | 125
130
135
140
145 | | | | | | | | | | | 66,5 | 68,4
68,5 |
70,3
70,4
70,5 | 72,1
72,2
72,4
72,5 | 73,9
74,1
74,2
74,4 | 75,8
75,9
76,1
76,2 | 77,6
77,8
77,9
78,1 | 79,4
79,6
79,8
79,9 | 81,2
81,4
81,6
81,8 | 83,0
83,2
83,4 | 84,7
85,0
85,2 | 86,5
86,8
86,8
87,0
87,3
87,5 | | 150
155
160
165
170 | | | | | | | | | | | | | | | , 1, 1 | | 78,3 | 80,2 | 82,1 | 83,9
84,1
84,2 | 85,8
85,9
86,1 | 87,6
87,8
87,9
88,0 | | 175
180
185
190
230 | 00, | 88,1
88,2 | Table 2-27 Y in Erl k = 50 Y = carried traffic k = accessibility n = number of trunks A = offered random traffic | A | 92 | 94 | 96 | 9 8 | 166 | 152 | 164 | 106 | 168 | 115 | 115 | 120 | 125 | 136 | 135 | 140 | 145 | 156 | 155 | 160 | 165 | 176 | 175 | 186 | 185 | 196 | 195 | 200 | 205 | 210 | |--|-------------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------|----------------------|----------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|-------------------|---------------------------------|-------------------| | 52
56
58
60
62
64
66
68 | 67. | 8
7 69,8 | 72
74
76
78
86 | 73,
74,
76, | 5 71,7
2 73,4
7 75,1
2 76,6
5 78,6 | 73,6
75,4
77,6 | 73,8
75,6
77,3 | 75,7
77,5 | 77.7 | 77,8 | 79,8 | | | ار مرد
معرف ال | | | | | | | | هنده میشد.
در در استان این این استان این این این ا
در در در استان این استان این استان این این این استان این این این این این این این این این ا | | 3 | | | | | Á | | | | | | 82
84
86
88
90 | 79,
80,
81, | 6 79,3
7 80,5
6 81,5
5 82,5
2 83,3 | 81,2
82,3
83,4 | 81,8
83,1
84,2 | 82,3
83,7
84,9 | 82,8
84,2
85,6 | 83,1
84,7
86,1 | 83,4
85,1
86,6 | 83,6
85,3
87,6 | 85,6 | 87.7 | 92
94
96
98
100 | 83,
84,
84, | 9 84,6
5 84,7
1 85,3
5 85,9 | 85,9
86,5
87,1 | 87,5
87,7
88,4 | 88,6
88,8
89,5 | 88,9
89,8
95,6 | 89,8
90,7
91,6 | 90,5
91,6
92,6 | 91,2
92,4
93,5 | 91.8
93.1
94.3 | 92.9
94.5
93.9 | 93,6
95,3
97,5 | 97,6 | 99.8 | | Á. | | | | | Ź | | | | | | | | | | | 102
104
106
108
110 | 85,
86, | 4 86,8
8 87,2
1 87,6
4 87,9
7 88,2 | 88,6
89,1
89,4 | 90,0
90,5
90,9 | 91,3
91,8
92,3 | 92,6
93,2
93,7 | 93,8
94,4
95,6 | 95,5
95,7
96,3 | 96,1
96,8
97,5 | 97.2
97.9
98.7 | 99,4
100
101 | 101
102
104 | 103
104
105 | 105
107 | 104
106
107
109 | | | | | | | | | | | | | | | | | 112
114
116
118
120 | 87,
87,
87, | 9 8 8 ,5
2 8 8 ,8
4 8 9 ,0
6 8 9 ,2
8 8 9 ,5 | 90,4
90,6
90,9 | 91,9
92,2
92,5 | 93,4
93,8
94,5 | 94,9
95,3
95,6 | 96,4
96,7
97,1 | 97,8
98,2
98,6 | 99,1
99,6
100 | 99,9
160
161
161
162 | 104
105 | 105
106
107
108
108 | 109
110
111 | 109
111
112
113
114 | 113
115 | 115
116 | 114
115 | 118
119 | روز مسروری می
در در مسروری می
در در میروزی
در در میروزی | | | | | | | 4 | | | | | | 125
130
135
140
145 | 88,8 | 2 89,9
5 90,3
3 90,6
1 96,9
3 91,1 | 92,0
92,3
92,6 | 93,7
94,1
94,4 | 95,4
95,8
96,2 | 97,1
97,5
97,9 | 98,7
99,2
99,6 | 100
101
101 | 103
103
103 | 103
104
104
105
105 | 106
107
108
109
109 | | 114
116
117 | 116
118
119
120
121 | 118
121
122
124
125 | 123
125 | | 124
127
130
132
134 | | 125
129
133
136
139 | | | 139
144 | 144 | | | | | | | | 150
155
160
165
170 | 89,8
89,8 | 91,3
91,5
91,6
91,8
91,8 | 93,3
93,5
93,6 | 95,1
95,3
95,5 | 97,0
97,2
97,3 | 98.8
99.0
99.2 | 101
101
101 | 102
102
103
103
103 | 104
104 | 106
106
106
106
107 | 110
111
111 | 114
114
115
115
116 | 119
119
120 | 123 | | 136
131
132 | 133
134
135
136
136 | 137
138 | 142 | | 146 | 146
149
151
153
154 | 147
151
153
155
157 | 149
152
155
158
166 | 149
153
157
160
163 | 156
154
158
162
165 | 159
163 | 160
164
168 | 164
169 | 169 | | 175
180
185
190
200 | 96.2 | 92,0
92,1 | 94,0 | 95,9
96,6 | 97,8 | 99.6
99.7 | 101
102
102 | | 165
165
165 | 167
167
167
167
168 | 112
112
112 | 116
116
117 | 121
121
121 | 125
125
125
126
126 | 129
136
136 | 134
134
134 | | 142
142
143 | | 156
156
151 | 153
154
155 | 156
157
158
159
160 | 162 | 163
165
166 | 165
166
168
169
172 | | 172
174
176 | 179 | 173
176
179
181
185 | 177
181
183 | Table **2** - 28 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | 32 34 36 38 40 | 42 44 46 48 50 | 52 54 56 58 60 | 62 64 66 68 70 | 72 74 76 78 80 | 82 84 86 88 90 | |---------------------------------|----------------|----------------|----------------|----------------|----------------------|--| | 52
54
56
58
60 | | | | | | | | 62
64
66
68
70 | | | | | 65,2
66,8 | 61,8
63,7 63,8
65,5 65,7 65,8
67,2 67,4 67,6 67,8
68,7 69,1 69,4 69,6 69,8 | | 72
74
76
78
80 | | | | | 70,7
71,7
72,5 | 70,1 70,6 71,0 71,3 71,6 71,4 72,0 72,5 73,0 73,3 72,5 73,3 73,9 74,5 74,9 73,5 74,4 75,2 75,8 76,4 74,4 75,4 76,3 77,0 77,7 | | 84
86
88
90 | | | | | 74,5
75,0
75,4 | 75,1 76,2 77,2 78,1 78,9 75,8 77,0 78,1 79,1 80,0 76,3 77,6 78,8 79,9 80,9 76,8 78,2 79,5 80,7 81,8 77,3 78,7 80,0 81,3 82,5 | | 92
94
96
98
100 | | | | | 76,4
76,6
76,9 | 77,6 79,1 80,5 81,9 83,2 78,0 79,5 81,0 82,4 83,7 78,2 79,8 81,3 82,8 84,2 78,5 80,1 81,7 83,2 84,7 78,7 80,4 82,0 83,5 85,1 | | 102
104
106
108
110 | | | | | 77,4
77,5
77,7 | 78,9 80,6 82,2 83,8 85,4 79,1 80,8 82,5 84,1 85,7 79,3 81,0 82,7 84,4 86,0 79,4 81,2 82,9 84,6 86,2 79,6 81,3 83,1 84,8 86,5 | | 112
114
116
118
120 | | | | | 78,0
78,1
78,2 | 79,7 81,5 83,2 84,9 86,7 79,8 81,6 83,4 85,1 86,8 79,9 81,7 83,5 85,3 87,0 86,6 81,8 83,6 85,4 87,1 86,1 81,9 83,7 85,5 87,3 | | 125
130
135
140
145 | | | | | 78,5
78,7
78,8 | 80,3 82,1 83,9 85,8 87,6
80,4 82,3 84,1 86,0 87,8
80,5 82,4 84,3 86,2 88,0
80,7 82,6 84,4 86,3 88,2
80,8 82,7 84,6 86,4 88,3 | | 150
155
160
165
170 | | | | | | 80,8 82,7 84,7 86,6 88,4
80,9 82,8 84,7 86,7 88,6
81,0 82,9 84,8 86,7 88,6
83,0 84,9 86,8 88,7
86,9 88,8 | | 175
180
185
190
200 | | | | | | 88,9 | k = 80 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = 80 | $\nabla \mathbf{J}$ | | 0.4 | 0.4 | | ١٥ |---------------------------------|----------------------|-------------------|-------------------------|----------------------|-------------------|----------------------|----------------------|----------------------|------------------------------------|---|------------------------------------|----------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--|---|---------------------------------|-------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|------------|-------------------|---------------------------------| | A | 92 | 94 | 96 | rianis in | / B | 100 | 162 | 104 | 106 | 158 | 116 | 115 | 125 | 125 | 130 | 135 | 146 | 145 | 156 | 155 | 165 | 165 | 175 | 175 | 180 | 185 | 196 | 195 | 200 | 265 | 210 | | 52
54
56
58
60 | | | | | | | Ç | | | ر مادان این این این این این این این این این ا | | | | | | | enne. | ر در | رود میردد مین
داسمورد میش | المستورية المستوردة المستوردة المستوردة المستوردة المستوردة المستوردة المستوردة
المستوردة المستوردة المستوردة
المستورية المستوردة | ر از در | 55. | | | ر ده ده معمور در | | | | | | | | 62
64
66
68
70 | 69.8 | 3 | 72
74
76
78
80 | 73,5
75,2
76,8 | 3 77, | 7 73,
5 75,
2 77, | 7 75
4 77 | ,6 | | 79.7 | 79,8 | | | | | | | | | | | | | | | | | ر ما المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوا
المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية المستوانية | | | | | | | | 82
84
86
88
90 | 80,8
81,9
82,8 | 81,
82,
83, | 5 82,
7 83,
7 84, | 1 82
4 84
5 85 | , 6
, 6 | 83,6
84,5
85,9 | 83,3
84,9
86,4 | 83,5
85,2
86,8 | 85,5
87,2 | 83,8
85,6
87,4 | 92
94
96
98
100 | 85,6
85,6 | 86,
86,
87, | 2 87,
9 88,
4 88, | 3 88
1 89
7 89 | , 4 | 89,3
90,2
91,0 | 90,2
91,2
92,1 | 90,9
92,5
93,1 | 91,6
92,8
93,9 | 92,1
93,5
94,7 | | 93,4
95,1
96,7 | 93,8 | | | | | | | ر د ما است میران
از در ما است میران
از در است میران است میران | | | | | | | 5570
8470
8680 | | | | | | 102
104
106
108
110 | 87,3
87,6
87,9 | 88,
89,
89, | 90,
190,
491, | 2 91
6 92
0 92 | ,6
,1
,5 | 93,5
93,5
93,9 | 94,3
94,8
95,3 | 95,5
96,1
96,7 | 96,6
97,3
98,6 | 97,7
98,5
99,2 | 97.7
98.7
99.5
166
161 | 161
162
163 | 102
104
105 | 163 | 104
105
107
109 | 1 08
1 0 9 | | | | | | | | | | | | | | | | | 112
114
116
118
120 | 88,5
88,7
88,9 | 90,
90,
90, | 91,
4 92,
5 92, | 9 93
1 93
3 94 | ,5
,7
,0 | 95,0
95,3
95,6 | 96,6
96,9
97,2 | 98,1
98,4
98,8 | 99,0
99,5
99,9
100
101 | 101
101
102 | 162
163
163 | 105 | 168
169 | 109
110
111
112
113 | 110
112
113
114
115 | 111
113
114
116
117 | 112
114
115
117
118 | 116
118
119 | 120 | | | | | | | | | | | | | | 125
130
135
140
145 | 89,6
89,9
90,0 | 91,
91,
91, | 93,
793,
93, | 2 95
5 95
7 95 | , 0
, 3
, 6 | 96,8
97,1
97,4 | 98,5
98,9
99,2 | 100
101
101 | 161
162
162
163
163 | 104
104
104 | 156 | 109
110 | 113
114
115 | 115
116
118
119
119 | 120
121
122 | 120
122
124
126
127 | 122
125
127
129
130 | 123
127
129
132
134 | | 125
129
133
136
139 | 136
134
138
141 | | 139
144 | 144 | | | | | | | | | 150
155
160
165
170 | 90,5
90,6
90,6 | | 94,
94,
94, | 2 96
3 96
5 96 | ,1
,2
,3 | 98,5
98,1
98,2 | | 102
102
102 | 103
104
104
104
104 | 105
106
106 | 167
167
168 | 112
112
112 | 116
116
117 | 120
121 | 126 | 128
129
129
130
130 | 132
132
133
134
135 | 135
136
137
138
139 | 142 | 141
143
144
145
146 | 144
146
147
149
150 | 146
148
150
152
154 | 150
153
155 | 149
152
155
158
160 | 149
153
157
160
162 | 150
154
158
162
165 | 155
159
163
166 | 160
164
168 | 165
169 | 169 | | | 175
186
185
196
200 | | 92,
92,
92, | | 7 96
8 96 | , 6
, 7 | 98,5 | | 102
102
103 | 104
104 | 166
166
166 | 158
158 | 113
113
113 | 117 | | 127
127
127 | 131
131
131
132
132 | 135
136
136 | | 143
144
144
145
146 | | 151
152
153
153
154 | | 160 | 161
163
164
165
167 | 166
168
169 | 167
169
171
172
174 | 169
172
174
175
178 | 171
174
176
178
182 | 179
181 | 178
181
184 | 174
179
182
186
191 | Table 2-30 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks | n
A | I | 92 94 | 96 | 98 | 100 | 102 | 104 | 106 | 108 | 115 | 115 | 120 | 125 | 136 | 135 | 140 | 145 | 156 | 155 | 160 | 165 | 176 | 175 | 185 | 185 | 190 | 195 | 200 | 205 | 210 | | |---------------------------------|--|-------|----|----|-----|-----|-----|-----|-----|----------------------------|------------------------------|---------------------------------|--------------------------|----------------|--------------|-------------------------|-------------------|-------------------|--------------------------|-------------------|--------------------------|---------------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|-------------------|--------------------------|---------------------------------|--------| | 52
54
56 | 58
60
62 | 64
66
68
70 | 72
74 | 76
78
80 | 82
84
86
88 | 90
92 | L | | | | | | | | | 87,7 | 91.7 | 94
96
98
100 | | | | | | | | | | 93,0
94,5
95,9 | 93.6
95.3
97.5
98.6 | 97.6 | 102
104
106
108
110 | | | | | | | | | | 98,4
99,5
100
101 | 100
101
103
104 | 101
103
104
106 | 102
103
105
107 | 10
10 | 6 | , | | | | | | | | | | | | | | | | | 112
114
116
118
120 | | | | | | | | | | 103
103
104
104 | 106
107
108 | 108
109
110
111
111 | 111
112
113 | 11
11
11 | 2 11 | 3 114
5 115
5 117 | 118 | | | | | | | | | | | | | | | | 125
130
135
140
145 | Samuel Sa | | | | | | | | | 106
106
107
107 | 110
111
111 | 113
114
115
116
116 | 118
119
120 | 12
12
12 | 1 12 | 3 126
5 128
7 135 | 127
130
133 | 132
135 | 129
133
137
140 | 138 | 139 | 140
144 | 145 | | | | | | | | | | 150
155
160
165
170 | | | | | | | | | | 108
108
108
108 | 112
113
113 | 117
117
117
117
117 | 121
122
122 | 12
12
12 | 6 13 | 134
135
1 135 | 138
138 | 141
142
143 | 144
146 | 147
149
156 | 147
149
152
154 | 148
151
154
156
158 | 149
153
156
159 | 150
154
158
161
164 | 154
159
162
166 | 159
164
167 | | 169 | 176 | | | | 175
180
185
190
200 | | | | | | | | | | 108
109
109
109 | 113
113
113 | 118 | 123
123
123 | 12
12
12 | 8 13
8 13 | 2 136
2 137 | 141
141
141 | 145
146
146 | 150 | 153
154
155 | 157
158
159 | | | 170 | 171
172
174 | 176
173
175
177 | 172
175
178
180 | 173
177
186 | 174
178
182
185 | 175
179
183
187
192 | T
2 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = n | n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------------|----------------------|--|----------------------|----------------------|----------------------|----------------------|----------------------
----------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------| | 1
2
3
4
5 | 0,67
0,75
0,80 | 1,20
1,41
1,54 | 1,58
1,96
2,20 | 2,38
2,76 | 1,93
2,67
3,20 | 1,98
2,84
3,53
4,64 | 2,93
3,75 | 2,98
3,88 | 3,95 | 3,98 | | 4,98 | | | | 1200 | | | | | | | | | | | | | | | | 6
7
8
9
10 | g,88
g,89 | 1,72
1,76
1,78 | 2,54
2,60
2,64 | 3,31
3,40
3,48 | 4,63
4,17
4,28 | 4,88 | 5,26
5,53
5,75 | 5,75
6,12
6,45 | 6,15
6,61
6,98 | 6,45
7,03
7,49 | 6,67
7,35
7,91 | 6,81
7,59
8,25 | 6,90
7,75
8,51 | 6,95
7,86
8,70 | 6,98
7,93
8,82
9,64 | 8,90 | 8,95 | | 10,0 | | | | | | | | | | | | | 11
12
13
14
15 | | 1,84 | 2,73
2,76
2,77 | 3,62
3,65
3,68 | 4,48
4,53
4,57 | 5,33
5,39
5,44 | 6,14
6,23
6,30 | 6,93
7,04
7,13 | 7,67
7,82
7,94 | 8,38
8,56
8,72 | 9,03
9,26
9,46 | 9,62
9,91
10,2 | 10,1
10,5
10,8 | 10.6
11.0
11.4 | 10,4
11,0
11,5
11,9 | 11,3
11,9
12,4 | 11,5
12,2
12,8 | 11,7
12,4
13,1 | 11,8
12,6
13,4 | 11,9
12,8
13,6 | 11.9
12.9
13.7 | 12,9 | 13,9 | 13,9 | | | | | | | | 16
17
18
19
20 | | | 2,82 | 3,74
3,76
3,77 | 4,65
4,68
4,70 | 5,56
5,59
5,61 | 6,45
6,49
6,52 | 7,33
7,38
7,42 | 8,26
8,26
8,31 | 9,54
9,12
9,18 | 9,86
10.0
10.0 | 10,7
10,8
10,9 | 11,4
11,6
11,7 | 12,2
12,3
12,5 | 12,6
12,9
13,1
13,2
13,4 | 13,5
13,8
14,0 | 14,1
14,4
14,7 | 14,6
15,0
15,3 | 15,1
15,5
15,9 | 15,5
16,6
16,5 | 15,9
16,5
16,9 | 16,2
16,8
17,4 | 16,4
17,1
17,7 | 16,6
17,4
18,1 | 16,7
17,6
18,3 | 16,8
17,7
18,5 | 16,9
17,8
18,7 | 17,9
18,8 | 17,9 | 18,0 | | 21
22
23
24
25 | | | | | | | | | | | | | 12,0 | 12,8
12,9
13,0 | 13,5
13,6
13,7
13,8
13,8 | 14,5
14,6
14,7 | 15,2
15,4
15,5 | 16,0
16,2
16,3 | 16,7
16,9
17,1 | 17,4
17,6
17,8 | 18,5
18,5 | 18,6
19,0
19,2 | 19,2
19,6
19,9 | 19,7
20,1
20,5 | 20,1
20,6
21,0 | 25,5
21,1
21,5 | 20,9
21,5
22.0 | 21,1
21,8
22,4 | 21,4
22,1
22,7 | 21,5
22,3
23,6 | | 26
27
28
29
30 | | | | | | | | | | | | | | 13,1 | | 14,9
15,0
15,0 | 15.8
15.9
15.9 | 16,6
16,7
16,8 | 17,5
17,6
17,7 | 18,3
18,4
18,5 | 19,1
19,2
19,3 | 19,9
20,0
20,1 | 20,6
20,8
20,9 | 21,3
21,5
21,7 | 22,0
22,2
22,5 | 22,6 22,9 23,2 | 23,2
23,6
23,8 | 23,8
24,2
24,5 | 24.3
24.7
25.1 | 24,3
24,8
25,3
25,7
26,5 | | 31
32
33
34
35 | | | | | | | | | | | Ź, | | | | | | | 17,6
17,6 | 17,9
17,9
18,0 | 18,8
18,8
18,9 | 19,6
19,7
19,8 | 20,5
20,6
20,6 | 21,3
21,4
21,5 | 22.1
22.3
22.4 | 23,0
23,1
23,2 | 23,7
23,9
24,0 | 24,5
24,7
24,8 | 25,2
25,4
25,6 | 26,8
26,2
26,4 | 26,3
26,6
26,9
27,1
27,3 | | 36
37
38
39
40 | | | | | | | | | | | | | | | | | | | 18,1 | 19,0 | 19,9
20,0
20,0 | 25,8
25,9
25,9 | 21,7
21,8
21,8 | 22.6
22.7
22.7 | 23,5
23,6
23,6 | 24,3
24,4
24,5 | 25,2
25,3
25,4 | 26,0
26,1
26,2 | 26.8
27.0
27.1 | 27,5
27,6
27,8
27,9
28,6 | | 41
42
43
44
45 | | | | | | | | سدن در | | | | | | | | | | | | | | | 22,0 | 22.9
22.9
23.0 | 23,8
23,9
23,9 | 24,7
24,8
24,8 | 25,6
25,7
25,7 | 26,5
26,6
26,6 | 27.4
27.4
27.5 | 28,1
28,2
28,3
28,4
28,5 | | 46
47
48
49
58 | 23.1 | 24,5 | 25,6
25,6
25,6 | 25,9
25,9
26,0 | 26,8
26,8
26,9 | 27,7
27,7
27,8 | 28,5
28,6
28,7
28,7
28,8 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks ssibility k = n | A | 32 34 36 38 40 | 42 44 46 48 50 | 52 54 56 58 60 | 62 64 66 68 70 | 72 74 76 78 80 | 82 84 86 88 90 | |----------------------------|--|--|--|--|----------------|----------------| | 1
2
3
4 | | | | | | | | 5 | | | | | | | | 7
8
9
10 | | | | | | | | 11
12
13 | | | | | | | | 14
15
16 | | | | | | | | 17
18
19 | | | | | | | | 26
21
22 | 19,9
20,9 21,0
21,8 21,9 | | | | | | | 23
24
25 | 22,7 22,8 22,9
23,5 23,7 23,9 24,0
24,2 24,6 24,8 24,9 | | | | | | | 26
27
28
29
30 | 24,9 25,4 25,7 25,8 25,9 25,6 26,1 26,5 26,8 26,9 26,1 26,8 27,3 27,6 27,8 26,7 27,4 28,0 28,7 29,2 29,6 | 28,9 28,9 | | | | | | 31
32
33
34
35 | 27,5 28,5 29,3 29,9 30,4
27,9 29,0 29,9 30,6 31,1
28,2 29,4 30,4 31,2 31,8
28,5 29,7 30,8 31,8 32,5
28,7 30,1 31,2 32,3 33,1 | 30,7 30,8 30,9
31,5 31,7 31,9
32,3 32,6 32,8 32,9
33,1 33,4 33,7 33,8 33,9 | | | | | | 36
37
38
39
40 | 29,0 30,4 31,6 32,7 33,6 29,2 30,6 31,9 33,1 34,1 29,4 30,8 32,2 33,5 34,6 29,5 31,1 32,5 33,8 35,0 29,7 31,2 32,7 34,1 35,4 | 34.4 35.6 35.4 35.7 35.8
35.6 35.7 36.2 36.5 36.5
35.5 36.3 36.9 37.3 37.6
36.6 36.9 37.4 38.1 38.5 | 36,9
37,8 37,9
38.7 38.8 39.9 | | | | | 41
42
43
44
45 | 29,8 31,4 32,9 34,4 35,7 29,9 31,6 33,1 34,6 36,0 30,0 31,7 33,3 34,8 36,2 30,1 31,8 33,4 35,0 36,5 30,2 31,9 33,6 35,2 36,7 | 36,9 37,9 38,8 39,5 40,6
37,2 38,3 39,3 40,1 40,7
37,6 38,7 39,8 40,7 41,4
37,9 39,1 46,2 41,2 42,6 | 40,4 40,7 40,8 40,9
41,2 41,5 41,7 41,9
41,9 42,3 42,6 42,8 42,9 | 44.9 | | | | 46
47
48
49
50 | | 38,4 39,7 41,0 42,1 43,1 38,6 40,0 41,3 42,5 43,6 38,8 40,2 41,6 42,9 44,0 39,0 40,5 41,9 43,2 44,4 | 43,9 44,6 45,1 45,4 45,7
44,5 45,2 45,8 46,2 46,5
45,0 45,8 46,5 47,0 47,4 | 45,8 45,9
46,7 46,9
47,6 47,8 47,9 | | | Y in Erl Table 2-33 A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = n | A n | 32 | 34 | 36 | 38 | 46 | 4 | 2 | 44 | 46 | 48 | 50 | 52 | 54 | 5 6 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 9 | |---------------------------------|--------------|--|----------------------|----------------------|--|----------------------|----------------------|--|----------------------|----------------------|----------------------|----------------------|----------------------|---|----------------------|----------------------|---|----------------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------
--------------------------------------|----------------------|----------------------|----------------------|-------------------| | 52
54
56
58
60 | 36,8
36,9 | 32,6
32,7
32,8 | 34,4
34,5
34,6 | 36,2
36,3
36,5 | 37,
38,
38, | 9 39
1 39
3 48 | ,7 4
,9 4
,0 4 | 1,3
1,6
1,8 | 42,9
43,2
43,5 | 44,5
44,8
45,1 | 45,9
46,4
46,7 | 47,3
47,8
48,3 | 48,5
49,2
49,7 | 49,7
50,4
51,1 | 50,7
51,6
52,3 | 51,5
52,6
53,5 | 52,2
53,4
54,5 | 52,8
54,1
55,3 | 51,5
53,2
54,7
56,1
57,3 | 53,5
55,1
56,6 | 53,7
55,5
57,1 | 55,7
57,4 | 57,6 | | | 59,9 | | | | | 4 | | 62
64
66
68
70 | 31.1 | 33,0 | 34,9
34,9
35,0 | 36,7
36,8
36,9 | 38,
38,
38, | 6 40
7 40
8 40 | ,4 4
,5 4
,6 4 | 2,22,42,5 | 44,0
44,2
44,3 | 45,8
46,0
46,1 | 47,5
47,7
47,9 | 49,4 | 50,9
51,1
51,4 | 52,4
52,8
53,0 | 54.0
54.3
54.7 | 55,4
55,9
56,3 | 56,8
57,3
57,8 | 58,0
58,7
59,2 | 59,9
60,6 | 60,2
61,1
61,8 | 61,1
62,1
63,0 | 61,8
63,0
64,0 | 62,4
63,7
64,9 | 62,9
64,4
65,7 | 63:3
64:9
66:3 | 63,5
65,2
66,8 | 61,9
63,7
65,5
67,2
68,7 | 65,7 | 67,7 | 67,8 | 3
6 6 | | 72
74
76
78
80 | | | | 37,6
37,6 | 38,
39, | 9 40
0 40
5 40 | ,8 4
,9 4
,9 4 | 2,7
2,8
2,8 | 44,6
44,7
44,7 | 46,4
46,5
46,6 | 48,3
48,4
48,5 | 50,1
50,2
50,3 | 51,9
52,0
52,2 | 53,7
53,8
54,6 | 55,4
55,6
55,8 | 57,1
57,3
57,5 | 58,8
59,0
59,3 | 60,4
60,7
61,0 | 62,0
62,3
62,6 | 63,5
63,9
64,2 | 64.9
65.4
65.8 | 66,3
66,8
67,3 | 67,5
68,2
68,7 | 68,7
69,5
70,1 | 69.7
70.6
71.4 | 76,7
71,7
72,5 | 70,2
71,4
72,6
73,6
74,4 | 72,1
73,4
74,5 | 72,6
74,0
75,3 | 73,1
74,6
76,6 | 1 7
5 7 | | 82
84
86
88
90 | | | | | | 41 | 4 | 3,6
3,6 | 44,9
45,6
45,6 | 46,8
46,9
46,9 | 48,7
48,8
48,8 | 50,6
50,6
50,7 | 52,4
52,5
52,6 | 54,3
54,4
54,5 | 56,1
56,2
56,3 | 58,0
58,1
58,2 | 59,8
59,9
60,0 | 61,6
61,7
61,9 | 63,3
63,5
63,7 | 65,6
65,3
65,4 | 66:7
67:0
67:2 | 68,4
68,7
68,9 | 76.0
76,3
76,6 | 71,6
71,9
72,2 | 73:1
73:5
73:8 | 74,5
75,6
75,4 | 75,2
75,8
76,4
76,9
77,3 | 77.1
77.7
78.3 | 78,3
79,0
79,7 | 79:3
80:2
80:9 | 3 8
2 8
9 8 | | 92
94
96
98
100 | | | | | | | | | | | 49,0 | 55,9
55,9 | 52.8
52.8
52.9 | 54,7
54,7
54,8 | 56.6
56.6
56.7 | 58,5
58,5
58,6 | 60,3
60,4
60,5 | 62,2
62,3
62,4 | 64,5
64,1
64,2 | 65,9
66,5
66,1 | 67,7
67.8
67,9 | 69,5
69,6
69,8 | 71,2
71,4
71,6 | 73,0
73,2
73,3 | 74.7
74.9
75.1 | 76,4
76,6
76,9 | 77,7
78,0
78,3
78,6
78,8 | 79,6
79,9
86,2 | 81,2
81,5
81,9 | 82,6
83,1
83,5 | 5 E | | 102
104
106
108
110 | | | | | | | | | | | | 51,0 | 53,0 | 54,9
55,0
55,0 | 56,8
56,9
56,9 | 58,8
58,8
58,8 | 60,7
60,7
60,8 | 62,6
62,6
62,7 | 64,5
64,5
64,6 | 66,3
66,4
66,5 | 68,2
68,3
68,4 | 70,1
70,2
70,3 | 71,9
72,6
72,1 | 73,8
73,9
74,0 | 75.6
75.7
75.8 | 77,4
77,5
77,7 | 79,0
79,2
79,3
79,5
79,6 | 80,9
81,1
81,3 | 82,7
82,9
83,1 | 84,4
84,6
84,8 | 4 8
5 8 | | 112
114
116
118
120 | | ر در | | | از روانده استان استا
مستان استان اس | | | ر
مرسورد
مرسود | | | | 500 | | ر در در استساستان
در این این این در این
در این این این در این
در این استساستان در این
در این این در این در این در | | 59,0
59,0 | 60,9
60,9
61,0 | 62,8
62,9
62,9 | 64,7
64,8
64,8 | 66,7
66,7
66,7 | 68,6
68,6
68,7 | 70,5
70,5
70,6 | 72,4
72,4
72,5 | 74,2
74,3
74,4 | 76:1
76:2
76:3 | 78,5
78,1
78,2 | 79,7
79,8
79,9
80,0 | 81,7
81,8
81,9 | 83,5
83,6
83,7 | 85,3
85,5
85,6 | 3 6
5 6
5 6 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | Janes
Grand
Grand
Grand
Grand | 63,0 | | | 68,9 | 70,8
70,9 | 72.8
72.9
72.9 | 74,7
74,8
74,9 | 76.6
76.7
76.8 | 78,5
78,7
78,8 | 80,3
80,4
80,6
80,7
80,8 | 82,4
82,5
82,6 | 84,3
84,4
84,5 | 86,1
86,3
86,5 | L 8 | | 150
155
160
165
170 | | | | | ر سردر در سر
مدرس در در
مدرس شراع
مدرس شراع | | | " (" ")" (") | | | | | | | | | | | میرید و می است
میران در استان این
میران در استان در | | | | | 75,6 | | | 80,9
80,9
81,0 | 82,9
83,0 | 84,8
84,9
85,6 | 86,8
86,8 | 8 8 | | 175
180
185
190
200 | 8 | A = offered random traffic Y = carried traffic k = accessibility n = number of trunks Y in Erl k = n | n
A | 92 | | 94 | 96 | | 98 | 100 | 162 | 1 | 54 | 106 | 108 | 110 | 1 | 15 | 120 | 125 | 130 | 135 | 1 | 40 | 145 | 156 | 155 | 160 | 165 | 175 | 175 | 180 | 185 | 198 | 195 | 200 | 205 | 210 | |----------------------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|--------------------------------------|-------------------|-------------------|---------------------------------|---------------------------------|----------------------|----------------------|----------------|---------------------------------|---------------------------------|-------------------|----------------|----------------------|---------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|-------------------| | 52
54
56
58 | 60
62
64
66
68
70 | 74
76
78 | | 6 7
3 7
0 7 | 5,6
7,3 | 75,
77, | 7 7 7 7 7 7 | 7.7 | 77.8
79.7 | 79, | В | 82
84
86
88
90 | 81,
82,
83, | 1 8
2 8
1 8 | 1,8
3,0
4,1 | 82,
83,
84, | 3 8
7 8
9 8 | 2,8
4,3
5,6 | 81,5
83,2
84,8
86,2
87,6 | 83,
85, | 4 8
1 8
7 8 | 3,6
5,4
7,1 | 85,6 | 87,6 | 87 | 7 | 92
94
96
98 | 85,
86,
86, | 4 8
0 8
5 8 | 6,7
7,3
7,9 | 87;
88;
89; | 8 8 6 8 2 9 | 8,9
9,8 | 88,8
89,9
90,8
91,7
92,4 | 90,
91,
92, | 79
89
89 | 1,4
2,6
3,7 | 92,1
93,4
94,6 | 92,6
94,6
95,3 | 93,
94,
95, | 5 9 | 3,6
5,4
7,1 | 97,6 | 102
104
106
108 | 87,
88,
88, | 7 8
0 8
2 8 | 9,2
9,6
9,9 | 90;
91;
91; | 8 9
2 9
5 9 | 2,3 | 93,1
93,7
94,2
94,6
95,0 | 95,
95,
96, | 0 9
6 9
1 9 | 6,3
6,9
7,5 | 97,4
98,2
98,9 | 98,5
99,6 | 99 | 5 | 100
101
103
104
105 | 101
103
104
106
107 | 105 | 16
16 | 8 | .6 | | | | | | | | | | | | | | | | | .12
.14
.16
.18 | 88,
89,
89, | 9 9
1 9
2 9 | 0,6
0,8 | 92 i
92 i
92 i | 3 9
6 9
8 9 | 4,5 | 95,4
95,7
96,0
96,2
96,4 | 97,
97, | 3 9
6 9
9 9 | 8,9
9,2
9,6 | 100
101 | 102
102
103 | 2 10 | 13
14
14 |
106
106
107
108
108 | 108
109
110
111
111 | 112 | 11
11
11 | 3 11
4 11
5 11 | .5
.7 | 114
116
117
119 | 125 | | | | | | | | | | | | | | | 125
130
135
140
145 | 89,
90,
90, | 9 9
1 9
3 9 | 1,8
2,6
2,2 | 93
93
94 | 6 9 | 5,5
5,7
5,9 | 96.9
97.3
97.6
97.8
98.0 | 99, | 1
4
7 | 101
101
102 | 162
163
163
163
164 | 10
10
10 | 1 10
5 10
5 10 | 76
77 | 112 | 113
114
115
116
116 | 118
119
120 | 12
12
12 | 1 12
3 12
4 12 | 24
26
8 | 123
126
129
131
133 | 128
131
134 | 133 | 130
134
138
141 | 139 | 139
144 | 144 | | | | | | | | | | 150
155
160
165
170 | 90,
90, | 6 9
7 9
8 9 | 2,6
2,7
2,8 | 94
94
94 | 5 6 | 6,4 | 98,2
98,3
98,5
98,6
98,7 | 16
16
16 | 6
0
0 | 102
102
102
102
103 | 104
164
164
164
164 | 100
100
100 | 5 10
5 10
5 10 | 18
18 | 112
113
113
113
113 | | 122
122
122 | 12
12
12 | 6 13
7 13
7 13 | 1 | 134
135
135
136
136 | 137
139
139
140
141 | 141
142
143
144
145 | 145
147 | 148
150
152 | 147
151
153
155
157 | 149
152
155
158
166 | 149
154
157
166
163 | | 159
163
167 | 160
164
168 | 165
169 | 176 | | | | 175
186
185
196
200 | 90,
91, | 0 9 | 3,6 | 94
95 | 9 | 6,9 | 98,7
98,8
98,9
98,9 | 16
16 | 1
1
1 | 103
103
103
103
103 | 105
105
105
105 | 10
10
10 | 7 10
7 10
7 10 | 19
19 | 113
113
113
114
114 | 118
118
118
118
118 | 123
123 | 12 | 8 13
8 13
8 13 | 33 | 137
137
137
138
138 | 141
142
142
142
143 | 146
146
147
147
147 | 150
151
151
151
152 | 155
155 | 158
159
160
160
161 | 162
163
164
165
166 | 165
166
168
169
170 | 168
170
171
173 | 170
173
175
176
178 | 172
175
177
179
182 | 173
177
186
182
186 | 174
178
182
185
189 | 175
179
183
187 | 180
180
180 | Table 2-35 ## TABELLE 3 Bestimmung der Leitungszahl n_1 eines 1.Ql-Bündels und dessen überlaufenden Verkehrsrestes R_1 als Funktion des angebotenen Zufallsverkehrs A_1 , des Kostenverhältnisses P und der Erreichbarkeiten k_1 des 1. Ql-Bündels und k_1 des Letztweg-Bündels ## Parameter: - a) Accessibility Erreichbarkeit - b) Cost Ratio Kostenverhältnis - c) Offered Random Traffic Angebotener Zufallsverkehr - How to use the table - Ablesemethode | | n ₁ ;R ₁ in Erl | [| k ₁ = 1 | 0 | |----------------|---------------------------------------|----------------|--------------------|-------------------------------| | | Cost Ratio P | | | | | ≤15 | | ٠ | • | 3.0 | | kf | | | | • | | ≥26 | 1.1 | ٠ | • | 4.0 | | | n ₁ R ₁ | | | n ₁ R ₁ | | 1 | | | | ٠ | | • | 1 | , | | • | | A ₁ | n ₁ | R ₁ | | • | | | | | | | | 200 | | | • | • | ## TABLE 3 Determination of the number of trunks n_1 of a high usage group of first order and its overflowing traffic rest R_1 as a function of the offered random traffic A_1 , cost ratio P, accessibilities k_1 of high usage group of first order and k_f of the final group $$k_1 = 6, 8, 10, 15, 20, 30, 50, 80, 110, k_1=n_1$$ $$A_1 = 1, 2, ... 50, 52, ... 120, 125, ... 190, 200 Erl$$ ## Contents: Inhalt: | k ₁ | Table | |--|--| | 6
8
10
15
20
30
50
80 | 3-02
04
06
08
10
12
14
16 | | k ₁ =n ₁ | 20 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $n_1; R_1$ in Erl = cost ratio = accessibility of HG 1 = accessibility of FG = number of trunks of HG 1 $k_1 = 6$ | | | | | | cost | ratio P | | | | | | |--|--------------------------------------|--|--|--|---|--|--|--|--|--|--| | k _f { ≦ 15
16···25
≧ 26 | 1,1
n, R, | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6 | 1,2
1,6
1,8 | 1,4
1,8
2,0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3.0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0
n, R ₁ | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0.62
5 0.80
6 0.96 | 4 0,62
5 0.80
6 0,96 | 4 0.62
6 0.47
6 0.96 | 5 0.33
6 0.47
7 0.68 | 5 0,33
6 0.47
7 0,68 | 4 0,19
5 0,33
6 0,47
8 0,47 | | 6
7
8
9 | 4 3,69
5 3,83
6 3,96
6 4,85 | 5 2.16
6 2.32
6 3.12
6 3.96
7 4.19 | 5 2.16
6 2.32
6 3.12
7 3.36
8 3,60 | 6 1,59
6 2,32
7 2,57
8 2,82
9 3,08 | 6 1.59
7 1.85
8 2.10
9 2.35
10 2.61 | 6 1,59
8 1,45
9 1,70
10 1,94
11 2,19 | 7 1,20
8 1,45
9 1,70
11 1,59
12 1,82 | 7 1,20
9 1,12
10 1,35
11 1,59
13 1,50 | 8 0,90
9 1,12
11 1,07
12 1,28
13 1,50 | 9 0,66
10 0,86
12 0,83
13 1,02
15 0,99 | 9 0.66
11 0.64
12 0.83
14 0.81
15 0.99 | | 11 | 6 5,75 | 7 5.06 | 8 4,43 | 10 3,33 | 11 2,86 | 12 2,43 | 13 2,06 | 14 1.73 | 15 1,44 | 16 1,18 | 17 0.96 | | 12 | 6 6,67 | 8 5.28 | 9 4,66 | 11 3,58 | 12 3,11 | 13 2,68 | 14 2,30 | 15 1.95 | 16 1,65 | 18 1,15 | 19 0.94 | | 13 | 7 6,86 | 9 5.50 | 10 4,90 | 12 3,82 | 13 3,35 | 15 2,53 | 16 2,18 | 16 2.18 | 18 1,58 | 19 1,33 | 20 1.12 | | 14 | 8 7,06 | 10 5.73 | 11 5,14 | 13 4,07 | 14 3,60 | 16 2,77 | 17 2,41 | 18 2.08 | 19 1,79 | 20 1,53 | 22 1.09 | | 15 | 8 7,97 | 10 6.59 | 12 5,38 | 14 4,32 | 15 3,85 | 17 3,01 | 18 2,64 | 19 2.31 | 20 2,00 | 22 1,48 | 23 1.26 | | 16 | 9 8.16 | 11 6.81 | 12 6,20 | 15 4,57 | 17 3,66 | 18 3,25 | 19 2,87 | 20 2,53 | 22 1,93 | 23 1,67 | 25 1,24 | | 17 | 9 9.08 | 12 7.04 | 13 6,43 | 16 4,81 | 18 3,90 | 19 3,49 | 21 2,76 | 22 2,43 | 23 2,14 | 25 1,63 | 26 1,41 | | 18 | 10 9.27 | 12 7.90 | 14 6,67 | 17 5,06 | 19 4,14 | 20 3,73 | 22 2,98 | 23 2,65 | 24 2,35 | 26 1,82 | 28 1,38 | | 19 | 10 10.2 | 13 8.12 | 15 6,90 | 18 5,30 | 20 4,38 | 22 3,57 | 23 3,21 | 24 2,87 | 26 2,27 | 28 1,77 | 29 1,55 | | 20 | 11 10.4 | 14 8.35 | 16 7,14 | 19 5,55 | 21 4,62 | 23 3,81 | 24 3,44 | 26 2,77 | 27 2,48 | 29 1,96 | 31 1,53 | | 21 | 11 11,3 | 15 8.57 | 16 7,96 | 20 5,79 | 22 4,87 | 24 4,04 | 26 3,32 | 27 2,99 | 29 2.41 | 31 1,91 | 32 1,70 | | 22 | 12 11,5 | 15 9.43 | 17 8,19 | 21 6,04 | 23 5,11 | 25 4,28 | 27 3,54 | 28 3,21 | 30 2.61 | 32 2,10 | 34 1,67 | | 23 | 13 11,7 | 16 9.65 | 18 8,43 | 22 6,28 | 24 5,35 | 26 4,51 | 28 3,77 | 29 3,43 | 31 2.82 | 34 2,06 | 35 1,84 | | 24 | 13 12,6 | 17 9.87 | 19 8,66 | 22 7.02 | 25 5,59 | 27 4,75 | 29 3,99 | 31 3,33 | 33 2.74 | 35 2,24 | 36 2,02 | | 25 | 14 12,8 | 17 10,7 | 20 8,89 | 23 7,26 | 26 5,83 | 29 4,59 | 30 4,22 | 32 3,54 | 34 2.95 | 36 2,43 | 38 2,00 | | 26 | 14 13.7 | 18 11.0 | 21 9.13 | 24 7.50 | 27 6.07 | 30 4,82 | 32 4.10 | 33 3,76 | 35 3.15 | 37 2,63 | 39 2.19 | | 27 | 15 13.9 | 19 11.2 | 21 9.95 | 25 7.74 | 29 5.87 | 31 5.06 | 33 4.32 | 35 3,66 | 36 3.36 | 39 2,60 | 41 2.17 | | 28 | 15 14.8 | 20 11.4 | 22 10.2 | 26 7.99 | 30 6.11 | 32 5,29 | 34 4.55 | 36 3,88 | 37 3.58 | 40 2,80 | 42 2.35 | | 29 | 16 15.0 | 20 12.3 | 23 10.4 | 27 8.23 | 31 6.35 | 33 5,52 | 35 4.77 | 37 4,10 | 39 3.52 | 42 2,76 | 44 2.34 | | 30 | 16 15.9 | 21 12.5 | 24 10.6 | 28 8,47 | 32 6.59 | 34 5,76 | 36 5.00 | 38 4,33 | 40 3.73 | 43 2,96 | 45 2,52 | | 31 | 17 16.1 | 22 12,7 | 25 10,9 | 29 8.71 | 33 6,82 | 36 5,60 | 37 5,24 | 39 4,56 | 41 3,95 | 44 3,16 | 47 2,51 | | 32 | 18 16.3 | 23 12,9 | 26 11,1 | 30 8.95 | 34 7,06 | 36 6,22 | 38 5,47 | 40 4,79 | 43 3,89 | 46 3,13 | 48 2,69 | | 33 | 18 17.2 | 23 13.8 | 26 11,9 | 31 9.19 | 35 7,30 | 37 6,47 | 40 5,36 | 42 4,70 | 44 4,11 | 47 3,33 | 50 2,67 | | 34 | 19 17.4 | 24 14.0 | 27 12,2 | 32 9.43 | 36 7,54 | 38 6,71 | 41 5,60 | 43 4,93 | 45 4,33 | 49 3,29 | 51 2,86 | | 35 | 19 18.3 | 25 14,2 | 28 12,4 | 33 9.66 | 37 7,79 | 40 6,57 | 42 5,83 | 44 5,16 | 47 4,26 | 50 3,49 | 53 2,84 | | 36 | 20 18.5 | 26 14.4 | 29 12.6 | 34 9,90 | 38 8,03 | 41 6,81 | 43 6.07 | 45 5,39 | 48 4,48 | 52 3,46 | 54 3.03 | | 37 | 20 19.4 | 26 15.3 | 30 12.9 | 35 10,1 | 39 8,28 | 42 7,05 | 44 6.31 | 47 5,30 | 49 4,70 | 53 3,66 | 56 3.01 | | 38 | 21 19.6 | 27 15.5 | 31 13.1 | 36 10,4 | 40 8,53 | 43 7,29 | 46 6.19 | 48 5,53 | 51 4,64 | 55 3,63 | 57 3.20 | | 39 | 22 19.8 | 28 15.7 | 31 13.9 | 37 10,6 | 41 8,77 | 44 7,54 | 47 6.43 | 49 5,76 | 52 4,85 | 56 3,83 | 59 3.18 | | 40 | 22 20.7 | 29 16.0 | 32 14.1 | 38 10,9 | 42 9,02 | 45 7,78 | 48 6.67 | 50 5,99 | 53 5,07 | 57 4,03 | 60 3.36 | | 41 | 23 20,9 | 29 16.8 | 33 14,4 | 38 11,6 | 43 9.27 | 46 8.02 | 49 6,90 | 52 5,90 | 55 5.01 | 59 3,99 | 62 3,35 | | 42 | 23 21,8 | 30 17.0 | 34 14,6 | 39 11,9 | 44 9.52 | 48 7.88 | 50 7,14 | 53 6,13 | 56 5.23 | 65 4,19 | 63 3,53 | | 43 | 24 22,0 | 31 17.3 | 35 14,8 | 40 12,1 | 45 9.76 | 49 8.12 | 52 7,03 | 54 6,36 | 58 5.17 | 62 4,16 | 65 3,51 | | 44 | 25 22,2 | 32 17.5 | 36 15,1 | 41 12,4 | 46 10.0 | 50 8.36 | 53 7,26 | 56 6,27 | 59 5.38 | 63 4,36 | 67 3,50 | | 45 | 25 23,1 | 32 18.3 | 36 15,9 | 42 12,6 | 47 10.3 | 51 8.61 | 54 7,50 | 57 6,50 | 60 5,60 | 65 4,33 | 68 3,68 | | 46 | 26 23.3 | 33 18.5 | 37 16.1 | 43 12,9 | 48 10.5 | 52 8.85 | 55 7.74 | 58 6,73 | 62 5.54 | 66 4,52 | 70 3.67 | | 47 | 26 24.2 | 34 18.8 |
38 16.3 | 44 13,1 | 49 10.8 | 53 9.09 | 57 7.62 | 59 6,96 | 63 5.76 | 67 4,73 | 71 3.85 | | 48 | 27 24.4 | 35 19.0 | 38 17.2 | 45 13,4 | 50 11.0 | 54 9.34 | 58 7.86 | 61 6,87 | 64 5.98 | 69 4,69 | 73 3.84 | | 49 | 27 25.3 | 35 19.8 | 39 17.4 | 46 13,6 | 51 11.2 | 55 9.58 | 59 8.09 | 62 7,18 | 66 5.91 | 70 4,89 | 74 4.02 | | 50 | 28 25.5 | 36 20.1 | 40 17.6 | 47 13,8 | 52 11.5 | 57 9.43 | 60 8.33 | 63 7,33 | 67 6.13 | 72 4,86 | 76 4.00 | Table 3-02 HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $n_1; R_1$ in Erl P = cost ratio k_1 = accessibility of HG 1 k_f = accessibility of FG n_1 = number of trunks of HG 1 | | | | | | cost | ratio P | | | | | | |---|--------------|---------------------|---|----------------------------|--|--|---|--|--|--|--| | k _f {≦ 15
16···25
≧ 26 | 1,1
n, R, | 1,1
1,2
n, R, | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6
n, R, | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0
n ₁ R ₁ | 1,6
2,5
2,2
_{D1} R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2.5
3.0
3.5
n ₁ R ₁ | 3.0
3.5
4.0
n ₁ R ₁ | | A ₁ = 50 | 28 25,5 | 36 20,1 | 40 17,6 | 47 13.8 | 52 11,5 | 57 9,43 | 6 页 8,33 | 63 7,33 | 67 6,13 | 72 4,86 | 76 4,00 | | 52 | 29 26,6 | 37 21.1 | 42 18,1 | 49 14,3 | 54 12.0 | 59 9,92 | 63 8,46 | 66 7,47 | 70 6.29 | 75 5.02 | 79 4:17 | | 54 | 30 27,7 | 38 22.2 | 43 19,2 | 51 14.8 | 56 12.5 | 61 10,4 | 65 8,93 | 68 7,92 | 72 6.72 | 78 5,19 | 82 4:34 | | 56 | 31 28,8 | 40 22.7 | 45 19,6 | 53 15,3 | 59 12.5 | 63 10,9 | 67 9,40 | 71 8.07 | 75 6.88 | 80 5,59 | 85 4:51 | | 58 | 33 29,2 | 41 23.8 | 46 20,7 | 54 16,3 | 61 13.0 | 66 11,0 | 70 9,52 | 73 8,52 | 78 7.03 | 83 5,76 | 88 4:68 | | 60 | 34 30,3 | 43 24.2 | 48 21,2 | 56 16,8 | 63 13.5 | 68 11,5 | 72 10,0 | 76 8,66 | 80 7.47 | 86 5,92 | 91 4:84 | | 62 | 35 31,4 | 44 25,3 | 50 21,6 | 58 17,3 | 65 14.0 | 70 12,0 | 75 10.1 | 78 9,12 | 83 7,62 | 89 6,09 | 94 5.01 | | 64 | 36 32,5 | 46 25,7 | 51 22,7 | 60 17,8 | 67 14.5 | 72 12,4 | 77 10.6 | 81 9,26 | 86 7,78 | 92 6,26 | 97 5.18 | | 66 | 37 33,6 | 47 26,8 | 53 23,2 | 62 18,3 | 69 15.0 | 75 12,5 | 79 11.1 | 83 9,72 | 88 8,22 | 95 6,42 | 100 5.35 | | 68 | 38 34,7 | 48 27,9 | 54 24,2 | 64 18,8 | 71 15.5 | 77 13,0 | 82 11.2 | 86 9,86 | 91 8,37 | 98 6,59 | 103 5.52 | | 70 | 39 35,8 | 50 28,3 | 56 24,7 | 66 19,3 | 73 16.0 | 79 13,5 | 84 11.7 | 88 18,3 | 94 8,53 | 100 6,99 | 106 5.68 | | 72 | 40 36,9 | 51 29,4 | 58 25,2 | 68 19,8 | 75 16,5 | 81 14,0 | 87 11,8 | 91 10,5 | 96 8,96 | 103 7,15 | 109 5,85 | | 74 | 41 38,1 | 53 29,9 | 59 26,2 | 69 20,8 | 77 17,0 | 84 14,1 | 89 12,3 | 93 10,9 | 99 9,12 | 106 7,32 | 112 6.02 | | 76 | 42 39,2 | 54 30,9 | 61 26,7 | 71 21,3 | 79 17,5 | 86 14,6 | 91 12,7 | 96 11,1 | 102 9,27 | 109 7.49 | 115 6.19 | | 78 | 44 39,5 | 56 31,4 | 62 27,7 | 73 21,8 | 82 17,5 | 88 15,1 | 94 12,9 | 98 11,5 | 104 9,71 | 112 7,65 | 118 6,36 | | 80 | 45 40,6 | 57 32,5 | 64 28,2 | 75 22,3 | 84 18,0 | 91 15,2 | 96 13,3 | 101 11,7 | 107 9,87 | 115 7,82 | 121 6.52 | | 82 | 46 41,8 | 58 33,6 | 66 28,7 | 77 22,7 | 86 18,5 | 93 15,7 | 99 13,5 | 104 11,8 | 110 10.0 | 118 7,99 | 124 6,69 | | 84 | 47 42,9 | 60 34,0 | 67 29,7 | 79 23,2 | 88 19,0 | 95 16,1 | 101 13,9 | 106 12,3 | 112 10.5 | 121 8,15 | 127 6,86 | | 86 | 48 44,0 | 61 35,1 | 69 30,2 | 81 23,7 | 90 19,5 | 97 16,6 | 103 14,4 | 109 12,4 | 115 10.6 | 123 8,55 | 130 7,03 | | 88 | 49 45,1 | 63 35,5 | 70 31,3 | 83 24,2 | 92 20,0 | 100 16,7 | 106 14,5 | 111 12,9 | 118 10.8 | 126 8,72 | 133 7,20 | | 90 | 50 46,2 | 64 36,6 | 72 31,7 | 84 25,2 | 94 20,5 | 102 17,2 | 108 15,0 | 114 13,0 | 120 11,2 | 129 8,88 | 136 7,36 | | 92 | 51 47,3 | 65 37,7 | 74 32,2 | 86 25,7 | 96 21.0 | 104 17,7 | 111 15,1 | 116 13,5 | 123 11,4 | 132 9,05 | 1.39 7.53 | | 94 | 53 47,7 | 67 38,1 | 75 33,3 | 88 26,2 | 98 21.5 | 106 18,2 | 113 15,6 | 119 13,6 | 126 11,5 | 135 9,22 | 1.42 7.70 | | 96 | 54 48,8 | 68 39,2 | 77 33,7 | 90 26,7 | 100 22.0 | 109 18,3 | 115 16,1 | 121 14,1 | 128 12,0 | 138 9,38 | 1.45 7.87 | | 98 | 55 49,9 | 70 39,7 | 78 34,8 | 92 27,2 | 102 22.5 | 111 18,8 | 118 16,2 | 124 14,2 | 131 12,1 | 141 9,55 | 1.48 8.04 | | 100 | 56 51,0 | 71 40,8 | 80 35,3 | 94 27,7 | 105 22.6 | 113 19,3 | 120 16,7 | 126 14,7 | 134 12,3 | 144 9,72 | 1.51 8.21 | | 102 | 57 52,1 | 73 41,2 | 82 35,7 | 96 28,2 | 107 23,0 | 115 19.7 | 123 16,8 | 129 14,8 | 136 12,7 | 146 10,1 | 154 8.37 | | 104 | 58 53,2 | 74 42,3 | 83 36,8 | 98 28,7 | 109 23,5 | 118 19.8 | 125 17,3 | 131 15,3 | 139 12,9 | 149 10,3 | 157 8.54 | | 106 | 59 54,3 | 75 43,4 | 85 37,3 | 99 29,7 | 111 24,0 | 120 20.3 | 127 17,7 | 134 15,4 | 142 13,0 | 152 10,4 | 160 8.71 | | 108 | 63 55,4 | 77 43,8 | 86 38,3 | 101 30,2 | 113 24,5 | 122 20.8 | 130 17,9 | 136 15,8 | 144 13,4 | 155 10,6 | 163 8.88 | | 110 | 61 56,5 | 78 44,9 | 88 38,8 | 103 30,7 | 115 25,0 | 124 21.3 | 132 18,3 | 139 16,0 | 147 13,6 | 158 10,8 | 166 9.05 | | 112 | 63 56,9 | 80 45,3 | 90 39,3 | 105 31,2 | 117 25.5 | 127 21.4 | 135 18,5 | 141 16,4 | 150 13,8 | 161 10,9 | 169 9,21 | | 114 | 64 58,0 | 81 46,4 | 91 40,3 | 107 31,6 | 119 26.0 | 129 21.9 | 137 18,9 | 144 16,6 | 152 14,2 | 164 11,1 | 172 9,38 | | 116 | 65 59,1 | 83 46,9 | 93 40,8 | 109 32,1 | 121 26.5 | 131 22.4 | 139 19,4 | 146 17,0 | 155 14,3 | 167 11,3 | 175 9,55 | | 118 | 66 60,2 | 84 47,9 | 94 41,8 | 111 32,6 | 123 27.0 | 133 22.9 | 142 19,5 | 149 17,2 | 158 14,5 | 169 11,7 | 178 9,72 | | 120 | 67 61,3 | 85 49,0 | 96 42,3 | 113 33,1 | 125 27.5 | 136 23.0 | 144 20,0 | 151 17,6 | 160 14,9 | 1,72 11,8 | 181 9,89 | | 125 | 70 63,7 | 89 50,8 | 100 44,1 | 117 34,9 | 131 28,3 | 141 24,2 | 150 20.8 | 158 18.2 | 167 15,5 | 179 12.4 | 189 10,2 | | 130 | 73 66,1 | 93 52,5 | 104 45,8 | 122 36,1 | 136 29,5 | 147 25,0 | 156 21.7 | 164 19.0 | 174 16,0 | 187 12.7 | 196 10,7 | | 135 | 75 69,3 | 96 54,9 | 108 47,6 | 127 37,3 | 141 30,8 | 153 25,8 | 162 22.5 | 170 19.8 | 181 16,5 | 194 13.2 | 204 11,0 | | 140 | 78 71,7 | 100 56,7 | 112 49,4 | 131 39,1 | 146 32,0 | 158 27,0 | 168 23.3 | 177 20.3 | 187 17,3 | 201 13.7 | 212 11,4 | | 145 | 81 74,1 | 103 59,1 | 116 51,1 | 136 40,3 | 152 32,8 | 164 27,9 | 174 24.2 | 183 21.1 | 194 17,9 | 208 14.3 | 219 11,9 | | 150 | 84 76,5 | 107 60,8 | 120 52,9 | 141 41,5 | 157 34,0 | 170 28,7 | 180 25,0 | 189 22,0 | 201 18.4 | 215 14.8 | 227 12,2 | | 155 | 87 78,9 | 110 63,2 | 124 54,7 | 145 43,3 | 162 35,3 | 175 29,9 | 186 25,8 | 196 22,5 | 207 19.2 | 222 15.3 | 234 12,7 | | 160 | 89 82,0 | 114 65,0 | 128 56,4 | 150 44,5 | 167 36,5 | 181 30,7 | 192 26,7 | 202 23,3 | 214 19.7 | 236 15.6 | 242 13,0 | | 165 | 92 84,4 | 117 67,3 | 132 58,2 | 155 45,7 | 173 37,3 | 187 31,6 | 198 27,5 | 208 24,1 | 221 20.3 | 237 16.2 | 249 13,6 | | 170 | 95 86,8 | 121 69,1 | 136 59,9 | 160 47,0 | 178 38,6 | 192 32,8 | 204 28,3 | 215 24,7 | 227 21.1 | 244 16.7 | 257 13,9 | | 175 | 98 89,2 | 125 70,8 | 140 61,7 | 164 48,7 | 183 39,8 | 198 33,6 | 210 29,2 | 221 25,5 | 234 21,6 | 251 17,2 | 265 14,2 | | 180 | 101 91,6 | 128 73,2 | 144 63,5 | 169 49,9 | 188 41,0 | 204 34,4 | 216 30,0 | 227 26,3 | 241 22,1 | 258 17,8 | 272 14,7 | | 185 | 103 94,8 | 132 75,0 | 148 65,2 | 174 51,2 | 193 42,3 | 209 35,6 | 222 30,8 | 234 26,8 | 247 22,9 | 266 18,1 | 280 15,1 | | 190 | 106 97,2 | 135 77,4 | 152 67,0 | 178 52,9 | 199 43,1 | 215 36,5 | 228 31,7 | 240 27,6 | 254 23,5 | 273 18,6 | 287 15,6 | | 200 | 112 102 | 142 81,5 | 160 70,5 | 188 55,4 | 209 45,5 | 226 38,5 | 240 33,3 | 252 29,3 | 267 24,8 | 287 19,7 | 302 16,4 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $n_1; R_1$ in Erl P = cost ratio k_1 = accessibility of HG 1 k_f = accessibility of FG n_1 = number of trunks of HG 1 | - | | | | | cost | ratio P | | | <u> </u> | | | |--|--------------------------------------|--|--|--|--|--|--|--|--|--|--| | k _f { ≦ 15
16···25
≧ 26 | 1,1
n, R, | 1.1
1.2
n ₁ R ₄ | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6
n ₁ R ₁ | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0
n ₁ R ₁ | 1,6
2,0
2,2
n, R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2.5
3.0
3.5 | 3,0
3,5
4,0
n ₁ R ₄ | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1.24
5 1,42 | 5 0.80
6 0.96 | 4 0,62
5 0,80
6 0,96 | 4 0,62
5 0,80
7 0,60 | 4 0.62
6 0.47
7 0.60 | 5 0,33
6 0,47
7 0,60 | 5 0,33
6 0,47
8 0,35 | 4 0.19
5 0.33
7 0.25
8 0.35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2.16
6 2.32
7 2.47
8 2.60
8 3.38 | 5 2,16
6 2,32
7 2,47
8 2,60
8 3,38 | 6 1,59
7 1,74
8 1,88
8 2,60
9 2,83 | 7 1.11
8 1.25
8 1.88
9 2.11
10 2.34 | 7 1.11
8 1.25
9 1.47
10 1.69
11 1.91 | 8 0,73
8 1,25
9 1,47
11 1,33
12 1,53 | 8 0,73
9 0,93
10 1,13
11 1,33
12 1,53 | 8 0,73
9 0,93
10 1,13
12 1,03
13 1,22 | 8 0,73
10 0,67
11 0,85
13 0,78
14 0,95 | 9 0,50
10 0.67
12 0.62
13 0.78
15 0,73 | | 11 |
8 4,21 | 8 4,21 | 9 3,60 | 10 3,05 | 11 2,56 | 12 2.12 | 13 1,74 | 14 1,41 | 15 1,13 | 16 0,88 | 17 0,68 | | 12 | 8 5,07 | 9 4,42 | 10 3,82 | 11 3,27 | 13 2,34 | 14 1.95 | 14 1,95 | 15 1,61 | 16 1,31 | 17 1,05 | 18 0,83 | | 13 | 8 5,96 | 10 4,63 | 11 4.04 | 12 3,49 | 14 2,56 | 15 2.16 | 16 1,80 | 16 1,80 | 17 1,49 | 19 0,98 | 20 0,78 | | 14 | 8 6,87 | 10 5,47 | 12 4,25 | 13 3,72 | 15 2,77 | 16 2.37 | 17 2,00 | 18 1,68 | 19 1,39 | 20 1,14 | 21 0,92 | | 15 | 9 7,04 | 11 5,67 | 12 5,05 | 14 3,94 | 16 2,99 | 17 2.58 | 18 2,20 | 19 1,87 | 20 1,56 | 21 1,30 | 23 0,87 | | 16 | 10 7,22 | 12 5,87 | 13 5,26 | 15 4.15 | 17 3,20 | 18 2,79 | 19 2,40 | 20 2,06 | 21 1,75 | 23 1,22 | 24 1.01 | | 17 | 10 8,12 | 13 6,08 | 14 5,47 | 16 4.37 | 18 3,42 | 20 2,61 | 21 2,25 | 22 1,93 | 23 1,64 | 24 1,38 | 25 1.15 | | 18 | 11 8,30 | 13 6,92 | 15 5,69 | 17 4.59 | 19 3,63 | 21 2,81 | 22 2,45 | 23 2,11 | 24 1,81 | 26 1,30 | 27 1.09 | | 19 | 12 8,48 | 14 7,12 | 16 5,98 | 18 4.81 | 20 3,85 | 22 3,01 | 23 2,64 | 24 2,30 | 26 1,71 | 27 1,46 | 28 1.23 | | 20 | 12 9,38 | 15 7,33 | 17 6,11 | 19 5.02 | 21 4,06 | 23 3,22 | 24 2,84 | 26 2,17 | 27 1,88 | 29 1,38 | 30 1.17 | | 21 | 13 9,56 | 16 7,53 | 18 6,33 | 20 5,24 | 23 3,83 | 24 3,42 | 26 2,68 | 27 2,35 | 28 2,05 | 30 1,53 | 31 1.31 | | 22 | 13 10,5 | 17 7,73 | 18 7,12 | 21 5,46 | 24 4,04 | 26 3,24 | 27 2,87 | 28 2,54 | 30 1,95 | 31 1,69 | 33 1.25 | | 23 | 14 10,6 | 17 8,57 | 19 7,33 | 22 5,67 | 25 4,25 | 27 3,44 | 28 3,07 | 29 2,73 | 31 2,12 | 33 1.61 | 34 1.39 | | 24 | 15 10,8 | 18 8,77 | 20 7,54 | 24 5,38 | 26 4,46 | 28 3,64 | 29 3,26 | 31 2,59 | 32 2,29 | 34 1,76 | 36 1.33 | | 25 | 15 11,7 | 19 8,97 | 21 7,75 | 25 5,60 | 27 4,67 | 29 3,84 | 31 3,10 | 32 2,77 | 34 2,18 | 36 1.68 | 37 1.47 | | 26 | 16 11.9 | 20 9.18 | 22 7.96 | 26 5.81 | 28 4,88 | 30 4,04 | 32 3,29 | 33 2,96 | 35 2,35 | 37 1,83 | 39 1.41 | | 27 | 17 12.1 | 21 9.38 | 23 8,17 | 27 6.02 | 29 5,09 | 32 3,85 | 33 3,48 | 35 2,82 | 36 2,52 | 39 1,76 | 40 1.54 | | 28 | 17 13.0 | 21 10.2 | 24 8,38 | 28 6.23 | 30 5,29 | 33 4,05 | 34 3,68 | 36 3,00 | 38 2,41 | 40 1,91 | 42 1.48 | | 29 | 18 13.1 | 22 10.4 | 25 8.59 | 29 6.45 | 32 5,06 | 34 4,25 | 36 3,52 | 37 3,18 | 39 2,58 | 41 2,06 | 43 1.62 | | 30 | 18 14.0 | 23 10.6 | 26 8,80 | 30 6.66 | 33 5,27 | 35 4,45 | 37 3,70 | 39 3,05 | 40 2,75 | 43 1,98 | 44 1.76 | | 31 | 19 14,2 | 24 10,8 | 27 9.01 | 31 6.87 | 34 5,47 | 36 4,64 | 38 3,90 | 40 3,23 | 42 2,64 | 44 2,13 | 46 1.70 | | 32 | 20 14,4 | 25 11,0 | 27 9.80 | 32 7.08 | 35 5,68 | 37 4,84 | 39 4,59 | 41 3,41 | 43 2,81 | 45 2,28 | 47 1.83 | | 33 | 20 15,3 | 25 11,9 | 28 10.0 | 33 7.29 | 36 5,89 | 39 4,65 | 41 3,92 | 42 3,59 | 44 2,98 | 47 2,20 | 49 1.77 | | 34 | 21 15,5 | 26 12,1 | 29 10.2 | 34 7.50 | 37 6,09 | 40 4,85 | 42 4,11 | 44 3,45 | 46 2,86 | 48 2,35 | 50 1.91 | | 35 | 22 15,7 | 27 12,3 | 30 10.4 | 35 7.71 | 38 6,30 | 41 5,05 | 43 4,30 | 45 3,63 | 47 3,03 | 50 2,27 | 52 1.85 | | 36 | 22 16,6 | 28 12.5 | 31 10,6 | 36 7,92 | 39 6,50 | 42 5,24 | 44 4,49 | 46 3,81 | 48 3,20 | 51 2,42 | 53 1,99 | | 37 | 23 16,7 | 29 12.7 | 32 10,8 | 37 8,13 | 41 6,27 | 43 5,44 | 46 4,33 | 48 3,68 | 50 3,09 | 52 2,58 | 54 2,13 | | 38 | 24 16,9 | 29 13.5 | 33 11,0 | 38 8,34 | 42 6,47 | 45 5,25 | 47 4,52 | 49 3,85 | 51 3,26 | 54 2,49 | 56 2,07 | | 39 | 24 17,8 | 30 13.7 | 34 11,2 | 39 8,55 | 43 6,68 | 46 5,44 | 48 4,71 | 50 4,03 | 52 3,43 | 55 2,65 | 57 2,21 | | 40 | 25 18,0 | 31 13.9 | 35 11,5 | 40 8,76 | 44 6,88 | 47 5,64 | 49 4,90 | 51 4,22 | 54 3,32 | 57 2,57 | 59 2,14 | | 41 | 26 18,2 | 32 14,1 | 36 11,7 | 41 8,97 | 45 7,08 | 48 5,84 | 51 4,73 | 53 4,08 | 55 3,49 | 58 2,72 | 60 2,28 | | 42 | 26 19,1 | 33 14,3 | 36 12,5 | 42 9,17 | 46 7,29 | 49 6,03 | 52 4,92 | 54 4,26 | 56 3,66 | 59 2,87 | 62 2,22 | | 43 | 27 19,2 | 34 14,5 | 37 12,7 | 43 9,38 | 47 7,49 | 51 5,84 | 53 5,11 | 55 4,44 | 58 3,55 | 61 2,79 | 63 2,36 | | 44 | 27 20,1 | 34 15,3 | 38 12,9 | 44 9,59 | 48 7,70 | 52 6,04 | 54 5,30 | 56 4,62 | 59 3,71 | 62 2,94 | 64 2,50 | | 45 | 28 20,3 | 35 15,5 | 39 13,1 | 45 9,80 | 50 7,46 | 53 6,23 | 56 5,14 | 58 4,48 | 60 3,88 | 63 3,10 | 66 2,45 | | 46 | 29 20,5 | 36 15,7 | 40 13,3 | 46 10.0 | 51 7,67 | 54 6,43 | 57 5,33 | 59 4,66 | 62 3.78 | 64 3,26 | 67 2,60 | | 47 | 29 21,4 | 37 15,9 | 41 13,5 | 47 10.2 | 52 7,87 | 55 6,63 | 58 5,51 | 60 4,84 | 63 3,94 | 66 3,18 | 68 2,75 | | 48 | 30 21,6 | 38 16,1 | 42 13,7 | 48 10.4 | 53 8,07 | 56 6,82 | 59 5,70 | 61 5,02 | 64 4.11 | 67 3,35 | 70 2,70 | | 49 | 31 21,7 | 38 16,9 | 43 13,9 | 49 10.6 | 54 8,28 | 58 6,63 | 60 5,89 | 63 4,89 | 65 4.29 | 69 3,28 | 71 2,84 | | 50 | 31 22,6 | 39 17,1 | 44 14,1 | 50 10.8 | 55 8,48 | 59 6,83 | 62 5,73 | 64 5,07 | 66 4.47 | 70 3,44 | 73 2,79 | $k_1 = 8$ | | | | | | cost | ratio P | | | | | | |--|--------------------------------------|---|---|-------------------|-------------------|-------------------|--|--|--|--|--| | k _f { ≤ 15
16···25
≥ 26 | 1,1
n ₁ R ₁ | 1.1
1.2
n ₁ R ₁ | 1.2
1.4
n ₁ R ₁ | 1,1
1,4
1,6 | 1.2
1.6
1.8 | 1.4
1.8
2.0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2.5
3.0
3.5
01 R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 50 | 31 22,6 | 39 17,1 | 44 14,1 | 55 15,8 | 55 8,48 | 59 6,83 | 62 5,73 | 64 5,07 | 66 4,47 | 76 3,44 | 73 2,79 | | 52 | 33 23,0 | 41 17,5 | 46 14.5 | 52 11,3 | 57 8,89 | 61 7,22 | 64 6,11 | 66 5,45 | 69 4,55 | 73 3,53 | 76 2,89 | | 54 | 34 24,1 | 43 17,9 | 47 15.5 | 54 11,7 | 60 8,86 | 63 7,62 | 66 6,50 | 69 5,51 | 72 4,63 | 76 3,62 | 79 2,98 | | 56 | 35 25,1 | 44 19,6 | 49 15.9 | 56 12,1 | 62 9,26 | 65 8,02 | 68 6,90 | 71 5,89 | 74 4,99 | 78 3,94 | 82 3,68 | | 58 | 37 25,5 | 46 19,4 | 51 16.3 | 59 12,0 | 64 9,67 | 68 8,04 | 71 6,95 | 74 5,95 | 77 5,06 | 81 4,03 | 84 3,37 | | 60 | 38 26,6 | 47 26,4 | 53 16.7 | 61 12,4 | 66 10,1 | 70 8,45 | 73 7,34 | 76 6,33 | 80 5,14 | 84 4,12 | 87 3,47 | | 62 | 39 27,6 | 49 20,8 | 55 17,1 | 63 12,8 | 68 10.5 | 72 8,86 | 76 7,39 | 79 6,40 | 82 5,50 | 87 4,22 | 90 3,57 | | 64 | 41 28,0 | 51 21,2 | 56 18,1 | 64 13,7 | 70 10.9 | 74 9,28 | 78 7,78 | 81 6,78 | 85 5,58 | 90 4,31 | 93 3,66 | | 66- | 42 29,0 | 52 22,2 | 58 18,5 | 65 14,2 | 72 11.4 | 77 9,30 | 81 7.83 | 84 6,84 | 88 5,66 | 92 4,63 | 96 3,76 | | 68 | 43 30,1 | 54 22,6 | 60 18,9 | 68 14,6 | 74 11.8 | 79 9,71 | 83 8,23 | 86 7,22 | 90 6,01 | 95 4,72 | 99 3,85 | | 70 | 45 30,5 | 56 23,0 | 62 19,3 | 70 15,0 | 76 12.2 | 81 10,1 | 86 8.28 | 89 7,28 | 93 6,09 | 98 4,81 | 102 3,95 | | 72 | 46 31,5 | 57 24.0 | 64 19,8 | 72 15,5 | 79 12,2 | 84 10,1 | 88 8,67 | 91 7,66 | 96 6.17 | 101 4,90 | 105 4.04 | | 74 | 47 32,6 | 59 24.4 | 65 20,8 | 74 15,9 | 81 12,6 | 86 10,6 | 90 9.07 | 94 7,73 | 98 6.53 | 104 4,99 | 108 4.14 | | 76 | 49 33,0 | 61 24.8 | 66 21,8 | 76 16,3 | 83 13,0 | 88 11,0 | 93 9.11 | 96 8,11 | 101 6.61 | 106 5,32 | 111 4.23 | | 78 | 50 34,0 | 62 25.8 | 68 22,2 | 78 16,8 | 85 13,5 | 91 11,0 | 95 9.51 | 99 8,17 | 103 6.96 | 109 5,41 | 114 4.33 | | 80 | 51 35,1 | 64 26.2 | 70 22,6 | 80 17,2 | 87 13,9 | 93 11,4 | 98 9,56 | 102 8,23 | 106 7.04 | 112 5,50 | 116 4.63 | | 82 | 53 35,4 | 65 27,3 | 72 23,0 | 82 17,6 | 90 13,9 | 95 11,8 | 100 10.0 | 104 8,61 | 109 7,12 | 115 5,59 | 119 4,72 | | 84 | 54 36,5 | 66 28,3 | 73 24,0 | 84 18,5 | 92 14,3 | 98 11,8 | 103 10.0 | 107 8,68 | 111 7,48 | 118 5,68 | 122 4,82 | | 86 | 55 37,6 | 68 28,7 | 75 24,4 | 86 18,5 | 94 14,7 | 100 12,2 | 105 10.4 | 109 9,06 | 114 7,56 | 120 6,01 | 125 4,91 | | 88 | 57 37,9 | 69 29,7 | 77 24,8 | 88 18,9 | 96 15,1 | 102 12,7 | 107 10.8 | 112 9,12 | 117 7,63 | 123 6,10 | 128 5.01 | | 90 | 58 39,0 | 71 30,1 | 79 25,3 | 95 19,3 | 98 15,6 | 105 12,7 | 110 10.8 | 114 9,50 | 119 7,99 | 126 6,19 | 131 5.10 | | 92 | 59 40.1 | 73 30,5 | 80 26,3 | 92 19,8 | 100 16.0 | 107 13,1 | 112 11,2 | 117 9,56 | 122 8.07 | 129 6,28 | 134 5,20 | | 94 | 61 40.4 | 74 31,6 | 82 26,7 | 94 20,2 | 103 16.0 | 109 13,5 | 115 11,3 | 119 9,94 | 125 8.15 | 132 6,37 | 137 5,30 | | 96 | 62 41.5 | 76 32,0 | 84 27,1 | 96 20,6 | 105 16.4 | 112 13,5 | 117 11,7 | 122 10,0 | 127 8.51 | 134 6,69 | 140 5,39 | | 98 | 63 42.6 | 77 33,0 | 86 27,5 | 98 21,5 | 107 16.8 | 114 13,9 | 120 11,7 | 124 10,4 | 130 8.58 | 137 6,78 | 143 5,49 | | 100 | 64 43.6 | 79 33,4 | 87 28,5 | 100 21,5 | 109 17.3 | 116 14,3 | 122 12,1 | 127 10,4 | 133 8.66 | 140 6,87 | 146 5,58 | | 102 | 65 44.7 | 81 33,8 | 89 28,9 | 102 21,9 | 111 17,7 | 119 14,4 | 125 12.2 | 129 10,8 | 135 9.02 | 143 6,97 | 148 5.88 | | 104 | 66 45.8 | 82 34,9 | 91 29,4 | 104 22,3 | 114 17,7 | 121 14,8 | 127 12.6 | 132 10,9 | 138 9.10 | 146 7,06 | 151 5.97 | | 106 | 68 46.1 | 84 35,3 | 92 36,4 | 106 22,8 | 116 18,1 | 123 15,2 | 129 13.0 | 135 11,0 | 141 9.18 | 148 7,38 | 154 6.07 | | 108 | 69 47.2 | 85 36,3 | 94 36,8 | 108 23,2 | 118 18,5 | 126 15,2 | 132 13.0 | 137 11,3 | 143 9.53 | 151 7,47 | 157 6.16 | | 110 | 70 48.3 | 87 36,7 | 96 31,2 | 110 23,6 | 120 18,9 | 128 15,6 | 134 13.4 | 140 11,4 | 146 9.61 | 154 7,56 | 160 6.26 | | 112 | 71 49.4 | 88 37,7 | 98 31,6 | 112 24,1 | 122 19,4 | 130 16.0 | 137 13.4 | 142 11,8 | 149 9,69 | 157 7,65 | 163 6,36 | | 114 | 73 49.7 | 90 38,1 | 99 32,6 | 114 24,5 | 124 19,8 | 133 16.1 | 139 13.8 | 145 11,8 | 151 10,0 | 160 7,74 | 166 6,45 | | 116 | 74 50.8 | 92 38,5 | 101 33,0 | 116 24,9 | 127 19,8 | 135 16.5 | 142 13.9 | 147 12,2 | 154 10,1 | 162 8,07 | 169 6,55 | | 118 | 75 51.9 | 93 39,6 | 103 33,5 | 118 25,3 | 129 20,2 | 137 16.9 | 144 14.3 | 150 12,3 | 157 10,2 | 165 8,16 | 172 6,64 | | 120 | 77 52.2 | 95 40,0 | 105 33,9 | 120 25,8 | 131 20,6 | 140 16.9 | 147 14.3 | 152 12,7 | 159 10,6 | 168 8,25 | 175 6,74 | | 125 | 80 54,5 | 99 41.6 | 109 35,5 | 125 26,8 | 137 21,2 | 145 17,9 | 153 15.0 | 159
13,0 | 166 10,9 | 175 8,59 | 182 7.08 | | 130 | 83 56,9 | 103 43.2 | 113 37,1 | 130 27,9 | 142 22,3 | 151 18,6 | 159 15.6 | 165 13,6 | 172 11,5 | 182 8,94 | 189 7.42 | | 135 | 86 59,2 | 107 44.9 | 118 38,2 | 135 29,0 | 147 23,4 | 157 19,2 | 165 16.3 | 171 14,2 | 179 11,8 | 189 9,28 | 197 7.56 | | 140 | 89 61,5 | 111 46.5 | 122 39,8 | 140 30,1 | 153 24,5 | 163 19,9 | 171 16.9 | 178 14,6 | 186 12,2 | 196 9,62 | 204 7.89 | | 145 | 93 63,1 | 114 48.8 | 127 40,9 | 145 31,1 | 158 25,6 | 169 20,5 | 177 17.5 | 184 15,2 | 192 12,8 | 203 10,0 | 211 8.23 | | 150 | 96 65,5 | 118 50,4 | 131 42,5 | 150 32,2 | 164 25,7 | 175 21,1 | 183 18.2 | 190 15,8 | 199 13,1 | 210 10,3 | 218 8,57 | | 155 | 99 67,8 | 122 52,1 | 135 44,1 | 155 33,3 | 169 26,7 | 180 22,2 | 189 18.8 | 197 16,1 | 206 13,5 | 217 10,7 | 226 8,71 | | 160 | 102 70,1 | 126 53,7 | 140 45,2 | 160 34,4 | 175 27,3 | 186 22,8 | 195 19.5 | 203 16,8 | 212 14,1 | 224 11,0 | 233 9,65 | | 165 | 105 72,4 | 130 55,4 | 144 46,8 | 165 35,4 | 185 28,4 | 192 23,4 | 202 19.8 | 209 17,4 | 219 14,4 | 231 11,3 | 246 9,39 | | 170 | 109 74,0 | 134 57,0 | 148 48,4 | 170 36,5 | 186 29,6 | 198 24,1 | 208 20.4 | 216 17,7 | 226 14,8 | 238 11,7 | 247 9,73 | | 175 | 112 76,4 | 138 58,6 | 153 49,5 | 175 37,6 | 191 30,1 | 204 24,7 | 214 21,0 | 222 18,4 | 232 15,4 | 245 12,0 | 255 9.87 | | 180 | 115 78,7 | 142 60,3 | 157 51,1 | 180 38,7 | 197 30,7 | 210 25,4 | 220 21,7 | 228 19,0 | 239 15,7 | 252 12,4 | 262 10.2 | | 185 | 118 81,0 | 146 61,9 | 161 52,7 | 185 39,7 | 202 31,8 | 215 26,4 | 226 22,3 | 235 19,3 | 245 16,3 | 259 12,7 | 269 10.5 | | 190 | 121 83,4 | 150 63,5 | 166 53,8 | 190 45,8 | 207 32,8 | 221 27,0 | 232 23,0 | 241 19,9 | 252 16,7 | 266 13,1 | 277 10.7 | | 200 | 128 87,3 | 158 66,8 | 175 56,5 | 200 43,0 | 218 34,5 | 233 28,3 | 244 24,2 | 254 20,9 | 265 17,6 | 280 13,7 | 291 11.4 | Table 3-05 HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $k_1 = 10$ | | | | | , | cost | | | | | | | |---|--------------------------------------|--|---|--|--|--|--|--|--|--|--| | k _f {≦ 15
16···25
≥ 26 | 1.1
n ₁ R ₁ | 1,1
1,2
n ₁ R ₄ | 1,2
1,4
n ₁ R ₁ | 1:1
1:4
1:6
n ₁ R ₁ | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0
n ₁ R ₁ | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0 | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0.62
5 0.80
6 0.96 | 4 0,62
5 0,80
7 0,60 | 4 0,62
6 0,47
7 0,60 | 5 0.33
6 0.47
7 0.60 | 5 0,33
6 0,47
8 0,35 | 4 0,19
5 0,33
7 0,25
8 0,35 | | 6
7
8
9 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2,16
6 2,32
7 2,47
8 2,60
9 2,73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
10 2,15 | 7 1,11
8 1,25
9 1,39
10 1,51
10 2,15 | 7 1,11
9 0,85
10 6,97
10 1,51
11 1,71 | 8 0,73
9 0,85
10 0,97
11 1,16
12 1,34 | 8 0,73
9 0,85
10 0,97
11 1,16
12 1,34 | 9 0,45
10 0,55
10 0,97
12 0,86
13 1,03 | 9 0,45
10 0,55
11 0,70
12 0,86
14 0,78 | 9 0,45
10 0,55
12 0,50
13 0,63
15 0,57 | | 11 | 8 4,21 | 10 2,86 | 10 2,86 | 11 2,35 | 12 1,91 | 12 1,91 | 13 1,53 | 14 1,20 | 14 1,20 | 15 0,93 | 16 0.70 | | 12 | 9 4,33 | 10 3,62 | 10 3,62 | 12 2,55 | 13 2,11 | 14 1,71 | 14 1,71 | 15 1,37 | 16 1,08 | 17 0,84 | 18 0.64 | | 13 | 10 4,44 | 10 4,44 | 11 3,82 | 13 2,76 | 14 2,36 | 15 1,90 | 16 1,55 | 16 1,55 | 17 1,24 | 18 0,98 | 19 0.76 | | 14 | 10 5,28 | 11 4,63 | 12 4,02 | 14 2,96 | 15 2,56 | 16 2,09 | 17 1,73 | 18 1,41 | 18 1,41 | 20 0,89 | 20 0.89 | | 15 | 10 6,16 | 12 4,82 | 13 4,22 | 15 3,16 | 16 2,76 | 17 2,28 | 18 1,91 | 19 1,57 | 20 1,28 | 21 1,03 | 22 0.82 | | 16 | 10 7,05 | 13 5,01 | 14 4.42 | 16 3,36 | 17 2,89 | 18 2,47 | 19 2,09 | 20 1,74 | 21 1,44 | 22 1,17 | 23 0.94 | | 17 | 11 7,21 | 13 5,83 | 15 4.61 | 17 3,56 | 18 3,09 | 26 2,27 | 21 1,92 | 21 1,92 | 22 1,60 | 24 1,08 | 25 0.87 | | 18 | 12 7,38 | 14 6,02 | 16 4.81 | 18 3,75 | 19 3,28 | 21 2,45 | 22 2,09 | 23 1,76 | 24 1,47 | 25 1,22 | 26 0.99 | | 19 | 12 8,27 | 15 6,21 | 16 5,59 | 19 3,95 | 21 3,04 | 22 2,63 | 23 2,26 | 24 1,93 | 25 1,63 | 27 1,12 | 28 0.91 | | 20 | 13 8,44 | 16 6,40 | 17 5,78 | 20 4,18 | 22 3,23 | 23 2,82 | 24 2,44 | 25 2,09 | 27 1,50 | 28 1,25 | 29 1.03 | | 21 | 14 8,60 | 17 6,59 | 18 5,98 | 21 4,34 | 23 3,42 | 24 3,00 | 26 2,26 | 27 1,94 | 28 1,65 | 29 1,39 | 31 0,96 | | 22 | 14 9,50 | 17 7,41 | 19 6,17 | 22 4,54 | 24 3,61 | 26 2,79 | 27 2,43 | 28 2,10 | 29 1,80 | 31 1,29 | 32 1.07 | | 23 | 15 9,66 | 18 7,60 | 20 6,37 | 23 4,73 | 25 3,79 | 27 2,97 | 28 2,60 | 29 2,27 | 31 1,67 | 32 1,42 | 33 1.20 | | 24 | 16 9,83 | 19 7,78 | 21 6,56 | 24 4,93 | 26 3,98 | 28 3,15 | 29 2,78 | 30 2,43 | 32 1,82 | 34 1,32 | 35 1.11 | | 25 | 16 10,7 | 20 7,97 | 22 6,75 | 25 5,12 | 27 4,17 | 29 3,33 | 31 2,60 | 32 2,27 | 33 1,97 | 35 1,45 | 36 1.23 | | 26 | 17 10,9 | 21 8,16 | 23 6,94 | 26 5,32 | 29 3,92 | 30 3,51 | 32 2,76 | 33 2,43 | 35 1,84 | 36 1,59 | 38 1,15 | | 27 | 18 11,0 | 22 8,34 | 24 7,14 | 27 5,51 | 30 4,11 | 32 3,30 | 33 2,93 | 34 2,59 | 36 1,99 | 38 1,48 | 39 1,27 | | 28 | 18 11,9 | 23 8,53 | 25 7,33 | 28 5,70 | 31 4,29 | 33 3,47 | 34 3,10 | 36 2,43 | 37 2,13 | 39 1,61 | 41 1,19 | | 29 | 19 12,1 | 23 9,35 | 26 7,52 | 29 5,89 | 32 4,48 | 34 3,65 | 36 2,92 | 37 2,59 | 39 2,00 | 41 1,51 | 42 1,30 | | 30 | 20 12,3 | 24 9,54 | 27 7,71 | 30 6,08 | 33 4,66 | 35 3,83 | 37 3,08 | 38 2,75 | 40 2,15 | 42 1,64 | 43 1,42 | | 31 | 21 12,4 | 25 9,72 | 28 7,90 | 31 6,28 | 34 4,85 | 36 4,00 | 38 3.25 | 40 2,59 | 41 2,29 | 43 1,77 | 45 1.34 | | 32 | 21 13,3 | 26 9,91 | 29 8,09 | 33 5,97 | 35 5,03 | 38 3,79 | 39 3.42 | 41 2,75 | 43 2,16 | 45 1,67 | 46 1.45 | | 33 | 22 13,5 | 27 10,1 | 29 8,87 | 34 6,16 | 37 4,78 | 39 3,96 | 41 3.23 | 42 2,90 | 44 2,31 | 46 1,80 | 48 1.37 | | 34 | 23 13,7 | 28 10,3 | 30 9,06 | 35 6,34 | 38 4,96 | 40 4.14 | 42 3.40 | 43 3,06 | 45 2,45 | 47 1,93 | 49 1.49 | | 35 | 23 14,5 | 28 11,1 | 31 9,24 | 36 6,53 | 39 5,14 | 41 4,31 | 43 3.56 | 45 2,90 | 46 2,60 | 49 1,82 | 50 1.60 | | 36 | 24 14,7 | 29 11.3 | 32 9,43 | 37 6,72 | 40 5,32 | 42 4,49 | 44 3,73 | 46 3,06 | 48 2.46 | 50 1,95 | 52 1,52 | | 37 | 25 14,9 | 30 11.5 | 33 9,62 | 38 6,91 | 41 5,50 | 44 4,27 | 46 3,55 | 47 3,21 | 49 2.61 | 51 2,08 | 53 1,64 | | 38 | 25 15,8 | 31 11.6 | 34 9,81 | 39 7,10 | 42 5,69 | 45 4,44 | 47 3,71 | 49 3,05 | 50 2.75 | 53 1,98 | 55 1,55 | | 39 | 26 15,9 | 32 11.8 | 35 10,0 | 40 7,29 | 43 5,87 | 46 4,62 | 48 3,87 | 50 3,21 | 52 2.62 | 54 2,10 | 56 1,67 | | 40 | 27 16,1 | 33 12.0 | 36 10,2 | 41 7,47 | 45 5,61 | 47 4,79 | 49 4,04 | 51 3,36 | 53 2.76 | 56 2,00 | 57 1,79 | | 41 | 27 17,0 | 34 12,2 | 37 10,4 | 42 7,66 | 46 5.79 | 48 4,96 | 51 3.85 | 52 3,52 | 54 2,91 | 57 2,13 | 59 1.70 | | 42 | 28 17,1 | 34 13,0 | 38 10,6 | 43 7,85 | 47 5.97 | 50 4,74 | 52 4.01 | 54 3,36 | 56 2,77 | 58 2,26 | 60 1.82 | | 43 | 29 17,3 | 35 13,2 | 39 10,8 | 44 8,04 | 48 6.15 | 51 4,92 | 53 4.18 | 55 3,51 | 57 2,91 | 60 2,15 | 62 1.73 | | 44 | 30 17,5 | 36 13,4 | 40 10,9 | 45 8,22 | 49 6.33 | 52 5,09 | 54 4.34 | 56 3,67 | 58 3,06 | 61 2,28 | 63 1.85 | | 45 | 30 18,4 | 37 13,6 | 41 11,1 | 46 8,41 | 50 6.51 | 53 5,26 | 56 4.16 | 57 3,82 | 60 2,92 | 62 2,41 | 64 1.97 | | 46 | 31 18,5 | 38 13,7 | 42 11.3 | 47 8,60 | 51 6,69 | 54 5.43 | 57 4.32 | 59 3,66 | 61 3,07 | 64 2.31 | 66 1:88 | | 47 | 32 18,7 | 39 13,9 | 43 11.5 | 48 8,78 | 53 6,44 | 56 5.22 | 58 4.48 | 60 3,81 | 62 3,21 | 65 2.43 | 67 2:00 | | 48 | 32 19,6 | 40 14,1 | 44 11.7 | 50 8,47 | 54 6,62 | 57 5.39 | 59 4.65 | 61 3,97 | 64 3,08 | 66 2.56 | 69 1:92 | | 49 | 33 19,7 | 41 14,3 | 45 11.9 | 51 8,65 | 55 6,79 | 58 5.56 | 61 4.46 | 62 4,13 | 65 3,22 | 68 2.46 | 70 2:03 | | 50 | 34 19,9 | 41 15,1 | 46 12.1 | 52 8,84 | 56 6,97 | 59 5.73 | 62 4.62 | 64 3,96 | 66 3,36 | 69 2.59 | 71 2:15 | Table 3-06 k_1 = 10 HG 1 = high usage group of first order FG = final group A1 = offered random traffic to HG 1 R1 = overflowing traffic from HG 1 n_1 ; R_1 in Erl P = cost ratio | < 1 | = | accessibilit | y of HG1 | |-----|---|--------------|----------------| | k, | = | accessibilit | y of FG | | N1 | = | number of | trunks of HG 1 | | | | | | | | <u> </u> | | | | cost | ratio P | | | | | | |---------------------------------------|--------------------------------------|---|---|----------------------------|--|-------------------|--|--|--|--|--| | k _f { ≦ 15
1625
≧ 26 | 1.1
n ₄ R ₁ | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
n ₄ R ₄ | 1,1
1,4
1,6
n, R, | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,6
n ₁ R ₁ | 2,5
3,0
3,5
n ₄ R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 50 | 34 19,9 | 41 15,1 | 46 12,1 | 52 8,84 | 56 6,97 | 59 5,73 | 62 4,62 | 64 3,96 | 66 3,36 | 69 2,59 | 71 2:15 | | 52 | 35 20,9 | 43 15,5 | 47 13,0 | 54 9,21 | 58 7.33 | 62 5,68 | 64 4,95 | 66 4.27 | 69 3.37 | 72 2,61 | 74 2.18 | | 54 |
37 21,3 | 45 15,8 | 49 13,4 | 56 9,58 | 61 7.26 | 64 6,03 | 67 4,92 | 69 4.26 | 71 3.66 | 74 2,87 | 77 2.22 | | 56 | 38 22,3 | 47 16,2 | 51 13,8 | 58 10,0 | 63 7.61 | 66 6,37 | 69 5,25 | 71 4.58 | 74 3.67 | 77 2,90 | 86 2.25 | | 58 | 40 22,6 | 48 17,2 | 53 14,1 | 60 10,3 | 65 7.97 | 69 6,32 | 72 5,23 | 74 4.57 | 77 3.68 | 80 2,93 | 82 2.49 | | 60 | 41 23,7 | 50 17,6 | 55 14,5 | 62 10,7 | 67 8.33 | 71 6,66 | 74 5,55 | 76 4.88 | 79 3.97 | 83 2,95 | 85 2.53 | | 62 | 42 24,7 | 52 17,9 | 57 14,9 | 64 11,1 | 70 8.25 | 73 7.01 | 76 5.88 | 79 4.87 | 82 3,98 | 85 3,22 | 88 2;56 | | 64 | 44 25,1 | 54 18,3 | 59 15,2 | 66 11,4 | 72 8.61 | 76 6.96 | 79 5.86 | 81 5.19 | 84 4,28 | 88 3,24 | 91 2:60 | | 66 | 45 26,1 | 55 19,3 | 61 15,6 | 69 11,3 | 74 8.96 | 78 7.30 | 81 6.19 | 84 5.18 | 87 4,29 | 91 3,27 | 93 2:84 | | 68 | 47 26,4 | 57 19,6 | 63 16,0 | 71 11,7 | 76 9.32 | 81 7.26 | 84 6.16 | 86 5.49 | 89 4,58 | 93 3,54 | 96 2:88 | | 70 | 48 27,5 | 59 20,0 | 64 16,9 | 73 12,0 | 79 9.24 | 83 7.60 | 86 6.49 | 89 5.49 | 92 4,59 | 96 3,57 | 99 2:92 | | 72 | 50 27.8 | 61 20,3 | 66 17,3 | 75 12,4 | 81 9,66 | 85 7.95 | 89 6,47 | 91 5.80 | 95 4.61 | 99 3,60 | 101 3,17 | | 74 | 51 28.9 | 62 21,3 | 68 17,7 | 77 12,8 | 83 10.0 | 88 7.90 | 91 6,80 | 94 5.80 | 97 4.96 | 101 3,87 | 104 3,22 | | 76 | 52 29.9 | 64 21,7 | 70 18,0 | 79 13,1 | 85 10.3 | 90 8.25 | 93 7,13 | 96 6,12 | 100 4.92 | 104 3,91 | 107 3,26 | | 78 | 54 30.2 | 66 22,1 | 72 18,4 | 81 13,5 | 88 10.2 | 92 8.59 | 96 7,11 | 99 6,11 | 102 5.22 | 106 4,19 | 110 3,31 | | 80 | 55 31.3 | 67 23,1 | 74 18,8 | 83 13,9 | 90 10.6 | 95 8.55 | 98 7,44 | 101 6,44 | 105 5.25 | 109 4,23 | 113 3,36 | | 82 | 57 31,6 | 69 23.4 | 76 19,1 | 85 14,3 | 92 11.0 | 97 8.89 | 100 7,78 | 103 6,76 | 107 5,55 | 112 4,27 | 115 3.61 | | 84 | 58 32,7 | 71 23.8 | 78 19,5 | 87 14,6 | 94 11.3 | 99 9.24 | 103 7,77 | 106 6,77 | 110 5,58 | 115 4,31 | 118 3.66 | | 86 | 60 33,0 | 73 24.1 | 80 19,9 | 89 15,0 | 96 11.7 | 161 9.66 | 105 8,11 | 108 7,10 | 112 5,89 | 117 4,58 | 121 3.71 | | 88 | 61 34,0 | 74 25.1 | 81 20,8 | 92 14,9 | 99 11.6 | 163 10.0 | 108 8,11 | 111 7,11 | 115 5,91 | 120 4,63 | 124 3.76 | | 90 | 62 35,1 | 76 25.5 | 83 21,2 | 94 15,2 | 100 12.4 | 166 9.92 | 110 8,45 | 114 7,12 | 118 5,94 | 123 4,67 | 127 3.81 | | 92 | 64 35,4 | 78 25.8 | 85 21,6 | 96 15,6 | 103 12,3 | 108 10.3 | 112 8,79 | 116 7,45 | 120 6,25 | 126 4,71 | 130 3,86 | | 94 | 65 36,4 | 80 26.2 | 87 21,9 | 98 16,0 | 105 12,7 | 110 10.6 | 115 8,79 | 119 7,46 | 123 6,27 | 128 4,98 | 132 4,11 | | 96 | 67 36,8 | 81 27.2 | 89 22,3 | 100 16,3 | 107 13,1 | 113 10.6 | 117 9,13 | 121 7,79 | 126 6,30 | 131 5.02 | 135 4,15 | | 98 | 68 37,8 | 83 27.5 | 91 22,7 | 101 17,2 | 109 13,5 | 115 11.0 | 120 9,12 | 124 7,85 | 128 6,60 | 134 5.07 | 138 4,20 | | 100 | 70 38,1 | 85 27.9 | 93 23,0 | 103 17,6 | 111 13,8 | 118 10.9 | 122 9,47 | 126 8,12 | 131 6,63 | 137 5,11 | 141 4,25 | | 102 | 71 39,2 | 86 28,9 | 94 24,0 | 105 18.0 | 114 13,8 | 120 11.3 | 125 9,46 | 129 8,13 | 133 6,94 | 139 5,38 | 144 4,30 | | 104 | 73 39,5 | 88 29,3 | 96 24,4 | 107 18.4 | 116 14,1 | 122 11.7 | 127 9,80 | 131 8,46 | 136 6,96 | 142 5,42 | 146 4,55 | | 106 | 74 40,5 | 90 29,6 | 98 24,7 | 109 18.8 | 118 14,5 | 125 11.6 | 130 9,80 | 134 8,47 | 139 6,99 | 145 5,47 | 149 4,60 | | 108 | 75 41,6 | 92 30,0 | 100 25,1 | 112 18.6 | 120 14,9 | 127 12.0 | 132 10,1 | 136 8,80 | 141 7,29 | 147 5,74 | 152 4,65 | | 110 | 77 41,9 | 93 31,0 | 101 26,1 | 114 19.0 | 123 14,8 | 129 12.3 | 135 10,1 | 139 8,81 | 144 7,32 | 150 5,78 | 155 4,70 | | 112 | 78 42,9 | 95 31,3 | 103 26,4 | 116 19,4 | 125 15.2 | 132 12,3 | 137 10,5 | 141 9,14 | 146 7.63 | 153 5.82 | 158 4.75 | | 114 | 80 43,3 | 97 31,7 | 105 26,8 | 118 19,8 | 127 15.6 | 134 12,7 | 139 10,8 | 144 9,15 | 149 7.65 | 156 5.87 | 161 4.80 | | 116 | 81 44,3 | 99 32,0 | 107 27,2 | 120 20,2 | 129 15.9 | 136 13,0 | 142 10.8 | 146 9,47 | 152 7.68 | 158 6.14 | 163 5.05 | | 118 | 83 44,6 | 100 33,0 | 108 28,1 | 122 20,5 | 131 16.3 | 139 13,0 | 144 11,2 | 149 9,48 | 154 7.99 | 161 6.18 | 166 5.09 | | 120 | 84 45,7 | 101 34,0 | 110 28,5 | 124 20,9 | 134 16.2 | 141 13,4 | 147 11,1 | 151 9,81 | 157 8.01 | 164 6.22 | 169 5.14 | | 125 | 88 47,2 | 105 35,6 | 115 29,5 | 129 21,9 | 139 17.2 | 147 13.9 | 153 11,7 | 158 10.0 | 163 8.50 | 171 6,44 | 176 5,37 | | 130 | 91 49,5 | 109 37,1 | 119 31,0 | 134 22,8 | 145 17.7 | 153 14.4 | 159 12,2 | 164 10.5 | 170 8.70 | 177 6,90 | 183 5,59 | | 135 | 95 51.0 | 114 38,0 | 124 31,9 | 139 23,8 | 150 18.6 | 159 14.9 | 165 12,7 | 170 11.0 | 177 8.91 | 184 7,12 | 190 5,81 | | 140 | 99 52,5 | 118 39,6 | 129 32,9 | 145 24,2 | 156 19.1 | 165 15.4 | 171 13,2 | 177 11.2 | 183 9.39 | 191 7,34 | 197 6,03 | | 145 | 101 55,5 | 122 41,1 | 133 34,4 | 150 25,2 | 162 19.6 | 170 16.3 | 177 13,7 | 183 11.7 | 190 9.60 | 198 7,56 | 204 6,26 | | 150 | 105 57,0 | 126 42,7 | 138 35,4 | 155 26,2 | 167 20,5 | 176 16.8 | 183 14.2 | 189 12,2 | 196 10.1 | 205 7,78 | 211 6.48 | | 155 | 108 59,3 | 131 43,6 | 142 36,9 | 166 27,1 | 173 21,0 | 182 17.3 | 190 14.4 | 196 12,4 | 203 10.3 | 212 8,00 | 218 6.70 | | 160 | 112 60,8 | 135 45,2 | 147 37,8 | 165 28,1 | 178 22,0 | 188 17.8 | 196 14.9 | 202 12,9 | 209 10.8 | 218 8,45 | 225 6.92 | | 165 | 115 63,1 | 139 46,7 | 152 38,8 | 176 29,6 | 184 22,5 | 194 18.3 | 202 15.4 | 208 13,4 | 216 11.0 | 225 8,67 | 232 7.15 | | 170 | 119 64,6 | 143 48,3 | 156 46,3 | 176 29,5 | 189 23,4 | 200 18.8 | 208 15.9 | 214 13,9 | 222 11.5 | 232 8,89 | 239 7.37 | | 175 | 122 66,9 | 147 49.8 | 161 41.3 | 181 30,4 | 195 23.9 | 206 19.3 | 214 16.4 | 221 14.1 | 229 11.7 | 239 9,11 | 246 7,59 | | 180 | 126 68,4 | 152 50.7 | 165 42.8 | 186 31,4 | 201 24.4 | 212 19.8 | 220 16.9 | 227 14.6 | 235 12.2 | 246 9,33 | 253 7,81 | | 185 | 129 70,7 | 156 52.3 | 170 43.7 | 191 32,3 | 206 25.3 | 217 20.7 | 226 17.4 | 233 15.1 | 242 12.4 | 253 9,55 | 261 7,84 | | 190 | 133 72,2 | 160 53.8 | 175 44.7 | 196 33,3 | 212 25.8 | 223 21.3 | 232 17.9 | 240 15.2 | 248 12.8 | 259 10,0 | 268 8,66 | | 200 | 139 76,8 | 168 56.9 | 184 47.2 | 207 34,7 | 223 27.2 | 235 22.3 | 245 18.6 | 252 16.2 | 262 13.3 | 273 10,4 | 282 8,51 | $k_1 = 15$ HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $\frac{n_1\,;\,R_1\text{ in Erl}}{k_1} = \underset{\text{accessibility of HG 1}}{\text{P}} = \underset{\text{accessibility of FG}}{\text{cost ratio}} \qquad \qquad k_1 = 15$ | - | | | | | cost | ratio P | | | | | | |---|--------------------------------------|--|---|--|--|---|--|--|--|--|--| | k _f {\\
\left\{\tein\{\tein\{\fracki\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\left\{\ini\{\eti\}\eti\{\eti\{\eti\{\eti\{\eti\{\eti\{\eti\}\eti\{\eti\{\eti\{\eti\{\eti\{\eti\{\eti\}\eti\}\eti\{\eti\{\eti\{\eti\{\eti\{\etii\}\eti\}\eti\}\eti\{\eti\{\eti\{\eti\{\etii | 1,1
n ₁ R ₁ | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
n ₁ R ₁ | 1.1
1.4
1.6 | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2,5
3,6
3,5
n ₁ R ₁ | 3,0
3,5
4,0 | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0.62
5 0.80
6 0.96 | 4 0.62
5 0.80
7 0.60 | 4 0.62
6 0.47
7 0.60 | 5 0,33
6 0,47
7 0,60 | 5 0,33
6 0,47
8 0,35 | 4 0.19
5 0.33
7 0.25
8 0.35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2,16
6 2,32
7 2,47
8 2,63
9 2,73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
11 1,63 | 7 1,11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1.11
9 0.85
10 0.97
11 1.09
12 1.20 | 8 0.73
9 0.85
13 0.97
11 1.09
13 0.84 | 8 0.73
9 0.85
11 0.65
12 0.75
13 0.84 | 9 0,45
10 0,55
11 0,65
12 0,75
13 0,84 | 9 0,45
10 5,55
12 0,41
13 0,49
14 0,57 | 9 0.45
11 0.33
12 0.41
13 0.49
15 0.36 | | 11 | 8 4,21 | 15 2,86 | 11 2,27 | 12 1,75 | 13 1,36 | 13 1,30 | 14 0,94 | 14 0,94 | 15 0.65 | 15 0,65 | 15 0,65 | | 12 | 9 4,33 | 11 2,97 | 12 2,38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1,03 | 15 1,03 | 15 1.03 | 16 0,77 | 17 0,56 | | 13 | 10 4,44 | 12 3,69 | 13 2,49 | 14 1.97 | 15 1,51 | 15 1,51 | 15 1,51 | 16 1,17 | 16 1.17 | 17 0,89 | 18 0,66 | | 14 | 11 4,54 | 13 3,19 | 14 2.60 | 15 2,67 | 15 2,07 | 16 1,66 | 16 1,66 | 17 1,31 | 18 1.02 | 19 0,77 | 19 0,77 | | 15 | 12 4,64 | 14 3,35 | 15 2.75 | 15 2.76 | 16 2,24 | 17 1,82 | 18 1,46 | 18 1,46 | 19 1.15 | 20 0,89 | 21 0.67 | | 16 | 13 4,74 | 15 3,40 | 15 3.40 | 16 2.87 | 17 2,46 | 18 1,98 | 19 1,61 | 20 1,28 | 20 1,28 | 21 1,01 | 22 0.78 | | 17 | 14 4,84 | 15 4,15 | 15 4.15 | 17 3.04 | 18 2,57 | 19 2,14 | 20 1,76 | 21 1,42 | 22 1,13 | 23 0,89 | 24 0.68 | | 18 | 15 4,93 | 15 4,93 | 16 4.31 | 18 3.21 | 19 2,73 | 21 1,91 | 21 1,91 | 22 1,56 | 23 1,26 | 24 1,00 | 25 0.78 | | 19 | 15 5,75 | 16 5,10 | 17 4.48 | 19 3.38 | 21 2,45 | 22 2,56 | 23 1,70 | 23 1,70 | 24 1,39 | 26 0,88 | 26 0.88 | | 20 | 15 6,60 | 17 5,26 | 18 4.65 | 20 3.55 | 22 2,61 | 23 2,21 | 24 1,84 | 25 1,52 | 26 1,23 | 27 0,99 | 28 0.78 | | 21 | 15 7,47 | 18 5,42 | 19 4,81 | 21 3,71 | 23 2,77 | 24 2,36 | 25 1,98 | 26 1,65 | 27 1,35 | 28 1,10 | 29 0,87 | | 22 | 16 7,61 | 19 5,59 | 20 4,98 | 22 3,88 | 24 2,93 | 25 2,51 | 26 2,13 | 27 1,78 | 28 1,48 | 30 0,97 | 31 0,77 | | 23 | 17 7,76 | 20 5,75 | 21 5.15 | 23 4,64 | 25 3,09 | 26 2,66 | 28 1,92 | 28 1,92 | 30 1,32 | 31 1,08 | 32 0,86 | | 24 | 17 8,63 | 20 6,55 | 22 5,31 | 24 4,21 | 26 3,24 | 28 2,42 | 29 2,06 | 30 1,73 | 31 1,44 | 32 1,18 | 33 0,96 | | 25 | 18 8,78 | 21 6,71 | 23 5,48 | 26 3,87 | 27 3,40 | 29 2,56 | 30 2,20 | 31 1,86 | 32 1,56 | 34 1,06 | 35 0,85 | | 26 | 19 8,92 | 22 6,87 | 24 5,64 | 27 4.03 | 29 3,12 | 30 2,71 | 31 2,34 | 32 1,99 | 33 1,68 | 35 1,16 | 36 0,94 | | 27 | 20 9,07 | 23 7,02 | 25 5,80 | 28 4.19 | 30 3,27 | 31 2,86 | 33 2,13 | 34 1,81 | 35 1,52 | 36 1,26 | 37 1,04 | | 28 | 20 9,94 | 24 7,18 | 26 5,97 | 29 4.35 | 31 3,42 | 32 3,01 | 34 2,26 | 35 1,93 | 36 1,64 | 38 1,14 | 39 0.93 | | 29 | 21 10,1 | 25 7,34 | 27 6,13 | 30 4.51 | 32 3,58 | 34 2,76 | 35 2,39 | 36 2,06 | 37 1,76 | 39 1,24 | 40 1.02 | | 30 | 22 10,2 | 26 7,50 | 28 6,29 | 31 4.67 | 33 3,73 | 35 2,90 | 36 2,53 | 37 2,19 | 39 1,59 | 40 1,34 | 41 1.11 | | 31 | 23 10,4 | 27 7,66 | 29 6,45 | 32 4,83 | 34 3,88 | 36 3,04 | 37 2.67 | 39 2,00 | 40 1,71 | 42 1,21 | 43 1,00 | | 32 | 24 10,5 | 28 7,82 | 30 6,61 | 33 4,99 | 35 4,04 | 37 3,19 | 39 2.45 | 40 2,12 | 41 1,82 | 43 1,31 | 44 1,09 | | 33 | 24 11,4 | 29 7,98 | 31 6,78 | 34 5,15 | 37 3,75 | 38 3,33 | 46 2.58 | 41 2,25 | 42 1,94 | 44 1,41 | 45 1,18 | | 34 | 25 11,5 | 29 8,78 | 32 6,94 | 35 5,31 | 38 3,90 | 40 3,08 | 41 2.72 | 42 2,37 | 44 1,77 | 46 1,28 | 47 1,07 | | 35 | 26 11,7 | 30 8,93 | 33 7,10 | 36 5,46 | 39 4,04 | 41 3,22 | 42 2.85 | 44 2,18 | 45 1,89 | 47 1,37 | 48 1,16 | | 36 | 27 11,8 | 31 9,09 | 34 7,26 | 37 5,62 | 40 4,19 | 42 3,36 | 44 2,63 | 45 2,30 | 46 2,00 | 48 1,47 | 50 1.05 | | 37 | 27 12,7 | 32 9,25 | 35 7,42 | 39 5,28 | 41 4,34 | 43 3,50 | 45 2,76 | 46 2,43 | 48 1,83 | 50 1,34 | 51 1.13 | | 38 | 28 12,8 | 33 9,40 | 36 7,58 | 40 5,43 | 42 4,49 | 44 3,64 | 46 2,89 | 47 2,55 | 49 1,95 | 51 1,44 | 52 1.22 | | 39 | 29 13,0 | 34 9,56 | 37 7,74 | 41 5,59 | 44 4,20 | 46 3,39 | 47 3,02 | 49 2,36 | 50 2,06 | 52 1,54 | 54 1.11 | | 46 | 30 13,1 | 35 9,72 | 38 7,89 | 42 5,74 | 45 4,35 | 47 3,53 | 49 2,80 | 50 2,48 | 52 1,89 | 53 1,64 | 55 1.20 | | 41 | 30 14,0 | 36 9,87 | 39 8.05 | 43 5,90 | 46 4,49 | 48 3,67 | 50 2,93 | 51 2,60 | 53 2,00 | 55 1,50 | 56 1.28 | | 42 | 31 14,1 | 37 10,0 | 40 8.21 | 44 6,05 | 47 4,64 | 49 3,81 | 51 3,06 | 52 2,72 | 54 2,11 | 56 1,60 | 58 1.17 | | 43 | 32 14,3 | 38 10,2 | 41 8.37 | 45 6,20 | 48 4,79 | 50 3,95 | 52 3,19 | 54 2,52 | 55 2,22 | 57 1,69 | 59 1.26 | | 44 | 33 14,4 | 39 10,3 | 42 8.53 | 46 6,36 | 49 4,93 | 52 3,69 | 53 3,32 | 55 2,64 | 57 2,06 | 59 1,56 | 60 1.34 | | 45 | 34 14,6 | 40 10,5 | 43 8.68 | 47 6,51 | 51 4,64 | 53 3,83 | 55 3,10 | 56 2,76 | 58 2,16 | 60 1,65 | 62 1.23 | | 46 | 34 15,4 | 40 11,3 | 44 8.84 | 48 6,67 | 52 4,79 | 54 3,96 | 56 3,22 | 57 2,89 | 59 2,28 | 61 1,75 | 63 1.31 | | 47 | 35 15,6 | 41 11,4 | 45 9.00 | 50 6,32 | 53 4,93 | 55 4,10 | 57 3,35 | 59 2,69 | 60 2,39 | 63 1,61 | 64 1.40 | | 48 | 36 15,7 | 42 11,6 | 46 9.15 | 51 6,47 | 54 5,07 | 56 4,24 | 58 3,48 | 60 2,81 | 62 2,22 | 64 1,71 | 66 1.29 | | 49 | 37 15,8 | 43 11,7 | 47 9.31 | 52 6,62 | 55 5,22 | 58 3,98 | 6G 3,26 | 61 2,93 | 63 2,32 | 65 1,81 | 67 1.37 | | 50 | 38 16,0 | 44 11,9 | 48 9,47 | 53 6,77 | 56 5,36 | 59 4,12 | 61 3,38 | 62 3,05 | 64 2,43 | 67 1,67 | 68 1.46 | $k_1 = 15$ HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $n_1; R_1 \text{ in Erl}$ $k_1 = \text{accessibility of HG 1}$ $k_2 = \text{accessibility of FG}$ n₁ = number of trunks of HG 1 | L | | | 1 | 5 | | |---|---|---|---|---|--| | k | 1 | = | ı | U | | | | | | | | | | | | | | | cost | ratio P | | | | | | |---|--------------|---|---------------------|-------------------|-------------------|-------------------|--|--|--|--|--| | k _f {≦ 15
16···25
≥ 26 | 1,1
Na Ra | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
P1 R1 | 1,1
1,4
1.6 | 1.2
1.6
1.8 | 1.4
1.8
2.0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,6
2,5
3,0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3.0
3.5
4.0
n ₁ R ₁ | | A ₁ = 50 | 38 16,5 | 44 11,9 | 48 9,47 | 53 6,77 | 56 5,36 | 59 4,12 | 61 3,38 | 62 3,05 | 64 2,43 | 67 1.67 | 68 1,46 | | 52 | 39 17.0 | 46 12,2 | 50 9,78 | 55 7,08 | 59 5,21 | 61 4,39 | 63 3,64 | 65 2,97 | 67 2,37 | 69 1,86 | 71 1,43 | | 54 | 41 17.3 | 48 12,5 | 52 10,1 | 57 7,38 | 61 5,56 | 64 4,27 | 66 3,54 | 67 3,20 | 69 2,59 | 72 1,82 | 73 1,60 | | 56 | 42 18.3 | 50 12,8 | 54 10,4 | 59 7,68 | 63 5,78 | 66 4,54 | 68 3,79 | 70 3,12 | 72 2,53 | 74 2,01 | 76 1,57 | | 58 | 44 18.6 | 52 13,1 | 56 10,7 | 62 7,48 | 66 5,63 | 68 4,80 | 71 3,69 | 72 3,36 | 74 2,74 | 77 1,96 | 79 1,54 | | 60 | 45 19.6 | 54 13,4 | 58 11,0 | 64 7,78 | 68 5,91 | 71 4,68 | 73 3,94 | 75 3,27 | 77 2,68 | 80 1,92 | 81 1,71 | | 62 | 47 19.9 | 55 14,4 | 60 11,3 | 66 8,08 | 70 6,20 | 73 4,95 | 76 3,84 | 77 3,51 | 80 2.62 | 82 2.11 | 84 1,67 | | 64 | 49 20.1 | 57 14,7 | 62 11,6 | 68 8,38 | 72 6,48 | 76 4,82 | 78 4,69 | 80 3,43 | 82 2.83 | 85 2.07 | 87 1,64 | | 66 | 50 21.2 | 59 15,0 | 64 11,9 | 70 8,67 | 75 6,32 | 78 5,09 |
80 4,34 | 82 3,66 | 85 2.77 | 87 2.25 | 89 1,81 | | 68 | 52 21.4 | 61 15,3 | 66 12,2 | 73 8,47 | 77 6,60 | 80 5,35 | 83 4,24 | 85 3,58 | 87 2.98 | 90 2.21 | 92 1,78 | | 70 | 53 22.4 | 63 15,6 | 68 12,5 | 75 8,77 | 79 6,89 | 83 5,23 | 85 4,49 | 87 3,81 | 90 2.92 | 92 2.40 | 95 1,75 | | 72 | 55 22,7 | 65 15,9 | 70 12,8 | 77 9.06 | 82 6,73 | 85 5,49 | 88 4,39 | 90 3,73 | 92 3.13 | 95 2,35 | 97 1,92 | | 74 | 57 23.0 | 67 16,2 | 72 13,2 | 79 9.36 | 84 7.01 | 87 5,76 | 90 4,63 | 92 3,96 | 95 3.06 | 98 2,31 | 100 1,89 | | 76 | 58 24.0 | 69 16,5 | 74 13,5 | 81 9.65 | 86 7,29 | 90 5,63 | 93 4,53 | 95 3,88 | 97 3.28 | 100 2,50 | 102 2,06 | | 78 | 60 24.3 | 70 17,4 | 76 13,8 | 83 9.95 | 89 7,13 | 92 5,89 | 95 4,78 | 97 4,11 | 100 3.21 | 103 2,46 | 105 2,03 | | 80 | 62 24.6 | 72 17,7 | 78 14,1 | 86 9.74 | 91 7,41 | 95 5,77 | 97 5,03 | 160 4,03 | 102 3.43 | 105 2,65 | 108 2,00 | | 82 | 63 25,6 | 74 18.0 | 80 14,4 | 88 15,0 | 93 7,69 | 97 6,03 | 100 4,93 | 102 4,26 | 105 3,36 | 108 2,60 | 110 2,17 | | 84 | 65 25,8 | 76 18.3 | 82 14,7 | 90 10,3 | 95 7,97 | 99 6,29 | 102 5,17 | 105 4,17 | 107 3,58 | 110 2,79 | 113 2,14 | | 86 | 66 26,8 | 78 18.6 | 84 15,0 | 92 10,6 | 98 7,81 | 102 6,17 | 105 5.07 | 107 4,41 | 110 3,51 | 113 2,75 | 115 2,31 | | 88 | 68 27,1 | 80 18.9 | 86 15,3 | 94 10,9 | 100 8,09 | 104 6,43 | 107 5.32 | 109 4,64 | 112 3,73 | 116 2,71 | 118 2,28 | | 90 | 70 27,4 | 82 19.2 | 88 15,6 | 97 10,7 | 102 8,37 | 106 6,70 | 110 5,22 | 112 4,56 | 115 3,66 | 118 2,90 | 121 2,25 | | 92 | 71 28,4 | 84 19,5 | 90 15,9 | 99 11,0 | 105 8,21 | 169 6.57 | 112 5,46 | 114 4,79 | 117 3.88 | 121 2,85 | 123 2,42 | | 94 | 73 28,7 | 86 19,8 | 92 16,2 | 101 11,3 | 107 8,49 | 111 6.83 | 114 5,71 | 117 4,71 | 120 3.82 | 123 3,04 | 126 2,39 | | 96 | 74 29,7 | 87 20,8 | 94 16,5 | 103 11,6 | 109 8,77 | 114 6.71 | 117 5.61 | 119 4,94 | 122 4.03 | 126 3,00 | 129 2,36 | | 98 | 76 30,0 | 89 21,1 | 96 16,8 | 105 11,9 | 111 9,05 | 116 6.97 | 119 5.86 | 122 4,86 | 125 3.97 | 128 3,19 | 131 2,53 | | 100 | 78 30,2 | 91 21,4 | 98 17,1 | 107 12,2 | 114 8,89 | 118 7.23 | 122 5,76 | 124 5,09 | 127 4.19 | 131 3,15 | 134 2,51 | | 102 | 79 31,2 | 93 21,7 | 100 17,4 | 110 12,0 | 116 9,17 | 121 7,11 | 124 6,01 | 127 5,01 | 130 4,12 | 134 3,11 | 136 2.68 | | 104 | 81 31,5 | 95 22,0 | 102 17,7 | 112 12,3 | 118 9,45 | 123 7,37 | 126 6,26 | 129 5,25 | 132 4,34 | 136 3,30 | 139 2.65 | | 106 | 83 31,8 | 97 22,2 | 104 18,0 | 114 12,6 | 121 9,29 | 125 7,64 | 129 6,16 | 132 5,16 | 135 4,28 | 139 3,26 | 142 2.63 | | 108 | 84 32,8 | 99 22,5 | 106 18,3 | 116 12,9 | 123 9,57 | 128 7,51 | 131 6,41 | 134 5,40 | 137 4,50 | 141 3,46 | 144 2.80 | | 110 | 86 33,1 | 101 22,8 | 108 18,6 | 118 13,1 | 125 9,85 | 130 7,78 | 134 6,31 | 136 5,64 | 140 4,43 | 144 3,42 | 147 2.77 | | 112 | 87 34,1 | 102 23,8 | 110 18,9 | 125 13,4 | 127 10,1 | 132 8,04 | 136 6,56 | 139 5,56 | 142 4,65 | 146 3,61 | 149 2,95 | | 114 | 89 34,3 | 104 24,1 | 112 19,2 | 123 13,2 | 130 10,0 | 135 7,92 | 138 6,81 | 141 5,79 | 145 4,59 | 149 3,57 | 152 2,93 | | 116 | 91 34,6 | 106 24,4 | 114 19,5 | 125 13,5 | 132 10,2 | 137 8,18 | 141 6,71 | 144 5,71 | 147 4,81 | 151 3,77 | 154 3,11 | | 118 | 92 35,6 | 108 24,7 | 116 19,8 | 127 13,8 | 134 10,5 | 139 8,45 | 143 6,96 | 146 5,95 | 150 4,75 | 154 3,75 | 157 3,10 | | 120 | 94 35,9 | 110 25,0 | 118 20,1 | 129 14,1 | 136 10,8 | 142 8,33 | 146 6,86 | 149 5,87 | 152 4,98 | 156 3,95 | 160 3,08 | | 125 | 98 37,3 | 115 25,7 | 123 20,8 | 134 14,8 | 142 11.1 | 148 8.60 | 151 7,50 | 154 6,49 | 158 5,28 | 163 4,00 | 166 3,35 | | 130 | 102 38,7 | 119 27,1 | 128 21,6 | 140 15,1 | 148 11.3 | 153 9.29 | 157 7,81 | 161 6,48 | 165 5,31 | 169 4,28 | 173 3,41 | | 135 | 106 40,1 | 124 27,8 | 133 22,3 | 145 15,8 | 153 12.1 | 159 9.60 | 163 8,13 | 167 6,79 | 171 5,61 | 176 4,33 | 180 3,47 | | 140 | 110 41,5 | 129 28,6 | 138 23,1 | 150 16,6 | 158 12.8 | 165 9.92 | 169 8,44 | 173 7,10 | 177 5,91 | 182 4,61 | 186 3.73 | | 145 | 114 43.0 | 133 29,9 | 143 23,8 | 155 17,3 | 164 13.1 | 170 10,6 | 175 8,76 | 179 7,41 | 183 6,21 | 189 4,66 | 193 3,79 | | 150 | 118 44,4 | 138 30,7 | 148 24,6 | 160 18,1 | 170 13.4 | 176 10,9 | 181 9,07 | 185 7,72 | 190 6,23 | 195 4,94 | 200 3,86 | | 155 | 122 45,8 | 143 31,4 | 152 25,9 | 166 13,4 | 175 14.1 | 182 11,2 | 187 9,38 | 191 8,04 | 196 6,53 | 202 4,99 | 206 4.12 | | 160 | 126 47,2 | 147 32,8 | 156 27,3 | 171 19,1 | 181 14.4 | 188 11,6 | 193 9,70 | 198 8,03 | 202 6,83 | 208 5,27 | 213 4.18 | | 165 | 130 48,6 | 151 34,2 | 161 28,1 | 176 19,9 | 187 14.7 | 194 11,9 | 199 10,0 | 204 8,34 | 209 6,85 | 215 5,32 | 220 4,24 | | 170 | 135 49,3 | 155 35,6 | 166 28,9 | 182 25,2 | 192 15.5 | 200 12,2 | 205 10,3 | 210 8,65 | 215 7,15 | 222 5,36 | 226 4,50 | | 175 | 139 50,7 | 160 36,4 | 171 29,6 | 187 21.0 | 198 15.8 | 206 12,5 | 211 10.6 | 216 8,96 | 221 7,45 | 228 5,65 | 233 4,56 | | 180 | 143 52:1 | 164 37,8 | 176 36,4 | 193 21.2 | 204 16.1 | 212 12,8 | 218 10.6 | 222 9,27 | 228 7,47 | 235 5,69 | 240 4,63 | | 185 | 147 53.5 | 169 38,5 | 181 31,2 | 198 22.0 | 209 16.8 | 217 13,5 | 224 10.9 | 228 9,58 | 234 7,77 | 241 5,97 | 246 4,89 | | 190 | 150 55.6 | 173 39,9 | 186 32,0 | 203 22.8 | 215 17.1 | 223 13,8 | 230 11.2 | 235 9,57 | 240 8,08 | 248 6,02 | 253 4,95 | | 200 | 157 59.2 | 183 41,5 | 196 33,5 | 214 23.8 | 226 18.2 | 235 14,4 | 242 11.9 | 247 10,2 | 253 8,40 | 261 6,35 | 266 5,27 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R_1 = overflowing traffic from HG 1 $n_1; R_1$ in Erl P = cost ratio k₁ = accessibility of HG 1 k_f = accessibility of FG n₁ = number of trunks of HG 1 | | | | | | cost | | | | | | | |--|--------------------------------------|--|---|--|--|--|--|--|--|--|--| | k _f {≦ 15
16····25
≥ 26 | 1,1
n ₁ R ₁ | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6
n ₁ R ₁ | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1.8
2,0
n ₁ R ₁ | 1.6
2.0
2.2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2.5
3.0
3.5
n ₁ R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0,62
5 0,80
6 0,96 | 4 0,62
5 0,80
7 0,60 | 4 0,62
6 0,47
7 0,60 | 5 0.33
6 0.47
7 0.60 | 5 0,33
6 0,47
8 0,35 | 4 0:19
5 0:33
7 0:25
8 0:35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2.16
6 2.32
7 2.47
8 2.60
9 2.73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
11 1,63 | 7 1,11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1,11
9 0,85
10 0,97
11 1,09
12 1,20 | 8 0,73
9 0,85
10 0,97
11 1,09
13 0,84 | 8 0,73
9 0,85
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0.55
11 0,65
12 0.75
13 0.84 | 9 0,45
10 0,55
12 0,41
13 0,49
14 0,57 | 9 0,45
11 0,33
12 0,41
13 0,49
15 0,36 | | 11 | 8 4,21 | 10 2,86 | 11 2,27 | 12 1,75 | 13 1,36 | 13 1,30 | 14 0,94 | 14 0,94 | 15 0,65 | 15 0,65 | 16 0.43 | | 12 | 9 4,33 | 11 2,97 | 12 2,38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1,03 | 15 1,03 | 16 0,72 | 17 0,49 | 17 0.49 | | 13 | 10 4,44 | 12 3,09 | 13 2,49 | 14 1,97 | 15 1,51 | 15 1,51 | 16 1,12 | 16 1,12 | 17 0,80 | 18 0,55 | 18 0.55 | | 14 | 11 4,54 | 13 3,19 | 14 2,60 | 15 2,07 | 16 1,66 | 17 1,21 | 17 1,21 | 18 0,88 | 18 0,88 | 19 0,62 | 19 0.62 | | 15 | 12 4,64 | 14 3,30 | 15 2,70 | 16 2,17 | 17 1,76 | 18 1,29 | 18 1,29 | 19 0,96 | 19 0,96 | 20 0,68 | 20 0.68 | | 16 | 13 4,74 | 15 3,40 | 16 2,80 | 17 2,27 | 18 1,79 | 19 1,38 | 19 1,38 | 20 1,03 | 20 1,03 | 21 0,78 | 22 0,58 | | 17 | 14 4,84 | 16 3,50 | 17 2,90 | 18 2,36 | 19 1,88 | 20 1,46 | 20 1,46 | 20 1,46 | 21 1,15 | 22 0,88 | 23 0.67 | | 18 | 15 4,93 | 17 3,59 | 18 3,00 | 19 2,45 | 20 1,97 | 20 1,97 | 21 1,59 | 22 1,26 | 22 1,26 | 23 0,99 | 24 0.76 | | 19 | 16 5,03 | 18 3,69 | 19 3,09 | 20 2,54 | 20 2,54 | 21 2,11 | 22 1,72 | 23 1,38 | 24 1,09 | 25 0,85 | 26 0,65 | | 20 | 16 5,84 | 19 3,78 | 20 3,18 | 20 3,18 | 22 2,25 | 23 1,85 | 23 1,85 | 24 1,50 | 25 1,20 | 26 0,95 | 27 0.73 | | 21 | 17 5.93 | 20 3.87 | 20 3,87 | 21 3,33 | 23 2,38 | 24 1.98 | 25 1,63 | 25 1,63 | 26 1.32 | 27 1.05 | 28 0.82 | | 22 | 18 6.01 | 20 4.60 | 21 4.02 | 22 3,47 | 24 2,52 | 25 2.12 | 26 1,75 | 27 1,43 | 28 1.15 | 29 0.91 | 30 0.70 | | 23 | 19 6.09 | 20 5.37 | 21 4.75 | 23 3,62 | 25 2,66 | 26 2.25 | 27 1,88 | 28 1,54 | 29 1.25 | 30 1.00 | 31 0.79 | | 24 | 20 6.17 | 21 5.51 | 22 4.89 | 25 3,27 | 26 2,80 | 27 2.38 | 28 2,00 | 29 1,66 | 36 1.36 | 31 1.10 | 32 0.87 | | 25 | 20 7.00 | 22 5.66 | 23 5.04 | 26 3,41 | 27 2,94 | 28 2.52 | 29 2,13 | 30 1,78 | 31 1.47 | 33 0.96 | 34 0.75 | | 26 | 20 7.85 | 23 5.80 | 24 5.19 | 27 3,55 | 28 3.08 | 30 2,25 | 31 1,90 | 32 1,58 | 33 1.29 | 34 1.05 | 35 0.83 | | 27 | 21 7.98 | 24 5.95 | 25 5.33 | 28 3,70 | 30 2.78 | 31 2,38 | 32 2,02 | 33 1,69 | 34 1.40 | 35 1.14 | 36 0.91 | | 28 | 22 8.11 | 25 6.09 | 26 5.48 | 29 3,84 | 31 2.92 | 32 2,51 | 33 2,14 | 34 1,80 | 35 1.50 | 37 1.00 | 38 0.80 | | 29 | 22 8.97 | 26 6.23 | 27 5.62 | 30 3,98 | 32 3.05 | 33 2,64 | 34 2,26 | 35 1,91 | 36 1.60 | 38 1.08 | 39 0.87 | | 30 | 23 9.10 | 27 6.38 | 28 5.77 | 31 4,12 | 33 3.19 | 34 2,77 | 36 2,03 | 37 1,71 | 38 1.43 | 39 1.17 | 40 0.95 | | 31 | 24 9.23 | 28 6.52 | 29 5,91 | 32 4,26 | 34 3,32 | 36 2.50 | 37 2,15 | 38 1,82 | 39 1,53 | 40 1,26 | 41 1.03 | | 32 | 25 9.36 | 28 7.30 | 30 6,06 | 33 4,40 | 35 3,45 | 37 2.63 | 38 2,26 | 39 1,93 | 40 1,63 | 42 1,12 | 43 0.91 | | 33 | 26 9.49 | 29
7.44 | 31 6,20 | 34 4,54 | 36 3,59 | 38 2.75 | 39 2,38 | 40 2,04 | 41 1,73 | 43 1,20 | 44 0.99 | | 34 | 26 10.3 | 30 7.58 | 32 6,34 | 35 4,69 | 38 3,28 | 39 2.88 | 40 2,50 | 41 2,15 | 43 1,55 | 44 1,29 | 45 1.06 | | 35 | 27 10.5 | 31 7.72 | 33 6,48 | 36 4,83 | 39 3,41 | 40 3.00 | 42 2,26 | 43 1,94 | 44 1,64 | 46 1,15 | 47 0.94 | | 36 | 28 10,6 | 32 7,86 | 34 6,63 | 38 4.46 | 40 3,54 | 42 2.74 | 43 2.38 | 44 2,05 | 45 1.74 | 47 1,23 | 48 1.01 | | 37 | 29 10,7 | 33 8,00 | 35 6,77 | 39 4.60 | 41 3,67 | 43 2.86 | 44 2.49 | 45 2,15 | 46 1.84 | 48 1,31 | 49 1.09 | | 38 | 30 10,9 | 34 8,14 | 36 6,91 | 40 4.74 | 42 3,80 | 44 2.98 | 45 2.61 | 46 2,26 | 48 1.66 | 49 1,40 | 51 0.97 | | 39 | 31 11,0 | 35 8,28 | 37 7.05 | 41 4.87 | 43 3,93 | 45 3.10 | 46 2.72 | 48 2,05 | 49 1.76 | 51 1,25 | 52 1.04 | | 40 | 31 11,9 | 36 8,42 | 38 7,19 | 42 5.01 | 44 4,06 | 46 3.22 | 48 2.48 | 49 2,15 | 50 1.85 | 52 1,33 | 53 1.11 | | 41 | 32 12,0 | 37 8,56 | 39 7.33 | 43 5,15 | 46 3,76 | 47 3,34 | 49 2,59 | 50 2,26 | 52 1.67 | 53 1,42 | 55 0,99 | | 42 | 33 12:1 | 38 8,70 | 40 7.47 | 44 5,28 | 47 3,88 | 49 3,07 | 50 2.71 | 51 2,37 | 53 1.76 | 55 1,27 | 56 1.06 | | 43 | 34 12:2 | 39 8,84 | 41 7.61 | 45 5,42 | 48 4,01 | 50 3,19 | 51 2.82 | 53 2,15 | 54 1.86 | 56 1,35 | 57 1.13 | | 44 | 35 12:4 | 40 8,98 | 42 7.75 | 46 5,55 | 49 4,14 | 51 3,31 | 53 2,58 | 54 2,26 | 55 1.96 | 57 1,43 | 58 1.21 | | 45 | 35 13:2 | 41 9,12 | 43 7,89 | 47 5,69 | 50 4,26 | 52 3,43 | 54 2.69 | 55 2,36 | 57 1.77 | 58 1,52 | 60 1.08 | | 46 | 36 13,3 | 42 9,26 | 44 8.03 | 49 5,32 | 51 4,39 | 53 3,55 | 55 2,80 | 56 2,46 | 58 1,86 | 60 1.36 | 61 1.15 | | 47 | 37 13,5 | 43 9,39 | 45 8.17 | 50 5,46 | 52 4,52 | 55 3,28 | 56 2,91 | 57 2,57 | 59 1,96 | 61 1.44 | 62 1.22 | | 48 | 38 13,6 | 44 9,53 | 46 8.31 | 51 5,59 | 54 4,20 | 56 3,39 | 57 3,02 | 59 2,35 | 60 2,05 | 62 1.53 | 64 1.10 | | 49 | 39 13,7 | 45 9,67 | 48 7.87 | 52 5,72 | 55 4,33 | 57 3,51 | 59 2,78 | 60 2,45 | 62 1.87 | 63 1.61 | 65 1.17 | | 50 | 40 13,9 | 45 10,4 | 49 8.00 | 53 5,85 | 56 4,45 | 58 3,63 | 60 2,89 | 61 2,55 | 63 1.96 | 65 1.45 | 66 1.24 | | - | | | | | cost | ratio P | | | | | | |--|--------------------------|---|---------------------|--|-------------------|--|--|--|--|--|---| | k _f { ≦ 15
16···25
≥ 26 | 1,1
n, R ₁ | 1.1
1.2
n ₁ R ₁ | 1,2
1,4
n, R, | 1.1
1.4
1.6
n ₁ R ₁ | 1,2
1,6
1,8 | 1,4
1,8
2,0
n ₁ R ₁ | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2.0
2.5
3.0
n ₁ R ₁ | 2.5
3.0
3.5
n ₁ R ₁ | 3.0
3.5
4.0 | | A ₁ = 50 | 40 13,9 | 45 10,4 | 49 8,00 | 53 5,85 | 56 4,45 | 58 3,63 | 6g 2,89 | 61 2,55 | 63 1,96 | 65 1,45 | 66 1,24 | | 52 | 41 14,8 | 47 10,7 | 51 8.28 | 55 6.12 | 58 4.70 | 60 3.86 | 62 3,11 | 64 2,44 | 65 2,14 | 67 1,61 | 69 1,18 71 1,32 74 1,26 76 1,40 79 1,34 | | 54 | 43 15,1 | 49 11,0 | 53 8.55 | 57 6.38 | 61 4.51 | 63 3.70 | 65 2,97 | 66 2,64 | 68 2,04 | 70 1,54 | | | 56 | 45 15,4 | 51 11,3 | 55 8.82 | 60 6.15 | 63 4.76 | 65 3.93 | 67 3,18 | 69 2,52 | 70 2,23 | 72 1,70 | | | 58 | 46 16,3 | 53 11,5 | 57 9.10 | 62 6.41 | 65 5.00 | 68 3.77 | 69 3,40 | 71 2,72 | 73 2,13 | 75 1,62 | | | 60 | 48 16,6 | 55 11,8 | 59 9.37 | 64 6.67 | 67 5.25 | 70 4.00 | 72 3,26 | 73 2,92 | 75 2,31 | 77 1,78 | | | 62 | 50 16.8 | 57 12,1 | 61 9,64 | 66 6,93 | 70 5.05 | 72 4.23 | 74 3,47 | 76 2,80 | 78 2,21 | 80 1,70 | 82 1,28 | | 64 | 51 17.8 | 59 12,3 | 63 9,91 | 68 7,19 | 72 5.30 | 75 4.06 | 77 3.33 | 78 3,00 | 80 2,39 | 82 1,86 | 84 1,42 | | 66 | 53 18.1 | 61 12,6 | 65 18,2 | 71 6,94 | 74 5.54 | 77 4.29 | 79 3,54 | 81 2,88 | 83 2,29 | 85 1,78 | 87 1,36 | | 68 | 55 18.3 | 63 12,9 | 67 18,4 | 73 7,20 | 77 5.34 | 79 4.51 | 82 3,40 | 83 3,07 | 85 2,47 | 88 1,71 | 89 1,49 | | 70 | 56 19.3 | 65 13,1 | 69 18,7 | 75 7,45 | 79 5.58 | 82 4.35 | 84 3.61 | 86 2,95 | 88 2,37 | 90 1,86 | 92 1,43 | | 72 | 58 19.6 | 67 13,4 | 71 11,0 | 77 7.71 | 81 5,82 | 84 4,57 | 86 3,82 | 88 3,14 | 90 2,54 | 93 1,78 | 94 1.57 | | 74 | 60 19.8 | 69 13,7 | 73 11,2 | 79 7.97 | 84 5,62 | 87 4,40 | 89 3,68 | 91 3,02 | 93 2,44 | 95 1,93 | 97 1.50 | | 76 | 61 20.8 | 71 13,9 | 75 11,5 | 82 7.72 | 86 5,86 | 89 4,62 | 91 3,88 | 93 3,21 | 95 2,61 | 98 1,85 | 99 1.64 | | 78 | 63 21.0 | 73 14,2 | 77 11,8 | 84 7.97 | 88 6,09 | 91 4.84 | 94 3,74 | 95 3,41 | 98 2,51 | 100 2,01 | 102 1.57 | | 80 | 65 21.3 | 75 14,5 | 79 12,0 | 86 8.22 | 90 6,33 | 94 4.68 | 96 3,94 | 98 3,28 | 100 2,69 | 103 1,93 | 104 1.71 | | 82 | 67 21,5 | 76 15,4 | 81 12,3 | 88 8,48 | 93 6.13 | 96 4.90 | 98 4,15 | 100 3,47 | 102 2,86 | 105 2.08 | 107 1,64 | | 84 | 68 22,5 | 78 15,6 | 83 12,6 | 90 8,73 | 95 6.36 | 98 5.12 | 101 4,01 | 103 3,35 | 105 2,76 | 108 2.00 | 110 1,58 | | 86 | 70 22,8 | 80 15,9 | 86 12,2 | 93 8,48 | 97 6.60 | 101 4.95 | 103 4,21 | 105 3,54 | 107 2,93 | 110 2.15 | 112 1,71 | | 88 | 72 23.0 | 82 16,2 | 88 12,5 | 95 8,73 | 100 6.40 | 103 5.16 | 106 4,07 | 108 3,41 | 110 2,82 | 113 2.07 | 115 1,65 | | 90 | 73 24.0 | 84 16,4 | 90 12,8 | 97 8,98 | 102 6.63 | 105 5.38 | 108 4,27 | 110 3,60 | 112 3,00 | 115 2.22 | 117 1,78 | | 92 | 75 24.2 | 86 16.7 | 92 13,0 | 99 9.23 | 104 6.87 | 108 5.21 | 110 4,47 | 112 3,79 | 115 2.89 | 118 2,14 | 126 1,72 | | 94 | 77 24.5 | 88 17.0 | 94 13,3 | 102 8.98 | 107 6.66 | 110 5.43 | 113 4,33 | 115 3,66 | 117 3.07 | 120 2,29 | 122 1,85 | | 96 | 79 24.7 | 90 17.2 | 96 13,6 | 104 9.23 | 109 6.89 | 112 5.65 | 115 4,53 | 117 3,86 | 120 2.96 | 123 2,21 | 125 1,79 | | 98 | 80 25.7 | 92 17.5 | 98 13,8 | 106 9.48 | 111 7.13 | 115 5.48 | 117 4,73 | 120 3,73 | 122 3.13 | 125 2,36 | 127 1,92 | | 100 | 82 25.9 | 94 17.7 | 100 14,1 | 108 9.72 | 113 7.36 | 117 5.69 | 120 4,58 | 122 3,92 | 125 3.03 | 128 2,28 | 130 1,86 | | 102 | 84 26,2 | 96 18.0 | 102 14,3 | 110 10,0 | 116 7,16 | 119 5,91 | 122 4,79 | 124 4,11 | 127 3,20 | 130 2,43 | 132 1,99 | | 104 | 85 27,2 | 98 18.3 | 104 14,6 | 113 9,72 | 118 7,39 | 122 5,74 | 125 4,64 | 127 3,98 | 129 3,38 | 133 2,35 | 135 1,93 | | 106 | 87 27,4 | 100 18.5 | 106 14,9 | 115 10,0 | 120 7,62 | 124 5,96 | 127 4,84 | 129 4,17 | 132 3,27 | 135 2,50 | 137 2,06 | | 108 | 89 27,7 | 102 18.8 | 108 15,1 | 117 10,2 | 123 7,42 | 127 5,78 | 129 5,05 | 132 4,04 | 134 3,44 | 138 2,42 | 140 2,00 | | 110 | 91 27,9 | 104 19.0 | 110 15,4 | 119 10,5 | 125 7,65 | 129 6,00 | 132 4,90 | 134 4,23 | 137 3,33 | 140 2,57 | 142 2,13 | | 112 | 92 28,9 | 106 19,3 | 112 15,6 | 121 10.7 | 127 7,88 | 131 6,22 | 134 5.10 | 137 4,10 | 139 3,51 | 142 2,72 | 145 2.07 | | 114 | 94 29,1 | 108 19,6 | 114 15,9 | 124 10.5 | 129 8,11 | 134 6,04 | 137 4.95 | 139 4,29 | 142 3,40 | 145 2,64 | 147 2.20 | | 116 | 96 29,4 | 110 19,8 | 117 15,6 | 126 10.7 | 132 7,90 | 136 6,26 | 139 5.15 | 141 4,48 | 144 3,57 | 147 2,79 | 150 2.14 | | 118 | 98 29,6 | 112 20,1 | 119 15,8 | 128 11.0 | 134 8,14 | 138 6,48 | 141 5.36 | 144 4,35 | 147 3,47 | 150 2,71 | 152 2.27 | | 120 | 99 30,6 | 114 20,3 | 121 16,1 | 130 11.2 | 136 8,37 | 141 6,30 | 144 5.21 | 146 4,54 | 149 3,64 | 152 2,86 | 155 2.21 | | 125 | 104 31,2 | 118 21,6 | 126 16,7 | 136 11,3 | 142 8,51 | 146 6,84 | 150 5,37 | 152 4,70 | 155 3,80 | 159 2.78 | 161 2,34 | | 136 | 108 32,5 | 123 22,3 | 131 17,4 | 141 11,9 | 148 8.65 | 152 7,00 | 156 5,52 | 158 4,86 | 161 3,95 | 165 2.92 | 167 2,49 | | 135 | 112 33,9 | 128 22,9 | 136 18,0 | 147 12,0 | 153 9,23 | 158 7,15 | 162 5,68 | 164 5,01 | 167 4,11 | 171 3.07 | 174 2,42 | | 146 | 117 34,5 | 133 23,5 | 141 18,6 | 152 12,7 | 159 9,37 | 164 7,30 | 167 6,19 | 170 5,17 | 173 4,26 | 177 3.22 | 180 2,57 | | 145 | 121 35,8 | 138 24,2 | 146 19,3 | 158 12,8 | 165 9,51 | 170 7,45 | 173 6,34 | 176 5,33 | 179 4,42 | 183 3,37 | 186 2,71 | | 150 | 125 37,1 | 143 24,8 | 151 19,9 | 163 13,4 | 176 10,1 | 176 7.61 | 179 6,50 | 182 5.49 | 186 4.30 | 190 3,29 | 193 2,65 | | 155 | 130 37,7 | 148 25,5 | 157 20,0 | 169 13,5 | 176 10,2 | 181 8.15 | 185 6,66 | 188 5.65 | 192 4.46 | 196 3,44 | 199 2.80 | | 160 | 134 39,1 | 153 26,1 | 162 20,6 | 174 14,1 | 182 10,4 | 187 8.31 | 191 6,82 | 194 5.82 | 198 4.62 | 202 3,61 | 205 2.97 | | 165 | 138 40,4 | 157 27,4 | 167 21,3 | 179 14,7 | 187 11,6 | 193 8.47 | 197 6,99 | 200 5.98 | 203 5.08 | 208 3,79 | 211 3.14 | | 170 | 143 41,0 | 162 28,0 | 172 21,9 | 185 14,9 | 193 11,1 | 199 8.63 | 202 7,52 | 206 6.18 | 210 5.00 | 214 3,98 | 218 3,11 | | 175 | 147 42,3 | 167 28,7 | 177 22,6 | 190 15,5 | 199 11,3 | 204 9,20 | 208 7.72 | 212 6.38 | 216 5,20 | 221 3,93 | 224 3,29 | | 180 | 151 43,7 | 172 29,3 | 182 23,2 | 196 15,6 | 204 11,9 | 210 9,40 | 214 7.92 | 218 6.58 | 222 5,39 | 227 4,12 | 230 3,46 | | 185 | 156 44,3 | 177 29,9 | 187 23,8 | 200 16,7 | 209 12,5 | 216 9,59 | 220 8.12 | 224 6.78 | 228 5,59 | 233 4,30 | 237 3,44 | | 190 | 165 45,6 | 182 30,6 | 192 24,5 | 206 16,9 | 215 12,7 | 221 10,2 | 226 8.32 | 230 6.98 | 234 5,79 | 239 4,49 | 243 3,61 | | 200 | 168 48,3 | 191 32,5 | 201 26,4 | 216 18,2 | 226 13,5 | 233 10,6 | 238 8.72 | 242 7.38 | 247 5,90 | 252 4,62 | 256 3,76 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R_1 = overflowing traffic from HG 1 n1; R1 in Ert P = cost ratio k_1 = accessibility of HG 1 k_f = accessibility of FG n_1 = number of trunks of HG 1 | | | | | 4 4 | KINDURUKAN MINDURUKA | t ratio P | | | 2.8 | | | |--|--------------------------------------|--|---|--|--|---
--|---|--|--|--| | k _f { ≤ 15
16···25
≧ 26 | 1:1
n ₁ R ₁ | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6
n ₁ R ₁ | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
_{R1} R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0,62
5 0,80
6 0,96 | 4 0,62
5 0,80
7 0,60 | 4 0.62
6 0.47
7 0,60 | 5 0.33
6 0.47
7 0,60 | 5 0,33
6 0,47
8 0,35 | 4 0,19
5 0,33
7 0,25
8 0,35 | | 6
7
8
9 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2,16
6 2,32
7 2,47
8 2,60
9 2,73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
11 1,63 | 7 1,11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1,11
9 0,85
10 0,97
11 1,09
12 1,20 | 8 0,73
9 0,85
10 0,97
11 1.09
13 0,84 | 8 0,73
9 0,85
11 0,65
12 0,75
13 0,84 | 9 0.45
10 0.55
11 0.65
12 0.75
13 0.84 | 9 0,45
10 0,55
12 0,41
13 0,49
14 0,57 | 9 0,45
11 0,33
12 0,41
13 0,49
15 0,36 | | 11 | 8 4,21 | 10 2,86 | 11 2.27 | 12 1,75 | 13 1,30 | 13 1,30 | 14 0,94 | 14 0,94 | 15 0,65 | 15 0,65 | 16 0,43 | | 12 | 9 4,33 | 11 2,97 | 12 2.38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1,03 | 15 1,03 | 16 0,72 | 17 0,49 | 17 0,49 | | 13 | 10 4,44 | 12 3,09 | 13 2.49 | 14 1,97 | 15 1,51 | 15 1,51 | 16 1,12 | 16 1,12 | 17 0,80 | 18 0,55 | 18 0,55 | | 14 | 11 4,54 | 13 3,19 | 14 2.60 | 15 2,07 | 16 1,60 | 17 1,21 | 17 1,21 | 18 0,88 | 18 0,88 | 19 0,62 | 19 0,62 | | 15 | 12 4,64 | 14 3,30 | 15 2.70 | 16 2,17 | 17 1,70 | 18 1,29 | 18 1,29 | 19 0,96 | 19 0,96 | 20 0,68 | 21 0,47 | | 16 | 13 4,74 | 15 3,40 | 16 2.80 | 17 2,27 | 18 1,79 | 19 1,38 | 19 1,38 | 20 1,03 | 21 0,75 | 21 0,75 | 22 0,53 | | 17 | 14 4,84 | 16 3,50 | 17 2.90 | 18 2,36 | 19 1,88 | 20 1,46 | 21 1,10 | 21 1,10 | 22 0,81 | 22 0,81 | 23 0,58 | | 18 | 15 4,93 | 17 3,59 | 18 3.00 | 19 2,45 | 20 1,97 | 21 1,54 | 22 1,18 | 22 1,18 | 23 0,88 | 24 0,63 | 24 0,63 | | 19 | 16 5,03 | 18 3,69 | 19 3.09 | 20 2,54 | 21 2,05 | 22 1,62 | 23 1,25 | 23 1,25 | 24 0,94 | 25 0,69 | 25 0,69 | | 20 | 16 5,84 | 19 3,78 | 20 3.18 | 21 2,63 | 22 2,13 | 23 1,70 | 24 1,32 | 24 1,32 | 25 1,00 | 26 0,74 | 27 0,54 | | 21 | 17 5,93 | 20 3,87 | 21 3.27 | 22 2,71 | 24 1,78 | 24 1,78 | 25 1.39 | 26 1,07 | 26 1.07 | 27 0,80 | 28 0.58 | | 22 | 18 6,01 | 21 3,95 | 22 3.35 | 24 2,35 | 25 1,85 | 25 1,85 | 26 1.46 | 27 1,13 | 27 1.13 | 28 0,85 | 29 0.63 | | 23 | 19 6,09 | 22 4,04 | 23 3.43 | 25 2,38 | 26 1,93 | 27 1,53 | 27 1.53 | 28 1,19 | 29 0.91 | 29 0,91 | 30 0.68 | | 24 | 20 6,17 | 23 4,12 | 24 3.52 | 26 2,45 | 27 2,00 | 28 1,60 | 28 1.60 | 29 1,25 | 30 0.96 | 30 0,96 | 31 0.75 | | 25 | 21 6,25 | 24 4,20 | 25 3.60 | 27 2,53 | 28 2,07 | 29 1,67 | 30 1.32 | 30 1,32 | 30 1.32 | 31 1,05 | 32 0.82 | | 26 | 22 6,32 | 25 4,28 | 26 3.67 | 28 2,60 | 29 2,14 | 30 1,73 | 30 1,73 | 31 1,41 | 31 1,41 | 33 0,89 | 33 0,89 | | 27 | 23 6,40 | 26 4,36 | 27 3.75 | 29 2,68 | 30 2,21 | 30 2,21 | 31 1,84 | 32 1,51 | 33 1,22 | 34 0,97 | 35 0,76 | | 28 | 24 6,47 | 27 4,43 | 28 3.83 | 30 2,75 | 30 2,75 | 31 2,32 | 32 1,94 | 33 1,60 | 34 1,30 | 35 1,05 | 36 0,83 | | 29 | 25 6,55 | 28 4,51 | 29 3.90 | 30 3,34 | 31 2,86 | 32 2,43 | 33 2,05 | 34 1,70 | 35 1,39 | 36 1,13 | 37 0,90 | | 30 | 26 6,62 | 29 4,58 | 30 3.97 | 31 3,46 | 32 2,98 | 34 2,15 | 35 1,80 | 35 1,80 | 36 1,48 | 38 0,97 | 39 0,77 | | 31 | 27 6,69 | 30 4,65 | 30 4,65 | 32 3,58 | 34 2,66 | 35 2,26 | 36 1,90 | 37 1,57 | 38 1,29 | 39 1,04 | 40 0.83 | | 32 | 28 6,76 | 30 5,37 | 31 4,78 | 33 3,70 | 35 2,77 | 36 2,36 | 37 2,00 | 38 1,67 | 39 1,37 | 40 1,12 | 41 0.90 | | 33 | 29 6,83 | 30 6,12 | 32 4,90 | 34 3,82 | 36 2,88 | 37 2,47 | 38 2,10 | 39 1,76 | 40 1,46 | 41 1,20 | 42 0.97 | | 34 | 30 6,89 | 31 6,24 | 33 5,02 | 35 3,94 | 37 2,99 | 38 2,58 | 39 2,20 | 40 1,85 | 41 1,55 | 43 1,04 | 44 0.83 | | 35 | 30 7,70 | 32 6,36 | 34 5,14 | 36 4,06 | 38 3,11 | 39 2,69 | 41 1,95 | 41 1,95 | 43 1,35 | 44 1,11 | 45 0.89 | | 36 | 30 8,52 | 33 6,48 | 35 5,26 | 37 4,18 | 39 3,22 | 41 2,40 | 42 2,04 | 43 1,72 | 44 1,43 | 45 1,18 | 46 0.96 | | 37 | 31 8,63 | 34 6,60 | 36 5,39 | 38 4,29 | 40 3,33 | 42 2,50 | 43 2,14 | 44 1,81 | 45 1,52 | 46 1,26 | 47 1.03 | | 38 | 31 9,47 | 35 6,72 | 37 5.51 | 40 3,91 | 41 3,44 | 43 2,61 | 44 2,24 | 45 1,90 | 46 1,60 | 48 1,09 | 49 0.89 | | 39 | 32 9,58 | 36 6,84 | 38 5,63 | 41 4,03 | 43 3,12 | 44 2,71 | 45 2,33 | 46 1,99 | 47 1,68 | 49 1,16 | 50 0.95 | | 40 | 33 9,69 | 37 6,96 | 39 5,75 | 42 4,14 | 44 3,22 | 45 2,81 | 46 2,43 | 47 2,09 | 49 1,49 | 50 1,23 | 51 1.01 | | 41 | 34 9,80 | 38 7.08 | 40 5.87 | 43 4.26 | 45 3,33 | 46 2,92 | 48 2.18 | 49 1.86 | 50 1,57 | 51 1.31 | 52 1.08 | | 42 | 35 9,91 | 39 7.20 | 41 5.99 | 44 4.37 | 46 3,44 | 48 2,63 | 49 2.27 | 50 1.94 | 51 1,65 | 53 1.14 | 54 0.94 | | 43 | 36 10,0 | 40 7.32 | 42 6.11 | 45 4.49 | 47 3,55 | 49 2,73 | 50 2.36 | 51 2.03 | 52 1,73 | 54 1.21 | 55 1.00 | | 44 | 37 10,1 | 41 7.44 | 43 6.22 | 46 4.60 | 48 3,66 | 50 2,83 | 51 2.46 | 52 2.12 | 53 1,81 | 55 1.28 | 56 1.06 | | 45 | 37 11,0 | 42 7,55 | 44 6.34 | 47 4.72 | 49 3,77 | 51 2,93 | 52 2.55 | 53 2.21 | 55 1,61 | 56 1.35 | 58 0.92 | | 46 | 38 11,1 | 43 7,67 | 45 6,46 | 48 4,83 | 50 3,87 | 52 3,03 | 54 2,30 | 55 1,98 | 56 1.69 | 58 1,19 | 59 0.98 | | 47 | 39 11,2 | 44 7,79 | 46 6,58 | 49 4,94 | 52 3,54 | 53 3,13 | 55 2,39 | 56 2,06 | 57 1.76 | 59 1,25 | 60 1.04 | | 48 | 40 11,3 | 45 7,91 | 47 6,70 | 50 5,06 | 53 3,65 | 54 3,23 | 56 2,48 | 57 2,15 | 58 1.84 | 60 1,32 | 61 1.10 | | 49 | 41 11,4 | 46 8,03 | 48 6,81 | 51 5,17 | 54 3,75 | 56 2,94 | 57 2,57 | 58 2,23 | 60 1.64 | 61 1,39 | 63 0.96 | | 50 | 42 11,5 | 47 8,14 | 49 6,93 | 53 4,78 | 55 3,86 | 57 3,03 | 58 2,66 | 59 2,32 | 61 1.72 | 62 1,46 | 64 1.02 | | | | | | | cost | ratio P | | | | | | |---------------------------------------|--------------------------|---|--|--|--|-------------------|--|--|--|--|--| | K _f { ≤ 15
1625
≥ 26 | 1:1
n, R ₁ | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
₀₁ R ₁ | 1,1
1,4
1,6
n ₁ R ₁ | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,6 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2,5
3,6
3,5
n ₁ R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 50 | 42 11.5 | 47 8,14 | 49 6,93 | 53 4,78 | 55 3,86 | 57 3,03 | 58 2,66 | 59 2,32 | 61 1.72 | 62 1,46 | 64 1,02 | | 52 | 43 12,5 | 49 8,38 | 51 7.17 | 55 5,00 | 57 4.07 | 59 3.23 | 61 2,50 | 62 2,17 | 63 1,87 | 65 1,35 | 66 1,14 | | 54 | 45 12,7 | 50 9,25 | 53 7.40 | 57 5,23 | 60 3.84 | 61 3.43 | 63 2,68 | 64 2,34 | 66 1,75 | 67 1,49 | 69 1.05 | | 56 | 47 12,9 | 52 9,48 | 55 7.63 | 59 5,45 | 62 4.04 | 64 3.23 | 65 2,86 | 67 2,19 | 68 1,90 | 76 1,38 | 71 1,17 | | 58 | 49 13,1 | 54 9,71 | 57 7.86 | 61 5,67 | 64 4.25 | 66 3.42 | 68 2,68 | 69 2,35 | 70 2,05 | 72 1,52 | 74 1.08 | | 60 | 50 14,1 | 56 9,94 | 59 8.09 | 63 5,89 | 66 4.45 | 68 3.61 | 70 2,86 | 71 2,52 | 73 1,92 | 75 1,41 | 76 1,19 | | 62 | 52 14.3 | 58 10,2 | 61 8.32 | 66 5,60 | 69 4,22 | 71 3.41 | 72 3,63 | 74 2,36 | 75 2.06 | 77 1,54 | 79 1,11 | | 64 | 54 14.5 | 60 10,4 | 63 8.55 | 68 5.82 | 71 4,42 | 73 3.59 | 75 2,86 | 76 2,52 | 78 1.93 | 86 1,43 | 81 1,22 | | 66 | 56 14.7 | 62 10,6 | 66 8.19 | 70 6.03 | 73 4,62 | 75 3.78 | 77 3,63 | 78 2,69 | 80 2.08 | 82 1,56 | 84 1,13 | | 68 | 58 14.9 | 64 10,9 | 68 8.41 | 72 6.25 | 75 4,82 | 78 3.58 | 79 3,26 | 81 2,53 | 83 1.94 | 85 1,45 | 86 1,24 | | 70 | 59 15.9 | 66 11,1 | 70 8.64 | 74 6.46 | 78 4,58 | 80 3.76 | 82 3,62 | 83 2,69 | 85 2.08 | 87 1,57 | 88 1,35 | | 72 | 61 16.1 | 68 11.3 | 72 8.86 | 77 6.17 | 80 4.78 | 82 3,94 | 84 3,19 | 86 2,53 | 87 2,23 | 89 1,70 | 91 1,26 | | 74 | 63 16.3 | 70 11.5 | 74 9.09 | 79 6.38 | 82 4.97 | 85 3,74 | 87 3,01 | 88 2,68 | 90 2,09 | 92 1,59 | 93 1,37 | | 76 | 65 16.5 | 72 11.8 | 76 9.31 | 81 6.59 | 85 4.73 | 87 3,92 | 89 3,18 | 90 2,84 | 92 2,23 | 94 1,71 | 96 1,27 | | 78 | 66 17.5 | 74 12.0 | 78 9.53 | 83 6.80 | 87 4.93 | 89 4,10 | 91 3,35 | 93 2,68 | 95 2,10 | 97 1,60 | 98 1,38 | | 80 | 68 17.7 | 76 12.2 | 80 9.75 | 85 7.01 | 89 5.12 | 92 3,89 | 94 3,16 | 95 2,83 | 97 2,23 | 99 1,72 | 101 1,29 | | 82 | 70 17,9 | 78 12,4 | 82 10,0 | 88 6,72 | 91 5,31 | 94 4,06 | 96 3,33 | 97 2,99 | 99 2,37 | 102 1,61 | 103 1,39 | | 84 | 72 18,1 | 80 12,6 | 84 10,2 | 90 6,93 | 94 5.07 | 96 4,24 | 98 3,49 | 100 2,82 | 102 2,23 | 104 1,72 | 106 1,30 | | 86 | 74 18,3 | 82 12,9 | 86 10,4 | 92 7,13 | 96 5.26 | 99 4,03 | 101 3,31 | 102 2,98 | 104 2,37 | 106 1,85 | 108 1,40 | | 88 | 75 19,3 | 84 13,1 | 88 10,6 | 94 7,34 | 98 5,45 | 101 4,21 | 103 3,47 | 105 2,81 | 107 2,23 | 109 1,73 | 111 1,31 | | 90 | 77 19,5 | 86 13,3 | 91 10,3 | 97 7,05 | 100 5,64 | 103 4,38 | 105 3,63 | 107 2,96 | 109 2,37 | 111 1,85 | 113 1,41 | | 92 | 79 19,7 | 88 13,5 | 93 16,5 | 99 7.25 | 103 5,39 | 106 4,17 | 108 3,45 | 109 3,11 | 111 2,50 | 114 1,73 | 115 1,52 | | 94 | 81 19,9 | 90 13,7 | 95 16,7 | 101 7.45 | 105 5,58 | 108 4,34 | 110 3,61 | 112 2,95 | 114 2,36 | 116 1,85 | 118 1,42 | | 96 | 83 20,1 | 92 14,0 | 97 16,9 | 103 7.66 | 107 5,77 | 110 4,52 | 112 3,77 | 114 3,09 | 116 2,49 | 119 1,74 | 120 1,52 | | 98 | 84 21,0 | 94 14,2 | 99 11,1 | 105 7.86 | 110 5,52 | 112 4,69 | 115 3,58 | 116 3,25 | 118
2,63 | 121 1,85 | 123 1,42 | | 100 | 86 21,3 | 96 14,4 | 161 11,3 | 108 7.56 | 112 5,70 | 115 4,48 | 117 3,74 | 119 3,08 | 121 2,48 | 123 1,97 | 125 1,53 | | 102 | 88 21,5 | 98 14,6 | 163 11,6 | 110 7,76 | 114 5.89 | 117 4,65 | 119 3,96 | 121 3,22 | 123 2,62 | 126 1.85 | 128 1,43 | | 104 | 90 21,7 | 100 14,8 | 165 11,8 | 112 7,96 | 116 6.08 | 119 4,82 | 122 3,71 | 123 3,37 | 126 2,47 | 128 1.96 | 136 1,53 | | 106 | 92 21,9 | 102 15,1 | 167 12.0 | 114 8,16 | 119 5.83 | 122 4,60 | 124 3,87 | 126 3,20 | 128 2,61 | 131 1.85 | 132 1,63 | | 108 | 94 22,1 | 104 15,3 | 169 12.2 | 116 8,36 | 121 6.01 | 124 4,77 | 126 4,03 | 128 3,35 | 130 2,74 | 133 1.96 | 135 1,53 | | 110 | 95 23,0 | 106 15,5 | 112 11,8 | 119 8,06 | 123 6.19 | 126 4,94 | 129 3,83 | 131 3,18 | 133 2,59 | 135 2.08 | 137 1,63 | | 112 | 97 23,2 | 108 15,7 | 114 12,0 | 121 8,26 | 125 6,38 | 129 4,73 | 131 3,99 | 133 3,32 | 135 2,72 | 138 1,96 | 140 1,54 | | 114 | 99 23,4 | 110 15,9 | 116 12,3 | 123 8,46 | 128 6,13 | 131 4,89 | 133 4,15 | 135 3,47 | 137 2,86 | 140 2,07 | 142 1,63 | | 116 | 101 23,7 | 112 16,1 | 118 12,5 | 125 8,66 | 130 6,31 | 133 5,06 | 136 3,96 | 138 3,30 | 140 2,71 | 143 1,95 | 145 1,54 | | 118 | 103 23,9 | 114 16,3 | 120 12,7 | 127 8,86 | 132 6,49 | 136 4,84 | 138 4,11 | 140 3,44 | 142 2,84 | 145 2,07 | 147 1,64 | | 120 | 104 24,8 | 116 16,6 | 122 12,9 | 130 8,56 | 134 6,67 | 138 5,01 | 140 4,27 | 142 3,59 | 145 2,69 | 147 2,18 | 149 1,74 | | 125 | 109 25,3 | 121 17,1 | 127 13,4 | 135 9.05 | 146 6,69 | 144 5,04 | 146 4,31 | 148 3,63 | 151 2,74 | 153 2,23 | 155 1.79 | | 130 | 114 25,8 | 126 17,6 | 133 13,3 | 141 9.04 | 146 6,71 | 149 5,46 | 152 4,34 | 154 3,67 | 156 3.07 | 159 2,28 | 161 1.83 | | 135 | 118 27,1 | 131 18,1 | 138 13,9 | 146 9.52 | 151 7,16 | 155 5,49 | 158 4,38 | 160 3,72 | 162 3.11 | 165 2,33 | 167 1.88 | | 140 | 123 27,6 | 137 18,0 | 143 14,4 | 152 9.51 | 157 7,17 | 161 5,51 | 164 4,42 | 166 3,76 | 168 3.16 | 171 2,37 | 173 1.93 | | 145 | 127 28,8 | 142 18,6 | 148 14,9 | 157 15.0 | 163 7,18 | 167 5,54 | 169 4,80 | 172 3,79 | 174 3.20 | 177 2,42 | 179 1.97 | | 150 | 132 29,3 | 147 19,1 | 154 14.8 | 163 15,5 | 168 7,62 | 172 5,95 | 175 4.83 | 177 4,15 | 180 3,24 | 183 2,46 | 185 2,02 | | 155 | 137 29,8 | 152 19,6 | 159 15.4 | 168 15,5 | 174 7,63 | 178 5,97 | 181 4.86 | 183 4,19 | 186 3,28 | 189 2,51 | 191 2,07 | | 160 | 141 31,1 | 157 20,1 | 164 15.9 | 174 15,4 | 180 7,64 | 184 5,99 | 187 4.89 | 189 4,22 | 192 3,32 | 195 2,55 | 197 2,11 | | 165 | 146 31,6 | 162 20,7 | 169 16.4 | 179 15,9 | 185 8,08 | 190 6,02 | 193 4.92 | 195 4,26 | 198 3,36 | 201 2,60 | 203 2,15 | | 170 | 150 32,8 | 167 21,2 | 175 16.3 | 185 15,9 | 191 8,09 | 195 6,42 | 198 5.30 | 201 4,29 | 204 3,40 | 207 2,64 | 209 2,20 | | 175 | 155 33,3 | 172 21,7 | 180 16.8 | 190 11.4 | 197 8.09 | 201 6,44 | 204 5,33 | 267 4,33 | 210 3,44 | 213 2,68 | 215 2,24 | | 180 | 160 33,8 | 177 22,2 | 185 17.3 | 196 11.4 | 202 8.53 | 207 6,46 | 210 5,36 | 213 4,36 | 215 3,76 | 219 2,73 | 221 2,29 | | 185 | 164 35,1 | 182 22,7 | 190 17.8 | 201 11.8 | 208 8.53 | 212 6,87 | 216 5,38 | 218 4,71 | 221 3,80 | 225 2,77 | 227 2,33 | | 190 | 169 35,6 | 187 23,2 | 196 17.8 | 207 11.8 | 214 8.54 | 218 6,89 | 222 5,41 | 224 4,75 | 227 3,84 | 231 2,81 | 233 2,38 | | 200 | 178 37,3 | 197 24,3 | 206 18.8 | 218 12.3 | 225 8,98 | 230 6,92 | 233 5,82 | 236 4,82 | 239 3,92 | 243 2,90 | 245 2,47 | $\begin{array}{c} k_1 = 50 \\ \text{HG 1} = \text{high usage group of first order} \\ \text{FG} = \text{final group} \\ \text{A}_1 = \text{offered random traffic to HG 1} \\ \text{R}_1 = \text{overflowing traffic from HG 1} \end{array}$ | - | | | | | cost | ratio P | | | | | | |--|--------------------------------------|--|---|--|--|---|--|--|--|--|--| | k _f { ≤ 15
16···25
≥ 26 | 1,1
n ₁ R ₁ | 1.1
1.2
n ₁ R ₁ | 1.2
1.4
n ₁ R ₁ | 1.1
1.4
1.6 | 1,2
1,6
1,8 | 1,4
1,8
2,0 | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2.5
3.0
3.5
n ₁ R ₁ | 3.5
3.5
4.0
n ₄ R ₁ | | A ₁ = 1 2 3 4 5 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0,62
5 0,80
6 0,96 | 4 0:62
5 0.80
7 0.60 | 4 0,62
6 0,47
7 0,60 | 5 0.33
6 0.47
7 0.60 | 5 0,33
6 0,47
8 0,35 | 4 0,19
5 0,33
7 0,25
8 0,35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2,16
6 2,32
7 2,47
8 2,60
9 2,73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1.59
7 1.74
8 1.88
10 1.51
11 1.63 | 7 1,11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1,11
9 5,85
15 5,97
11 1,69
12 1,26 | 8 0.73
9 0.85
10 0.97
11 1.09
13 0.84 | 8 0,73
9 0,85
11 0,65
12 0,75
13 0,84 | 9 0.45
10 0.55
11 0.65
12 0.75
13 0.84 | 9 0,45
10 0,55
12 0,41
13 0,49
14 0,57 | 9 0,45
11 0.33
12 0.41
13 0.49
15 0.36 | | 11 | 8 4,21 | 10 2,86 | 11 2,27 | 12 1,75 | 13 1,30 | 13 1,30 | 14 0,94 | 14 0,94 | 15 0.65 | 15 0,65 | 16 0.43 | | 12 | 9 4,33 | 11 2,97 | 12 2,38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1,03 | 15 1,03 | 16 0.72 | 17 0,49 | 17 0.49 | | 13 | 10 4,44 | 12 3,09 | 13 2,49 | 14 1,97 | 15 1,51 | 15 1,51 | 16 1,12 | 16 1,12 | 17 0.80 | 18 0,55 | 18 0.55 | | 14 | 11 4,54 | 13 3,19 | 14 2,60 | 15 2,07 | 16 1,60 | 17 1,21 | 17 1,21 | 18 0,88 | 18 0.88 | 19 0,62 | 19 0.62 | | 15 | 12 4,64 | 14 3,30 | 15 2,70 | 16 2,17 | 17 1,70 | 18 1,29 | 18 1,29 | 19 0,96 | 19 0.96 | 20 0,68 | 21 0.47 | | 16 | 13 4,74 | 15 3.40 | 16 2.80 | 17 2,27 | 18 1,79 | 19 1,38 | 19 1,38 | 20 1.03 | 21 0.75 | 21 0,75 | 22 0,53 | | 17 | 14 4,84 | 16 3.50 | 17 2.90 | 18 2,36 | 19 1,88 | 20 1,46 | 21 1,10 | 21 1.10 | 22 0.81 | 22 0,81 | 23 0,58 | | 18 | 15 4,93 | 17 3.59 | 18 3.00 | 19 2,45 | 20 1,97 | 21 1,54 | 22 1,18 | 22 1.18 | 23 0.88 | 24 0.63 | 24 0,63 | | 19 | 16 5,03 | 18 3.69 | 19 3.09 | 20 2,54 | 21 2,05 | 22 1,62 | 23 1,25 | 23 1.25 | 24 0.94 | 25 0.69 | 25 0,69 | | 20 | 16 5,84 | 19 3.78 | 20 3,18 | 21 2,63 | 22 2,13 | 23 1,70 | 24 1,32 | 24 1.32 | 25 1.00 | 26 0,74 | 27 0,54 | | 21 | 17 5,93 | 20 3,87 | 21 3,27 | 22 2:71 | 24 1,78 | 24 1.78 | 25 1,39 | 26 1.07 | 26 1.07 | 27 0.80 | 28 0,58 | | 22 | 18 6,01 | 21 3,95 | 22 3,35 | 24 2:30 | 25 1,85 | 25 1.85 | 26 1,46 | 27 1.13 | 27 1.13 | 28 0.85 | 29 0,63 | | 23 | 19 6,09 | 22 4,04 | 23 3,43 | 25 2:38 | 26 1,93 | 27 1.53 | 27 1,53 | 28 1.19 | 29 0.91 | 29 0.91 | 30 0,68 | | 24 | 20 6,17 | 23 4,12 | 24 3,52 | 26 2:45 | 27 2,00 | 28 1.60 | 28 1,60 | 29 1.25 | 30 0.96 | 31 0.72 | 31 0,72 | | 25 | 21 6,25 | 24 4,20 | 25 3,60 | 27 2:53 | 28 2,07 | 29 1.67 | 30 1,32 | 30 1.32 | 31 1.02 | 32 0.77 | 33 0,57 | | 26 | 22 6,32 | 25 4,28 | 26 3,67 | 28 2,60 | 29 2,14 | 30 1,73 | 31 1,38 | 31 1.38 | 32 1.07 | 33 0,82 | 34 0.61 | | 27 | 23 6,40 | 26 4,36 | 27 3,75 | 29 2,68 | 30 2,21 | 31 1,80 | 32 1,44 | 32 1.44 | 33 1.13 | 34 0,87 | 35 0,65 | | 28 | 24 6,47 | 27 4,43 | 28 3,83 | 30 2,75 | 31 2,28 | 32 1,86 | 33 1,50 | 33 1.50 | 34 1.18 | 35 0,91 | 36 0,69 | | 29 | 25 6,55 | 28 4,51 | 29 3,90 | 31 2,82 | 32 2,35 | 33 1,93 | 34 1,55 | 35 1.23 | 35 1.23 | 36 0,96 | 37 0,73 | | 30 | 26 6,62 | 29 4,58 | 30 3,97 | 32 2,89 | 33 2,41 | 34 1,99 | 35 1,61 | 36 1.29 | 36 1.29 | 37 1,01 | 38 0,78 | | 31 | 27 6,69 | 30 4,65 | 31 4,05 | 33 2,96 | 34 2,48 | 35 2.05 | 36 1.67 | 37 1,34 | 38 1,06 | 39 0,82 | 39 0,82 | | 32 | 28 6,76 | 31 4,72 | 32 4,12 | 34 3,02 | 35 2,55 | 36 2.11 | 37 1.73 | 38 1,39 | 39 1,10 | 40 0,86 | 41 0,66 | | 33 | 29 6,83 | 32 4,79 | 33 4,19 | 35 3,09 | 36 2,61 | 37 2.17 | 38 1.79 | 39 1,44 | 40 1,15 | 41 0,90 | 42 0,69 | | 34 | 30 6,89 | 33 4,86 | 34 4,25 | 36 3,16 | 38 2,23 | 39 1.84 | 39 1.84 | 40 1,50 | 41 1,20 | 42 0,94 | 43 0,73 | | 35 | 31 6,96 | 34 4,93 | 35 4,32 | 37 3,22 | 39 2,29 | 40 1.90 | 40 1.90 | 41 1,55 | 42 1,24 | 43 0,98 | 44 0,77 | | 36 | 32 7,03 | 35 5.00 | 36 4.39 | 38 3,29 | 40 2,35 | 41 1,95 | 42 1,60 | 42 1,60 | 43 1.29 | 44 1,03 | 45 0,80 | | 37 | 33 7,09 | 36 5.06 | 37 4.45 | 39 3,35 | 41 2,41 | 42 2.01 | 43 1,65 | 43 1,65 | 44 1.34 | 45 1,07 | 46 0,84 | | 38 | 34 7,15 | 37 5.13 | 38 4.52 | 40 3,41 | 42 2,47 | 43 2.06 | 44 1,70 | 44 1,70 | 45 1.39 | 47 0,88 | 47 0,88 | | 39 | 35 7,22 | 38 5.19 | 39 4.58 | 41 3,47 | 43 2,53 | 44 2,12 | 45 1,75 | 46 1,43 | 46 1.43 | 48 0,91 | 49 0,71 | | 40 | 36 7,28 | 39 5.26 | 40 4.65 | 42 3,53 | 44 2,58 | 45 2,17 | 46 1,80 | 47 1,48 | 48 1.20 | 49 0,95 | 50 0,75 | | 41 | 37 7,34 | 40 5,32 | 41 4,71 | 43 3.60 | 45 2,64 | 46 2,23 | 47 1.85 | 48 1,52 | 49 1,24 | 50 0,99 | 50 0.99 | | 42 | 38 7,40 | 41 5,38 | 42 4,77 | 44 3.66 | 46 2,76 | 47 2,28 | 48 1.90 | 49 1.57 | 50 1,28 | 50 1,28 | 52 0.84 | | 43 | 38 8,19 | 42 5,44 | 43 4,83 | 46 3.21 | 47 2,75 | 48 2,33 | 49 1.95 | 50 1,62 | 50 1,62 | 52 1,10 | 53 0.89 | | 44 | 39 8,25 | 43 5,50 | 44 4,89 | 47 3.27 | 48 2,81 | 49 2,38 | 50 2.00 | 50 2.00 | 52 1,41 | 53 1,16 | 54 0.95 | | 45 | 40 8,31 | 44 5,56 | 45 4,95 | 48 3,33 | 49 2,86 | 50 2,43 | 51 2.08 | 52 1,76 | 53 1,47 | 54 1,22 | 55 1.00 | | 46 | 41 8,36 | 45 5.62 | 46 5.01 | 49 3.38 | 50 2,91 | 51 2,52 | 52 2.16 | 53 1,83 | 54 1.54 | 55 1,28 | 56 1.05 | | 47 | 42 8,42 | 46 5.68 | 47 5.07 | 50 3.44 | 50 3,44 | 52 2,60 | 53 2.23 | 54 1,90 | 55 1.60 | 56 1,34 | 58 0.90 | | 48 | 43 8,48 | 47 5.74 | 48 5.13 | 50 4.00 | 52 3,09 | 53 2,68 | 54 2.31 | 55 1,97 | 56 1.67 | 58 1,16 | 59 0.95 | | 49 | 44 8,53 | 48 5.80 | 49 5.18 | 51 4.09 | 53 3,17 | 54 2,76 | 55 2.39 | 56 2,05 | 57 1.74 | 59 1,22 | 60 1.00 | | 50 | 45 8,59 | 49 5.85
| 50 5.24 | 52 4.19 | 54 3,26 | 55 2,85 | 56 2.47 | 57 2,12 | 59 1.52 | 60 1,27 | 61 1.05 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 $n_1; R_1$ in Erl $k_1 = 50$ R_1 = overflowing traffic from HG1 P = cost ratio k_1 = accessibility of HG 1 k_f = accessibility of FG n_1 = number of trunks of HG 1 | | | | | | C | ost ratio | Р | | | | | |---|--------------|---------------------|---|--|--|--|--|--|--|--|--| | k _f {≦ 15
16···25
≧ 26 | 1,1
n, R, | 1.1
1.2
n, P, | 1.2
1.4
n ₁ R ₁ | 1,1
1,4
1,6
n ₁ R ₁ | 1.2
1.6
1.8
n ₁ R ₁ | 1,4
1,8
2.0
n ₁ R ₁ | 1,6
2,8
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2.5
2.5
3.0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 50 | 45 8,59 | 49 5,85 | 50 5,24 | 52 4,19 | 54 3,26 | 55 2,85 | 56 2,47 | 57 2,12 | 59 1,52 | 60 1,27 | 61 1.05 | | 52 | 47 8,69 | 50 6.61 | 51 6.01 | 54 4.37 | 56 3,43 | 57 3.01 | 59 2,27 | 60 1,94 | 61 1.65 | 62 1,39 | 64 0,95 | | 54 | 49 8,80 | 51 7.43 | 53 6.20 | 56 4.56 | 58 3,61 | 60 2.78 | 61 2,42 | 62 2.08 | 63 1.78 | 65 1,27 | 66 1.05 | | 56 | 50 9,64 | 53 7.62 | 55 6.39 | 58 4.74 | 60 3,78 | 62 2.94 | 63 2,57 | 64 2,23 | 66 1.63 | 67 1,38 | 68 1.15 | | 58 | 51 10,5 | 55 7.81 | 57 6.58 | 60 4.92 | 63 3,51 | 64 3.10 | 66 2,37 | 67 2,05 | 68 1.75 | 70 1,25 | 71 1.04 | | 60 | 53 10,7 | 57 8.00 | 59 6.77 | 63 4.60 | 65 3,68 | 67 2.87 | 68 2,51 | 69 2,18 | 70 1.88 | 72 1,36 | 73 1.14 | | 62 | 54 11,6 | 59 8.19 | 61 6,96 | 65 4,78 | 67 3,85 | 69 3,03 | 70 2,66 | 71 2.32 | 73 1,72 | 74 1,47 | 76 1.04 | | 64 | 56 11,8 | 61 8.38 | 63 7.14 | 67 4,96 | 69 4,02 | 71 3,18 | 72 2,81 | 74 2.14 | 75 1,85 | 77 1,34 | 78 1.13 | | 66 | 58 12,0 | 63 8.56 | 66 6,75 | 69 5,14 | 71 4,19 | 73 3,34 | 75 2,60 | 76 2.27 | 77 1,97 | 79 1,44 | 80 1.22 | | 68 | 60 12,2 | 65 8.75 | 68 6,93 | 71 5,31 | 74 3,91 | 76 3,10 | 77 2,74 | 78 2.40 | 80 1,81 | 81 1,55 | 83 1.11 | | 70 | 62 12,3 | 67 8.94 | 70 7.12 | 73 5,49 | 76 4,07 | 78 3,25 | 79 2,88 | 81 2.22 | 82 1,93 | 84 1,42 | 85 1.20 | | 72 | 64 12,5 | 69 9,12 | 72 7,30 | 76 5.17 | 78 4,24 | 80 3,41 | 82 2,67 | 83 2,35 | 84 2.05 | 86 1,52 | 88 1,09 | | 74 | 65 13,4 | 71 9,31 | 74 7,48 | 78 5.34 | 80 4,40 | 82 3,56 | 84 2,81 | 85 2,48 | 87 1.89 | 89 1,39 | 90 1,18 | | 76 | 67 13,6 | 73 9,49 | 76 7,67 | 80 5.51 | 83 4,12 | 85 3,32 | 86 2,95 | 87 2,61 | 89 2.00 | 91 1,49 | 92 1,27 | | 78 | 69 13,8 | 75 9,67 | 78 7,85 | 82 5.68 | 85 4,28 | 87 3,46 | 88 3,09 | 90 2,42 | 91 2.12 | 93 1,59 | 95 1,16 | | 80 | 71 14,0 | 77 9,86 | 80 8,03 | 84 5.85 | 87 4,44 | 89 3,61 | 91 2,88 | 92 2,55 | 94 1.95 | 96 1,46 | 97 1,25 | | 82 | 73 14,1 | 79 10,0 | 82 8,21 | 86 6,02 | 89 4,60 | 91 3,76 | 93 3,01 | 94 2.67 | 96 2,07 | 98 1,56 | 99 1.33 | | 84 | 75 14,3 | 81 10,2 | 84 8,39 | 88 6,20 | 91 4,76 | 94 3,52 | 95 3,15 | 97 2,48 | 98 2,18 | 100 1,65 | 102 1.22 | | 86 | 77 14,5 | 83 10,4 | 86 8,57 | 91 5,86 | 94 4,48 | 96 3,66 | 98 2,93 | 99 2,60 | 101 2,02 | 103 1,52 | 104 1.30 | | 88 | 78 15,4 | 85 10,6 | 88 8,75 | 93 6,03 | 96 4,63 | 98 3,80 | 100 3,07 | 101 2,73 | 103 2,13 | 105 1,61 | 107 1.19 | | 90 | 80 15,6 | 87 10,8 | 90 8,92 | 95 6,20 | 98 4,79 | 100 3,95 | 102 3,20 | 104 2,54 | 105 2,24 | 107 1,71 | 109 1.27 | | 92 | 82 15,7 | 89 10,9 | 92 9,10 | 97 6,36 | 100 4,94 | 103 3,70 | 104 3,33 | 106 2,66 | 108 2.07 | 110 1,57 | 111 1,36 | | 94 | 84 15,9 | 91 11,1 | 95 8,70 | 99 6,53 | 103 4,66 | 105 3,84 | 107 3,11 | 108 2,78 | 110 2.18 | 112 1,67 | 114 1,24 | | 96 | 86 16,1 | 93 11,3 | 97 8,87 | 101 6,70 | 105 4,81 | 107 3,99 | 109 3,24 | 110 2,90 | 112 2.29 | 114 1,76 | 116 1,32 | | 98 | 88 16,3 | 95 11,5 | 99 9,05 | 104 6,36 | 107 4,96 | 109 4,13 | 111 3,37 | 113 2,70 | 115 2.12 | 117 1,62 | 118 1,41 | | 100 | 90 16,4 | 97 11,7 | 161 9,22 | 106 6,52 | 109 5,11 | 112 3,88 | 114 3,15 | 115 2,82 | 117 2.23 | 119 1,72 | 121 1,29 | | 102 | 91 17,3 | 99 11,8 | 163 9,40 | 108 6,69 | 111 5,27 | 114 4,02 | 116 3,28 | 117 2,95 | 119 2,34 | 121 1,81 | 123 1,37 | | 104 | 93 17,5 | 101 12.0 | 165 9,57 | 110 6,85 | 114 4,98 | 116 4,15 | 118 3,41 | 120 2,75 | 121 2,45 | 124 1,67 | 125 1,45 | | 106 | 95 17,7 | 103 12.2 | 167 9,74 | 112 7,01 | 116 5,13 | 118 4,29 | 120 3,54 | 122 2,86 | 124 2,27 | 126 1,76 | 128 1,33 | | 108 | 97 17,8 | 105 12,4 | 169 9,91 | 115 6,67 | 118 5,28 | 121 4,04 | 123 3,31 | 124 2,98 | 126 2,38 | 128 1,85 | 130 1,41 | | 110 | 99 18,0 | 107 12,5 | 111 16,1 | 117 6,83 | 120 5,43 | 123 4,18 | 125 3,44 | 127 2,78 | 128 2,48 | 131 1,71 | 132 1,49 | | 112 | 101 18,2 | 109 12,7 | 113 10,3 | 119 6,99 | 123 5,14 | 125 4,31 | 127 3.57 | 129 2,90 | 131 2,31 | 133 1,80 | 135 1,37 | | 114 | 103 18,4 | 111 12,9 | 115 10,4 | 121 7,15 | 125 5,28 | 127 4,45 | 129 3.69 | 131 3,01 | 133 2,41 | 135 1,89 | 137 1,45 | | 116 | 104 19,3 | 113 13,1 | 118 10,0 | 123 7,31 | 127 5,43 | 130 4,20 | 132 3.47 | 133 3,13 | 135 2,52 | 138 1,75 | 139 1,53 | | 118 | 106 19,4 | 115 13,2 | 120 10,2 | 125 7,47 | 129 5,57 | 132 4,33 | 134 3.59 | 136 2,93 | 130 2,34 | 140 1,84 | 142 1,41 | | 120 | 108 19,6 | 117 13,4 | 122 10,4 | 128 7,13 | 131 5,72 | 134 4,46 | 136 3.72 | 138 3,04 | 140 2,44 | 142 1,93 | 144 1,48 | | 125 | 113 20,0 | 122 13,8 | 127 10,8 | 133 7,52 | 137 5,64 | 140 4,41 | 142 3,67 | 144 3.01 | 146 2,42 | 148 1,91 | 150 1.48 | | 130 | 118 20,4 | 128 13,6 | 132 11,2 | 138 7,91 | 143 5,57 | 145 4,74 | 148 3,63 | 149 3.29 | 151 2,68 | 154 1,90 | 156 1.47 | | 135 | 122 21,6 | 133 14,1 | 137 11,6 | 144 7,80 | 148 5,92 | 151 4,68 | 153 3,93 | 155 3.25 | 157 2,65 | 160 1,88 | 162 1.46 | | 140 | 127 22,0 | 138 14,5 | 143 11,4 | 149 8,19 | 154 5,84 | 157 4,61 | 159 3,88 | 161 3.21 | 163 2,62 | 166 1,86 | 167 1.65 | | 145 | 132 22,4 | 143 14,9 | 148 11,9 | 155 8,07 | 159 6,19 | 162 4,93 | 165 3,83 | 167 3.17 | 169 2,59 | 171 2,08 | 173 1.63 | | 150 | 137 22,8 | 148 15,3 | 153 12,3 | 160 8,45 | 165 6,10 | 168 4,86 | 170 4.12 | 172 3,44 | 174 2.83 | 177 2,05 | 179 1,62 | | 155 | 141 24,0 | 153 15,7 | 159 12,1 | 166 8,32 | 170 6,44 | 174 4,79 | 176 4.06 | 178 3,40 | 180 2.80 | 183 2,03 | 185 1,60 | | 160 | 146 24,4 | 158 16,2 | 164 12,5 | 171 8,70 | 176 6,35 | 179 5,11 | 182 4.00 | 184 3,35 | 186 2.76 | 189 2,00 | 191 1,58 | | 165 | 151 24,8 | 163 16,6 | 169 12,9 | 177 8,57 | 181 6,69 | 185 5,03 | 187 4.29 | 189 3,62 | 192 2.72 | 194 2,21 | 196 1,77 | | 170 | 156 25,2 | 168 17,0 | 174 13,3 | 182 8,94 | 187 6,59 | 190 5,35 | 193 4.23 | 195 3,56 | 197 2.96 | 200 2,18 | 202 1,74 | | 175 | 161 25,6 | 174 16,8 | 180 13,1 | 188 8,81 | 193 6,50 | 196 5,27 | 199 4,17 | 201 3,51 | 203 2,92 | 206 2,15 | 208 1:72 | | 180 | 165 26,7 | 179 17,2 | 185 13,5 | 193 9,18 | 198 6,83 | 202 5,19 | 204 4,45 | 206 3,77 | 209 2,88 | 212 2,12 | 214 1:70 | | 185 | 170 27,2 | 184 17,6 | 190 13,9 | 198 9,54 | 204 6,73 | 207 5,49 | 210 4,38 | 212 3,72 | 214 3,11 | 217 2,32 | 219 1:88 | | 190 | 175 27,6 | 189 18,0 | 195 14,3 | 204 9,41 | 209 7,06 | 213 5,41 | 215 4,66 | 218 3,66 | 220 3,07 | 223 2,29 | 225 1:85 | | 200 | 185 28,4 | 199 18,8 | 205 14,5 | 215 9,63 | 220 7,28 | 224 5,62 | 227 4,52 | 229 3,86 | 231 3,25 | 235 2,22 | 237 1:80 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 | - | | | | | cost | ratio P | | | | | | |--|--------------------------------------|--|---|--|--|--|--|--|--|--|--| | k _f { ≤ 15
16···25
≥ 26 | 1.1
n ₁ R ₁ | 1,1
1,2
n, R, | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6 | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0
n ₁ R ₁ | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2,5
3,0
3,5
n ₃ R ₄ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1,24
5 1,42 | 5 0,80
6 0,96 | 4 0.62
5 0.80
6 0.96 | 4 0,62
5 0,80
7 0,60 | 4 0.62
6 0.47
7 0,60 | 5 0,33
6 0,47
7 0,60 | 5 0,33
6 0,47
8 0,35 | 4 0.19
5 0.33
7 0.25
8 0.35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2,16
6 2,32
7 2,47
8 2,60
9 2,73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
11 1,63 | 7 1,11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1,11
9 0,85
10 0,97
11 1,09
12 1,20 | 8 0,73
9 0,85
10 0,97
11 1,09
13 0,84 | 8 0,73
9 0,85
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0,55
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0,55
12 0,41
13 0,49
14 0,57 | 9 0,45
11 0,33
12 0,41
13 0,49
15 0,36 | | 11 | 8 4,21 | 10 2,86 | 11 2,27 | 12 1,75 | 13 1,30 | 13 1,30 | 14 0,94 | 14 0,94 | 15 0.65 | 15 0,65 | 16 0,43 | | 12 | 9 4,33 | 11 2,97 | 12 2,38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1,03 | 15 1,03 | 16 0.72 | 17 0,49 | 17 0,49 | | 13 | 10 4,44 | 12 3,09 | 13 2,49 | 14 1,97 | 15 1,51 | 15 1,51 | 16 1,12 | 16 1,12 | 17 0.80 | 18 0,55 | 18 0,55 | | 14 | 11 4,54 | 13 3,19 | 14 2,60 | 15 2,07 | 16 1,60 | 17 1,21 | 17 1,21 | 18 0,88 | 18
0.88 | 19 0,62 | 19 0,62 | | 15 | 12 4,64 | 14 3,30 | 15 2,70 | 16 2,17 | 17 1,70 | 18 1,29 | 18 1,29 | 19 0,96 | 19 0.96 | 20 0,68 | 21 0,47 | | 16 | 13 4,74 | 15 3,40 | 16 2,80 | 17 2,27 | 18 1,79 | 19 1,38 | 19 1,38 | 26 1,63 | 21 0,75 | 21 0.75 | 22 0,53 | | 17 | 14 4,84 | 16 3,50 | 17 2,90 | 18 2,36 | 19 1,88 | 20 1,46 | 21 1,10 | 21 1,10 | 22 0,81 | 22 0.81 | 23 0,58 | | 18 | 15 4,93 | 17 3,59 | 18 3.00 | 19 2,45 | 20 1,97 | 21 1,54 | 22 1,18 | 22 1,18 | 23 0,88 | 24 0.63 | 24 0,63 | | 19 | 16 5,03 | 18 3,69 | 19 3.09 | 20 2,54 | 21 2,05 | 22 1,62 | 23 1,25 | 23 1,25 | 24 0,94 | 25 0.69 | 25 0,69 | | 20 | 16 5,84 | 19 3,78 | 20 3,18 | 21 2,63 | 22 2,13 | 23 1,70 | 24 1,32 | 24 1,32 | 25 1,00 | 26 0.74 | 27 0,54 | | 21 | 17 5,93 | 20 3,87 | 21 3,27 | 22 2,71 | 24 1,78 | 24 1,78 | 25 1,39 | 26 1,07 | 26 1.07 | 27 0.80 | 28 0,58 | | 22 | 18 6.01 | 21 3,95 | 22 3,35 | 24 2,30 | 25 1,85 | 25 1,85 | 26 1,46 | 27 1,13 | 27 1.13 | 28 0.85 | 29 0,63 | | 23 | 19 6.09 | 22 4,04 | 23 3,43 | 25 2,38 | 26 1,93 | 27 1,53 | 27 1,53 | 28 1,19 | 29 0.91 | 29 0.91 | 30 0,68 | | 24 | 20 6,17 | 23 4,12 | 24 3,52 | 26 2,45 | 27 2,00 | 28 1,60 | 28 1,60 | 29 1,25 | 30 0.96 | 31 0.72 | 31 0,72 | | 25 | 21 6,25 | 24 4,20 | 25 3,60 | 27 2,53 | 28 2,07 | 29 1,67 | 30 1,32 | 30 1,32 | 31 1.02 | 32 0.77 | 33 0,57 | | 26 | 22 6,32 | 25 4,28 | 26 3,67 | 28 2,60 | 29 2,14 | 30 1,73 | 31 1,38 | 31 1,38 | 32 1,07 | 33 0,82 | 34 0,61 | | 27 | 23 6,40 | 26 4,36 | 27 3,75 | 29 2,68 | 30 2,21 | 31 1,80 | 32 1,44 | 32 1,44 | 33 1,13 | 34 0,87 | 35 0,65 | | 28 | 24 6,47 | 27 4,43 | 28 3,83 | 30 2,75 | 31 2,28 | 32 1,86 | 33 1,50 | 33 1,50 | 34 1,18 | 35 0,91 | 36 0,69 | | 29 | 25 6,55 | 28 4,51 | 29 3,90 | 31 2,82 | 32 2,35 | 33 1,93 | 34 1,55 | 35 1,23 | 35 1,23 | 36 0,96 | 37 0,73 | | 30 | 26 6,62 | 29 4,58 | 30 3,97 | 32 2,89 | 33 2,41 | 34 1,99 | 35 1,61 | 36 1,29 | 36 1,29 | 37 1,01 | 38 0,78 | | 31 | 27 6,69 | 30 4,65 | 31 4.05 | 33 2,96 | 34 2,48 | 35 2,05 | 36 1,67 | 37 1,34 | 38 1,06 | 39 0,82 | 39 0.82 | | 32 | 28 6,76 | 31 4,72 | 32 4.12 | 34 3,02 | 35 2,55 | 36 2,11 | 37 1,73 | 38 1,39 | 39 1,10 | 40 0,86 | 41 0.66 | | 33 | 29 6,83 | 32 4,79 | 33 4.19 | 35 3,09 | 36 2,61 | 37 2,17 | 38 1,79 | 39 1,44 | 40 1,15 | 41 0,90 | 42 0.69 | | 34 | 30 6,89 | 33 4,86 | 34 4.25 | 36 3,16 | 38 2,23 | 39 1,84 | 39 1,84 | 40 1,50 | 41 1,20 | 42 0,94 | 43 0.73 | | 35 | 31 6,96 | 34 4,93 | 35 4.32 | 37 3,22 | 39 2,29 | 40 1,90 | 40 1,90 | 41 1,55 | 42 1,24 | 43 0,98 | 44 0.77 | | 36 | 32 7,03 | 35 5,00 | 36 4,39 | 38 3,29 | 40 2,35 | 41 1,95 | 42 1,60 | 42 1,60 | 43 1,29 | 44 1,03 | 45 0.80 | | 37 | 33 7,09 | 36 5,06 | 37 4,45 | 39 3,35 | 41 2,41 | 42 2,01 | 43 1,65 | 43 1,65 | 44 1,34 | 45 1,07 | 46 0.84 | | 38 | 34 7,15 | 37 5,13 | 38 4,52 | 40 3,41 | 42 2,47 | 43 2,06 | 44 1,70 | 44 1,70 | 45 1,39 | 47 0.88 | 47 0.88 | | 39 | 35 7,22 | 38 5,19 | 39 4,58 | 41 3,47 | 43 2,53 | 44 2,12 | 45 1,75 | 46 1,43 | 46 1,43 | 48 0.91 | 49 0.71 | | 40 | 36 7,28 | 39 5,26 | 40 4,65 | 42 3,53 | 44 2,58 | 45 2,17 | 46 1,80 | 47 1,48 | 48 1,20 | 49 0,95 | 50 0.75 | | 41 | 37 7,34 | 40 5,32 | 41 4,71 | 43 3,60 | 45 2,64 | 46 2,23 | 47 1,85 | 48 1,52 | 49 1,24 | 50 0,99 | 51 0.78 | | 42 | 38 7,40 | 41 5,38 | 42 4,77 | 44 3,66 | 46 2,70 | 47 2,28 | 48 1,96 | 49 1,57 | 50 1,28 | 51 1,03 | 52 0.81 | | 43 | 38 8,19 | 42 5,44 | 43 4,83 | 46 3,21 | 47 2,75 | 48 2,33 | 49 1,95 | 50 1,62 | 51 1,32 | 52 1.07 | 53 0.85 | | 44 | 39 8,25 | 43 5,50 | 44 4,89 | 47 3,27 | 48 2,81 | 49 2,38 | 56 2,06 | 51 1,66 | 52 1,36 | 53 1,10 | 54 0.88 | | 45 | 40 8,31 | 44 5,56 | 45 4,95 | 48 3,33 | 49 2,86 | 50 2,43 | 51 2,05 | 52 1,71 | 53 1,40 | 54 1,14 | 55 0.91 | | 46 | 41 8,36 | 45 5,62 | 46 5,01 | 49 3,38 | 50 2,91 | 51 2,49 | 52 2,15 | 53 1,75 | 54 1,45 | 55 1,18 | 56 0.95 | | 47 | 42 8,42 | 46 5,68 | 47 5,07 | 50 3,44 | 51 2,97 | 53 2,15 | 53 2,15 | 54 1,80 | 55 1,49 | 57 0,98 | 57 0.98 | | 48 | 43 8,48 | 47 5,74 | 48 5,13 | 51 3,49 | 52 3,02 | 54 2,19 | 55 1,84 | 55 1,84 | 56 1,53 | 58 1,02 | 59 0.81 | | 49 | 44 8,53 | 48 5,80 | 49 5,18 | 52 3,55 | 53 3,07 | 55 2,24 | 56 1,89 | 56 1,89 | 57 1,57 | 59 1,05 | 60 0.84 | | 50 | 45 8,59 | 49 5,85 | 50 5,24 | 53 3,60 | 54 3,12 | 56 2,29 | 57 1,93 | 58 1,61 | 59 1,33 | 60 1,08 | 61 0.87 | $K_1 = 80$ HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R_1 = overflowing traffic from HG1 P = cost ratio k_1 = accessibility of HG 1 k_f = accessibility of FG n_1 = number of trunks of HG 1 | cost ratio P | | | | | | | | | | | | |-------------------------------|----------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------| | k _f { ≤ 15
1625 | | 1,1 | 1,2 | 1,1 | 1,2 | 1,4 | 1,6 | 1,8 | 2,0 | 2,5
3,0 | 3,0 | | (≧ 26 | 1,1 | 1,2 | 1,4 | 1.6 | 1,8 | 2,0 | 2,2 | 2,5 | 3,8 | 3,5 | 4.0 | | | n, R, | n ₁ R ₁ | n ₁ R ₁ | n ₁ P ₁ | n ₁ R ₁ | : n ₁ R ₁ | | A ₁ = 50 | 45 8,59 | 49 5,85 | 50 5,24 | 53 3,68 | 54 3,12 | 56 2,29 | 57 1,93 | 58 1,61 | 59 1.33 | 60 1,08 | 61 0,87 | | 52 | 47 8,69 | 51 5,96 | 52 5.35 | 55 3,75 | 57 2,79 | 58 2,38 | 59 2,02 | 60 1,69 | 61 1,40 | 62 1,15 | 63 0,93 | | 54 | 49 8,80 | 53 6,07 | 55 4.88 | 57 3,81 | 59 2,88 | 60 2,48 | 61 2,11 | 62 1,77 | 63 1,48 | 64 1,22 | 65 0,99 | | 56 | 51 8,91 | 55 6,18 | 57 4.98 | 59 3,91 | 61 2,98 | 62 2,57 | 63 2,19 | 64 1,86 | 65 1,55 | 66 1,29 | 67 1,06 | | 58 | 53 9,01 | 57 6,29 | 59 5.09 | 61 4,01 | 63 3,07 | 64 2,66 | 65 2,28 | 66 1,94 | 67 1,63 | 69 1,12 | 70 0,91 | | 60 | 55 9,11 | 59 6,39 | 61 5.19 | 63 4,11 | 65 3,17 | 66 2,75 | 67 2,36 | 68 2,02 | 69 1,70 | 71 1,18 | 72 0,97 | | 62 | 57 9,21 | 61 6,49 | 63 5.29 | 65 4.21 | 67 3,26 | 68 2.84 | 70 2.09 | 70 2.09 | 72 1,49 | 73 1,24 | 74 1.02 | | 64 | 59 9,31 | 63 6,59 | 65 5.39 | 67 4.31 | 69 3,35 | 71 2.53 | 72 2.17 | 73 1.85 | 74 1,56 | 75 1,30 | 76 1.08 | | 66 | 61 9,40 | 65 6,69 | 67 5.49 | 69 4.40 | 71 3,44 | 73 2.61 | 74 2.25 | 75 1.92 | 76 1.63 | 77 1,37 | 79 0.94 | | 68 | 63 9,50 | 67 6,79 | 69 5.58 | 71 4.49 | 73 3,53 | 75 2.69 | 76 2.33 | 77 2.00 | 78 1,70 | 86 1,19 | 80 1.19 | | 70 | 65 9,59 | 69 6,89 | 71 5.68 | 74 4.09 | 75 3,62 | 77 2.78 | 78 2.41 | 79 2.07 | 80 1,76 | 81 1,51 | 83 1.08 | | 72 | 67 9,69 | 71 6.98 | 73 5,77 | 76 4.17 | 78 3,26 | 79 2.86 | 80 2,48 | 81 2,16 | 82 1.87 | 84 1,36 | 85 1.15 | | 74 | 69 9,78 | 73 7.07 | 75 5.87 | 78 4.26 | 80 3,35 | 80 3.35 | 82 2,60 | 83 2,27 | 84 1.97 | 86 1,45 | 87 1.23 | | 76 | 70 10,6 | 75 7.17 | 77 5,96 | 80 4.35 | 81 3,90 | 83 3.09 | 84 2,72 | 85 2,38 | 87 1.80 | 88 1,54 | 90 1.11 | | 78 | 72 10,7 | 77 7.26 | 79 6.05 | 81 4.97 | 83 4,04 | 85 3.21 | 86 2,84 | 87 2,50 | 89 1.90 | 91 1,40 | 92 1.19 | | 80 | 74 10,8 | 79 7.35 | 80 6,73 | 83 5.12 | 85 4,18 | 87 3.34 | 88 2,96 | 90 2,29 | 91 2.00 | 93 1,48 | 94 1.27 | | 82 | 76 10,9 | 80 8,08 | 82 6,88 | 85 5,26 | 87 4,31 | 89 3,47 | 91 2,73 | 92 2,40 | 93 2,10 | 95 1,57 | 97 1,14 | | 84 | 78 10,9 | 81 8,86 | 84 7.03 | 87 5,41 | 90 4,01 | 91 3,60 | 93 2,85 | 94 2,51 | 96 1,92 | 97 1,66 | 99 1,22 | | 86 | 80 11.0 | 83 9.02 | 86 7.18 | 89 5,55 | 92 4,14 | 94 3,33 | 95 2,96 | 96 2,62 | 98 2,02 | 100 1,51 | 101 1,29 | | 88 | 80 12.6 | 85 9.17 | 88 7.34 | 91 5,75 | 94 4,28 | 96 3,45 | 97 3.08 | 99 2,41 | 100 2,11 | 102 1,60 | 104 1,17 | | 90 | 82 12.7 | 87 9.32 | 90 7,49 | 94 5,34 | 96 4,41 | 98 3,58 | 100 2,84 | 101 2,52 | 102 2,21 | 104 1,68 | 106 1,24 | | 92 | 84 12,9 | 89 9,47 | 92 7,64 | 96 5.48 | 98 4.54 | 100 3,70 | 102 2,96 | 103 2,62 | 105 2.03 | 107 1,53 | 108 1,32 | | 94 | 86 13.0 | 91 9,62 | 94 7,78 | 98 5.62 | 101 4.24 | 103 3,44 | 104 3,07 | 105 2,73 | 107 2.12 | 109 1,61 | 110 1,39 | | 96 | 88 13,2 | 93 9,77 | 96 7,93 | 100 5.76 | 103 4.37 | 105 3,56 | 106 3,19 | 108 2,52 | 109 2.22 | 111 1,70 | 113 1,26 | | 98 | 89 14.1 | 95 9,92 | 98 8,08 | 102 5.90 | 105 4.50 | 107 3,68 | 109 2,95 | 110 2,62 | 112 2.04 | 114 1,55 | 115 1,34 | | 100 | 91 14.2 | 97 10,1 | 100 8,23 | 104 6.04 | 107 4.63 | 109 3,80 | 111 3,06 | 112 2,73 | 114 2.13 | 116 1,63 | 117 1,41 | | 102 | 93 14,3 | 99 10,2 | 102 8.38 | 106 6,18 | 109 4,76 | 111 3,92 | 113 3,17 | 114 2,83 | 116 2,22 | 118 1,71 | 120 1,28 | | 104 | 95 14,5 | 101 10,4 | 104 8.52 | 108 6,32 | 111 4,89 | 114 3,65 | 115 3,28 | 117 2,62 | 118 2,32 | 120 1,79 | 122 1,35 | | 106 | 97 14,6 | 103 10,5 | 106 8.67 | 111 5,96 | 114 4,58 | 116 3,77 | 117 3,40 | 119 2,72 | 121 2,13 | 123 1,64 | 124 1,42 | | 108 | 99 14,8 | 105 10,7 | 108 8.82 | 113 6,10 | 116 4,71 | 118 3,89 | 120 3,15 | 121 2,82 | 123 2,22 | 125 1,71 | 127 1,29 | | 110 | 101 14,9 | 107 10,8 | 110 8.96 | 115 6,23 | 118 4,83 | 120 4,00 | 122 3,26 | 123 2,92 | 125 2,32 | 127 1,79 | 129 1,36 | | 112 | 103 15,1 | 109 11,0 | 113 8,53 | 117 6,37 | 120 4,96 | 122 4,12 | 124 3,37 | 126 2,71 | 127 2,41 | 130 1,64 | 131 1,43 | | 114 | 105 15,2 | 111 11,1 | 115 8,67 | 119 6,51 | 122 5,09 | 125 3,85 | 126 3,48 | 128 2,81 | 130 2,22 | 132 1,72 | 133 1,50 | | 116 | 107 15,4 | 113 11,3 | 117 8,81 | 121 6,64 | 124 5,21 | 127 3,96 | 129 3,24 | 130 2,91 | 132 2,31 | 134 1,80 | 136 1,37 | | 118 | 108 16,2 | 115 11,4 | 119 8,96 | 123 6,78 | 127 4,96 | 129 4,08 | 131 3,34 | 132 3,01 | 134 2,40 | 136 1,87 | 138 1,43 | | 120 | 110 16,4 | 117 11,5 | 121 9,10 | 126 6,41 | 129 5,02 | 131 4,19 | 133 3,45 | 135 2,79 | 136 2,49 | 139 1,72 | 140 1,50 | | 125 | 115 16,7 | 122 11,9 | 126 9,46 | 131 6,75 | 134 5,33 | 137 4,09 | 139 3,36 | 140 3,03 | 142 2,43 | 144 1,91 | 146 1.47 | | 130 | 120 17,1 | 127 12,3 | 131 9,81 | 136 7,08 | 140 5,20 | 142 4,37 | 144 3,63 | 146 2,96 | 148 2,37 | 150 1,86 | 152 1.43 | | 135 | 125 17,4 | 133 12,0 | 136 10,2 | 142 6,91 | 145 5,50 | 148 4,26 | 150 3,53 | 151 3,20 | 153 2,59 | 156 1,82 | 157 1.60 | | 140 | 129 18,5 | 138 12,3 | 142 9,93 | 147 7,23 | 151 5,37 | 153 4,54 | 155 3,79 | 157 3,12 | 159 2,52 |
161 2,00 | 163 1.56 | | 145 | 134 18,8 | 143 12,7 | 147 10,3 | 152 7,55 | 156 5,66 | 159 4,43 | 161 3,69 | 163 3,04 | 165 2,45 | 167 1,95 | 169 1.52 | | 150 | 139 19.2 | 148 13,1 | 152 10,6 | 158 7.37 | 162 5,52 | 164 4,70 | 166 3,95 | 168 3,27 | 170 2,66 | 173 1,90 | 175 1,48 | | 155 | 144 19.5 | 153 13,4 | 157 11,0 | 163 7.69 | 167 5,81 | 170 4,58 | 172 3,84 | 174 3,18 | 176 2,59 | 178 2,08 | 186 1,63 | | 160 | 149 19.9 | 158 13,8 | 162 11,3 | 168 8.01 | 172 6,10 | 175 4,85 | 178 3,74 | 179 3,41 | 181 2,80 | 184 2,02 | 186 1,59 | | 165 | 153 21.0 | 163 14,1 | 168 11,1 | 174 7.82 | 178 5,95 | 181 4,72 | 183 3,98 | 185 3,32 | 187 2,72 | 190 1,96 | 192 1,54 | | 170 | 158 21.3 | 168 14,4 | 173 11,4 | 179 8.13 | 183 6,24 | 186 4,98 | 189 3,88 | 190 3,54 | 193 2,64 | 195 2,13 | 197 1,69 | | 175 | 163 21,6 | 173 14.8 | 178 11,7 | 185 7.94 | 189 6.09 | 192 4,86 | 194 4.12 | 196 3,45 | 198 2,84 | 201 2.07 | 203 1,64 | | 180 | 168 22,0 | 178 15.1 | 183 12,1 | 196 8.25 | 194 6.37 | 197 5,12 | 200 4.01 | 202 3,35 | 204 2,76 | 207 2.01 | 209 1,59 | | 185 | 173 22,3 | 183 15.5 | 189 11,8 | 195 8.56 | 200 6.21 | 203 4,98 | 205 4.24 | 207 3,57 | 209 2,96 | 212 2.18 | 214 1.74 | | 190 | 178 22,7 | 189 15.2 | 194 12,1 | 201 8.36 | 205 6.49 | 208 5,24 | 211 4.13 | 213 3,47 | 215 2,88 | 218 2.11 | 220 1,69 | | 200 | 187 24,1 | 199 15.8 | 204 12,8 | 211 8.96 | 216 6.60 | 219 5,35 | 222 4.24 | 224 3,58 | 226 2,98 | 229 2.21 | 231 1,78 | HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 | - | cost ratio P | | | | | | | | | | | |--------------------------------------|--------------------------------------|--|---|--|--|--|--|--|--|--|--| | k _f {≦ 15
1625
≧ 26 | 1,1
n, R ₁ | 1.1
1.2
n ₁ R ₁ | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6
n ₁ R ₁ | 1,2
1,6
1,8 | 1,4
1,8
2,0
n ₁ R ₁ | 1.6
2.0
2.2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2.0
2.5
3.0
n ₁ . R ₁ | 2,5
3,0
3,5 | 3,0
3,5
4,0
n, R ₁ | | A _i = 1 2 3 4 5 | | 4 1.99 | 4 1,99 | 4 1.24
5 1.42 | 5 0.80
6 0.96 | 4 0.62
5 0.80
6 0.96 | 4 0,62
5 0.80
7 0.60 | 4 0.62
6 0.47
7 0.60 | 5 0.33
6 0.47
7 0.60 | 5 0,33
6 0.47
8 0,35 | 4 0:19
5 0:33
7 0:25
8 0:35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,69 | 5 2.16
6 2.32
7 2.47
8 2.60
9 2.73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
11 1,63 | 7 1,11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1.11
9 0.85
10 0.97
11 1.09
12 1.20 | 8 0,73
9 0,85
10 0,97
11 1,09
13 0,84 | 8 0,73
9 0,85
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0,55
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0,55
12 0,41
13 0,49
14 0,57 | 9 0.45
11 0.33
12 0.41
13 0.49
15 0.36 | | 11 | 8 4,21 | 10 2,86 | 11 2,27 | 12 1,75 | 13 1,30 | 13 1,30 | 14 0.94 | 14 0.94 | 15 0.65 | 15 0,65 | 16 0.43 | | 12 | 9 4,33 | 11 2,97 | 12 2,38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1.03 | 15 1.03 | 16 0.72 | 17 0,49 | 17 0.49 | | 13 | 10 4,44 | 12 3,09 | 13 2,49 | 14 1,97 | 15 1,51 | 15 1,51 | 16 1.12 | 16 1.12 | 17 0.80 | 18 0,55 | 18 0.55 | | 14 | 11 4,54 | 13 3,19 | 14 2,60 | 15 2,07 | 16 1,60 | 17 1,21 | 17 1.21 | 18 0.88 | 18 0.88 | 19 0,62 | 19 0.62 | | 15 | 12 4,64 | 14 3,30 | 15 2,70 | 16 2,17 | 17 1,70 | 18 1,29 | 18 1,29 | 19 0.96 | 19 0.96 | 20 0,68 | 21 0.47 | | 16 | 13 4,74 | 15 3,40 | 16 2,80 | 17 2,27 | 18 1,79 | 19 1,38 | 19 1,38 | 20 1.03 | 21 0.75 | 21 0,75 | 22 0.53 | | 17 | 14 4,84 | 16 3,50 | 17 2,90 | 18 2,36 | 19 1,88 | 20 1,46 | 21 1,10 | 21 1.10 | 22 0.81 | 22 0,81 | 23 0.58 | | 18 | 15 4,93 | 17 3,59 | 18 3,00 | 19 2,45 | 20 1,97 | 21 1,54 | 22 1,18 | 22 1.18 | 23 0.88 | 24 0,63 | 24 0.63 | | 19 | 16 5,03 | 18 3,69 | 19 3,09 | 20 2,54 | 21 2,05 | 22 1,62 | 23 1,25 | 23 1.25 | 24 0.94 | 25 0,69 | 25 0.69 | | 20 | 16 5,84 | 19 3,78 | 20 3,18 | 21 2,63 | 22 2,13 | 23 1,70 | 24 1,32 | 24 1.32 | 25 1.00 | 26 0,74 | 27 0.54 | | 21 | 17 5,93 | 20 3,87 | 21 3,27 | 22 2,71 | 24 1,78 | 24 1,78 | 25 1,39 | 26 1.07 | 26 1.07 | 27 0.80 | 28 0,58 | | 22 | 18 6,01 | 21 3,95 | 22 3,35 | 24 2,30 | 25 1,85 | 25 1,85 | 26 1,46 | 27 1.13 | 27 1.13 | 28 0.85 | 29 0,63 | | 23 | 19 6,09 | 22 4,04 | 23 3,43 | 25 2,38 | 26 1,93 | 27 1,53 | 27 1,53 | 28 1.19 | 29 0.91 | 29 0.91 | 30 0,68 | | 24 | 20 6,17 | 23 4,12 | 24 3,52 | 26 2,45 | 27 2,00 | 28 1,60 | 28 1,60 | 29 1.25 | 30 0.96 | 31 0.72 | 31 0,72 | | 25 | 21 6,25 | 24 4,20 | 25 3,60 | 27 2,53 | 28 2,07 | 29 1,67 | 30 1,32 | 30 1,32 | 31 1.02 | 32 0.77 | 33 0,57 | | 26 | 22 6,32 | 25 4,28 | 26 3,67 | 28 2,60 | 29 2,14 | 30 1,73 | 31 1.38 | 31 1,38 | 32 1,07 | 33 0,82 | 34 0.61 | | 27 | 23 6,40 | 26 4,36 | 27 3.75 | 29 2,68 | 30 2,21 | 31 1,80 | 32 1.44 | 32 1,44 | 33 1,13 | 34 0,87 | 35 0.65 | | 28 | 24 6,47 | 27 4,43 | 28 3.83 | 30 2,75 | 31 2,28 | 32 1,86 | 33 1.50 | 33 1,50 | 34 1,18 | 35 0,91 | 36 0.69 | | 29 | 25 6,55 | 28 4,51 | 29 3.90 | 31 2,82 | 32 2,35 | 33 1,93 | 34 1.55 | 35 1,23 | 35 1,23 | 36 0,96 | 37 0.73 | | 30 | 26 6,62 | 29 4,58 | 30 3,97 | 32 2,89 | 33 2,41 | 34 1,99 | 35 1.61 | 36 1,29 | 36 1,29 | 37 1,01 | 38 0.78 | | 31 | 27 6,69 | 30 4,65 | 31 4.05 | 33 2,96 | 34 2,48 | 35 2,05 | 36 1,67 | 37 1,34 | 38 1,06 | 39 0,82 | 39 0.82 | | 32 | 28 6,76 | 31 4,72 | 32 4.12 | 34 3,02 | 35 2,55 | 36 2,11 | 37 1,73 | 38 1,39 | 39 1,10 | 40 0.86 | 41 0.66 | | 33 | 29 6,83 | 32 4,79 | 33 4.19 | 35 3,09 | 36 2,61 | 37 2,17 | 38 1,79 | 39 1,44 | 40 1,15 | 41 0,90 | 42 0.69 | | 34 | 30 6,89 | 33 4,86 | 34 4.25 | 36 3,16 | 38 2,23 | 39 1,84 | 39 1,84 | 40 1,50 | 41 1,20 | 42 0,94 | 43 0.73 | | 35 | 31 6,96 | 34 4,93 | 35 4.32 | 37 3,22 | 39 2,29 | 40 1,90 | 40 1,90 | 41 1,55 | 42 1,24 | 43 0,98 | 44 0.77 | | 36 | 32 7,03 | 35 5.00 | 36 4,39 | 38 3,29 | 40 2,35 | 41 1.95 | 42 1,60 | 42 1,60 | 43 1,29 | 44 1,03 | 45 0.80 | | 37 | 33 7,09 | 36 5.06 | 37 4,45 | 39 3,35 | 41 2,41 | 42 2.01 | 43 1,65 | 43 1,65 | 44 1,34 | 45 1,07 | 46 0.84 | | 38 | 34 7,15 | 37 5.13 | 38 4,52 | 40 3,41 | 42 2,47 | 43 2.06 | 44 1,70 | 44 1,70 | 45 1,39 | 47 0,88 | 47 0.88 | | 39 | 35 7,22 | 38 5.19 | 39 4,58 | 41 3,47 | 43 2,53 | 44 2.12 | 45 1.75 | 46 1,43 | 46 1,43 | 48 0,91 | 49 0.71 | | 40 | 36 7,28 | 39 5.26 | 40 4,65 | 42 3,53 | 44 2,58 | 45 2.17 | 46 1,80 | 47 1,48 | 48 1,20 | 49 0,95 | 50 0.75 | | 41 | 37 7.34 | 40 5.32 | 41 4,71 | 43 3,60 | 45 2,64 | 46 2.23 | 47 1.85 | 48 1,52 | 49 1,24 | 50 0,99 | 51 0.78 | | 42 | 38 7.40 | 41 5.38 | 42 4,77 | 44 3,66 | 46 2,70 | 47 2.28 | 48 1.90 | 49 1,57 | 50 1,28 | 51 1,03 | 52 0.81 | | 43 | 38 8.19 | 42 5.44 | 43 4,83 | 46 3,21 | 47 2,75 | 48 2.33 | 49 1.95 | 50 1,62 | 51 1,32 | 52 1,07 | 53 0.85 | | 44 | 39 8.25 | 43 5.50 | 44 4,89 | 47 3,27 | 48 2,81 | 49 2.38 | 50 2.00 | 51 1,66 | 52 1,36 | 53 1,10 | 54 0.88 | | 45 | 40 8.31 | 44 5.56 | 45 4,95 | 48 3,33 | 49 2,86 | 50 2.43 | 51 2.05 | 52 1,71 | 53 1,40 | 54 1,14 | 55 0.91 | | 46 | 41 8,36 | 45 5,62 | 46 5.01 | 49 3,38 | 50 2,91 | 51 2,49 | 52 2,10 | 53 1,75 | 54 1,45 | 55 1,18 | 56 0.95 | | 47 | 42 8,42 | 46 5,68 | 47 5.07 | 50 3,44 | 51 2,97 | 53 2,15 | 53 2,15 | 54 1,80 | 55 1,49 | 57 0,98 | 57 0.98 | | 48 | 43 8,48 | 47 5,74 | 48 5.13 | 51 3,49 | 52 3.02 | 54 2,19 | 55 1,84 | 55 1,84 | 56 1,53 | 58 1,02 | 59 0.81 | | 49 | 44 8,53 | 48 5,80 | 49 5.18 | 52 3,55 | 53 3.07 | 55 2,24 | 56 1,89 | 56 1,89 | 57 1,57 | 59 1,05 | 60 0.84 | | 50 | 45 8,59 | 49 5,85 | 50 5,24 | 53 3,60 | 54 3,12 | 56 2,29 | 57 1,93 | 58 1,61 | 59 1,33 | 60 1,08 | 61 0.87 | $k_1 = 110$ HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $n_1; R_1$ in Erl P = cost ratio k_1 = accessibility of HG 1 k_f = accessibility of FG n_1 = number of trunks of HG 1 $k_1 = 110$ | | | | | | cost | ratio P | | | | | | |---|--------------------------------------|---------------------|---------------------------------|-------------------|--|--|--|--|--|--|-------------------------------| | k _f {≤ 15
16 ··· 25
≥ 26 | 1,1
n ₁ R ₁ | 1.1
1,2
n, R, | 1.2
1.4
n ₁ R. | 1.1
1.4
1.6 | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1.8
2,0
N ₁ R ₁ | 1,6
2.0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2.0
2.5
3.0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0 | | A ₁ = 58 | 45 8,59 | 49 5,85 | 58 5,24 | 53 3,60 | 54 3,12 | 56 2,29 | 57 1,93 | 58 1,61 | 59 1.33 | n ₁ R ₁ | n ₁ R ₁ | | 52 | 47 8,69 | 51 5,96 | 52 5.35 | 55 3,70 | 57 2,79 | 58 2,38 | 59 2,02 | 60 1,69 | 61 1,40 | 62 1,15 | 63 0,93 | | 54 | 49 8,80 | 53 6.07 | 55 4.88 | 57 3.81 | 59 2,88 | 60 2,48 | 61 2,11 | 62 1,77 | 63 1,48 | 64 1,22 | 65 0,99 | | 56 | 51 8,91 | 55 6.18 | 57 4.98 | 59 3.91 | 61 2,98 | 62 2,57 | 63 2,19 | 64 1,86 | 65 1,55 | 66 1,29 | 67 1.06 | | 58 | 53 9,01 | 57 6,29 | 59 5.09 | 61 4,01 | 63 3,07 | 64 2,66 | 65 2,28 | 66 1,94 | 67 1,63 | 69 1,12 | 70 0,91 | | 60 | 55 9,11 | 59 6.39 | 61 5.19 | 63 4,11 | 65 3,17 | 66 2,75 | 67 2,36 | 68 2,02 | 69 1,70 | 71 1,18 | 72 0.97 | | 62 | 57 9,21 | 61 6.49 | 63 5,29 | 65 4,21 | 67 3,26 | 68 2,84 | 70 2.09 | 70 2.09 | 72
1,49 | 73 1,24 | 74 1.02 | | 64 | 59 9,31 | 63 6.59 | 65 5,39 | 67 4,31 | 69 3,35 | 71 2,53 | 72 2.17 | 73 1.85 | 74 1,56 | 75 1,30 | 76 1.08 | | 66 | 61 9,40 | 65 6.69 | 67 5,49 | 69 4,40 | 71 3,44 | 73 2,61 | 74 2.25 | 75 1.92 | 76 1,63 | 77 1,37 | 79 0.94 | | 68 | 63 9,50 | 67 6.79 | 69 5,58 | 71 4,49 | 73 3,53 | 75 2,69 | 76 2.33 | 77 2.00 | 78 1,70 | 80 1,19 | 81 0.99 | | 70 | 65 9,59 | 69 6.89 | 71 5,68 | 74 4.09 | 75 3,62 | 77 2,78 | 78 2.41 | 79 2.07 | 80 1,76 | 82 1,25 | 83 1.04 | | 72 | 67 9,69 | 71 6.98 | 73 5.77 | 76 4.17 | 78 3,26 | 79 2,86 | 80 2,48 | 81 2,14 | 82 1,83 | 84 1,31 | 85 1.09 | | 74 | 69 9,78 | 73 7.07 | 75 5.87 | 78 4.26 | 80 3,35 | 81 2,94 | 82 2,56 | 83 2,21 | 85 1,62 | 86 1,37 | 87 1.14 | | 76 | 70 10,6 | 75 7.17 | 77 5.96 | 80 4.35 | 82 3,43 | 83 3,61 | 84 2,63 | 85 2,28 | 87 1,68 | 88 1,42 | 89 1.20 | | 78 | 72 10,7 | 77 7.26 | 79 6.05 | 82 4.44 | 84 3,51 | 85 3,09 | 87 2,35 | 88 2,03 | 89 1,74 | 90 1,48 | 92 1.04 | | 80 | 74 10,8 | 79 7.35 | 81 6,14 | 84 4.52 | 86 3,59 | 87 3,17 | 89 2,42 | 90 2,10 | 91 1,80 | 93 1,30 | 94 1.09 | | 82 | 76 10,9 | 81 7,44 | 83 6.22 | 86 4,60 | 88 3,67 | 90 2,86 | 91 2,49 | 92 2,16 | 93 1.87 | 95 1,35 | 96 1,14 | | 84 | 78 10,9 | 83 7,52 | 85 6.31 | 88 4,69 | 90 3,75 | 92 2,93 | 93 2,56 | 94 2,23 | 95 1.93 | 97 1,41 | 98 1,19 | | 86 | 80 11,0 | 85 7,61 | 87 6.40 | 90 4,77 | 92 3,83 | 94 3,00 | 95 2,63 | 96 2,30 | 97 1.99 | 99 1,46 | 100 1,24 | | 88 | 82 11,1 | 87 7,70 | 89 6.48 | 92 4,85 | 94 3,90 | 96 3,07 | 97 2,70 | 98 2,36 | 100 1.77 | 101 1,51 | 103 1,09 | | 90 | 84 11,2 | 89 7,78 | 91 6.57 | 94 4,93 | 96 3,98 | 98 3,14 | 99 2,77 | 100 2,43 | 102 1.83 | 103 1,57 | 105 1,13 | | 92 | 86 11,3 | 91 7.86 | 93 6,65 | 96 5.01 | 98 4,06 | 100 3,22 | 101 2,84 | 103 2,17 | 104 1.88 | 106 1,39 | 107 1,18 | | 94 | 88 11,4 | 93 7.95 | 95 6,73 | 98 5.09 | 101 3,69 | 102 3,29 | 104 2,56 | 105 2,23 | 106 1.94 | 108 1,43 | 109 1,22 | | 96 | 90 11,4 | 95 8.03 | 97 6,81 | 100 5.17 | 103 3,77 | 104 3,36 | 106 2,62 | 107 2,29 | 108 2.00 | 110 1,48 | 111 1,28 | | 98 | 92 11,5 | 97 8.11 | 99 6,89 | 102 5.25 | 105 3,84 | 106 3,43 | 108 2,68 | 109 2,35 | 110 2.05 | 112 1,56 | 113 1,34 | | 100 | 94 11,6 | 99 8.19 | 101 6,97 | 104 5.32 | 107 3,91 | 108 3,49 | 110 2,75 | 110 2,75 | 112 2.14 | 114 1,63 | 115 1,41 | | 102 | 96 11,7 | 101 8,27 | 103 7,05 | 106 5,40 | 109 3,98 | 110 3,56 | 111 3,19 | 113 2,52 | 114 2,23 | 116 1,71 | 118 1,28 | | 104 | 98 11,7 | 103 8,35 | 105 7,13 | 109 4,97 | 110 4,50 | 112 3,67 | 114 2,94 | 115 2,62 | 116 2,32 | 118 1,78 | 120 1,34 | | 106 | 100 11,8 | 105 8,43 | 107 7,21 | 110 5,55 | 112 4,62 | 114 3,78 | 116 3.04 | 117 2,71 | 119 2,12 | 121 1,62 | 122 1,41 | | 108 | 102 11,9 | 107 8,50 | 109 7,28 | 112 5,67 | 114 4,73 | 116 3,89 | 118 3,14 | 119 2,81 | 121 2,20 | 123 1,70 | 124 1,48 | | 110 | 104 12,0 | 109 8,58 | 110 7,96 | 114 5,80 | 117 4,41 | 119 3,61 | 120 3,24 | 121 2,90 | 123 2,29 | 125 1,77 | 127 1,34 | | 112 | 106 12.0 | 110 9,30 | 112 8,09 | 116 5,92 | 119 4,53 | 121 3,72 | 122 3,34 | 124 2,67 | 125 2,38 | 127 1,84 | 129 1,40 | | 114 | 108 12.1 | 111 10,1 | 114 8,22 | 118 6,04 | 121 4,64 | 123 3.82 | 125 3,09 | 126 2,77 | 128 2,18 | 130 1,68 | 131 1,47 | | 116 | 109 12.9 | 113 10,2 | 116 8,35 | 120 6,17 | 123 4,75 | 125 3.93 | 127 3,19 | 128 2,86 | 130 2,26 | 132 1,75 | 134 1,33 | | 118 | 110 13.7 | 115 10,3 | 118 8,48 | 122 6,29 | 125 4,87 | 127 4.03 | 129 3,29 | 130 2,95 | 132 2,34 | 134 1,83 | 136 1,39 | | 120 | 111 14.6 | 117 10,5 | 125 8,61 | 124 6,41 | 127 4,98 | 129 4.14 | 131 3,39 | 133 2,73 | 134 2,43 | 136 1,90 | 138 1,46 | | 125 | 116 14,9 | 122 10.8 | 125 8,93 | 130 6,21 | 133 4,83 | 135 4,01 | 137 3,28 | 138 2,95 | 140 2,35 | 142 1,84 | 144 1.41 | | 130 | 121 15,2 | 127 11.1 | 131 8,66 | 135 6,51 | 138 5,10 | 140 4,27 | 142 3,52 | 144 2,86 | 145 2,56 | 148 1,78 | 149 1.57 | | 135 | 126 15,5 | 132 11.4 | 136 8,98 | 140 6,81 | 143 5,38 | 146 4,13 | 148 3,41 | 149 3,08 | 151 2,47 | 153 1,96 | 155 1.52 | | 140 | 130 16,6 | 137 11.7 | 141 9,29 | 146 6,60 | 149 5,22 | 151 4,39 | 153 3,64 | 155 2,98 | 157 2,39 | 159 1,89 | 161 1.47 | | 145 | 135 16,9 | 142 12.1 | 146 9,60 | 151 6,90 | 154 5,49 | 157 4,25 | 159 3,53 | 160 3,19 | 162 2,59 | 165 1,83 | 166 1.62 | | 150 | 140 17,2 | 147 12,4 | 151 9,91 | 156 7.19 | 160 5,32 | 162 4,50 | 164 3,75 | 166 3,09 | 168 2,50 | 170 1,99 | 172 1,56 | | 155 | 145 17,5 | 153 12,0 | 156 10,2 | 161 7.48 | 165 5,58 | 168 4,36 | 170 3,63 | 171 3,30 | 173 2,69 | 176 1,93 | 178 1,51 | | 160 | 150 17,8 | 158 12,4 | 161 10,5 | 167 7.26 | 170 5,85 | 173 4,60 | 175 3,86 | 177 3,19 | 179 2,60 | 181 2,09 | 183 1,65 | | 165 | 154 18,8 | 163 12,7 | 167 10,2 | 172 7.54 | 176 5,67 | 178 4,84 | 181 3,73 | 182 3,40 | 184 2,79 | 187 2,02 | 189 1,59 | | 170 | 159 19,1 | 168 13,0 | 172 10,5 | 177 7.83 | 181 5,93 | 184 4,69 | 186 3,95 | 188 3,29 | 190 2,70 | 192 2,18 | 194 1,73 | | 175 | 164 19,4 | 173 13,3 | 177 10,8 | 183 7,61 | 187 5,75 | 189 4,93 | 192 3,83 | 193 3,49 | 195 2,88 | 198 2,10 | 200 1.67 | | 180 | 169 19,7 | 178 13,6 | 182 11,1 | 188 7,88 | 192 6,01 | 195 4,78 | 197 4,04 | 199 3,38 | 201 2,78 | 204 2,03 | 206 1.61 | | 185 | 174 20,6 | 183 13,9 | 187 11,4 | 193 8,16 | 197 6,26 | 200 5,01 | 202 4,26 | 204 3,58 | 206 2,97 | 209 2,18 | 211 1.74 | | 190 | 179 20,3 | 188 14,2 | 193 11,2 | 199 7,93 | 203 6,08 | 206 4,85 | 208 4,12 | 210 3,46 | 212 2,86 | 215 2,10 | 217 1.68 | | 200 | 188 21,7 | 198 14,8 | 203 11,7 | 209 8,48 | 213 6,58 | 217 4,93 | 219 4,20 | 221 3,53 | 223 2,94 | 226 2,17 | 228 1.74 | | | | | | k | 1 = | n_1 | | |----|----|---|--|---|-----|-------|--| | 1 | | | | | | | | | of | HG | 1 | | | | | | | - | Γ | | | | cost | ratio P | | | | | - | |--|--------------------------------------|--|---|--|--|--|--|--|--|--|--| | k _f { ≦ 15
16···25
≧ 26 | 1,1
n ₁ R ₁ | 1,1
1,2
n ₁ R ₁ | 1,2
1,4
n ₁ R ₁ | 1,1
1,4
1,6
n ₄ R ₁ | 1,2
1,6
1,8
n ₁ R ₁ | 1,4
1,8
2,0
n ₁ R ₁ | 1,6
2,0
2,2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2,0
2,5
3,0
n ₁ R ₁ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0
n ₁ R ₁ | | A ₁ = 1 2 3 4 5 | | 4 1,99 | 4 1,99 | 4 1.24
5 1.42 | 5 0,80
6 0,96 | 4 0,62
5 0,80
6 0,96 | 4 0,62
5 0,80
7 0,60 | 4 0,62
6 0,47
7 0,60 | 5 0,33
6 0,47
7 0,60 | 5 0,33
6 0,47
8 0,35 | 4 0,19
5 0,33
7 0,25
8 0,35 | | 6
7
8
9
10 | 4 3,69
5 3,83
6 3,96
7 4,09 | 5 2,16
6 2,32
7 2,47
8 2,60
9 2,73 | 5 2,16
6 2,32
7 2,47
9 2,02
10 2,15 | 6 1,59
7 1,74
8 1,88
10 1,51
11 1,63 | 7 1.11
8 1,25
9 1,39
10 1,51
11 1,63 | 7 1,11
9 0,85
10 0,97
11 1,09
12 1,20 | 8 0,73
9 0,85
10 0,97
11 1,09
13 0,84 | 8 0,73
9 0,85
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0,55
11 0,65
12 0,75
13 0,84 | 9 0,45
10 0,55
12 0,41
13 0,49
14 0,57 | 9 0,45
11 0,33
12 0,41
13 0,49
15 0,36 | | 11 | 8 4,21 | 10 2.86 | 11 2.27 | 12 1,75 | 13 1,30 | 13 1,30 | 14 0.94 | 14 0,94 | 15 0,65 | 15 0,65 | 16 0,43 | | 12 | 9 4,33 | 11 2.97 | 12 2.38 | 13 1,86 | 14 1,41 | 14 1,41 | 15 1.03 | 15 1,03 | 16 0,72 | 17 0,49 | 17 0,49 | | 13 | 10 4,44 | 12 3.09 | 13 2.49 | 14 1,97 | 15 1,51 | 15 1,51 | 16 1.12 | 16 1,12 | 17 0,80 | 18 0,55 | 18 0,55 | | 14 | 11 4,54 | 13 3.19 | 14 2.60 | 15 2,07 | 16 1,60 | 17 1,21 | 17 1.21 | 18 0,88 | 18 0,88 | 19 0,62 | 19 0,62 | | 15 | 12 4,64 | 14 3.30 | 15 2.70 | 16 2,17 | 17 1,70 | 18 1,29 | 18 1.29 | 19 0,96 | 19 0,96 | 20 0,68 | 21 0,47 | | 16 | 13 4,74 | 15 3.40 | 16 2,80 | 17 2.27 | 18 1,79 | 19 1,38 | 19 1,38 | 20 1,03 | 21 0,75 | 21 0.75 | 22 0.53 | | 17 | 14 4,84 | 16 3.50 | 17 2,90 | 18 2.36 | 19 1,88 | 20 1,46 | 21 1,10 | 21 1,10 | 22 0.81 | 22 0.81 | 23 0.58 | | 18 | 15 4,93 | 17 3.59 | 18 3,00 | 19 2.45 | 20 1,97 | 21 1,54 | 22 1,18 | 22 1,18 | 23 0.88 | 24 0.63 | 24 0.63 | | 19 | 16 5,03 | 18 3.69 | 19 3,09 | 20 2.54 | 21 2,05 | 22 1,62 | 23 1,25 | 23 1,25 | 24 0.94 | 25 0.69 | 25 0.69 | | 20 | 16 5,84 | 19 3.78 | 20 3,18 | 21 2.63 | 22 2,13 | 23 1,70 | 24 1,32 | 24 1,32 | 25 1,00 | 26 0.74 | 27 0.54 | | 21 | 17 5,93 | 20 3.87 | 21 3,27 | 22 2.71 | 24 1.78 | 24 1,78 | 25 1,39 | 26 1,07 | 26 1,07 | 27 0.80 | 28 0,58 | | 22 | 18 6,01 | 21 3.95 | 22 3,35 | 24 2,30 | 25 1.85 | 25 1,85 | 26 1,46 | 27 1,13 | 27 1,13 | 28 0.85 | 29 0,63 | | 23 | 19 6,09 | 22 4.04 | 23 3,43 | 25 2,38 | 26 1.93 | 27 1,53 | 27 1,53 | 28 1,19 | 29 0,91 | 29 0.91 | 30 0,68 | | 24 | 20 6,17 | 23 4.12 | 24 3,52 | 26 2,45 | 27 2.00 | 28 1,60 | 28 1,60 | 29 1,25 | 30 0,96 | 31 0,72 | 31 0,72 | | 25 | 21 6,25 | 24 4.20 | 25 3,60 | 27 2,53 | 28 2.07 | 29 1,67 | 30 1,32 | 30 1,32 | 31 1,02 | 32 0,77 | 33 0,57 | | 26 | 22 6,32 | 25 4,28 | 26 3.67 | 28 2,60 | 29 2,14 | 30 1,73 | 31 1,38 | 31 1,38 | 32 1.07 | 33 0,82 | 34 0,61 | | 27 | 23 6,40 | 26 4,36 | 27 3.75 | 29 2,68 | 30 2,21 | 31 1,80 | 32 1,44 | 32 1,44 | 33 1.13 | 34 0,87 | 35 0,65 | | 28 | 24 6,47 | 27 4,43 | 28 3.83 | 30 2,75 | 31 2,28 | 32 1,86 | 33 1,50 | 33 1,50 | 34 1.18 | 35 0,91 | 36 0,69 | | 29 | 25 6,55 | 28 4,51 | 29 3.95 | 31 2,82 | 32 2,35 | 33 1,93 | 34 1,55 | 35 1,23 | 35 1.23 | 36 0,96 | 37 0,73 | | 30 | 26 6,62 | 29 4,58 | 35 3.97 | 32 2,89 | 33 2,41 | 34 1,99 | 35 1,61 | 36 1,29 | 36 1.29 | 37 1,01 | 38 0,78 | | 31 | 27 6,69 | 30 4,65 | 31 4.05 | 33 2,96 | 34 2,48 | 35 2.05 | 36 1,67 | 37 1.34 | 38 1.06 | 39 0.82 | 39 0,82 | | 32 | 28 6,76 | 31 4,72 | 32 4.12 | 34 3,02 | 35 2,55 | 36 2.11
| 37 1,73 | 38 1.39 | 39 1.10 | 40 0.86 | 41 0.66 | | 33 | 29 6,83 | 32 4,79 | 33 4.19 | 35 3,09 | 36 2,61 | 37 2.17 | 38 1,79 | 39 1.44 | 40 1.15 | 41 0.90 | 42 0.69 | | 34 | 30 6,89 | 33 4.86 | 34 4.25 | 36 3,16 | 38 2,23 | 39 1.84 | 39 1,84 | 40 1.50 | 41 1.20 | 42 0.94 | 43 0,73 | | 35 | 31 6,96 | 34 4,93 | 35 4.32 | 37 3,22 | 39 2,29 | 40 1.90 | 40 1,90 | 41 1.55 | 42 1.24 | 43 0.98 | 44 0,77 | | 36 | 32 7.03 | 35 5,00 | 36 4,39 | 38 3,29 | 40 2,35 | 41 1,95 | 42 1.60 | 42 1.60 | 43 1,29 | 44 1.03 | 45 0,80 | | 37 | 33 7.09 | 36 5,06 | 37 4,45 | 39 3,35 | 41 2,41 | 42 2,01 | 43 1.65 | 43 1.65 | 44 1,34 | 45 1.07 | 46 0,84 | | 38 | 34 7.15 | 37 5,13 | 38 4,52 | 40 3,41 | 42 2,47 | 43 2,06 | 44 1.70 | 44 1.70 | 45 1,39 | 47 0.88 | 47 0,88 | | 39 | 35 7.22 | 38 5,19 | 39 4,58 | 41 3,47 | 43 2,53 | 44 2,12 | 45 1.75 | 46 1.43 | 46 1,43 | 48 0.91 | 49 0,71 | | 40 | 36 7.28 | 39 5,26 | 40 4,65 | 42 3,53 | 44 2,58 | 45 2,17 | 46 1.80 | 47 1.48 | 48 1,20 | 49 0.95 | 50 0,75 | | 41 | 37 7,34 | 46 5,32 | 41 4,71 | 43 3,60 | 45 2,64 | 46 2,23 | 47 1.85 | 48 1,52 | 49 1.24 | 50 0.99 | 51 0,78 | | 42 | 38 7,40 | 41 5,38 | 42 4,77 | 44 3,66 | 46 2,70 | 47 2,28 | 48 1.90 | 49 1,57 | 50 1.28 | 51 1.03 | 52 0,81 | | 43 | 38 8,19 | 42 5,44 | 43 4.83 | 46 3,21 | 47 2,75 | 48 2,33 | 49 1.95 | 50 1,62 | 51 1.32 | 52 1.07 | 53 0,85 | | 44 | 39 8,25 | 43 5,56 | 44 4,89 | 47 3,27 | 48 2,81 | 49 2,38 | 50 2.00 | 51 1,66 | 52 1.36 | 53 1.10 | 54 0,88 | | 45 | 40 8,31 | 44 5,56 | 45 4,95 | 48 3,33 | 49 2,86 | 50 2,43 | 51 2.05 | 52 1,71 | 53 1.40 | 54 1.14 | 55 0,91 | | 46 | 41 8,36 | 45 5.62 | 46 5,01 | 49 3,38 | 50 2,91 | 51 2,49 | 52 2,10 | 53 1,75 | 54 1,45 | 55 1,18 | 56 0,95 | | 47 | 42 8,42 | 46 5.68 | 47 5.07 | 50 3,44 | 51 2,97 | 53 2,15 | 53 2,15 | 54 1,80 | 55 1,49 | 57 0,98 | 57 0,98 | | 48 | 43 8,48 | 47 5.74 | 48 5.13 | 51 3,49 | 52 3.02 | 54 2,19 | 55 1,84 | 55 1,84 | 56 1,53 | 58 1,02 | 59 0,81 | | 49 | 44 8,53 | 48 5.80 | 49 5.18 | 52 3,55 | 53 3.07 | 55 2,24 | 56 1,89 | 56 1,89 | 57 1,57 | 59 1,05 | 60 0,84 | | 50 | 45 8,59 | 49 5.85 | 50 5.24 | 53 3,60 | 54 3.12 | 56 2,29 | 57 1,93 | 58 1,61 | 59 1,33 | 60 1,08 | 61 0,87 | $k_1 = n_1$ HG 1 = high usage group of first order FG = final group A₁ = offered random traffic to HG 1 R₁ = overflowing traffic from HG 1 $\underline{n_1;R_1}$ in Erl P = cost ratio k₁ = accessibility of HG 1 k_f = accessibility of FG n₁ = number of trunks of HG 1 | 275 | | | | 100 | | | |-----|--------|-------|-------|--------------|-------|--| | 10 | WHA | 19/A. | 100 | 1/2 | 1 | | | 25. | 35518 | Mon | 11.50 | 5 335 | 32.3 | | | | 00/2/3 | | | | 986 S | | | | | | | | | | | - | | | | | cost | ratio P | | | | | | |--------------------------------------|--------------|---|---|-------------------|-------------------|--|--|--|--|--|--| | k _f {≦ 15
1625
≧ 26 | 1+1
n4 R4 | 1.1
1.2
n ₁ R ₁ | 1.2
1.4
n ₁ R ₁ | 1.1
1.4
1.6 | 1,2
1,6
1,8 | 1,4
1,8
2,0
n ₁ R ₁ | 1.6
2.0
2.2
n ₁ R ₁ | 1,8
2,2
2,5
n ₁ R ₁ | 2.0
2.5
3.0
n ₄ R ₄ | 2,5
3,0
3,5
n ₁ R ₁ | 3,0
3,5
4,0
n ₄ R ₁ | | A ₁ = 50 | 45 8,59 | 49 5,85 | 50 5,24 | 53 3,60 | 54 3,12 | 56 2,29 | 57 1,93 | 58 1,61 | 59 1,33 | 60 1,08 | 61 0.87 | | 52 | 47 8.69 | 51 5,96 | 52 5,35 | 55 3.70 | 57 2,79 | 58 2.38 | 59 2.02 | 60 1.69 | 61 1.40 | 62 1.15 | 63 0,93 | | 54 | 49 8.80 | 53 6,07 | 55 4,88 | 57 3.81 | 59 2,88 | 60 2.48 | 61 2.11 | 62 1.77 | 63 1.48 | 64 1.22 | 65 0,99 | | 56 | 51 8.91 | 55 6,18 | 57 4,98 | 59 3.91 | 61 2,98 | 62 2.57 | 63 2.19 | 64 1.86 | 65 1.55 | 66 1.29 | 67 1,06 | | 58 | 53 9.01 | 57 6,29 | 59 5,09 | 61 4.01 | 63 3,07 | 64 2.66 | 65 2.28 | 66 1.94 | 67 1.63 | 69 1.12 | 70 0,91 | | 60 | 55 9.11 | 59 6,39 | 61 5,19 | 63 4.11 | 65 3,17 | 66 2.75 | 67 2.36 | 68 2.02 | 69 1.70 | 71 1.18 | 72 0,97 | | 62 | 57 9,21 | 61 6,49 | 63 5,29 | 65 4,21 | 67 3,26 | 68 2.84 | 70 2,09 | 70 2,09 | 72 1.49 | 73 1,24 | 74 1.02 | | 64 | 59 9,31 | 63 6,59 | 65 5,39 | 67 4,31 | 69 3,35 | 71 2.53 | 72 2,17 | 73 1,85 | 74 1.56 | 75 1,30 | 76 1.08 | | 66 | 61 9,40 | 65 6,69 | 67 5,49 | 69 4,40 | 71 3,44 | 73 2.61 | 74 2,25 | 75 1,92 | 76 1.63 | 77 1,37 | 79 0,94 | | 68 | 63 9,50 | 67 6,79 | 69 5,58 | 71 4,49 | 73 3,53 | 75 2.69 | 76 2,33 | 77 2,00 | 78 1.70 | 80 1,19 | 81 0,99 | | 70 | 65 9,59 | 69 6,89 | 71 5,68 | 74 4,09 | 75 3,62 | 77 2.78 | 78 2,41 | 79 2,07 | 80 1.76 | 82 1,25 | 83 1.04 | | 72 | 67 9,69 | 71 6,98 | 73 5,77 | 76 4.17 | 78 3,26 | 79 2,86 | 80 2,48 | 81 2,14 | 82 1.83 | 84 1,31 | 85 1.09 | | 74 | 69 9,78 | 73 7,07 | 75 5,87 | 78 4.26 | 80 3,35 | 81 2,94 | 82 2,56 | 83 2,21 | 85 1.62 | 86 1,37 | 87 1.14 | | 76 | 70 10,6 | 75 7,17 | 77 5,96 | 80 4.35 | 82 3,43 | 83 3,01 | 84 2,63 | 85 2,28 | 87 1.68 | 88 1,42 | 89 1.20 | | 78 | 72 10,7 | 77 7,26 | 79 6,65 | 82 4.44 | 84 3,51 | 85 3,09 | 87 2,35 | 88 2,03 | 89 1.74 | 90 1,48 | 92 1.04 | | 80 | 74 10,8 | 79 7,35 | 81 6,14 | 84 4.52 | 86 3,59 | 87 3,17 | 89 2,42 | 90 2,10 | 91 1.80 | 93 1,30 | 94 1.09 | | 82 | 76 10,9 | 81 7,44 | 83 6,22 | 86 4.60 | 88 3,67 | 90 2,86 | 91 2,49 | 92 2,16 | 93 1,87 | 95 1,35 | 96 1,14 | | 84 | 78 10,9 | 83 7,52 | 85 6,31 | 88 4.69 | 90 3,75 | 92 2,93 | 93 2,56 | 94 2,23 | 95 1,93 | 97 1,41 | 98 1,19 | | 86 | 80 11,0 | 85 7,61 | 87 6,40 | 90 4.77 | 92 3,83 | 94 3,00 | 95 2,63 | 96 2,30 | 97 1,99 | 99 1,46 | 100 1,24 | | 88 | 82 11,1 | 87 7,70 | 89 6,48 | 92 4.85 | 94 3,90 | 96 3,07 | 97 2,70 | 98 2,36 | 100 1,77 | 101 1,51 | 103 1,69 | | 90 | 84 11,2 | 89 7,78 | 91 6,57 | 94 4.93 | 96 3,98 | 98 3,14 | 99 2,77 | 100 2,43 | 102 1,83 | 103 1,57 | 105 1,13 | | 92 | 86 11,3 | 91 7,86 | 93 6,65 | 96 5.01 | 98 4,06 | 100 3,22 | 101 2,84 | 103 2,17 | 104 1,88 | 106 1,39 | 107 1,18 | | 94 | 88 11,4 | 93 7,95 | 95 6,73 | 98 5.09 | 101 3,69 | 102 3,29 | 104 2,56 | 105 2,23 | 106 1,94 | 108 1,43 | 109 1,22 | | 96 | 90 11,4 | 95 8,03 | 97 6,81 | 100 5.17 | 103 3,77 | 104 3,36 | 106 2,62 | 107 2,29 | 108 2,00 | 110 1,48 | 111 1,27 | | 98 | 92 11,5 | 97 8,11 | 99 6,89 | 102 5.25 | 105 3,84 | 106 3,43 | 108 2,68 | 109 2,35 | 110 2,05 | 112 1,53 | 113 1,31 | | 100 | 94 11,6 | 99 8,19 | 101 6,97 | 104 5.32 | 107 3,91 | 108 3,49 | 110 2,75 | 111 2,41 | 112 2,11 | 114 1,58 | 116 1,16 | | 102 | 96 11,7 | 101 8,27 | 103 7,05 | 106 5,40 | 109 3,98 | 111 3,17 | 112 2,81 | 113 2,47 | 115 1,89 | 116 1,63 | 118 1,20 | | 104 | 98 11,7 | 103 8,35 | 105 7,13 | 109 4,97 | 111 4,05 | 113 3,24 | 114 2,87 | 115 2,53 | 117 1,94 | 118 1,68 | 120 1,24 | | 106 | 100 11,8 | 105 8,43 | 107 7,21 | 111 5,05 | 113 4,12 | 115 3,30 | 116 2,93 | 117 2,59 | 119 1,99 | 121 1,50 | 122 1,28 | | 108 | 102 11,9 | 107 8,56 | 109 7,28 | 113 5,12 | 115 4,19 | 117 3,37 | 118 3,00 | 119 2,65 | 121 2,05 | 123 1,54 | 124 1,33 | | 110 | 104 12,0 | 109 8,58 | 111 7,36 | 115 5,19 | 117 4,26 | 119 3,43 | 120 3,06 | 122 2,39 | 123 2,10 | 125 1,59 | 126 1,37 | | 112 | 106 12.0 | 111 8,66 | 113 7,43 | 117 5,27 | 119 4,33 | 121 3,50 | 122 3,12 | 124 2,45 | 125 2,15 | 127 1,63 | 128 1,41 | | 114 | 108 12,1 | 113 8,73 | 115 7,51 | 119 5,34 | 121 4,46 | 123 3,56 | 125 2,83 | 126 2,50 | 127 2,20 | 129 1,68 | 131 1,25 | | 116 | 109 12.9 | 115 8,80 | 117 7,58 | 121 5,41 | 123 4,46 | 125 3,62 | 127 2,89 | 128 2,56 | 129 2,26 | 131 1,73 | 133 1,29 | | 118 | 111 13,0 | 117 8,88 | 119 7,66 | 123 5,48 | 125 4,53 | 127 3,69 | 129 2,95 | 130 2,62 | 132 2,03 | 133 1,77 | 135 1,33 | | 120 | 113 13,1 | 119 8,95 | 121 7,73 | 125 5,55 | 127 4,66 | 129 3,75 | 131 3,00 | 132 2,67 | 134 2,08 | 136 1,58 | 137 1,37 | | 125 | 118 13,2 | 124 9,13 | 126 7,91 | 130 5,72 | 133 4,32 | 135 3,51 | 136 3,15 | 137 2,81 | 139 2,20 | 141 1,69 | 142 1,47 | | 130 | 123 13,4 | 129 9,31 | 131 8,08 | 135 5,89 | 138 4,48 | 145 3,66 | 141 3,29 | 143 2,62 | 144 2,33 | 146 1,80 | 148 1,37 | | 135 | 128 13,6 | 134 9,48 | 136 8,26 | 140 6,05 | 143 4,63 | 145 3,81 | 147 3,08 | 148 2,75 | 150 2,17 | 152 1,68 | 153 1,46 | | 140 | 133 13,7 | 139 9,65 | 142 7,84 | 145 6,21 | 148 4,79 | 150 3,95 | 152 3,21 | 153 2,88 | 155 2,28 | 157 1,78 | 158 1,56 | | 145 | 138 13,9 | 144 9,82 | 147 8,01 | 151 5,87 | 153 4,94 | 155 4,10 | 157 3,35 | 158 3,01 | 160 2,40 | 162 1,88 | 164 1,45 | | 150 | 143 14,1 | 149 10.0 | 152 8,17 | 156 6,03 | 158 5,09 | 161 3,85 | 162 3,48 | 164 2,81 | 165 2,51 | 167 1,98 | 169 1,54 | | 155 | 148 14,2 | 154 10.1 | 157 8,33 | 161 6,18 | 164 4,79 | 166 3,98 | 167 3,61 | 169 2,93 | 171 2,35 | 173 1,85 | 174 1.63 | | 160 | 153 14,4 | 159 10.3 | 162 8,49 | 166 6,33 | 169 4,94 | 171 4,12 | 173 3,39 | 174 3,05 | 176 2,46 | 178 1,94 | 180 1.51 | | 165 | 158 14,5 | 164 10.5 | 167 8,64 | 171 6,48 | 174 5,08 | 176 4,25 | 178 3,51 | 179 3,17 | 181 2,56 | 183 2,04 | 185 1.60 | | 170 | 162 15,4 | 169 10.6 | 172 8,85 | 176 6,63 | 179 5,22 | 181 4,38 | 183 3,63 | 185 2,97 | 186 2,67 | 189 1,90 | 190 1.69 | | 175 | 167 15,6 | 174 10,8 | 177 8,95 | 181 6,77 | 184 5,35 | 186 4,51 | 188 3.75 | 190 3,08 | 192 2,50 | 194 1,99 | 196 1,57 | | 180 | 172 15,7 | 179 10,9 | 182 9.09 | 186 6,92 | 189 5,49 | 192 4,25 | 194 3.53 | 195 3,20 | 197 2,60 | 199 2,09 | 201 1.65 | | 185 | 177 15,8 | 184 11,1 | 187 9,24 | 191 7,06 | 195 5,18 | 197 4,37 | 199 3.64 | 200 3,31 | 202 2,70 | 204 2,18 | 206 1.73 | | 190 | 182 16,0 | 189 11,2 | 192 9,39 | 197 6,70 | 200 5,31 | 202 4,49 | 204 3.76 | 205 3,42 | 207 2,81 | 210 2,03 | 212 1,61 | | 200 | 192 16,3 | 199 11,5 | 202 9,67 | 207 6,97 | 210 5,57 | 212 4,74 | 214 3.99 | 216 3,31 | 218 2,72 | 220 2,21 | 222 1,77 | ## TABELLE 4 Bestimmung des angebotenen Überlaufverkehrs A als Funktion der Belastung Y, der Erreichbarkeit k und der Leitungszahl n ## TABLE 4 Determination of the
offered nonrandom traffic A as a function of the carried traffic Y, the accessibility k and the number of trunks n ## Parameter: - a) Accessibility Erreichbarkeit - b) Number of Trunks Leitungszahl - c) Offered Nonrandom Traffic (containing overflow and evtl. a part of random traffic) Angebotener Überlaufverkehr (enthält Überlauf- und evtl. Zufallsverkehr) - k = 6, 8, 10, 15, 20, 30, 50, 80, 110, k=n - n = 1, 2, ... 30, 32, ... 110, 115, ... 210 - A = 1, 2,...50, 52,...120,125,...190, 200 Erl - How to use the table - Ablesemethode | _n | Y i | n Erl | Z = k = | 2.0
10
210 | |-----|---------|--------------|---------|------------------| | A | * • • • | | | 210 | | 1 | | 1 | | • | | • | | | | • | | • | | 4 | | • | | A | 4 | - [Y] | | • | | ٠ | | | | • | | • | | | | • | | • | | | | • | | 200 | • | • | • | | | | | | | • | ## Contents: Inhalt: | _k | | Table | |----------|---|----------| | 6 | 140000000 | 4-02 | | 8
10 | 150.000 | 06
10 | | 15
20 | 0.000 | 14
18 | | 30 | 1 | 22 | | 50
80 | 100000000000000000000000000000000000000 | 26
29 | | 110 |) | 31 | | k= | n I | 32 | Table 4-01 Table 4-02 A = offered nonrandom traffic = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks 3 10 11 12 13 14 16 17 18 19 15 26 24 25 26 27 28 29 36 0,96 0,97 0,98 0,99 0,99 0,99 1,66 1,66 1,66 1,66 3,51 3,72 3,96 4,17 4,34 4,48 4,59 4,68 4,75 4,80 4,84 4,88 4,90 4,92 4,93 4,94 4,95 4,96 4,96 4,97 4,97 4,97 4,98 4,98 3.85 4.12 4.43 4.76 4.93 5.13 5.29 5.42 5.54 5.63 5.70 5.76 5.80 5.84 5.87 5.89 5.90 5.92 5.93 5.94 5.94 5.95 5.96 5.92 4.11 4.45 4.82 5.14 5.43 5.66 5.90 6.08 6.24 6.38 6.49 6.58 6.66 6.72 6.76 6.80 6.83 6.86 6.88 6.89 6.91 6.92 6.93 6.93 6.94 4.33 4.71 5.14 5.51 5.65 6.16 6.42 6.66 6.87 7.05 7.20 7.34 7.44 7.54 7.61 7.67 7.72 7.76 7.79 7.82 7.85 7.86 7.88 7.90 7.91 4.51 4.94 5.40 5.83 6.21 6.56 6.88 7.16 7.42 7.64 7.84 8.02 8.17 8.29 8.40 8.49 8.56 8.63 8.68 8.72 8.76 8.79 8.82 8.84 8.86 10 4.65 5.13 5.63 6.09 6.52 6.92 7.27 7.60 7.90 8.17 8.41 8.63 8.82 8.98 9.13 9.25 9.35 9.44 9.52 9.58 9.64 9.68 9.72 9.76 9.78 4,77 5,28 5,82 6,33 6,79 7,22 7,62 7,99 8,33 8,64 8,92 9,17 9,40 9,61 9,79 9,95 10,1 10,2 10,3 10,4 10,5 10,5 10,6 10,7 4,88 5,42 5,99 6,53 7,03 7,49 7,93 8,33 8,70 9,05 9,37 9,66 9,93 10,2 10,4 10,6 10,8 10,9 11,0 11,2 11,3 11,4 11,5 11,6 11 12 13 14 15 4.97 5.54 6.14 6.76 7.23 7.73 8.19 8.63 9.64 9.42 9.77 10.1 10.4 10.7 10.9 11.2 11.4 11.6 11.7 11.9 12.6 12.1 12.2 12.3 12.4 5.64 5.64 6.27 6.86 7.41 7.94 8.43 8.90 9.34 9.75 16.1 16.5 16.8 11.1 11.4 11.7 11.9 12.2 12.4 12.5 12.7 12.8 13.0 13.1 13.2 5.11 5.73 6.38 6.99 7.57 8.12 8.65 9.14 9.61 16.6 16.9 10.9 11.2 11.6 11.9 12.2 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.8 13.9 16 17 18 19 5.17 5.81 6.48 7.11 7.72 8.29 8.84 9.35 9.85 10.3 10.8 11.2 11.6 11.9 12.3 12.6 12.9 13.2 13.5 13.7 13.9 14.1 14.3 14.5 14.6 5,22 5,88 6,57 7,22 7,85 8,44 9,61 9,55 10,1 10,6 11,0 11,5 11,9 12,3 12,7 13,0 13,4 13,7 14,0 14,2 14,5 14,7 14,9 15,1 15,3 5,26 5,95 6,65 7,32 7,96 8,58 9,16 9,73 10,3 10,8 11,3 11,7 12,2 12,6 13,0 13,4 13,8 14,1 14,4 14,7 15,0 15,3 15,5 15,7 15,9 5,30 6,01 6,72 7,41 8,07 8,76 9,31 9,89 10.4 11.6 11.5 12.0 12.5 12.9 13.3 13.7 14.1 14.5 14.8 15.2 15.5 15.7 16.0 16.3 16.5 5,34 6,66 6,79 7,49 8,16 8,81 9,43 10,0 10,6 11,2 11,7 12,2 12,7 13,2 13,6 14,0 14,5 14,8 15,2 15,6 15,9 16,2 16,5 16,8 17,0 21 22 23 24 25 10.8 11.3 11.9 12.4 12.9 13.4 13.9 14.3 14.8 15.2 15.6 15.9 16.3 16.6 17.0 17.3 17.5 11,5 12,1 12,6 13,1 13,6 14,1 14,6 15,6 15,5 15,9 16,3 16,7 17,6 17,4 17,7 18,6 11.6 12.2 12.8 13.3 13.9 14.4 14.8 15.3 15.8 16.2 16.6 17.0 17.4 17.8 18.4 18.4 12.4 12.9 13.5 14.6 14.6 15.1 15.6 16.6 16.5 16.9 17.3 17.7 18.1 18.5 18.8 12,5 13,1 13,7 14,2 14,8 15,3 15,8 16,3 16,8 17,2 17,6 18,1 18,5 18,8 19,2 26 27 28 29 30 13,2 13,8 14,4 15,6 15,5 16,6 16,5 17,6 17,5 17,9 18,4 18,8 19,2 19,6 14.0 14.6 15.1 15.7 16.2 16.7 17.2 17.7 18.2 18.6 19.1 19.5 19.9 14.1 14.7 15.3 15.9 16.4 16.9 17.5 18.0 18.4 18.9 19.4 19.8 20.2 14,9 15,4 16,0 16,6 17,1 17,7 18,2 18,7 19,2 19,6 20,1 20,5 15.6 16.2 16.8 17.3 17.9 18.4 18.9 19.4 19.9 20.3 20.8 31 32 33 34 35 15,7 16,3 16,9 17,5 18,6 18,6 19,1 19,6 20,1 26,6 21,1 16,5 17,1 17,6 18,2 18,8 19,3 19,8 20,3 20,8 21,3 16.6 17,2 17,8 18,4 18,9 19,5 20,6 20,6 21,1 21,6 17,3 17,9 18,5 19,1 19,7 20,2 20,8 21,3 21,8 18,1 18,7 19,3 19,8 20,4 21,0 21,5 22,0 36 37 38 39 18,2 18,8 19,4 20,0 20,6 21,1 21,7 22,2 19,0 19,6 20,2 20,7 21,3 21,9 22,4 19,1 19,7 20,3 20,9 21,5 22,0 22,6 19,8 20,4 21,5 21,6 22,2 22,8 20.6 21.2 21.8 22.4 22.9 41 42 43 44 45 20.7 21.3 21.9 22.5 23.1 21,5 22,1 22,7 23,3 21,6 22,2 22,8 23,4 22,3 22,9 23,6 23,1 23,7 46 23,2 23,8 47 24,6 48 49 50 24,1 Y in Erl Z = 2.0 k = 6 | A = offered nonrandom traffic Y = carried traffic | Y in Erl | Z = 2.0 | k = 6 | |---|----------|---------|-------| | Z = variance - to - mean ratio of the offered tr
k = accessibility | affic | | | | n = number of trunks | | | | | | | | | | | | | | | n
A | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 96 | |----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | 1
2
3
4
5 | 3,99
4,98 | | 4,99 | 4.00 | 4.00 | 4,99 | 6
7
8
9
10 | 5,97
6,95
7,92
8,88 | 5,97
6,96
7,94
8,90 | 5,98
6,96
7,95
8,92 | 5,98
6,97
7,95
8,93 | 5,98
6,97
7,96
8,94 | 5,98
6,97
7,96
8,94 | 5,98
6,98
7,97
8,95 | 6,98
7,97
8,95 | 6,98
7,97
8,96 | 6,98
7,97
8,96 | 8.96 | 7,98 | 7,98 | 7,98 | 7,98 | 7,98 | 8.08 | 8.08 | 0 0 | 3
3 8,98
3 1 0 ,0 | 8,98 | 8,98 | 8,98 | 48.8 | 1.0 6 | | | | | | | 13 | 10,7
11,6
12,5
13,3 | 10,8
11,7
12,6
13,5 | 10,8
11,8
12,7
13,6 | 10,9
11,8
12,7
13,6 | 10,9
11,8
12,8
13,7 | 15,9
11,8
12,8
13,7 | 10,9
11,9
12.8
13.8 | 10,9
11,9
12,8
13.8 | 10,9
11,9
12,9 | 10,9
11,9
12,9
13.8 | 10,9
11,9
12,9 | 10,9
11,9
12,9 | 10,9
11,9
12,9 | 10,9
11,9
12,9 | 11,0 | 11,0 | 11,0 | 11,0
11,9
12,9 | 11,0 | 11,0
12,0
12,9
12,9
13,9 | 11,6
12,6
12,9 | 11.6
12.6
12.9 | 11,6
12,6
12,9 | 11,6
12,6
13,6 | 11,0
12,0
13,0 | 11,6
12,6
13,6 | 11.0
12.0
13.6 | 12,6
13,6 | 12,6 | 12.0 | | 19 | 14,9
15,6
16,3
16,9 | 15,1
15,9
16,6
17,3 | 15,3
16,1
16,8
17,5 | 15,4
16,2
17,5
17,8 | 15,5
16,3
17,1
17,9 | 15,5
16,4
17,3
18,1 | 15,6
16,5
17,3 | 15,6
16,5
17,4
18.3 | 15,7
16,6
17,5 | 15,7
16,6
17,6 | 15,7
16,7
17,6 | 15.8
16.7
17.6 | 15,8
16,7
17,7 | 15,8
16,8
17,7 | 15,8
16,8
17,7 | 15,8
16,8
17,8 | 15,9
16,8
17,8 | 15,9
16,8
17,8 | 15,9 | 9 15,9
8 16,9
8 17,8
8 18,8
7 19,7 | 15,9
16,9
17,8 | 15,9
16,9
17,8 | 15,9
16,9
17,9 | 21
22
23 | 18,1
18,6
19,1
19,5 | 18,5
19,1
19,6
20,1 | 18,9
19,5
20,1
20,6 | 19,2
19,8
20,4
21,6 | 19,4
20,1
20,8 | 19,6
20,3
21,0 | 19,8
20,6
21,3 | 19,9
20,7
21,5 | 20,1 | 20,2
21.6
21.8 | 20,3
21,1
21,9 | 25,3 21,2 22,1 | 20,4 | 20.5 | 26,5
21,4
22,3 | 20,6 | 20,6 | 20,6 | 20,: | 7 25,7
6 21,6
5 22,6
4 23,5
3 24,4 | 20,7 | 26,7
21,7
22,6 | 20,8
21,7
22,7 | 25,8
21,7
22,7 | 20.8
21.7
22.7 | 25.8
21.8
22.7 | 25.8
21.8
22.7 | 25,8
21,8
22,8 | 20,8
21,8
22,8 | 20,8
21,8
22,8 | | 26
27
28
29
30 | 20,3
20,7
21,0
21,4 | 21,0
21,4
21,8
22,2 | 21,6
22,1
22,5
22,9 | 22,1
22,6
23,1
23,5 | 22,5
23,1
23,6
24.1 | 22,9
23,5
24,6 | 23,3
23,9
24,5 | 23,6
24,2
24,8 | 23,9
24,5
25,2 | 24,1
24,8
25,5 | 24.3
25.0
25.7 | 24,5
25,2
26,0 | 24,6
25,4
26,2 | 24,8
25,6
26,3 | 24,9
25,7
26,5 | 25,8
25,8
26,6 | 25,1
25,9
26,8 | 25,2
26,6
26,9 | 25, | 2 25,3
1 26,2
3 27,1
8 27,9
6 28,8 | 25,4
26,2
27,1 | 25,4
26,3
27,2 | 25,4
26,4
27,3 | 25,5
26,4
27,3 | 25,5
26,4
27,4 | 25,6
26,5
27,4 | 25.6
26.5
27.4 | 25,6
26,5
27,5 | 25,6
26,6
27,5 | 25,7
26,6
27,5 | | 31
32
33
34
35 | 22.0
22.3
22.5
22.8 | 22,8
23,1
23,4
23,7 | 23,6
24,0
24,3
24,6 | 24,3
24,7
25,6
25,4 | 24,9
25,3
25,7
26,1 | 25,5
25,9
26,4
26.8 | 26.5
26.5
27.6 | 26,5
27,6
27,5 | 26,9
27,5
28,6 | 27,3
27,9
28,5 | 27,7
28,3
28,9 | 28,6
28,6
29,2 | 28,3
28,9
29,6 | 28,5
29,2
29,9 | 28,8
29,5
30,2 | 29,6
29,7
36,4 | 29,1
29,9
30,6 | 29,3
30,1
30,8 | 29,
30,
31, | 4 29,6
2 30,4
5 31,2
8 31,9
5 32,7 | 29.7
30.5
31.3 | 29.8
30,6
31,5 | 29,9
30,7
31,6 | 30,0 | 30,0
30,9
31,8 |
30,1
31,0
31,9 | 36.2
31.1
31.9 | 30,2
31,1
32,6 | 35,3
31,2
32,1 | 36,3
31,2
32,1 | | 36
37
38
39
40 | 23,2
23,5
23,7
23,9 | 24,2
24,5
24,7
24,9 | 25,2
25,4
25,7
25,9 | 26,6
26,6
26,8 | 26,8
27,1
27,4
27,7 | 27,5
27,9
28,2
28,5 | 28,2
28,6
28,9 | 28,8
29,2
29,6 | 29,4
29,8
30,2 | 30,6
30,4
30,9 | 30,5
30,9
31,4 | 30,9
31,4
31,9 | 31,3
31,9
32,4 | 31,7
32,3
32,9 | 32,1
32,7
33,3 | 32,4
33,6
33,6 | 32,7
33,4
34,6 | 33,6
33,6
34,3 | 33, | 2 33,4
9 34,2
6 34,8
2 35,5
9 36,2 | 33,6
34,4
35,1 | 33,8
34,6
35,3 | 34,8
34,8
35,5 | 34,1
34,9
35,7 | 34,3
35,1
35,9 | 34,4
35,2
36,6 | 34,5
35,3
36,1 | 34,6
35,4
36,3 | 34,7
35,5
36,4 | 34,8
35,6
36,5 | | 41
42
43
44
45 | 24,2
24,4
24,6
24,7 | 25,3
25,5
25,7
25,9 | 26,4
26,6
26,8
27,0 | 27,3
27,6
27,8
28,0 | 28,2
28,5
28,7
29,0 | 29,1
29,4
29,6
29,9 | 29,9
30,2
30,5 | 30,7
31,6
31,3 | 31,4
31,7
32,1 | 32,1
32,4
32,8
33,1 | 32,7
33,1
33,5 | 33,3
33,7
34,1 | 33,9
34,3
34,7 | 34,4
34,9
35,3 | 34,9
35,4
35,8 | 35,3
35,8
36,3 | 35,7
36,3
36,8 | 36,1
36,7
37,3 | 36, | 36,8
37,4
738,6
238,6
339,2 | 37,1
37,8
38,4 | 37,4
38,1
38,7 | 37,7
38,3
39,6 | 37,9
38,6
39,3 | 38,1
38,8
39,5 | 38,3
39,6
39,8 | 38,5
39,2
40,0 | 38,7
39,4
40,2 | 38,8
39,6
46,4 | 39,0
39,7
40,5 | | 48
49 | 25,0
25,2
25,3
25,4 | 26,2
26,4
26,5
26,7 | 27,4
27,5
27,7
27,9 | 28,4
28,6
28,8
29,6 | 29,4
29,6
29,8 | 30,4
30,6
30,8 | 31.3
31.5
31.8 | 32,2
32,4
32,7 | 33,6
33,6 | 33,8
34,1
34,4 | 34,5
34,9
35,2 | 35,3
35,6
36,0 | 35,9
36,3
36,7 | 36,6
37,0
37,4 | 37,2
37,6
38,6 | 37,8
38,2
38,6 | 38,3
38,8
39,2 | 38,8
39,3
39,8 | 39,3
39,8 | 3 39,7
3 46,3
3 46,8
3 41,3
2 41,7 | 40,1 | 40,5 | 40,9
41,5
42,1 | 41,2
41,8
42,4 | 41,5
42,2
42,8 | 41,8
42,5
43,1 | 42.1
42.8
43.4 | 42,3
43,0
43,7 | 42,6
43,3
44,6 | 42,8
43,5
44,2 | Table 4 - 03 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 k = 6 | A | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 90 | |---------------------------------|----|--------------|------|----------------------|----------------------|------|----------------------|--|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|--|----------------------|---|----------------| | 52
54
56
58
60 | | 27,1
27,3 | 28,8 | 29,8
30,0
30,3 | 36,9
31,2
31,5 | 32.5 | 33.4 | 34.6 | 35,5
35,9 | 36,4
36,9 | 36.9
37.4
37.8 | 37.8
38.3
38.8 | 38,6
39,2
39,7 | 39,4
40,0
40,5 | 46,2
46,8
41,4 | 40,9 | 41,6
42,3
43,0 | 42,3
43,6
43,7 | 42.9
43.7
44.4 | 43:5
44:3
45:1 | 44,1
45,6
45,8 | 44.7
45.6
46.4 | 45,2
46,1
47,0 | 44.7
45.7
46.7
47.6
48.4 | 46,2
47,2
48,1 | 46,6
47,6
48,6 | 47.6
48.1
49.1 | 47,4
48,5 | 47,8
48,9
50.0 | 48
49
50 | | 62
64
66
68
70 | | | | | | 33.5 | 34.7
34.9
35.2 | 35.8
36.1
36.4 | 36.9
37.2
37.5 | 38,6
38,4
38,7 | 39,1
39,4
39,8 | 45.1
45.5
45.9 | 41.5
41.5 | 42.5
42.5 | 43,6
43,4
43,9 | 43,9 | 44,7
45,3
45,8 | 45,6
46,1
46,7 | 46,4
47,6
47,5 | 47,2
47,8
48,4 | 47,9
48,6
49,2 | 48.7
49.3
50.0 | 49,4
50,1 | 49.3
50.0
50.8
51.5
52.1 | 56,7
51,5 | 51,3
52,1 | 51,9
52,7 | 52,5
53,3 | 53.0
53.9
54.8 | 53;
54; | | 72
74
76
78
80 | | | | | | | | 36.9 | 38,4 | 39.6
39.8
40.1 | 40.7 | 41,9
42,2
42,5 | 43,0
43,3
43,6 | 44.1
44.4
44.7 | 45,1
45,5
45,8 | 46,1 | 47,1
47,5
47,9 | 48,1
48,5
49,6 | 49,1
49,5
50.0 | 50.0
50.5
50.9 | 50,9
51,4
51,9 | 51.7
52.3
52.8 | 52,6
53,1
53,7 | 52.8
53.4
54.6
54.5
55.1 | 54,2
54,8
55,4 | 55.6
55.6 | 55.7
56.4
57.6 | 56,4
57,1
57.8 | 57.1
57.8
58.5 | 57
58
59 | | 82
84
86
88
95 | | | | | | | | | | | | 43.3 | 44.5
44.7
45.0 | 45,6
45,9
46,2 | 46.8
47.1
47.4 | 47,9
48,2
48,5 | 49,5
49,3
49,7 | 50,1
50,4
50,8 | 51,2
51,5
51,9 | 52.2
52.6
52.9 | 53,2
53,6
54,0 | 54.2
54.6
55.0 | 55,1
55,6
56,0 | 55,6
56,1
56,5
57,0
57,4 | 57.6
57.5
57.9 | 57,9
58,4
58,9 | 58,7
59,3
59,8 | 59,6
60,1
60,7 | 60,4 | 61
61
62 | | 92
94
96
98
100 | | | | | | | | در د | | | 13:
23: | | | 46,7 | 48,1 | 49,3
49,6
49,8 | 50,5
50,8
51,1 | 51,7
52,6
52,3 | 52,8
53,1
53,4 | 54.0
54.3
54.6 | 55,1
55,4
55,7 | 56.1
56.5
56.8 | 57.2
57.6
57,9 | 57.8
58.2
58.6
59.0
59.3 | 59,2
59,6
60,6 | 60,2
60,6
61,0 | 61,2
61,6
62,1 | 62,1
62,6
63,0 | 63,1
63,5
64,0 | 6 4
6 4 | | 102
104
106
108
110 | | | | | | | | | | | | | | | | | 51,6 | 53,6 | 54,2
54,5 | 55.4
55.7
56.0 | 56,6
56,9
57,2 | 57,8
58,1
58,3 | 58,9
59,2
59,5 | 59,7
60,0
60,3
60,6
60,9 | 61,1
61,4
61,8 | 62,2
62,5
62,9 | 63.2
63.6
64.5 | 64,3
64,6
65,0 | 65,3
65,7
66,1 | 66
67 | | 112
114
116
118
120 | 56,4 | 57,9 | 59,1
59,4 | 60,3
60,6
60,8 | 61,2
61,5
61,8
62,1
62,3 | 62,7
63,0
63,2 | 63.8
64.1
64.4 | 65.0
65.3
65.6 | 66,1
66,4
66,7 | 67,1
67,5
67,8 | 6 8
6 8 | | 125
130
135
140
145 | 62,9 | 64,1 | | 66.6
67.2
67.8 | 68,4
69,0 | 69,6 | 70
71 | | 150
155
160
165
170 | | | | | -41.
143. | | | | مانده میشدند
مانده میشدند
از این میشدند
میشدند میشدند | | | | | | | | | | | | | | | | | | ر مان المستردان
الوامل المستردان
الموامل المستردان | | المسارية المسارية
المساوية المسارية
المسارية المسارية | | | 175
180
185
190
200 | | | | | | | | | | | 50
51:
33: | Y in Ert A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Y in Erl Z = 2.0 k = 6 Table 4 - 05 | n
A | 92 94 96 98 100 102 194 106 108 116 | 115 - 126 | |---------------------------------|---|---| | 52
54
56
58
60 | 47.2 47.5 47.7 48.0 48.2 48.4 48.6 48.8 48.9 49.1 48.5 48.8 49.1 49.3 49.6 49.8 50.5 50.5 50.6 49.7 50.0 50.3 50.6 50.9 51.2 51.5 51.7 51.9 52.1 50.8 51.2 51.2 52.5 52.8 53.1 53.3 53.6 52.0 52.4 52.8 53.1 53.5 53.8 54.1 54.4 54.7 55.0 | 51.1 51.4
52.6 53.0
54.1 54.6 | | 62
64
66
68
70 | 53,0 53,5 53,9 54,3 54,7 55.0 55.4 55,7 56,6 56,3 54.0 54.5 55.0 55.4 55.8 56.2 56.6 56.9 57.3 57.6 55.0 55.5 56.0 56.5 56.9 57.3 57.7 58.1 58,5 58.5 59.9 56.5 57.0 57.5 57.9 58.4 58.8 59.2 59.6 60.0 56.8 57.4 57.9 58.4 58.9 59.4 59.9 60.3 60.8 61.2 | 58.3 58.9
59.6 60.3
60.9 61.6 | | 72
74
76
78
80 | 57,6 58,2 58,8 59,4 59,9 66.4 66.9 61,4 61,8 62,3 58,4 59,1 59,7 66.3 66.8 61,4 61,9 62,4 62,9 63.3 59,2 59,9 60,5 61,5 61,1 61,7 62,3 62,8 63,3 65,9 64,5 69,9 60,6 61,4 62,0 62,5 63,1 63,7 64,3 64,8 65,3 60,6 61,4 62,0 62,7 63,4 64,6 64,6 65,2 65,7 66,3 | 68.8 65.4
68.5 66.5
66.5 67.6 | | 82
84
86
88
90 | 61,3 62,1 62,8 63,5 64,1 64,8 65,4 66,0 66,6 67,2 62,0 62,7 63,5 64,2 64,9 65,5 66,2 66,8 67,4 68,0 62,6 63,4 64,1 64,9 65,6 66,3 67,0 67,6 68,3 68,3 68,6 63,2 64,0 64,8 65,5 66,3 67,0 67,7 68,4 69,1 69,8 70,5 63,8 64,6 65,4 66,2 66,9 67,7 68,4 69,1 69,8 70,5 | 69.4 70.7
70.3 71.7
71.2 72.6 | | 92
94
96
98
100 | 64.3 65.2 66.0 66.8 67.6 68.3 69.1 69.8 70.5 71.2 64.9 65.7 66.6 67.4 68.2 69.0 69.7 70.5 71.2 71.9 65.4 66.3 67.1 68.0 68.8 69.6 70.4 71.2 71.9 72.6 65.9 66.8 67.7 68.5 69.4 70.2 71.0 71.8 72.6 73.3 66.3 67.3 68.2 69.0 69.9 70.8 71.6 72.4 73.2 74.0 | 73.6 75.2
74.4 76.0
75.1 76.8 | | 102
104
106
108
110 | 66.8 67.7 68.7 69.6 76.4 71.3 72.2 73.6 73.8 74.6 67.2 68.2 69.1 76.1 71.6 71.8 72.7 73.6 74.4 75.2 67.7 68.7 69.6 70.5 71.9 72.4 73.2 74.1 75.0 75.6 68.1 69.1 70.1 71.6 71.9 72.9 73.8 74.6 75.5 76.4 68.5 69.5 70.5 71.5 72.4 73.3 74.3 75.2 76.0 76.9 | 77,1 79,0
77,8 79,7
178,4 80,3 | | 114
116
118 | 68.9 69.9 70.9 71.9 72.9 73.8 74.7 75.7 76.6 77.4 69.3 70.3 71.3 72.3 73.3 74.3 75.2 76.1 77.1 78.0 69.6 70.7 71.7 72.7 73.7 74.7 75.7 76.6 77.5 78.5 78.5 78.3 71.1 72.1 73.1
74.1 75.1 76.1 77.1 78.0 78.9 70.3 71.4 72.5 73.5 74.5 75.6 76.5 77.5 78.5 79.4 | 80,1 82,2
 80,7 82,6
 81,2 83,3 | | 136
135
146 | 71,2 72,3 73,4 74,4 75,5 76,5 77,6 78,6 79,6 80,5 71,9 73,1 74,2 75,3 76,4 77,5 78,5 79,6 80,6 81,6 72,6 73,8 75,0 76,1 77,2 78,3 79,4 80,5 81,5 82,6 73,3 74,5 75,7 76,8 78,0 79,1 80,2 81,3 82,4 83,5 73,9 75,1 76,3 77,5 78,7 79,9 81,0 82,1 83,3 84,4 | 84.1 86.4
85.1 87.6
88.4 88.6 | | 150
155
160
165
170 | 75.7 77.0 78.2 79.4 80.6 81.7 82.9 84.0 85.2 77.6 78.8 80.6 81.2 82.4 83.6 84.8 85.9 80.6 81.9 83.1 84.3 85.5 86.6 83.7 84.9 86.1 87.3 85.5 86.7 88.6 | 88,7 91,5
89,5 92,3
5,96,3 93,1 | | 175
180
185
190
200 | 38.6 | 5 91.6 94.6
92.2 95.3
92.8 95.9
96.5 | A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 1,7 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |------------------|---|---|--|---|-----|---------|---|----------------------|----------------------|----------------------|--------------------------------------|----------------------|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|--------------------------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|-------------------------| | 1 2 3 4 5 | | | ر در | | -3. | <u></u> | | 1,95
2,81
3,56 | 1,96
2,85
3,64 | 2,76 | 1,98
2,93
3,82
4,61 | 2,96 | 2,97 | 2,98 | 3,96 | 3.97 | 3,98 | 3,98
4,96 | 3,99
4,97 | 3,99 | 4;98 | 4,99 | 4,99 | | | | | | | | | 6
7
8
9 | | | | | | | | 5,11
5,45
5,73 | 5,36
5,75
6,58 | 5,64
6,69
6,48 | 5,30
5,90
6,40
6,84
7,21 | 6,11
6,67
7,16 | 6,29
6,91
7,44 | 6,43
7,10
7,69 | 6,56
7,28
7,92 | 6,66
7,42
8,11 | 6,74
7,54
8,27 | 6,86
7,64
8,41 | 6.84
7.71
8.52 | 6,88
7,78
8,62 | 6.91
7.82
8.69 | 6,93
7,86
8,76 | 6.94
7.89
8.81 | 6.96
7.91
8.84 | 6,96
7,93
8,88 | 6,97
7,95 | 7,95 | 7:96 | 7;99
8:05 | 7 7,9
5 8.9 | | 1 2 3 4 5 5 | | | | | | | | 6,32 | 6.79
6.96
7.11 | 7:32
7:52
7:70 | 7,53
7,85
8,69
8,26
8,44 | 8,25
8,53
8,78 | 8,67
8,99
9,26 | 9.56
9.41
9.72 | 9,42
9,81
10,2 | 10.2 | 10.0 | 10,3
10,8
11,3 | 10,5
11,1
11.6 | 15.8 | 11,6 | 11.1 | 11,3 | 11:4 | 11,5
12,3 | 11.6 | 11,6
12,5 | 12,6 | 11.8 | 3 11,
5 12, | | 6
7
8
9 | | | | | | | | 6,92 | 7:47
7:56
7:64 | 8,12
8,23
8,33 | 8,66
8,75
8,88
9,06
9,11 | 9,35
9,56
9,64 | 9,92
10,1
16,3 | 10,5
10,7
10,8 | 11,0 | 11,5 | 11,9
12,2
12,5 | 12.4
12.7
13.0 | 12,8
13,1
13,4 | 13,2
13,5
13,9 | 13,6 | 13.9
14.3
14.7 | 14.2
14.7
15.1 | 14.5
15.0
15.4 | 14,8
15,3
15,8 | 15.0
15.6
16.1 | 15.3
15.9 | 15,5
16,1 | 15.7 | 7 15,
3 16,
9 17, | | | | | | | | | | | | | | | 16,5 | | 11,9 | 12,5
12,7
12,8 | 13,1
13,3
13,4 | 13,6
13,8
14,0 | 14,2 | 14.7 | 15.2
15.4
15.7 | 15.7 | 15,8
16,1
16,4
16,7
16,9 | 16,6
16,9
17,2 | 17,6
17,3 | 17.4 | 17.7
18.1
18.5 | 18,1
18,5
18,9 | 18,4
18,9 | 18
19
19 | | | | | | | | | | | | | | | | | | 13,1 | | 14,5 | 15,1
15,2
15,4 | 15.7
15.8
16.6 | 16,3
16,4
16,6 | 16.8
17.6
17.2 | 17,2
17,4
17,6
17,8 | 17,9
18,1
18,3 | 18,4
18,7
18,9 | 18.9
19.2
19.4 | 19,4
19,7
19,9 | 19,9
20,2
20,4 | 20,6 | 20 21 21 | | | | | | | | | | | | | Ž | | | | | | | | 15,6 | 16,4 | 17,0
17,2 | 17.7
17.8
17.9 | 18,1
18,3
18,4
18,6
18,7 | 18,9
19,0
19,2 | 19,5
19,6
19,8 | 20,6
20,2
20,4 | 25,6
25,8
21,5 | 21.2
21.4
21.6 | 21.7
21.9
22.1 | 22 | 18,2 | | 19,6 | 20,2
20,4
20,5 | 20.7
20.9
21.0
21.2
21.3 | 21.5
21.6
21.8 | 22,1
22,3
22,4 | 22.7
22.9
23.0 | 23
23
23 | | | | | | | | | | | | | jā.
Jāi | | ر المساورة ا
المساورة المساورة المساور | | | | | | | | 0.7
27.40
27.50 | | | | 20,7 | 21,4
21,5
21,6 | 22.2 | 22,8
23,6
23,1 | 23,5 | 24,
24, | 5 | | 23,3 | 24.6
24.1
24.2 | 24, | Y in Erl k = 8 Z = 2.0 Table 4-06 A = offered nonrandom traffic Y in Erl Z = 2.0 k = 8 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | | 32 | 34 | 3 | 56 | 38 | 46 | 42 | 4. | 1 | 46 | 48 | 56 | 52 | 54 | 56 | 5 | 58 | 60 | 62 | 64 | 66 | 5 (| 58 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |----------------------|--|--------------------------|------------------------------|--------------------------|------------------------------|------------------------------|----------------------|------------------------------|----------------------|--------------------------|------------------------------|----------------------|------|-------------------|------------------------------|----------------------|-------------------|----------------------|----------------------|-------------------|------------------------------|----------------------|-------------------|----------------------|----------------------|------|------|----------------------------|--|----------------------|----------------------|----------------------|-------------------|----------------------------| | | 7,98
8,97 | 8.9 | L1
L2
L3
L4 | 9,94
10,9
11,9
12,8
13,7
14,5 | 10,
11,
12,
13, | 9 11
9 11
8 12
8 13 | 1,0
1,9
2,9 | 11,0
11,9
12,9
13,9 | 12,0
12,9
13,9 | 12,9 | 12
13
13 | 6 1
9 1 | 4,6 | 14,0 | 14,6 | 14,6 | 15,0 | 5 | L7
L8
L9 | 15,3
16,1
16,9
17,5
18,2 | 16,
17,
17, | 3 10
1 17
9 18 | 5,5
7,3
3,1 | 16,6
17,5
18,3 | 16,7
17,6
18,5 | 16,8 | 16
7 17
5 18 | 8 1 | 6,9
7,8
8,7 | 16,9
17,8
18,8 | 16,9
17,9
18,8 | 16,9 | 16,
17, | 9 16.
9 17.
9 18. | ,9 1
,9 1 | 7,6
7,9
8,9 | 17,9
18,9 | 18,0 | 18,0 | 19 | ,0 1'
,9 1' | 9,6
9,9 | 20,0 | 26,0 | | | | | | | | | | | 3 | 19,8 | 19,
20,
20, | 8 20
4 20
9 20 | 5,2
5,9 | 20,6
21,3
21,9 | 20,9 | 21,9 | 21
22
3 22 | .3 2
.1 2
.9 2 | 1,4
2,3
3,1 | 21,5 | 21,6
22,5
23.4 | 22,0 | 21, | 7 21.
7 22.
6 23 | ,8 2
,7 2 | 1,8 | 21,8
22,8 | 21,9 | 21, | 9 21
9 22
9 23 | ,9 2
,9 2 | 1,9 | 22,9 | 21,9 | 21,9 | 21,9 | 21,9 | 22,0 | 22,9 | 0.4 0 | . 7 . | 24, | 24, | | 8 | 21,9 | 22, | 7 23 | 3,4
3,8 | 24,1
24,5 | 24,7 | 25,2 | 2 25 | .6 2 | 6,0
6,7 | 26,3 | 26,6 | 26.9 | 27, | 2 26.
5 27.
8 28 | ,3 2
,2 2
,6 2 | 7,3 | 26,5
27,4
28,3 | 27,5 | 26, | / 26
5 27
5 28 | ,72
,62 | 6.7
7.7
8.6 | 26,8 | 26,8 | 26,8 | 26,8 | 26,9 | 25,9
26,9
27,8
27,8
28,8 | 26,9 | 26,9 | 26,9 | 26, | 26, | | 12345 | 23,4 | 24, | 4 2!
7 2! | 5,3
5,6 | 26,1
26,5 | 26,9 | 27, | 2 2/
7 28
1 28 | .8 2
.3 2 | 8,9 | 28,9 | 30,6 | 30, | 30, | 1 30
8 31
4 31 | ,4 3
,1 3
,8 3 | 1.4 | 30,8
31,6 | 31,6 | 31, | 1 31
5 32
8 32 | ,23
,13 | 1,3
2,2 | 31,4 | 31,5 | 31,5 | 31, | 31,6 |
30,7
31,7
32,6
33,6 | 31,7 | 31,7 | 31,8 | 31, | 31, | | / O 🕍 | 24,6 | 25, | 7 2 9 2 | 6,7
7,0 | 27,7
28,6 | 28,6 | 29, | 2 30
5 36
9 36 | ,0 3
,4 3
,7 3 | 1,2 | 31,9 | 32,6 | 33, | 33,
33,
34, | 2 33
8 34
3 34 | ,7 3
,3 3
,8 3 | 4,1 | 34,5
35,1 | 34,8
35,5 | 35,
35, | 1 35
8 36
5 36 | ,3 3
,1 3
.8 3 | 5,5
6,3
7.6 | 35,7
36,5 | 35,8 | 36,6 | 36, | 36, | 35,4
2 36,3
37,2
38,6
38,6 | 36,4 | 36,4 | 36,5 | 36; | 36,
537, | | 1 2 3 4 5 | 25,2
25,3
25,5
25,6 | 26,
26,
26, | 3 2
5 2
7 2
9 2 | 7,4
7,6
7,8 | 28,5
28,7
28,9
29,1 | 29.5
29.7
30.0
30.2 | 30,3
30,3
31,0 | 7 31
7 31
3 32
3 32 | ,4 3
,7 3
,6 3 | 2,2
2,6
2,9 | 33,1
33,4
33,8 | 33,8 | 34,6 | 35,
35,
36, | 2 35
7 36
1 36
5 37 | ,9 3
,3 3
,8 3 | 6,4
7,0
7,4 | 36,9
37,5
38,6 | 37,4
38,6
38,6 | 37,
38,
39, | 8 38
4 38
5 39 | ,2 3
,8 3
,4 3 | 8,5
9,2
9,8 | 38,8
39,5
40,1 | 39,0
39,7
40,4 | 39,2 | 39,4 | 4 39.6
2 40.4
5 41.2 | 39,7
40,6
241,4
42,2
742,9 | 39,9
40,7
41,5 | 40.0
40.8
41.7 | 40,1 | 40, | 40,
L 41,
9 42, | | 18 | 25,9
26,1
26,2
26,3 | 27,
27,
27,
27, | 2 2 2 3 2 5 2 5 6 2 1 | 8,4
8,6
8,7
8,9 | 29,5
29,7
29,9
30,1 | 30,7
30,9
31,1 | 31,32,032,32,32,4 | 7 32
3 33
2 33
4 33 | .8 3
.0 3
.3 3 | 3,8
4,6
4,3
4,5 | 34,7
35,6
35,3
35,5 | 35,6
35,9
36,2 | 36.8 | 37,
37,
38, | 3 38
7 38
6 38
4 39 | ,1 3
,5 3
,8 3 | 8,8
9,2
9,6 | 39,5
39,9
46,4 | 40,1
40,6
41,5 | 40,
41,
41, | 7 41
2 41
7 42
1 42 | ,2 4
,7 4
,2 4 | 1,6 | 42,1
42,7
43,2 | 42,5 | 42,8 | 43, | 1 43,4
3 44,5
3 44,6 | 43,7 | 43,9 | 44,1
44,9
45,6 | 44,3
45,1
45,9 | 44,
45,
46, | 5 44,1
8 45,4
1 46,2 | Table 4-08 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Y in Erl Z = 2.0 k = 8 | n
A | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 96 | |----------------------------|------|------|---|---|----------------------|----------------------|----------------------|--------------|----------------------|----------------------|----------------------|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | 52
54
56
58
60 | 26.7 | 20,2 | 29,8
29,8
30,6 | 30,8
31,1
31,4 | 32,1
32,4
32,7 | 33,6 | 34,5
34,8
35,2 | 35.6
36.6 | 36,7
37,2
37,5 | 37.8
38.3
38.7 | 38.8
39.3
39.8 | 39,8
45,4
45,8 | 40,8
41,4
41,9 | 41.7 | 42,6
43,2
43,8 | 44.1 | 44,2
44,9
45,6 | 44,9 | 45,6
46,4
47,2 | 46:2
47:1
47:9 | 46,9 | 47.4
48.4 | 46,9
48,0
49,0
49,0
50,8 | 48.5 | 48,9
50.0 | 49,3
50,5 | 49,7
51,0 | 50.1
51.4
52.6 | 50.4
51.7
53.6 | 50,7
52,1
53,4 | | 62
64
66
68
70 | | | | 31,8
32.6 | 33,4 | 34.7
35.6
35.2 | 36,5
36,5 | 37.5 | 38,6
38,9
39,2 | 39.8
40.1
40.4 | 41.5 | 42.1
42.5
42.9 | 43:3
43:7
44:0 | 44.8
44.8
45.2 | 45,4
45,9
46,3 | 46,4 | 47.4
47.9
48.4 | 48,3
48,9
49,4 | 49,2
49,8
50,3 | 50.1
50.7
51.3 | 50.9
51.5
52.2 | 51.7
52.4
53.6 | 51,6
52,4
53,2
53,9
54,5 | 53:2
53:9
54:7 | 53,8
54,7
55,4 | 54.5
55.4
56.2 | 55.1
56.0
56.9 | 55,7
56,7
57,5 | 56,3
57,3
58,2 | 56,8
57,8
58,8 | | 72
74
76
78
80 | | | | | | | 37.0
37.2 | 38,6 | 39,9
40,1
40,4 | 41.7 | 42,5 | 43.8
44.1
44.4 | 45,4
45,4
45,7 | 46,3 | 47,5
47,8
48,1 | 48,6 | 49.7
50.1
50.5 | 50,8
51,2
51,6 | 51.8
52.3
52.7 | 52:8
53:3
53:8 | 53.8
54.3
54.8 | 54,8
55,3 | 55,1
55,7
56,3
56,8
57,3 | 56.6
57.2
57.7 | 57,5
58,1
58,7 | 58.3
59.6 | 59.1
59.8
65.4 | 59,9
60,6 | 60,7
61,4
62,1 | 61,4
62,2
62,9 | | 82
84
86
88
90 | | | | | | | | | | 42,1
42,4 | 43.7 | 45,1
45,3
45,5 | 46,5
46,7
46,9 | 47,8
48,5
48,3 | 49,1
49,3
49,6 | 50,3
50,6
50,9 | 51.5
51.8
52.1 | 52,7
53,6
53,3 | 53,8
54.2
54.5 | 55.0
55.3
55.7 | 56,1
56,5
56,8 | 57.2
57.6 | 57,8
258,2
58,6
59,6
59,6 | 59.2
59.7
60.1 | 60,2
60,7
61,2 | 61,7 | 62,2
62,7
63,2 | 63,1
63,7
64,2 | 64,6 | 64,9
65,5
66,1 | | 92
94
96
98 | | | | | | Š | | | | | 6 | | 47.3
47.5 | 48.9
49.1 | 50.3
50.5
50.7 | 51,6
51,8
52,1 | 52,9
53,2
53,4 | 54,2
54,4
54,7 | 55,4
55,7
56,0 | 56:7
56:9
57:2 | 57,9
58,2
58,5 | 59.6
59.6 | 59,8
60,2
60,5
60,9 | 61,3
61,7
62,0 | 62,4
62,8
63,2 | 63.5 | 64,6
65,0
65,4 | 65,6
66,1
66,5 | 66,7
67,1
67,6 | 67,7
68,1
68,6 | | .02
.04
.06
.08 | | | | | | | | | | | | | | | 51.1 | | 54.1
54.3 | 55,4
55,6
55,8 | 56,7
56,9
57,2 | 58.5
58.5 | 59,3
59,6
59,8 | 60,6
60,8 | 61,5
61,8
62,1
62,4
62,6 | 63,0
63,3
63,6 | 64,2
64,5
64,8 | 65.4
65.7
66.0 | 66,5
66,9
67,2 | 67,7
68,6
68,4 | 68.8
69.2
69.5 | 69,9
70,3
70,7 | | 12
14
16
18
20 | | | | روان
مدر کسر میران
واکد و میران واح
مدر میران میران
میران میران میران | | 4 | | | | | | | | | | | | 56,2 | | 59,1
59,3 | 60,5
60,7
60,9 | 61.8
62.0
62.3 | 62,9
63,1
63,4
63,6
63,8 | 64,4
64,7
64,9 | 65,7
65,9
66,2 | 66,9
67,2
67,5 | 68,2
68,5
68,7 | 69,4
69,7
70,6 | 76.6
76.9
71.2 | 71,7
72,1
72,4 | | 25
30
35
40
45 | 63,6 | 64,3 | | 67,6 | 68.9 | 70.2
70.8 | 71.6
72.1
72.7 | 72,8
73,4 | 74,1
74,8
75,3 | | 150
155
160
165 | | | هدر در د | المستقدم المستعمل
المستمرات المستمرات
المستمرات المستمرات | | | | | | | | المناسبة المساور
والمساور المساور
المناسبة المساور المساور | | | | Á | | | | | | | | | | | | | 75,0 | 76,4 | | 175
180
185
190 | A = offered nonrandom traffic Y = carried traffic Y in Erl Z = 2.0 k = 8 Table 4 - 09 Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | A A | 9 | 2 | 94 | 9 | 6 | 98 | 100 | 10 | 02 | 104 | 10 | 0 6 | 108 | 110 | 115 | 126 | 125 | 13 | 50 | 135 | 146 | 14 | 5 | 155 | 155 | 1 | 60 | | | |---------------------------------|----------------|----|----------------------|----------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|----------------------|----------------------|--------------------------------------|--------------|-------------------------|----------------------|-------------------|---------------------------------|-------------------|----------------------|---------------------------------|----------------------|----------------|-------------------|-------------------|---|--| | 52
54
56
58
60 | 52
53 | ,4 | 52,7
52,7
54,1 | 53
54 | , o
, o
, 4 | 53,2
54,7 | 53.5
54.5 | 9 5
5 5
9 5 | 2,1
3,7
5,2 | 53,5
55, | 2 57
9 54
4 5! | 2,4
4,6
5,6 | 52,5
54,2
55,8 | 54.3
56.6 | 51,1
52,9
54,6
56,3
58,6 | 53,1
54,9 | 53,
55,
56, | 2 53
1 55
9 57 | . 2 | 53,5
55,3
57,2 | 53,5
55,4 | 5 53
1 55
5 57 | ,5 | 53,7
55,6
57.5 | 53,
55, | 7 5
6 5
6 5 | 3.7
5.7 | | | | 68 | 57
58
59 | .4 | 57,8
58,9
59,9 | 58
59
60 | , 2
, 4 | 58,6
59,8
61,8 | 59,1
60,1 | 3 6 | 9,4
0,7
1,9 | 59,
61,
62, | 7 60
7 63
3 63 | 0,0
1,4
2,7 | 60,3
61,7
63,0 | 60,6 | 59,6
61,2
62,7
64,1
65,5 | 63,2 | 62,
63, | 0 62
7 64
3 65 | . 0 | 62,6 | 64,6 | 63 | ,8 | 63,1
65,0 | 65, | 3 6 | 3:4
5:2 | | | | 72
74
76
78
80 | 62
62
63 | .7 | 62,8
63,6
64,4 | 63 | ,4
,3
,1 | 64,8
64,9
65,8 | 65, | 6 6
5 6
5 6 | 5.2
6.1
7.1 | 65. | 7 6
7 6
7 6 | 6,2
7,2
8,3 | 66.7
67.8
68.8 | 67.1
68.2 | 66,9
68,1
69,4
70,5
71,7 | 69,6
70,3 | 69.
71. | 8 76
2 71
5 73 | .9 | 70,9
72,5 | 71,4 | 4 71
5 72 | . 4 | 72,1
73,8 | 72,
74, | 3 7
1 7 | 2:6 | | | | 82
84
86
88
90 | 66 | .4 | 67,2
67,9 | 68 | ,1 | 68,9
69,6 | 68,
69,
70, | 9 6
6 7
4 7 | 9,6
5,4
1,1 | 70.
71.
71. | 3 7:
1 7:
9 7: | 1.8 | 71.7
72.5
73.4 | 72.3
73.2
74.6 | 72,7
73,7
74,9
75,7 | 75.1
76.1 | 76,
77, | 2 77
4 78
4 79 | 7.2 | 78:1
79:4 | 78,9
80,3 | 9 79
3 81
6 82 | . 6 | 80,2
81,7
83.1 | 85,
82, | 7 8
2 8 | 1:1 | ▲ 용성하다 등 항상 (1907년 등 1915년 등) 등 전 전 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 |
 | 92
94
96
98
100 | 69
69 | .1 | 69,6
70,1
70,6 | 70
71
71 | ,5
,1 | 71,4
72,6
72,5 | 72,
72,
73, | 3 7
9 7
5 7 | 3,2 | 74. | 0 7
7 7
3 7 | 4.8
5.5
6.1 | 75.6
76.3
77.0 | 76.4
77.1 | 77,4
78,2
79,6
79,8 | 79,9
80,8 | 81.
82.
883. | 5 82
4 83
3 84 | 2.9 | 84,2
85,2 | 85,3 | 3 86
5 87
6 88 | . 6 | 87,3
88,5 | 88;
89; | 1 8 4 9 7 0 | 8.8 | | | | 102
104
106
108
110 | 71
71
71 | .4 | 72,4 | 73
73
73 | ,5 | 74,5
75,6 | 75,
75,
76, | 1 7
5 7
6 7 | 6,5
7.0 | 77.
77.
78, | 67
57
67 | 7.9
8.5
9.0 | 78,8
79,4
79,9 | 79,7
86.3 | 81.9
81.9
82.5
83.1 | 83.9
84.0 | 85,
86,
87, | 7 87
5 88
2 89 | 7.5 | 89,1
90,0 | 90,6 | 6 92
6 93 | 3.0 | 93,3 | 94, | 4 9 6 9 7 0 | 5:4
6:7 | | | | 112
114
116
118
120 | 73
73 | .2 | 74,0 | 75
75
75 | ,5 | 76,6
77,6 | 77,
77,
78, | 3 7
7 7
1 7 | 8.8 | 79,
79, | 4 8
9 8
3 8 | 0.5
0.9 | 81,5
82,6
82,4 | 82,5 | 84.5
84.9
85.9
86.4 | 87,
87, | 1 89,
7 89,
3 95, | 3 91
9 92
5 93 | 2.0 | 94.0 | 95,9 | 1 90
9 9: | 7.6 | 98,3 | 99, | 8
1
2 | 101 | | | | 125
130
135
140
145 | 76
76 | .0 | 70,6
77,3
78,6 | 77
78
79 | ,6 | 79,1
79,8 | 86,
81, | 3 8
5 8
8 8 | 2.2 | 82,
83, | 6 8
4 8
2 8 | 3.7
4.6
5.4 | 84,9
85,8
86.6 | 86,6
86,9 | 87.6
88.7
89.7
90.7 | 91, | 93,
4 95, | 8 96
0 97 | 7.5 | 98,5 | 163 | 1 :
2 : | .01
.03
.04
.06 | | 10 | 17
19
.0 | 110
112 | | | | 150
155
160
165
170 | 77
78 | .2 | 79,6 | 5 B 1 | , f) | 82,8 | 83,
84,
84, | 6 8
2 8
7 8 | 5,6
5,5
6,1 | 86,
86,
87, | 3 8
9 8
4 8 | 7.5
8.2
8.7 | 88,8
89,5
90,1 | 90.1
90.7
91.4 | 92.4
93.2
93.9
94.6 | 96.1
96.1 | L 99,
99,
7 16 | 9 : | 103 | 186 | 10
10
10 | 7 :
8 :
9 : | 109
110
111
112
113 | | 11
11
11 | .5
.6 | 118
120 | | | | 175
180
185
190
200 | | | | | | | 4 | | | 88, | 4 R
9 | 9,8
0,3 | 91.2
91.7 | 93,6 | 95.8
96.9
96.9 | 99,
16 | 7 16
5 16
1 16 | 13 :
14 : | 106
107
107 | 168
169
116
111
111 | 11:
11:
11: | 3 : | 115
116
117 | 118
119
120 | 12 | 1 2 2 2 | 123
124
125 | | | Table 4 - 10 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic Y in Erl Z = 2.0 k = 10 k = accessibility n = number of trunks | A N | 1 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | 12 | <u>1</u> 3 | 14 | 15 | 16 | 17 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |----------------------------|-----|--|---|---|---|--|---|---|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|---|----------------------|------------------------------|----------------------|----------------------|----------------------|----------------------|---|----------------------|----------------------|---------------------------|----------------------|------------------------------|----------------------| | 12345 | | | مستور در در مستور در در در مستور در | | | | | | 2,94
3,82 | 3.86 | 2,97 | 2,98 | 3,96 | 2.99
3.97
4.92 | 3,98 | | | 4,98 | 4,99 | | | | ر به درسان معموری
در این مساله معموری
در این مساله در در می | | | موسده مسرر
مدرستان مرس | | | 5-T | | 6
7
8
9 | | | | | | | | | 5,86
6,35
6,75 | 6.04
6.57
7.03 | 6,24
6,84
7,35 | 6,41
7,06
7,63 | 6,55
7,26
7,88 | 5,83
6,66
7,42
8,09
8,69 | 6,75
7,55
8,27 | 6.81
7.65
8.42 | 6,87
7,74
8,55 | 6:96
7:86
8:65 | 6,93
7,85
8,73 | 6,95
7,89
8,86 | 6,96
7,92
8,85 | 6,97
7,94
8,89 | 7,96
8,91 | 7.97 | 8,95 | 8,96 | | | | | 11
12
13
14
15 | | | | | | | | | 7:62
7:83
8:61 | 8,03
8,27
8,49 | 8,50
8,78
9,62 | 8,92
9,24
9,53 | 9,31
9,67
10.0 | 9,21
9,67
10:1
10:4
10:8 | 10.0
10.4
10.8 | 16.3
16.8
11.2 | 10,6
11.1
11,6 | 10.8
11.4
11.9 | 11,6
11,6
12,2 | 11,2
11,8
12,4 | 11.3
12.0
12.7 | 11.5
12.2
12.9 | 11,6
12,3
13,1 | 11,6
12,5
13,2 | 11.7
12.6
13.4 | 11.8
12.7
13.5 | 11.8
12.7
13.6 | 11,9
12,8
13,6 | 11,9
12,8
13,7 | | 16
17
18
19
20 | | | | | | | | | 6,41
8,52
8,61 | 8.98
9.16
9.22 | 9,60
9,74
9,88 | 16.2
16.4
16.5 | 10.7
10.9
11.1 | 11.0
11.3
11.5
11.7
11.9 | 11,8
12,6
12,3 | 12,3
12,5
12,8 | 12,7
13,0
13,3 | 13,1
13,5
13,8 | 13,5
13,9
14,2 | 13,9
14,3
14,7 | 14.3
14.7
15.1 | 14.6
15.1
15.5 | 14,9
15,4
15,8 | 15,1
15,7
16,2 | 15.4
16.0
16.5 | 15,6
16,2
16,8 | 15,8
16,5
17,1 | 16,0
16,7
17,3 | 16,1 | | 21
22
23
24
25 | | A CONTRACTOR CONTRACTO | | | | ا مساوره استان المستان المستان ا
المستان المستان المستا | | | | , | والمداعض والمادا | 10,8 | 11.6 | | 12,8
13,6
13,1 | 13,4
13,6
13,8 | 14.0
14.2
14.4 | 14,6 | 15,1
15,3
15,5 | 15.6
15.9
16.1 | 16.1
16.4
16.6 | 16,6
16,9
17:1 | 17.0
17.3
17.6 | 17,4
17,8
18,1 | 17.8
18.2
18.5 | 18,2
18,6
19,5 | 18,6
19,0
19,4 | 18,9
19,4
19,8 | 19,2
19,7
25,2 | | 26
27
28
29
30 | | | | | | | | | | | | | | | 13,4 | 14.2 | 14,8
14,9
15,1 |
15,3
15,5
15,6
15,7 | 16:1
16:2
16:4 | 16,7
16,9
17.0 | 17.3
17.5
17.6 | 17,8
18,6
18,2 | 18,4
18,6
18,8 | 18,9
19,2
19,4 | 19.4
19.7
19.9 | 19,9
26,2
26,5 | 20,4
20,7
21,5 | 20.9
21.2
21.5 | 21,3
21,7
22,6 | | 31
32
33
34
39 | | | | | | | | | | | | | | | | اردی در | | | 16,6
16,8
16,9 | 17,4
17,6
17,7 | 18,1
18,2
18,4 | | 19.4
19.5
19.7 | 26,0
26,1
26,3 | 20,6
20,7
20,9 | 21.1
21.3
21.5 | 21,7
21,9
22,1 | 22.3
22.5
22.7 | 22,8
23,5
23,3 | | 36
37
38
39
40 | 20.1
20.2
20.3 | 20,7
20,9
21,0 | | 22,0
22,2
22,3 | 22,6
22,8
23,0 | 23,3
23,4
23,6 | 23,9
24,0
24,2 | | 41
42
43
44
45 | 22,7
22,8
22,9 | 23,4
23,5
23,6 | | 24,7
24,8
25,6 | | 46
47
48
49
50 | 23,1 | 23,9 | 24,5
24,6
24,7
24,8 | 25,3 | A = offered nonrandom traffic Y in Erl Z = 2.0 k = 10 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | | 32 | 34 | 3 | 6 | 38 | 46 | 42 | 4. | 1 :22:33 | 46 | 48 | 56 | 52 | 54 | 50 | 5 | 58 | 60 | 62 | 64 | 66 | , | 68 | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |-------------|--------------------------------------|-------------------|----------------------|-------|---------|------|-------|------|-----------------|--------------|------|-----|-------------|------------------|--------------|-------|--------------|----------|----------------------|---------|--------------|---------|---------|-----------|----------------------|-----------|-------|------|------|----------------------|------|-------|------|------| | 1 2 3 | 4 5 | 6
7 | 9 | 2
3
4 | 11,0
11,9
12,9
13,8
14,7 | 12,
12,
13, | 5 12
9 13
9 13 | ,0 | 13,9 | | 15,6 | ſ | 7 🛛 | 15,6 | 16, | 6 16 | ,7 | 16,8 | 16,9 | 16,9 | 16 | 9 1 | 7.0 | 17,6 | 9 🎚 | 17,2
17,9
18,6 | 18, | 2 18 | ,4 | 18,6 | 18,7 | 18.8 | 18 | . 9 i | 8.9 | 18,9 | 18. | 19. | 5 5 6 • 1 | ð | 2 | 19,2 | 20, | 3 20 | • 7 | 21,0 | 21,3 | 21,4 | 21 | . 6 2 | 1,7 | 21,8 | 21, | 21, | 21, | 9 21 | ,9 2 | 1,9 | 22,0 | | | | | | | | | | | | | | | | | | 4 | 20,8 | 21, | 4 22 | ,0 | 22,4 | 22,8 | 23,1 | 23 | .3 2 | 3,5 | 23,6 | 23, | 7 23. | 23, | 8 23 | .9 2 | 3.9 | 23.9 | 22,9
23,9
24,9 | 23.9 |)
24. | , 9 | | | | | | | | | | | | | | 7 🛮 | 22.1 | 22, | 9 23 | ,6 | 24,2 | 24,7 | 25.2 | 25 | .6 2 | 5.9 | 26.1 | 26. | 1 26. | 26. | 6 26 | . 7 2 | 6.8 | 26.8 | 25,9 | 26.0 | 206 | . 0 . | 6.0 | 24.0 | 26,9 | | | | | | | | | | | 7日 | 22,9 | 20, | 1 24 | 12 0 | 27,2: | 25,8 | 20,4 | - 20 | .9 2 | 7.3 | 27,6 | 27. | 2 28 | 28. | 3 28 | .5 2 | 8.6 | 28.7 | 128.7 | 28.8 | RC F | . A 🤈 | A.O. | 28.0 | 27,9
28,9
29,9 | 28 0 | 28 0 | 29,9 | 29,9 | | | | | | | ~ ₩ | 20,0 | 271 | 0 22 | | 20,5 | 2/10 | 120.0 | 20 | . 6 7 | 77.1 | 29,0 | 30. | 130. | 3 ∴ 3 fl • | / 31 | • M : | 51.2 | 31.3 | 131.5 | 31.6 | 4 34 | . 7 ः उ | (1.7 | ે ₹ વ . છ | 74 8 | ે ₹ ⊀ છે | 74 6 | 74 0 | 7. 6 | 30,9 | 74 0 | | | | | · B | 27,0 | 201 | 7 | , , , | - , , . | 20,1 | 20,7 | 27 | • D ා | 10.7 | ುರುರ | 31. | 5 1 .5 5 2 | 1 .52 • | 2 32 | • " | 52.K | .3.3 • M | 133.2 | 3.3 . 4 | 4 3.3 | . 5 3 | (3.A) | ~ T T . A | 7 7 | 77 8 | 77 6 | 77 0 | 77 6 | 32,9
33,9
34,8 | 77 0 | 77 ^ | | 33 | | 199 | ~ - , 0 | ~ ~ , | 1 / | 16 | | 6711 | 13010 | | • 7 | 11.0 | 0/10 | | 1 1 .5 .5 . | 1 54 . | 1 .14 | • 7 | 50.M | 355.3 | 1 37.0 | 30.1 | H I TO | . 19 7 | (A . 7) | 7 K . A | TAR | 766 | 76 6 | 74 7 | · | 35,8 | 74 0 | -4 0 | | | | / B | 6717 | 20, | 0 2/ | · / : | 2011 | 27,0 | 130,7 | ು | . 0 . | 52 . 4 | 33,2 | ು ಎ | 1139 . | 5 35. | 2 .55 | • 8 | 50.2 | 36.7 | 137.1 | 37.6 | 4 37 | . A 3 | 7.0 | TR. 1 | 1 TR . 2 | ** TR . T | 7 R F | 40 E | 78 4 | 37,7 | 70 7 | ~ B 0 | 70 0 | | | 1 | 25,8
26,0 | 27,
27, | 0 28
2 28 | ,1 | 29,2 | 36,3 | 31,3 | 32 | .3 3 | 3,2 | 34,6 | 34, | 35, | 5 36, | 2 36 | ,93 | 37,4
38.m | 37,9 | 38,4 | 38, | 39 | 1 3 | 9,4 | 39,7 | 39,9 | 46,1 | 40,2 | 46.3 | 40,4 | 40,5 | 40.6 | 40,7 | 46,7 | 46 | | 4 | 26,3 | 27, | 5 28 | .7 | 29,9 | 31,6 | 32.1 | 33 | . 2 . 3 | 34.1 | 35.1 | 36. | 36. | 4 37,
3 37. | 2 37
6 38 | .3 | 38,5
39.8 | 39,1 | 39,6 | 40, | 7 41 | ,54 | 0.9 | 41.2 | 41,5 | 41.7 | 41,5 | 42,1 | 42,2 | 42,3 | 42,4 | 42,5 | 42,6 | 42 | | 6 | 26,5 | 27,
28, | 8 29
0 29 | ,1 | 30,3 | 31,5 | 32,6 | 33 | .7 3 | 34,7
35,0 | 35,7 | 36, | 37, | 5 38,
9 38, | 4 39
8 39 | ,2 3 | 39,9 | 40,6 | 41,3 | 41, | 8 42
4 43 | , 4 4 | 12,9 | 43,3 | 43,7 | 44,6 | 44,3 | 44,5 | 44,8 | 44,9 | 45.1 | 45,2 | 45,3 | 3 45 | | 9 | 26,9 | 28, | 3 29 | .6 | 30,8 | 32,1 | 33.2 | 34 | ,2 3 | 52,2 | 36.6 | 37. | 5 38 , | 2 39, | 1 40 | . 3 | 10,8 | 41,5 | 42,2 | 42, | 9 43 | ,5 4 | 4.1 | 44,6 | 45,6 | 45,4 | 45,8 | 46.1 | 46, | 46,6 | 46.8 | 46,9 | 47,1 | 47 | Table 4 - 12 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 k = 10 | n | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 | 90 | |----------------------------|--------------|------|------|--|------|------|----------------------|----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------| | 52
54
56
58
60 | 27,2
27,4 | 29,1 | 30,5 | 31,8 | 33,2 | 34.5 | 35,7
35,7 | 30.6
37.6
37.3 | 37,7
38,2
38,5 | 39,3 | 39:9
45:4
45:9 | 41.5 | 42,0
42,5
43.1 | 42.9 | 43,8
44,5
45,1 | 44,7 | 45,5
46,3
47.5 | 46,3
47,1
47.9 | 47,1
47,9 | 47,8
48,7 | 49,4 | 49.0
50.1 | 48,4
49,6
50,7
51,7
52,6 | 56,1
51,2 | 50,5
51,8 | 50,9
52,2 | 51,3
52,6 | 51,6
53,6 | 51,9
53,3 | 52,1
53,6 | | 62
64
66
68
70 | | | 31,1 | 32,5
32,7 | 34,1 | 35.7 | 36,9
37,1
37,4 | 38.2
38.5
38.7 | 39,5
39,8
46,1 | 40,8
41,1
41,4 | 42.6 | 43:3
43,6
44.0 | 44,8 | 45,6
46.0
46.4 | 46.7
47.1
47.6 | 47,8 | 48,8
49,3
49,8 | 49,8
50,4
50,9 | 50,8
51,4
51,9 | 51.7
52.3
52.9 | 52,6
53,3
53,9 | 53.5
54.2
54.9 | 53,5
54,3
55,1
55,8
56,4 | 55.1
55.9
56.6 | 55,8
56,7
57,5 | 56.5
57.4
58.2 | 57,1
58,1 | 57,8
58,7 | 58.3
59.4
60.3 | 58,8
59,9 | | 72
74
76
78
80 | | | | | | 36,3 | 38,6 | 39,4 | 40,8
41,0
41,2 | 42.2
42.4
42.7 | 43,6 | 44.9
45.2
45.4 | 46.2
46.5
46.8 | 47.5
47.8
48.1 | 48,7
49,1
49,4 | 49,9
56,3
56,6 | 51,1
51,5 | 52,3
52,7
53,1 | 53,4
53,8
54,3 | 54,5
55,6
55,4 | 55,6
56,1
56,6 | 56.6
57.2
57.7 | 57.6
57.6
58.2
58.7
59.2 |
58.6
59.2
59.8 | 59,6
60,2
60,8 | 60.4 | 61.3
62.6 | 62,1
62,8
63.5 | 62,9
63,7
64.4 | 63,7
64,5 | | 82
84
86
88
90 | | | | | | | | | 41,6 | 43,2 | 44.7 | 46,1
46,3
46,5 | 47,5
47,7
47,9 | 48.9
49.1
49.4 | 50.2
50.5
50.7 | 51,6
51,8
52,1 | 52,9
53,2
53,4 | 54,1
54,5
54,8 | 55,4
55,7
56,0 | 56:6
57:0
57:3 | 57,8
58,2
58,6 | 59.6
59.4
59.8 | 59,7
60,1
60,6
61,6 | 61,3
61,7
62,1 | 62,3
62,8
63,3 | 63,4 | 64.4
64.9
65.4 | 65,4
65,9
66,4 | 66,3
66,9
67,5 | 67,2
67,9
68,4 | | 92
94
96
98 | | | | | | | | | | | general
General | 46.9 | 48,5 | 50.0
50.2
50.4 | 51.4
51.6
51.8 | 52,8
53,6
53,2 | 54.2
54.4
54.7 | 55,6
55,8
56,1 | 56.9
57.2
57.4 | 58.2
58.5
58.8 | 59,5
59,8
60,1 | 60.8
61.1
61.4 | 61.7
62.1
62.4
62.7
63.6 | 63,3
63,7
64,0 | 64.5
64.9
65.2 | 65,6
66,0
66,4 | 66.8
67.2
67.6 | 67,9
68,3
68,7 | 69,6
69,4
69,9 | 70,5
70,5
70,9 | | .04
.06
.08 | | | | | | | | | | | | | | | | 53.8 | 55,3
55,5
55,6 | 56.7
56.9
57.1 | 58,1
58,3
58,6 | 59,5
59,8
60,0 | 65,9
61,2
61,4 | 62.3
62.5
62.8 | 63:3
63:6
63:9
64:1
64:4 | 64.9
65.2
65.5 | 66,2
66,5
66,8 | 67.4
67.8
68.1 | 68,7
69,6
69,3 | 69,9
70,2
70,6 | 71:1
71:4
71:8 | 72,2
72,6
73,6 | | 12
14
16
18
20 | | | | | | | | | | | 100
100
100
100 | | | | | | | | 59,1
59,3 | 60:6
60:8
61:0 | 62,0
62,2
62,4 | 63.5
63.7
63.9 | 64,6
64,9
65,1
65,3
65,5 | 66.2
66.5
66.7 | 67,6
67,8
68,1 | 68.9
69.2
69.4 | 76.2
76.5
76.7 | 71,5
71,8
72,1 | 72.8
73.1
73.3 | 74,6
74,3
74,6 | | 25
30
35
40
45 | 63,0 | 64.5 | 66,6 | 67.9 | 69,3
69,8 | 70.7 | 71,6
72,1
72,6
73,1
73,5 | 73,5
74,1
74,5 | 74,9
75,4
76,0 | 76,2
76,8
77,4 | | 50
55
60
65
70 | | | | رد استعمال الدوام
المستعمل المستعمل ال | | Á | D ₂ | | 75,4 | 76,9 | 78,3
78,8 | | 175
180
185
190 | Y in Erl A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 Y in Erl k =10 > Table 4 -13 | n | 92 | 94 | 9 | 6 | 98 | 100 | 102 | 104 | j. 6 | 6 : | 158 | 115 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 156 | 155 | 165 | 165 | 176 | 175 | 180 | 185 | 196 | 195 | 200 | 265 | 210 | |---------------------------------|----------------------|-------------------|----------------------|-------------------|----------------------|----------------------|----------------------|-------------------|----------------------|--------------|----------------------|----------------------|----------------------|----------------------|--|-------------------------|---|----------------------|-------------------|---|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------| | 52
54
56
58
60 | 52,4
53,9
55,4 | 52,
54,
55, | 5 52
1 54
7 55 | ,7
,4
,9 | 52,9
54,5
56,1 | 53,0
54,7
56,4 | 53,1
54,9
56,5 | 53,
55, | 2 53
5 55
7 56 | .3 :
.1 : | 53,4
55,2
57,6 | 53,4
55,3
57,1 | 53.6
55.5
57.3 | 53,7
55,6
57,5 | 55,8
55,7
57,6 | 53.8
55.7
57.7 | 51,9
53,8
55,8
57,7
59,7 | 53,9
55,8
57,8 | 55,9
57,8 | 57,9 | 59.9 | | | | | | | | | | | | | 62
64
66
68
70 | 59.3
60.5
61.5 | 59,
61,
62, | 8 60
5 61
1 62 | .4 | 60,5
61,8
63,1 | 60,9
62,2
63,5 | 61,2 | 61.
62. | 5 61
9 63
3 64 | .7 | 61,9
63,5
65,0 | 62,2 | 62.6
64.2
65.8 | 62,9 | 64,9 | 63.3
65.2 | 61,6
63,5
65,3
67,2
69,0 | 63,6 | 63,7
65,6 | 63,7
65,7 | 63,8
65,7 | 63:8
65:8 | 65.8 | 65,8 | 67.8 | 67;9
69;8 | 69.9 | | | | | | | 72
74
76
78'
80 | 65.2
66.0 | 66, | 1 65
5 66
8 67 | 7 | 66,3
67,3
68,2 | 66,9
68,5
68,9 | 68,6 | 68,
69, | 0 68
1 69
2 70 | .6
.7 | 68,9
76,1
71,3 | 70.6 | 70.3 | 71.0
72.5
73.9 | 71.6
73.2
74.7 | 72.1
73.7
75.3 | 70.8
72.5
74.2
75.8
77.4 | 72,8 | 73,6
74,8 | 73,2
75,1 | 73.4
75.2 | 73.5
75.4 | 73.6
75.5 | 73.6
75.6 | 73.7
75.6 | 73.7 | 73,8
75,7 | 73.8
75.8 | 75.8 | 77 0 | 77,8
79,8 | 79.8 | | 82
84
86
88
90 | 68,8 | 69,
70, | 0 69
7 70
3 71 | 1,6 | 71,4
72,1 | 72.2 | 73.6 | 72.
73.
74. | 9 73
8 74
6 75 | .5 | 74.3
75.2
76.1 | 74.9
75.9
76.8 | 76.4 | 77.7
78.8 | 78.8
86.6
84.2 | 79.7
81.6 | 79,0
80,5
81,9
83,3
84,6 | 81,1 | 81,6
83,2 | 82,1
83,7 | 82,4
84,1 | 84,5 | 82.9 | 83,1 | 85.1 | 83.4 | 83,5 | 83,6
85,5 | 83.6 | 83,7
85,6 | 83,7 | 83,8 | | 92
94
96
98
100 | 71.5 | 72, | 1 /3
6 73
1 74 | 5,6
1,1 | 74,6
74,6 | 74.9
75.5
76.1 | 76.5 | 70.
77.
78. | 7 77
4 78
6 78 | . 3 | 78,4
79,1
79,8 | 79.2
80.0 | 81.9 | 82,9
83,8 | 84,4
85,4
86.4 | 85.9
86.9
87.9 | 85,9
87,1
88,3
89,4 | 88,2 | 89,1
96,4 | . 89,9
91,3 | 90,6 | 91:1 | 91.6 | 92.0 | 92.3 | 92.6 | 92,8 | 93.6 | 93.1 | 93,3 | 93,4 | 93,5 | | 102
104
106
108
110 | 73,4 | 74, | 5 75
9 76
3 76 | 5,6 | 76,6
77,1
77,5 | 77,7
78,2
78,6 | 78,7 | 79
80
80 | 7 80
2 81
7 81 | .7
.2 | 81.7
82.2
82.8 | 82.6
83.2
83.8 | 84,9 | 87.7
87.7 | 88,9
89,7
96,5 | 95.7
91.6
92.4 | 91,4
92,4
93,3
94,2
95,1 | 93,9 | 95.3
96.4 | 96,5
97,7
98.8 | 97:6
98:8 | 98.5
99.8 | 99,3 | 166
161 | 161
162
164 | 101 | 162
163
165 | 164
165 | | 102
104
106 | 161
163
165
166
168 | 101
103
105
107
108 | | 112
114
116
118
120 | 75,6
75,6 | 76, | 4 //
8 78
1 78 | 3,5 | 78,8
79,2
79,5 | 79,9
80,3
80,7 | 81.5 | 82,
82,
83, | 2 83
6 83
5 84 | .2 | 84.3
84.8
85.2 | 85,4
85,8
86,3 | 87,9
88,4
88,9 | 96,3
96,9 | 92.5
93.2
93.8 | 94.7
95.4
96.1 | 95,9
96,7
97,5
98,2
98,9 | 98,6 | 100 | 162
163
164 | 153
154
155 | 105
106
107 | 156
157
158 | 167
158
169 | 108
109
111 | 169
116 | 108
109
111
112
114 | 169
116
112
113
115 | 169
111
112
114
115 | 111
113
114 | 110
111
113
115
116 | 115
112
114
115
117 | | 125
130
135
140
145 | 77.6
78.2
78.8 | 78,
79,
80, | 9 80
5 80
1 81 | 3,2
3,9 | 81,5
82,2
82,8 | 82,8
83,5
84,2 | 84.6 | 85,
86,
86, | 2 86
0 87
8 88 | .3 | 87,6
88,5
89,3 | 88,8
89,7
90,6 | 91,7 | 94.5
95.5
96.6 | 97.1 | 99,6 | | 154
156
157 | 107 | 3 157
7 159
3 115
5 112
1 114 | 111
113
114 | 113
115
116 | 114
116
118 | 116
118
120 | 120 | 119
121 | 125
123
125 | 121
124
127 | 128 | 123
126
129 | | 121
125
128
132
135 | | 150
155
160
165
170 | 80.2 | 81, | 7 83
1 83 | 3,1
3,5
4,0 | 84,5
85,6
85,4 | 85,9
86,4
86,9 | 87.8
87.8
88.3 | 88,
89,
89, | 7 90
2 90
7 91 | 1.6 | 91,4
92,6
92,5 | 92,7
93,3
93,9 | 96.7
96.7 | 99.2
99.9 | 101
102
103
103
1 104
1 105 | 105 | 7 116 | 111
112
113 | 11:
11:
11: | 117
119 | 119
120
121 | 121
123
124 | 124
125
126 | 126
127
129 | 128
136
131 | 128
130
132
134
135 | 132
134
136 | 134
136
138 | 138
140 | 137
146
142 | 136
139
141
144
146 | 146 | | 175
180
185
190
200 | | | | | | 87.7 | 89,2 | 90,
91, | 1 92 | . 5 | 94.0 | 95,4 | 99.5 | 102
103
103 | 107 | 5 109
5 116
7 116 | 3 112
9 112
9 113
9 114
9 115 | 116 | 111 | 3 121
9 122
9 123
9 123
2 125 | 125
126
126 | 127
128
129 | 130
131
132 | 133
134
135 | 135
137
138 | 139
141 | 140
142
143 | 143
144
146 | | 147
149
150 | 149
151
153 | 151
153
155 | A = offered nonrandom traffic Y in Erl Z = 2.0 k = 15 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n
4 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |----------------------------|---|---|---|---|---|----|---|----------|---|---|----|----|----|----|--|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | 2245 | | | | | | 15 | | | | | | | | | ا
مستاماتین دران
دران ماندان دران دران | 3,99 | 4,98 | 4,99 | | | | ر د
ادار
د اداره | | | | | ,,,,,, | | | | | | 6
7
8
9 | | | | | | | | | | | | | | | | 6,85
7,62
8,37 | 7.76 | 6;90
7;79
8:62 | 6,93
7,85
8,72 | 6:95
7:96
8:79 | 6,97
7,93
8,85
9,73 | 7,95 | 8,93 | 8.95 | 8,97
9,93 | 8;98
10.0 | 10,6 | 16.6 | | | | | 11
12
13
14
15 | | | | | | | | | | | | | | | | 10,1
10,6
11,0 | 10,4 | 10.7
11.2
11.7 | 10,9
11.5
12.0 | 11,1
11,8
12,3 | 10,5
11,3
12,0
12,6
13,2 | 11,4
12,2
12,8 | 11.6
12.3
13.1 | 11.7
12.5
13.2 | 11.8
12.6
13.4 | 11.8
12.7
13.5 | 11.9
12.8
13.6 | 11,9
12,8
13.7 | 11,9 | 11.9
12.9 | 12,0 | | 16
17
18
19
20 | | | | | | | | | | | | | | | | 11.6
11.9
12.1
12.3 | 12,5
12,3
12,6
12,8 | 12,5
12,8
13,1
13,4 | 12,9
13,3
13,6
13,9 | 13.3
13.7
14.1
14.4 | 13,7
14,1
14,5
14,9
15,2 | 14.0
14.5
14.9 | 14.3
14.8
15.3 | 14,5
15,1
15,6
16,1 | 14.8
15.4
16.6 | 15.6
15.6
16.2 | 15.2
15.9
16.5 | 15.3
16.1
16.7 | 15,5
16,2
16,9 | 15.6 | 15,1
16,1
17,3 | | 21
22
23
24
25 | | | | | | | | | | | | | | | | 12.7
12.8
12.9
13.1 | 13,2
13,4
13,5
13,6 | 13.8
14.0
14.2
14.3 | 14,4
14,6
14.8
15,0 | 14,9
15,2
15,4
15,6 | 15,5
15,7
16,0
16,2
16,4 | 16.0
16.3
16.5
16.8 | 16.5
16.8
17.1
17.3 | 16,9
17,3
17,6
17,9 | 17,3
17,7
18,1
18,4 | 17.7
18.1
18.5
18.9 | 18.1
18.5
19.0
19.3 | 18,5
18,9
19,4
19,8 | 18,8
19,3
19,7 | 19.1
19.6
20.1
20.6 | 19,3 | | 26
27
28
29
36 | | | | | | | | | | | | | | | | 13,3 | 13,9 | 14,6
14.7
14.8 | 15,3
15,4
15,5
15,6 | 15,9
16,1
16,2
16,3 | 16.6
16.7
16.9
17.0
17.2 | 17.2
17.4
17.5 | 17.8
18.0
18.2
18.4 | 18,4
18,6
18,8
19,6 | 18,9
19,2
19,4
19,6 | 19,5
19,7
26,6
26,2 | 20.0
20.3
20.5
20.8 | 26.5
26.8
21.1
21.3 | 20,9
21,3
21,6
21,9 | 21.4 | 21,8
22,2
22,6 | | 31
32
33
34
35 | 16,6 | 17:3
17:4
17:5
17:6 | 18,0
18,1
18,2
18,3 | 18.7
18.8
18.9 | 19,3
19,5
19,6
19,7 | 20,0
20,1
20,3
20,4 | 25,6
25,8
25,9
21,1 | 21.2 | 21.8
22.0
22.2
22.4 | 22,4
22,6
22,8
23,6 | 22,9
23,2
23,4
23,6 | 23,5
23,7
24,6 | | 36
37
38
39
40 | 18,5
18,6 | 19.2
19.3
19.4 | 20.0
20.1
20.2
20.3 | 26:7
26:8
26:9
21:6 | 21,4
21,5
21,6
21,7 | 22.1
22.2
22.3
22.4
22.6 | 22.7
22.9
23.0
23.1 | 23,4
23,5
23,7
23,8 | 24,6
24,2
24,4
24,5 | 24,6
24,8
25,6
25,6 | | 41
42
43
44 | | | | | | | | | | | 3 | | | | | | | | | | | | | | 21:2 | 21,9
22,6
22,1 | 22.7
22.8
22.9
23.6
23.6 | 23.6
23.5
23.6
23.7 | 24,1
24,2
24,3
24,4 | 24,8
24,9
25,0
25,2 | 25,5
25,6
25,7
25,9 | | 46
47
48
49 | 23,1 | | 24.6 | 25.4
25.5
25.6 | 26,1
26,2
26,3 | A = offered nonrandom traffic Y in Erl Z = 2.0 k = 15 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n | 32 | 34 | 36 | 38 | 45 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 66 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |----------------------|------------------------------|------------------------------|------------------------------|--------------------------------|----------------------|------------------------------|-------------------|----------------------------------|----------------------------------|--------------------------------------|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|----------------------|-------------------------|----------------------------|------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----| | 1
2
3 | 4
5 | 6
7
8
9 | 10 | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | L2
L3
L4 | 13,0
13,9
14,9 | 14,0 | | ı | 6 7 8 9 | 16,7
17,5
18,3 | 16,8
17,7
18,6 | 16,9
17,8
18,7 | 16,6
16,9
17,9
18,8 | 17,6
17,9
18,9 | | 19, | 9 | 1 2 3 4 5 | 20,4
21,0
21,6 | 20,9
21,5
22,2 | 21,9 | 21,5 | 21,6 | 23,5 | 21, | 9 21,
8 22,
7 23, | 9 21,
9 22,
8 23, | 9
9 22,9
9 23,9
8 24,9 | 23,9 | 26 | 23,6
23,4
23,8 | 23,8 | 24,4
25,6
25,4 | 25,6
25,6
26,1 | 25,5
26,1
26,7 | 25,9
26,6 | 26,
27, | 2 26,
5 27,
7 28, | 4 26,
3 27,
6 28, | 7 25,8
6 26,7
5 27,6
3 28,5 | 26.8
27.8
28.7 | 26,9
27,8
28,8 | 26,9
27,9
28,8 | 27.9 | 28.0 | 29,9 | | | | | | | | | | | | | | | | 1234 | 24,5
24,8
25,1
25,4 | 25,4
25,8
26,1
26,4 | 26,3
26,3
27,3 | 27,1
27,6
28,6 | 27,8
28,3
28,8 | 28.5
29.6
29.5
30.6 | 29.
29.
30. | 6 29,
6 30,
2 30,
7 31. | 5 29,
1 30,
7 31,
3 31, | 8 30.3
6 30.9
2 31.3 | 36.4 | 30,6
31,4
32,3 | 36,7
31,6
32,5 | 36,8
31,7
32,6 | 30,9
31,8
32,7 | 36,9
31,9
32,8 | 36,9
31,9
32,9 | 31,9 |)
) एवं (| 9
9 34,9 | | | | | | | | | | | | 6 7 8 9 | 25.8
26.1
26.3
26.4 | 27,6
27,2
27,5
27,5 | 28,0
28,0
28,0 | 29,6
29,4
29,7
3 29,9 | 30,6
30,3
30,3 | 30,9 | 31,
32,
32, | 7 32,
1 32,
9 33, | 4 33,
9 33,
3 34,
8 34, | 0 33.6
6 34.2
1 34.3 | 34,1
2 34,7
7 35,3 | 34,5
35,2
35,9 | 34,9
35,6
36,3 | 35,2
35,9
36,7 | 35,4
36,2
37,5 | 35,6
36,4
37,3 | 35,7
36,6
37,5 | 35,8
36,7
37,6 | 35,8
36,8
37,1 | 8 35,9
8 36,8
7 37,8
6 38,7
3 39,6 | 35,9
36,9
37,8 | 9 36,
8 37, | 9 37. | | 1 | | | | | | | 1 2 3 4 | 26,8
27,6
27,1
27,3 | 28,1
28,3
28,4
28,6 | 29.5
29.5
29.5
29.5 | 30,5
30,7
30,9 | 31.6
31.8
32.1 | 32,6 | 33, | 6 34,
9 34,
2 35,
5 35, | 5 35,
9 35,
2 36,
6 36, | 4 36,2
8 36,7
2 37,5 | 37.0
37.4
37.9 | 37,6
38,1
38,6 | 38,2
38,8
39,3 | 38,8
39,4
46,6 | 39,2
39,9
46,5 | 39,6
40,3
41,0 | 39,9
40,7
41,4 | 40,2
41,6
41,7 | 40,4 | 4 45,5
2 41,4
5 42,3
8 43,1
6 43,9 | 40, | 7 40,
6 41,
4 42, | 7 40,1
7 41,1
6 42,1 | 3 41,8
7 42,8 | 40,9 | 41,9 | A | 43.9
44.9 | 44,9 | | | 46
47
48
49 | 27.5
27.6
27.8
27.9 | 28,9
29,6
29,2
29,3 | 30,2
30,4
30,5 | 31,5
31,7
31,9
31,9 | 32,8
33,6
33,6 | 33,9 | 35, | 1 36,
3 36,
6 36,
8 37, | 2 37,
4 37,
7 37,
6 38, | 2 38,2
5 38,5
8 38,6 | 39.1 | 40,0
40,4
40,8 | 46,8
41,2
41,6 | 41,5 | 42,2
42,7
43,2 | 42,8
43,4
43,9 | 43,4 | 43,9
44,5
45,1 | 44,3 | 3 44,7
5 45,4
7 46,1
3 46,8
9 47,4 | 44,9 | 9 45,
7 46,
3 46, | 2 45.6
5 46.2
8 47.6 | 45,5 | 45,6
46,5
47,4 | 45,7
46,6
47,6 | 45.8
46.7
47.7 | 45,8
46,8
47,7 | 45,9
46,8
47,8 | 46, | A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | A | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 55 | 52 | 54 | 56 | 58 | 65 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 86 | 82 | 84 | 86 | 88 | 96 | |---------------------------------|------|------|----------------------|----------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---|------------------------------|---------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|----------------------| | 52
54
56
58
60 | 20,4 | 30.0 | 31,3
31,5
31,7 | 33,0 | 34.4 | 35,8 | 36,4
36,8
37,1
37,4
37,7 | 38.4 | 39,3
39,7 | 40,5
40,9 | 42.1 | 42,7 | 43,8 | 44.8 | 45.7
46.4
47.6 | 46,6 | 47,5
48,3 | 48,3 | 49,6
50,6 | 49,7
50,7 | 56,4 | 56,9
52,1 | 51,4
52,7 | 51,9
53,2 | 52,3
53,7 | 52.6
54.1 | 52,9
54,4 | 53,1 | 53.3
55.6 | 5 53,
5 55, | | 62
64
66
68
70 | | | 32,1 | 33,6
33,8
33,9 | 35,1
35,3
35,5
35,6 | 36.8
36.8
37.0
37.2 | 38.0
38.2
38.4
38.6
38.8 | 39.4
39.6
39.9 | 40,7
41.0
41.3
41.5 |
42.1
42.4
42.7
43.6 | 43.3
43.7
44.6
44.3 | 44,6
45,0
45.3
45.7 | 45.8
46.2
46.6
47.0 | 47.0
47.5
47.9
48.3 | 48,2
48,6
49,1
49,5 | 49,3
49,8
50,3 | 50,3
50,9
51,4
51,9 | 51,4
52,0
52,5
53.1 | 52,3
53,6
53,6
54.2 | 53,3
54,6
54,6 | 54,2
54,9
55,6 | 55.6
55.8
56.6 | 55,8
56,7
57,5 | 56,6
57,5
58,4 | 57,2
58,3
59,2 | 57,9
59,6
60,6 | 58,5
59,6
60,7 | 59,0
60,2
61,3 | 59,5
60,8
62,6 | 5 59
6 61
6 62 | | 72
74
76
78
80 | | | | | | 37,5 | 39.6
39.2
39.4 | 40,5
40,7
40,9
41.1 | 42.0
42.2
42.4
42.6 | 43,5
43,7
43,9
44,1 | 44.9
45.1
45.4
45.6 | 46,3
46,5
46,8
47,0 | 47.6
47.9
48.2
48.5 | 49.0
49.3
49.6
49.9 | 50,3
50,6
51,0
51,3 | 51,6
51,9
52,3
52,6 | 52,8
53,2
53,6
53,9 | 54,6
54,5
54,9
55,2 | 55,2
55,7
56,1
56,5 | 56.4
56.9
57.3 | 57,5
58.0
58.5
59.0 | 58.6
59.1
59.7 | 59,6
60,2
60,8 | 60,6
61,2
61,8 | 61,6
62,3
62,9 | 62.5 | 63,4
64,2
64,9 | 64,2
65,1
65,8 | 65.6
65,9
66.7 | 65 66 67 68 | | 82
84
86
88
90 | | | | | | | | | 42,9 | 44.5
44.6
44.8
44.9 | 46.0
46.2
46.3
46.5 | 47,5
47,7
47,9 | 48,9
49,2
49,4 | 50.4
50.6
50.8
51.0 | 51,8
52,1
52,3
52,5 | 53,2
53,5
53,7
54.0 | 54,6
54,9
55,2
55,4 | 55,9
56,2
56,5
56.8 | 57,2
57,6
57,9
58,2 | 58,5
58,9
59,2 | 59,8
60,2
60,6 | 61.1
61.5
61.8 | 62,3
62,7
63,1 | 63.4
63.9
64.3 | 64,6
65,6
65,6 | 65.7
66.2
66.7
67.2
67.6 | 66,8
67,3
67,9 | 67,8
68,4
69,0 | 68,9
69,5
70,1 | 69
75
71 | | 92
94
96
98
100 | | | | | | | | | | | | 48.4 | 49,9
56,1
56,2
56,4 | 51.4
51.6
51.8
51.9 | 52.9
53.1
53.3
53.5 | 54,4
54,6
54,8
55,0 | 55,9
56,1
56,3
56,5 | 57,3
57,6
57,8
58,6 | 58,8
59,6
59,2
59,5 | 60,2
60,4
60,7 | 61.5
61.8
62.1
62.4 | 62.9
63.2
63.5
63.8 | 64,2
64,5
64,9 | 65,5
65,9
66,2
66,5 | 66,8
67,2
67,5 | 68,1
68,5
68,8
69,2
69,5 | 69,3
69,7
70,1 | 70,5
70,9
71,4
71.8 | 71.7
72.1
72.6 | 72 | | 102
104
106
108
110 | | | | | | | | | | | | | | 52.2 | 53.8
54.0
54.1 | 55,4
55,5
55,7
55,8 | 56,9
57,1
57,2
57,4 | 58,4
58,6
58,8
58,9 | 59,9
60,1
60,3 | 61,4
61,6
61,8
62,0 | 62,8
63,1
63,3
63,5 | 64.3
64.5
64.8
65.0 | 65.7
66.0
66.2
66.4 | 67:1
67:4
67:6
67:9 | 68,5
68,8
69,1
69,3 | 69.8
70.1
70.4
70.7
71.0 | 71,2
71,5
71,8
72,1 | 72,5
72,8
73,2
73,9 | 73,8
74,2
74,5
74,8 | 75
75
75 | | 112
114
116
118
120 | | | | | | 5 | <u>1 </u> | | | | | میرانده استان به استان از استان این استان این استان این استان این استان این استان این این استان این این این ای
استان این این استان این استان این این این این این این این این این ا | | <u>orde</u>
Signal
Tagrad | | | 57,7 | 59,3
59,4
59,5 | 60,8
61,6
61,1
61,3 | 62,4
62,5
62,7
62,8 | 63,9
64,1
64,2
64,4 | 65,4
65,6
65,8
65,9 | 66,9
67,1
67,3
67,5 | 68,4
68,6
68,8
69,0 | 69,8
70,0
70,3
70,5 | 71.2
71.5
71.7
72.6
72.2 | 72.7
72.9
73.2
73.4 | 74,1
74,3
74,6
74,9 | 75,5
75,7
76,0
76,3 | 76
77
77 | | 125
130
135
140
145 | 64.9 | 66.5 | 68,1
68,5 | 69.6 | 71,2
71,6
72,0
72,3 | 72.7
73.1
73.5
73.9 | 74.2
74.7
75.1
75.5 | 75.7
76.2
76.6
77.1 | 77.1
77.7
78.2
78.6 | 78
79
79
80 | | 155
155
165
165 | <u>mit.</u>
Sid.
Signal | 5 | | | | 14.1 | 74,3 | 76.2 | | 79,4 | 81
81 | | 175
185
185 | Y in Erl Z = 2.0 k = 15 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n | 92 | | 94 | 96 | 98 | 10 | 16 : | 102 | 104 | 106 | 108 | 116 | 115 | 120 | 125 | 130 | 135 | 145 | 145 | 155 | 155 | 165 | 165 | 170 | 175 | 180 | 185 | 196 | 195 | 200 | 205 | 210 | |---------------------------------|--------------------------|---|------------------------------|----------------------|-------------------|---|-------------------|------------------------------|------------------------------|----------------------|----------------------|------------------------------|------------------------------|-----------------------------------|------------------------------|--------------------------------------|------------------------------|----------------------------|---------------------------|--------------------------------------|--------------------------|---------------------------------|--------------------------|----------------------|--------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|--------------------------| | | 53,
55,
57, | 6 5
3 5
1 5 | 3,6
5,5
7,2 | 55,6
57,4 | 53,
55, | 5 5 5 5 5 5 5 5 7 5 5 7 5 7 5 7 5 7 5 7 | 7,6 | 57.7 | 55.8
57.7 | 55,9
57,8 | 57.8
59.8 | 57,9
59,8 | 62
64
66
68
70 | 61,
63,
64, | 7 6
0 6
3 6 | 2,6
3,5
4,8 | 62,4
63,9
65,3 | 62,
64, | 7 62
2 64
7 66 | 1.5 | 63,1
64,8
66,4 | 63,3
65,6
66,6 | 63.4
65.2
66.9 | 63,5
65,3
67,1 | 67.2 | 63.8
65.7
67.5 | 63.8
65.8
67.7
69.6 | 67.8 | | | | | | | | | | | | | | | | | | | 72
74
76
76
80 | 67.
68.
69. | 5 6
4 6
3 7 | 8,2
9,2
0,1 | 68,9
69,9
70,9 | 69,
70,
71, | 5 76
6 79
6 72 | 1.2 | 70.6
71.8
72.9 | 71.6
72.3
73.5 | 71.5
72.8
74.1 | 71,8
73,3
74,6 | 72,2
73,7
75,1 | 72.8
74.4
76.0 | 73,2
75,0
76,6 | 73.5
75.3
77.1 | 71.8
73.7
75.6
77.4
79.2 | 73.8
75.7
77.6 | 75,8
77,7 | 77.8
79.7 | 79.8 | | | | | | | | | | | | | | 84
86 | 71,
72,
72, | 5 7
2 7
8 7 | 2,5
3,2
3,8 | 73,4
74,1
74,8 | 74,
75,
75, | 3 7!
1 70
8 70 | 5.1 | 75,9
76,8
77,6 | 76.7
77.6
78.5 | 77,4
78,4 | 78,1
79,1
80,1 | 78.8
79.8
80.8 | 80,1
81,4
82,5 | 81,2
82,6
83,9 | 82,1
83,6
85,0 | 82.7
84.3
85.9 | 83,1
84,8
86,5 | 83.4
85.2
86.9 | 83.6
85.4
87.2 | 81,8
83,7
85,6
87,5
89,3 | 83,8
85,7
87,6 | 87.7 | 87.8
89.7 | 89,8 | | | | | | | | | | 92
94
96
98
100 | 74,
75,
75, | 5 7
6 7
4 7 | 5,6
6,1 | 76,7
77,2
77,8 | 77,
78,
78, | 8 70
3 70
9 80 | 8 · 8
9 · 4 | 79,8
80,4
81,0 | 80,8
81,5
82,1 | 81.7
82.4
83.1 | 82,6
83,4
84,1 | 83,5
84,3
85,6 | 85.6
86.4
87.3 | 87,4
88,4
89,3 | 88,9
90,0
91,1 | 90.2
91.4
92.6 | 91.1
92.5
93.9 | 91,9
93,4
94,9 | 92,5
94,1
95,7 | 91,1
92,9
94,6
96,3
97,9 | 93,2
95,6
96,7 | 93,4
95,3
97,1 | 93.6
95.5
97.3 | 93.7
95.6
97.5 | 95.7 | 95.8
97.7
99.7 | 97.8
99.7 | | | | | | | 102
104
106
108
110 | 76,
76,
77,
77, | 3 7 7 7 7 1 7 7 5 7 7 7 7 7 7 7 7 7 7 7 7 | 7,5
8,0
8,4 | 78,7
79,2
79,6 | 79,
80,
80, | 9 8:
4 8:
8 8:
3 8: | 1.5 | 82.2
82.7
83.2
83.7 | 83,3
83,8
84,3
84,8 | 84,4
84,9
85,5 | 85,4
86,6
86,6 | 86,4
87,0
87,7
88,2 | 88,8
89,6
90,2
90,9 | 91,1
91,9
92,6
93,4 | 93,1
94,0
94,8
95,6 | 94.8
95.8
96.8 | 96.3
97.4
98.5
99.5 | 97,6
98,8
100
101 | 98,6
100
101
103 | 99,4
161
162
164 | 100
102
103
105 | 101
102
104 | 101
103
104 | 101
103
105 | 101
103
105 | 102
103
105
107 | 162
164
165 | | 104
106
108
110 | 108 | 110 | | | 112
114
116
118
120 | 78,
78,
79, | 5 7
8 8 | 79,8
30,1
30,5 | 81,5
81,5 | 82,
82,
83, | 4 8
8 8
1 8 | 3,7
4,1
4,5 | 85,0
85,4
85,7 | 86,6
86,6 | 87,4
87,9
88,1 | 88,6
89,1
89,5 | 89,8
90,3
90,7 | 93,2 | 95.3
95.9
96.5 | 97,8
98,5
99,1 | 99,4
100
101
102
102 | 162
163
164 | 104
105
106 | 106
107
108 | 167
169 | 169
116
111 | 108
110
111
112
114 | 169
111
112
114 | | 115
112
114
115 | 199 | 111
113
115
116 | 111
113
115
117 | 111
113
115 | 112
113
115
117 | 112
114
116
117 | 114
116 | | 125
135
135
145 | 80.
81.
81. | 6 8 | 32,1
32,6
33,2 | 84,5 | 84,
85,
86, | 9 8
6 8
1 8 | 6,3
7,0
7,6 | 87.7
88.4
89.0 | 89.1
89.8 | 90,4
91,2 | 91,6
92,6
93,3 | 93.1
93.9
94.7 | 96,3
97,3
98,1 | 98,3
99,4
100
101
102 | 102
104
105 | 106
108 | 108
169
110 | 110
112
113 | 114
116 | 115
117
118 | 119
121 | 116
119
121
123
125 | 121
123
125 | 125
127 | 126
129 | 121
125
128
131
133 | 126
129
132 | 123
127
130
133 | 123
127 | 124
128
132
136 | 124
128
132
136
140 | 129
133
137 | | 150
155
160
165
170 | 82,
82,
83, | 5 8 | 34,1
34,5
34,9
35,2 | 85,6
86,6
86,8 |
87,
87,
88, | 1 8
6 8
0 8
4 9 | 8,7
9,1
9,6 | 90.2
90.7
91.1
91.5 | 91.6
92.2
92.6
93.1 | 93, | 94,6
95,2
95,7 | - 60- | 99,6 | 103 | 106
107
108
109 | 110
110
111
111 | 113
114
115
115 | 116
117
118
119 | 119
120
121
122 | 121
123
124
125 | 124
125
127
128 | 127
128
129 | 129
131
132
133 | 131
133
135 | 133
135
137
139 | 135 | 137
146
142
144 | 139
141
144
146 | 141
143
146
148 | 142
145
147
150 | 143
146
149 | 144
148
151
153 | | 175
180
185
190
200 | | | | | 89, | | 1.0 | 92.6 | 94,2 | 95. | 97,4 | 98,6
99,6
99,4
99,7 | 103
103
104 | | 110
111
111 | 114
115
115 | 118
119 | 121
122
122 | 124
125
126 | | 131
132
133 | 134
135
136 | 137
138
139 | 141 | 142
143
144
145 | 144 | 147
148
150
151 | 149
151
152
154 | 152
153
155
156 | 154
156
157
159 | 156
158
160
161 | 158
160
162
164 | Y in Erl Z = 2.0 k = 15 Table 4 - 17 Table 4 -18 Y in Erl Z = 2.0 k = 20 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n
12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 16 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 36 | |--|---|---|---|---|---|------|---|---|---|---|-------|----|----|----|----|---|----|----|----|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | 3 4 5 6 | | | | | | Jan. | 7
8
9 | 8,93 | 8,95 | 8,97
9,93 | | 10,0 | | | | | | | 12345 | | | | | | | | | | | S. S. | | | | | | | | | 11.5
12.2
12.9 | 11,6
12,3
13,1 | 11.7
12.5
13.2 | 11.8
12.6
13.4 | 11.8
12.7
13.5 | 11,9
12,8
13,6 | 11.0
11.9
12.8
13.7
14.6 | 11,9
12,9
13.8 | 12,9 | 12.9 | 13,0 | | 6
7
8
5 | 14.5
14.5
15.0
15.3 | 14.3
14.8
15.3
15.7 | 14.6
15.1
15.6
16.1 | 14,8
15,4
16,5 | 15.0
15.7
16.3
16.8 | 15,2
15,9
16,5
17,1 | 15.4
16.1
16.8
17.4
18.0 | 15,5
16,3
17,0
17,7 | 15,6
16,4
17,2
17,9 | 15,7
16,5
17,3
18,1 | 15,8
16,6
17,5
18,3 | | 123 | | | | | | | | | | <u>(2008) 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000</u>
(2008) 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2009 - 2000 - 2 | | | | | | | | | | 16,0
16,3
16,5
16,7 | 16.4
16.7
17.0
17.2 | 16.9
17.2
17.5
17.8 | 17,3
17,7
18,0
18,3 | 17,7
18,1
18,5
18,8 | 18,1
18,6
19,0 | 18.5
19.0
19.4
19.8
20.2 | 18,8
19,3
19,8
20,2 | 19,1
19,7
20,2
20,6 | 19,4
20,0
20,5
21,0 | 19,7
20,3
20,9 | 17.1
17.3
17.4
17.5 | 17.6
17.8
18.0
18.1 | 18,2
18,4
18,6
18,8 | 18,8
19,1
19,3
19,5 | 19.4
19.7
19.9
20.1 | 20,0
20,2
20,5
20,7 | 26,5
26,8
21,6
21,3
21,5 | 21.0
21.3
21.6
21.9 | 21,4
21,8
22,1
22,4 | 21,9
22,3
22,6
22,9 | 22,3 | | democraticos en marchados de la company l | 17,9 | 18,5
18,6
18,7 | 19,2
19,3
19,5 | 19,9
20,1
20,2 | 20.6
20.8
20.9 | 21,3
21,4
21,6 |
21.7
21.9
22.1
22.3
22.4 | 22.6
22.8
22.9 | 23,2
23,4
23,6 | 23,8
24,0
24,2 | 24,3
24,6
24,8 | 19,0
19,0 | 19.7 | 20,5
20,6
20,7 | 21,3
21,4
21,5 | 22,0
22,1
22,2 | 22.6
22.7
22.8
22.9
23.1 | 23,4
23,5
23,7 | 24,1
24,2
24,4 | 24,8
24,9
25,1 | 25,4
25,6
25,8 | | | | | | | | | | | | | | | | | | The second se | | | | | | | | 21.6 | 22,4
22,5
22,6
22,6 | 23,2
23,3
23,4
23,5 | 23,9
24,6
24,1
24,2 | 24,6
24,8
24,9
25,0 | 25,6
25,5
25,6
25,7 | 26,1
26,2
26,3
26,4 | 23,6
23,7 | 24,4
24,5
24,5
24,6 | 25,1 | 25,9
26,5
26,1
26,2 | 26,7
26,8
26,9
26,9 | A = offered nonrandom traffic Y = 2.0 k = 20 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | \n\
4\ | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 66 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 9 | |----------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|---------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------|------|------| | 1 2 3 | 2000/0000
(100/0000)
(100/0000) | | | | | | | | | | 5 | 7
8
9 | 10
11
12 | 13
14
15 | 14,0 | | L | 17
18
19 | 15,9
16,8
17,7
18,5
19,3 | 16,9
17,8
18,7 | 16,9
17,9
18,8 | 17,9 | | 20,6 | 21
22
23
24
25 | 20,8
21,4
22,0 | 21,1 | 21,4 | 21,6
22,5
23,3 | 20,9
21,8
22,7
23,5
24,4 | 21,9
22,8
23,7 | 21,9
22,9
23,8 | 22,9 | 23,9 | 24.9 | 26
27
28
29
30 | 23,6
24,0
24,4 | 24,8
24,8
25,2 | 24,9
25,5
26,6 | 25,4
26,1
26,6 | 25,1
25,9
26,6
27,2
27,8 | 26,2
27,6
27,7 | 26,5
27,3
28,6 | 26,6
27,5
28,3 | 26,8
27,7
28,6 | 26,9
27,8
28,7 | 26.9
27.9
28.8 | 28.9 | 28.9 | 29.9 | | | | | | | | | | | | | | | | | 31
32
33
34
35 | 25,1
25,4
25,7
26,0 | 26,6
26,7
26,7 | 26,9
27,3
27,3
28,1 | 27,7
28,2
28,6 | 28,4
28,9
29,4
29,8
30,3 | 29,6
29,6
30,1
30,6 | 29,5
30,1
30,7
31,3 | 29,9
30,6
31,2
31,9 | 30,2
31,0
31,7
32,4 | 36,4
31,3
32,1
32,8 | 30.6
31.5
32.3
33.1 | 36,8
31,7
32,5
33,4 | 30,9
31,8
32,7 | 30,9
31,9
32,8
33,7 | 31,9
32,9
33.8 | 33.9 | 33,9 | | | | | | | | | | | | | | 36
37
38
39 | 26,5
26,7
26,9
27,1 | 27,6
27,9
28,1
28,3 | 28,7
29,0
29,3 | 29,7
30,1
30,4
30,4 | 30,7
31,0
31,4
31,7
32,0 | 31,5
32,6
32,4
32,7 | 32,3
32,8
33,2
33,6 | 33,5
33,5
34,6 | 33,6
34,2
34,8
35,3 | 34,2
34,8
35,4
36,6 | 34,6
35,3
36,6 | 35,0
35,7
36,4
37,1 | 35,3
36,1
36,8 | 35,5
36,3
37,1
37,9 | 35,7
36,5
37,4 | 35,8
36,7
37,6 | 35,9
36,8
37,7
38.6 | 36,9
37,8
38.7 | 37,9 | 37,9 | | | | | | | | | | | 41
42
43
44
45 | 27,4
27,6
27,7
27,9 | 28,7
28,9
29,1 | 30,0
30,2
30,4 | 31,2
31,4
31,7
31,9 | 32,3
32,6
32,8
33,1
33,3 | 33,4
33,7
34,6
34,3 | 34,4
34,7
35,1
35,4 | 35,3
35,7
36,1 | 36,2
36,6
37,0
37,4 | 37,6
37,4
37,9
38.3 | 37,7
38,2
38,7 | 38,3
38,9
39,4 | 38,9
39,5
40,1 | 39,4
40,0
40,7 | 39,8
40,5
41,2 | 45,1
45,9
41,6 | 45,3
41,2
41,9 | 45,5
41,4
42,2
43.5 | 40,7
41,6
42,4 | 40,8
41,7
42,6 | 40,9
41,8
42,7 | 45,9
41,9
42,8 | 41,9 | | 44.0 | | | | | | 48
49 | 28,1
28,2
28,4
28,5 | 29,6
29,7
29,8 | 30.9
31.1
31.2
31.4 | 32,3
32,4
32,6 | 33,5
33,7
33,9
34,1
34,3 | 34,8
35,6
35,2
35,4 | 35,9
36,2
36,4
36,6 | 37,6
37,8 | 38,1
38,4
38,7 | 39,1
39,4
39,8 | 45.0
45.4
45.7 | 46,9
41,3
41,7
42.1 | 41,7
42,1
42,6
43,0 | 42,4
42,9
43,4
43,8 | 43,6
43,6
44,1 | 43,6
44,2
44,8
45.3 | 44,1
44,8
45,4 | 44,5
45,2
45,9 | 44,9 | 45,2
46,6
46,7 | 45,4
46,2
47,0 | 45,6
46,4
47,3 | 45,7
46,6
47,5 | 45,8
46,7
47,6 | 45,9
46,8
47,7 | 45,9
46,9
47,8 | 40 0 | 48,9 | | Table 4 - 20 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 k = 20Y in Erl | n | 32 | 34 | 36 | 38 | 45 | 42 | 44 | 46 | 48 | 55 | 52 | 54 | 56 | 58 | 66 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 85 | 82 | . 84 | 86 | 88 | 90 | |---------------------------------|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | 52
54
56
58
60 | 28.9 | 30,5
30,6
30,8 | 32,0
32,2
32,4 | 33,5
33,7
33,9 | 34,9
35,1
35,4 | 36,3
36,6
36,8 | 37,6
38,6
38,3 | 38,9
39,3
39,6 | 40,2
40,6
41.0 | 41.4
41.9
42.3 | 42.6 | 43.7
44.3
44.8 | 44,8
45,4
45,9 | 45.8
46.5
47.1 | 46,8
47,5
48,1 | 47,7 | 48.5
49.4
50.2 | 49,3
56,2
51,1 | 50,6
51,6 | 49.5
50.7
51.8
52.8
53.7 | 51,3
52,5 | 51.8
53.1
54.2 | 52,2
53,6
54.8 | 52.6
54.1 | 52,9
54,5 | 53:2
54:8
56:3 | 53,4
55,1 | 53,6
55,3 | 53.7
55.5 | 55,8
55,6 | | 62
64
66
68
70 | | 31,1 | 32,7
32,8 | 34,4 | 36,0
36,2
36,3 | 37.5
37.7
37.9 | 39,6
39,2
39,4 | 40.5
40.7
40.9 | 41,9
42,2
42,4 | 43,3
43,6
43,9 | 44.7 | 46.0 | 47,3
47,7
48,1 | 48,6
49.0
49,4 | 49,8
50,2
50,7 | 51,5
51,5
51,9 | 52,1
52,6
53,1 | 53,2
53,8
54,3 | 54,2
54,9
55,5 | 54,5
55,2
55,9
56,6
57,1 | 56,2
56,9
57,6 | 57,1
57,9
58,6 | 57,9
58,8
59,6 | 58,7
59,7
60,5 | 59,5
60,5
61,4 | 60.1 | 60.8
61.9
63.0 | 61,3
62,5
63,7 | 61.8
63.1
64.3 | 62,2
63,6
64,9 | | 72
74
76
78
80 | | | | | 36,6 | 38.3 | 39,9
40,1
40,2 | 41.5
41.7
41.8 | 43,1
43,2
43,4 | 44.6
44.8
45.0 | 46.5 | 47.5
47.8
48.6 | 49.0
49.2
49.5 | 50.4
50.7
50.9 | 51.8
52.1
52.4 | 53,1
53,5
53,8 | 54,4
54,8
55,1 | 55,7
56,1
56,5 | 57.6
57.4
57.8 | 57.7
58.2
58.7
59.1
59.5 | 59,4
59,9
60,3 | 60,5
61,1
61,6 | 61.6
62.2
62.7 | 62:7
63:3
63:9 | 63,7
64,4
65,6 | 64.7 | 65,7
66,4
67,1 | 66,6
67,4
68,1 | 67,4
68,3
69,1 | 68,2
69,1
75,5 | | 82
84
86
88
90 | | | | | | | | 42.1
42.2 | 43.9
44.6 | 45,5
45,6
45,7 | 47.2 | 48.6
48.8
48.9 | 50,1
50,3
50,5 | 51.7
51.9
52.1 | 53:1
53:4
53:6 | 54,6
54,9
55,1 | 56.1
56.3
56.6 | 57,5
57,8
58,6 | 58,9
59,2 | 59,9
60,2
60,6
60,9
61,2 | 61,6
61,9
62,3 | 62,9
63,3
63,6 | 64,2
64,6
65,0 | 65;4
65;8
66;3 | 66,6
67,1
67,5 | 67,8
68,3
68,8 | 69.5
75.5 | 70,1
70,7
71,2 | 71.2
71.8
72.3 | 72,2
72,9
73,5 | | 92
94
96
98
100 | | | | | | 20
35
35 | | | | | | 49.4 | 51,6
51,1
51,3 | 52.6
52.7
52.9 | 54,1
54,3
54,5 | 55,7
55,9
56,1 | 57.2
57.4
57.6 | 58,7
59,6
59,2 | 60.2
60.5
60.7 | 61:4
61:7
61:9
62:2
62:4 | 63,1
63,4
63,7 | 64.6
64.9
65.1 | 66,0
66,3
66,6 | 67:3
67:7
68:5 | 68,7
69,0
69,4 | 76.6
76.4
76.7 | 71:3
71:7
72:1 | 72,6
73,6
73,4 | 73,9
74,3
74,7 | 75,1
75,5
76,6 | | 102
104
106
108
110 | | | | | | | | | | | | | 51.5 | 53.3 | 54,9
55,0
55,2 | 56,5
56,7
56,8 | 58,1
58,3
58,4 | 59,7
59,9
60,0 | 61,3 | 62,6
62,8
63,0
63,2
63,4 | 64,3
64,5
64,7 | 65,8
66,1
66,3 | 67:3
67:6
67:8 | 68:8
69:1
69:3 | 70,3
70,5
70,8 | 71.7
72.6
72.2 | 73.1
73.4
73.7 | 74,5
74,8
75,1 | 75,8
76.2
76.5 | 77,2
77,5
77,9 | | 112
114
116
118
120 | | | | | | .53
557 | | | | | á | | | | | | 58,8
58,9 |
60,5
60,6
60,7 | 62,1 | 63:5
63:7
63:8
64:0
64:1 | 65,4
65,6 | 66.8
67.0
67.2 | 68,4
68,6
68,7 | 69.9
70.1
70.3 | 71.5
71.7
71.9 | 73.0
73.2
73.4 | 74.4
74.7
74.9 | 75,9
76,2
76,4 | 77,4
77,6
77,9 | 78,8
79,1
79,3 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | | | 62,8 | 64,4 | | 68,6 | 69,6
70,0 | 71:3
71:6 | 72,9
73,2
73,6 | 74.5
74.9
75.2 | 76.1
76.5 | 77,6
78,1
78,4 | 79,2
79,6
85,0 | 80,7
81,2
81,6 | | 150
155
160
165
170 | 75;8 | 77,5
77,7 | | 81.1 | | | 175
180
185
190
200 | A = offered nonrandom traffic Y = carried traffic Y in Erl Z = 2.0 k = 20 Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n
A | 92 | | 74 | 96 | 9 | В | 100 | 102 | 11 | 94 | Ī06 | 108 | 110 | 115 | 120 | 12 | 5 : | 136 | 135 | 140 | 145 | 155 | 155 | 160 | 1,65 | 176 | 175 | 185 | 185 | 190 | 195 | 200 | 205 | 210 | |---------------------------------|------------------------------|----------------------|--------------------|--------------|----------------------|-------------|----------------------|------------------|----------------------|---------------------|----------------------|-------------------|---|-------------------------|-------------------------|---------------------------|----------------|---------------------------------|---------------------------------|----------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|-------------------|--------------------------| | 52
54
56
58
60 | 53,8
55,7
57,6
59,3 | 7 55
5 57 | 7,7 | 57,8 | 57 | | 57,9
59,8 | 59.8 | 3 | 62
64
66
68
70 | 62,6
64,1
65,4 | 6 62
1 64
1 65 | 2,9
1,4
5,9 | 64,8 | 63
65
66 | ,3
,0 | 66.9 | 65.4 | 6 6 | 3.7
5.6
7.3 | 63,8 | 63,
65, | 8
8 65,
6 67,
4 69, | 7 67. | 9
8 | 78 | 68,9
69,9
70,9 | 9 69
9 70
9 7: | 7,6;
7,7
1,7 | 70.3 | 70
72
73 | ,8 | 71,3
72,6
73,8 | 71,8 | 3 7:
2 7:
4 7: | 2,2
3,6 | 72,5
74,6
75,4 | 72,
74,
75, | 2 71.
8 73.
4 74.
9 76.
3 77. | 1 73:
7 75:
3 77: | 5 73,
3 75,
6 77, | 7
6 75
4 7 7 | .7 | 77.8
79.8 | | | | | | | | | | | | | | | | | | 00 | 73,2
73,9
74,6 | 2 7°
9 7°
6 7! | 4,2
4,9
5,6 | 75.9
75.9 | . 76
76
77 | . 6 | 76.9
77.8
78.6 | 77.
78. | 77
67
58 | 9,4 | 79,1
80,2 | 79,
80, | 6 79;
8 80,
9 81,
9 82,
9 83, | 4 81.
5 82. | 6 82,
9 84, | 5 83
6 84
5 84 | ,8 | 83.5
85.3 | 83,7 | 85,8
87,7
89,5 | 87,8
89,7 | | | | | | | | | | | | | | | 92
94
96
98
100 | 76,8 | 3 7
3 7
2 7 | 8,0
8,5 | 79,5 | . 86
86 | , 7
1, 3 | 86,7
81,4
81,9 | 81.8 | 8
4 8
1 8 | 2,8:
3,5:
4,1 | 83,7
84,5
85,2 | 84,
85, | 6 85,
4 86,
2 87, | 5 87.
4 88.
2 89. | 5 89,
5 90,
4 91. | 3 96
4 92
4 93 | .7 | 91,8
93,2
94.6 | 92.6
94.2
95.7 | 96.5 | 93,5 | 91,8
93,7
95,6
97,4
99,2 | 07.7 | 97.8
99.7 | | | | | | | | | | | | 102
104
106
108
110 | 78.9 | 9 8
2 8 | 9,8
5,2
5,6 | 81,5 | 6 82
5 82
9 83 | .8 | 83,5
84,0
84,5 | 84.
85. | 78
28
78 | 5,9
6,4
6.9 | 87.6
87.6 | 88,
88,
89, | 5 88,
1 89,
7 89,
3 90,
8 91, | 2 91;
9 92;
4 93. | 8 94,
5 95, | 2 96
6 97
7 98 | ,2 | 98.1
99.2 | 00.7 | 102
104 | 102 | 153
154
156 | 107 | 103
105
107 | | 106
108
110 | | | | | | | | | | 112
114
116
118
120 | 80.5 | 2 8
5 8
8 8 | 1,9 | 83,0 | 84
8 85 | ,7 | 85.7
86.6
86.4 | 87 . 87 . 87 . 1 | 5 8
4 8
7 8 | 8,3
8,7
9,1 | 89.5
90.6 | 90,
91,
91, | 3 91,
8 92,
2 92,
7 92,
1 93, | 5 95.
5 95.
9 96. | 6 97.
5 98.
6 98. | 7 1
3 1
9 1 | 60
61
62 | 163 | 104
105
106
107
107 | 109 | | 169
116
111
112 | 116
111
113 | 110
112
114
115 | 111 | 111
113
115
117 | 112 | 116
117 | 114
116
118
119 | 118 | 125 | | | | | 125
130
135
140
145 | 82.7 | 2 8
7 8
2 8 | 4,3 | 85,8 | 8 8 8 7
8 8 7 | 3,7 | 88,2
88,8
89,4 | 90 | 69
39
99 | 1,1 | 92.5
93.2
93.9 | 93,
94,
95, | 0 94,
9 95,
6 96,
3 96,
0 97, | 3 98,
1 99,
8 16 | 6 10
5 10
0 10 | 2 1
3 1
4 1 | 05
06
07 | 107
108
109
110
111 | 109
111
112
113
115 | 113
115 | 114
116
118
119
121 | 118
120
122 | 118
120
123
125
126 | 122
125
127 | 124
127
129 | 122
126
129
131
133 | 127
136
133 | 124
128
131
134 | 124
128
132 | 124
129
133
137 | 125
129
133
138 | 125
129
134
138
142 | 134
139 | 136
134
139
143 | | 150
155
160
165
170 | 84,4
84,7
85,0 | 48
78
98 | 6,8
6,3
6,6 | 87,0
87,9 | 89
89
89 | ,6 | 90,8
91,2
91,5 | 92. | 4 9
8 9 | 3,9
4,4
4.8 | 95,5 | 97,
97, | 5 98,
5 98,
5 99,
6 99, | 6 10 | 2 10
3 10
3 10 | 6 i
7 i
7 i | 16
10
11 | 112
113
114
115
115 | 116
117
117
118
119 | 122 | 122
123
124
125
126 | 126
127
128 | 128
129
135
132
133 | 132
133
135 | 135
136
138 | 137
139 | 143 | 140
142
144
146 | 142 | 143
146
148
150 | 145
148 | 146
149
152
154
157 | 147
150
153 | 148
151
155
158 | | 175
180
185
190
200 | | | | 88,9 | 9 9 6
9 6 | , 8 | 92,2
92,5
92,7 | 94. | 1 9
4 9 | 5,8
6,1 | 97.4 | 99, | 4 16
7 16 | 1 10
1 10
1 10 | 5 10
5 10
5 11 | 9 1
9 1 | 13
13
14 | 116
116
117
117
118 | 120
120
121
121
121 | 124
125
125 | 129 | 131
132
133 | 136 | 138
139 | 140
141
142
143 | 143
144
145 | 146
147
148 | 149
150
151 | 152
153
154 | 154
156
157 | 157
158
166 | 159
161
163 | 161
163
165 | 163
165
167 | Table 4-22 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 Y in Erl k = 30 | n | 1 | 2 3 | 4 | 5 | 6 | 7 |) | 8 | 9 | 16 | 11 | İŻ | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 26 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |----------------------------|---|-----|---|----------------------------|---|----------|---|------------------|---|-------------|----------|--------------|----|----------------|--|------------------|---|----------------------------|-----------------------|----------------|--------------------|---------------------|--|--------------------------------------|---|-----------------------|-----------------|-------------------------------|----|--------------------------------------| | 12 B 4 5 | | | | | | | | facilities acies | | | | Alexandrican | | OKBIZ melikudi | an ann an Aireann A | za de arrespondo | Siddepanearios Sidilis | 53:00000000 <u>04</u> 4460 | Seconsolven | over a markett | adili bidismon yan | Distriction for Sep | Manual Constitut | antillere se en en en en en en en en | e in a service page of the least of the | altoria e estratado e | New York (1994) | etronto e Hanco e | 6
7
8
9 | 10 | | | | | | | | | | | | | | <u> 1985</u> | | | | | | | | | | | | | | | | | | 11
12
13
14
15 | 1 3 | | | | 14,0 | 14,9
15,9
16,8 | | 16
17
18
19
20 | 17,7
18,5
19,3 | | 21
22
23
24
25 | | | | مارد میں در
دامار مارکی | | سر
در | | | | | | | | | | | 20% | | | 1919 L | | | 1.2 | | | | | والمستورين والمرادات | | 20,0
20,7
21,4
22,0
22,5 | | . 8 | 26
27
28
29
30 | 23,5
23,9
24,2
24,6 | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | Jahren Janes,
Jahren Janes | | | | 31
32
33
34
35 | | | | | | | | | | 50
(555) | 24,9
25,2
25,5
25,7
25,9 | | 8 | 26,1 | | 36
37
38
39
40 | 26,5
26,6
26,8 | | 41
42
43
44
45 | | | | | | | | | | | | | | | | | المدرون
والمراد المدرون
والمراد المراد الم | | on one e
Formation | | | | ر ما میدارد.
می از میراد انداز در ا | | | | Janear Parker | | | 26,9
27,1
27,2 | | 46 | 27,3 | | 47
48
49
50
| 27.5
27.6
27.7
27.7
27.8 | A = offered nonrandom traffic Y = carried traffic $Y_{in Erl}$ Z = 2.0 k = 30 Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | \n | 32 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |----------------|----------------------------------|------------------|-------|-------|------|--------|------|-----------|------------------|----------|----------|-------|-------|----------|-----------|--------|------|--------|--------|-------------|------|--------|--------|------|----|----|----|----|---------| | A \ | | | | | | | | an sanaan | 1000000 | | 3 4 | 6 | 8
9
10 | 11
12 | 13
14
15 | 15,0 | 16
17 | 15,9 16,
16,9 16, | 18
19
20 | 17,8 17,
18,7 18,
19,5 19, | 9 17,9
8 18,9 | | 26.6 | 21
22 | 20,3 20, | 6 20,8 | 20,9 | 20,9 | 21.0 | 23
24
25 | 21,8 22,
22,5 22,
23,1 23, | 2 22,5
9 23,3 | 22,7 | 22,8 | 22,9 | 23,9 | 23,9 |) | 26
27 | 23,6 24,
24,1 24, | 2 24,7 | 25,1 | 25,4 | 25,6 | 25,8 | 25,9 | 25, | | , | 28
29
30 | 24,6 25,
25,1 25, | 4 26,0
9 26,6 | 26,5 | 27.0 | 27.3 | 27,5 | 27.7 | 27, | 8 27,9
7 28.8 | 28.9 |)
29, | , | | | | | | | | | | | | | | | | | | | 31
32 | 25,8 26,
26,2 27, | 8 27.6
2 28,1 | 28,3 | 29,6 | 29,5 | 29,9 | 36,2 | 36, | 3 30, | 30.8 | 30,9 | 9 30, | 9 | | | | | | | | | | | | | | | | | | 33
34
35 | 26,5 27,
26,8 27,
27,6 28, | 9 20,9 | 29,8 | 30,6 | 31,3 | 31.9 | 32.4 | 32. | 9 33.1 | 133.5 | 33. | 5 33. | 8 33. | 9 37.0 | 9 | | | | | | | | | | | | | | | | 36
37
38 | 27,2 28,
27,5 28, | 1 27,7 | 30,9 | 31.9 | 32.8 | ં 33.6 | 34.3 | 34. | 9 35.4 | 1 35.8 | 3 36. | 2 36. | 4 36. | 6 36.E | 2 76 8 | TA. C | 1 | | | | | | | | | | | | | | 39
40 | 27,7 29,
27,9 29,
28,0 29, | 2 30,4 | 31,0 | 32.6 | 33.0 | 34.5 | 35.3 | 36. | 36. | 7137.2 | 37. | 7 38. | A 38. | 3 38.5 | 3 TR. 1 | 7 78.5 | TA C |) | 9 | | | | | | | | | | | | 41
42
43 | 28,4 29, | 0 31,1 | 32,3 | 33,5 | 34,7 | 35,7 | 36,7 | 37. | 38.: | 1 39 . 1 | 39. | 7 44. | 2 46. | 7 41 . 6 | 1 41 . 3 | 41.9 | 41.7 | 44 . 5 | 44.0 | 1 1 1 1 1 1 | | | | | | | | | | | 44 | 28,5 29,
28,6 36,
28,8 36, | 1 31,7 | 32,0 | 34.1 | 35,2 | 30.4 | 37.4 | 38. | 4 39. | 146.1 | 46. | B 44. | 5 40. | M 49.F | 5 42.9 | 47.0 | 47.4 | 1 47.4 | 6 47.7 | 147 0 | 47 6 |)
) | | | | | | | | | 46
47
48 | 29,0 30, | 2 3210 | 33,4 | 34,7 | 36,6 | -37.2 | 38.4 | 39. | 5 46. | 5 44 . 4 | 40. | 3 43. | 1 43. | A 44.F | 5 45.6 | 45.5 | 45.0 | AA. | 16.4 | 1 44 6 | 74 7 | 1 44 1 | |) | | | | | | | 49
50 | 29,1 30,
29,2 30,
29,3 30, | 1 3212 | .001/ | 35,11 | 30,4 | 37.7 | 38.5 | 40. | 1 41.2 | 142.2 | 43. | 2 44. | 1 44. | 9 45.7 | 5 46.3 | 46.8 | 47.7 | 47. | 7 48.4 | AR. T | 40 8 | | 7 40 0 | 40 0 | | | | | | Table 4 -24 A = offered nonrandom traffic Y = carried traffic Y in Erl Z = 2.0 k = 30 Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | \n
A | 32 | 34 | 36 | 38 | 45 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | |---------------------------------|------|------|------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|------------------------------|----------------------|----------------------|----------------------|----------------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------------|----------------------| | 52
54
56
58
60 | 29,7 | 31,4 | 33,0 | 34,5 | 36,1
36,3 | 37.6 | 39,5
39,5 | 40,0 | 41,8 | 42.6
43.1
43.5 | 44.8 | 44,9 | 46.7 | 47.5
47.7
48.4 | 48.8 | 48,9 | 49,7
50,6 | 50,4 | 4 51,1
4 52,2
4 53.3 | 50,3
51,6
52,9
54,0 | 52,2
53,5 | 52,6
54,6 | 52,9
54,4 | 53,2
54,8 | 53,4
55,1 | 53.6
55.4 | 53.7
55.6 | 53,8
55,7 | 55,8 | 55,9 | | 62
64
66
68
70 | | | 33,4 | 35,1
35,2
35,3
35,5 | 36,7
36,8
37,0
37,1 | 38,3
38,4
38,6
38,8 | 39,8
40,0
40,2
40,4 | 41.3
41.5
41.8
42.0 | 42.8
43.0
43.3
43.5 | 44.2
44.5
44.8
45.6 | 45,6
45,9
46.2
46.5 | 46,9
47,3
47,6
48,0 | 48,2
48,6
49,6 | 49,5
49,9
55,4 | 50,7
51,2
51,6
52.1 | 51,8
52,4
52,9 | 52,9
53,5
54,1 | 53,9
54,6
55,8 | 9 54,9
5 55,7
3 56,4 | 55,9
56,7
57,4
58,1
58,1 | 56,7
57,6
58,4 | 57,5
58,5
59,4 | 58,2
59,3
60,2 | 58.9
60.0
61.1 | 59,5
60,7
61,8 | 60,0 | 60,4
61,8
63,1 | 60,8
62,3
63,7 | 61,1 | 61,3
63,0
64,6 | | 72
74
76
78
80 | | | | | 37.4
37.5 | 39,2 | 40.8
41.0
41.1 | 42,5
42,6
42,8 | 44,1 | 45.9
45.9 | 47.4 | 48.8
49.0 | 50,3
50,5 | 51.7
52.0
52.3 | 53,2
53,5
53,7 | 54,6
54,9 | 55,9
56,3 | 57,3
57,7
58.6 | 58,5
7 59,6
3 59,6 | 59,3
59,8
60,3
60,7
61,1 | 61.5 | 62.2 | 63:3 | 65.6 | 65,4 | 66.4 | 67.3 | 68,2 | 69,0 | 69,7
76,7 | | 82
84
86
88
90 | | | | | | | 41;3 | 43,1 | 44,8
44,9
45,6 | 46.6
46.7 | 48.3 | 49,7
49,9
50,0 | 51,3
51,5
51,7 | 52.9
53.1
53.3 | 54,5
54,7
54,9 | 56,0
56,2 | 57,5
57,7
58,6 | 59.6
59.2 | 0 60,4
2 60,7
6 61.6 | 61.5
61.8
62.2
62.5
62.7 | 63,6 | 64,6
65,6 | 65,9
66,3 | 67.2
67.6 | 68,4 | 69.7
70.2 | 70.8
71.4 | 72,6 | 73,1 | 74,1
74,8
75.5 | | 92
94
96
98
100 | | | | | | | | | | 46,9
47.6 | 48.7 | 50.4
50.5
50.7 | 52,1
52,2
52,3 | 53.8
53.9
54.0 | 55,4
55,5
55,7 | 57,0
57,2
57,3 | 58.6
58.8
58.9 | 60,2
60,4 | 61,7
61,9
62,1 | 63,0
63,2
63,5
63,7
63,9 | 64,8 | 66.2
66.5
66.8 | 67,7
68,0
68,3 | 69:1
69:4 | 70,5
70,9
71.2 | 71.9 | 73.3
73.6
74.6 | 74,6
75,6 | 75.9
76.3
76.7 | 77,1
77,6
78.6 | | 102
104
106
108
110 | | | | | | | | | | | | | 52,6
52,7 | 54.4
54.5 | 56.1
56.2
56.3 | 57,7
57,9
58,6 | 59,4
59,5
59,7 | 61,6
61,2
61,3 | 62,7
62,8
63,6 | 64,1
64,3
64,4
64,6
64,8 | 65,9
66,1
66,2 | 67.4
67.6
67.8 | 69,0
69,2
69,4 | 70:5
70:7
71:0 | 72.6
72.3
72.5 | 73,5
73,8
74,0 | 75.0
75.3
75.5 | 76,4
76,7
77,6 | 77.8
78.2
78.5 | 79,2
79,6
79,9 | | 112
114
116
118
120 | | | | | | £. | | | | | | | | | 56.5 | 58,3 | 60,0
60,1
60,2 | 61,7
61,8
61,9 | 63,4
63,5
63,6 | 64,9
65,0
65,2
65,3 | 66.7
66.8
67.0 | 68.3
68.5
68.6 | 70:0
70:1
70:3 | 71:6
71:7
71:9 | 73,1
73,3
73,5 | 74.7
74.9
75.1 | 76.3
76.5
76.7 | 77,8
78,6
78,2 | 79.3
79.6
79.8 | 80,8
81,1
81,3 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | | | 64,5 | 65.7
65.9 | 67.7 | 69.4 | 71.1
71.4 | 72.8
73.1
73.3 | 74,4
74,7
75,0 | 76.1
76.4
76.7 | 77.7
78.1
78.4 | 79.4
79.7
80.1 | 81,6 | 82,6
83,0
83,4 | | 150
155
160
165
170 | 75,5 | 77.2 | | 80,9 | 82,4
82,6
82,9
83,1 | 84,4 | | 175
180
185
190
200 | A = offered nonrandom traffic Y = carried traffic Z = variance - to-mean ratio of the offered traffic k = accessibility n = number of trunks | \n | 92 | 9 | 4 | 96 | 98 | 109 | 1 | us | 174 | 10 | 6 | 188 | 11^ | 115 | 120 | 125 | 130 | 135 | 145 | 145 | 1! | -
5g | 155 | 160 | 1.65 | 17e | 175 | 185 | 185 | 190 | 195 | 200 | 205 | 210 | |---------------------------------|--------------|----------------------|-------------------|----------------------|--------------------------------------|-------------------|-------------------------|-------------------|-------------------|-----------------------|------------|----------------------|------------------------------|-------------------|--------------------------------------|---------------------------------|-------------------------|--------------------------------------|----------------|----------------------|----------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|--------------------------|-------------------|--------------------------|--------------------------| | 52
54
56
58
60 | 57.8
59.7 | | , 8 | 59,9 | 62
64
66
68
70 | 63,3 | 3 63
9
65
4 66 | ,5
,2
,8 | 63,6
65,4
67,1 | 61,8
63,7
65,6
67,3
69,6 | 63,
65, | 7 6 5 6 | 7.6 | 67. | 8 67 | . 8
. 7 | 69,8 | 72
74
76
78
80 | 70.4 | 4 71
5 72
5 73 | ,0
,2
,3 | 71,5
72,8
74,0 | 72,0
73,4
74,6 | 72,
73,
75, | 4 7
9 7
2 7 | 2.8
4.3
5.7 | 73.
74.
76. | 1 73
7 75
2 76 | .5 | 73,5
75,2
76,9 | 75,4 | 73.8 | 77.8 | 82
84
86
88
90 | 75.9
75.9 | 1 76
9 76
6 77 | ,1 | 77,0
77,8
78,6 | 77,9
78,8
79,6 | 78,
79,
80, | 7 7
6 8
5 8 | 9,4
0,4
1.4 | 80.
81.
82. | 1 80
2 81
2 83 | ,7 | 81,3
82,5
83,7 | 81.8 | 82.7 | 86.7 | 83,
85, | 7
5 85.1
3 87.1 | 3
7
5 89 , 8 | | | | | | | | | | | | | | | | | | 92
94
96
98
100 | 78.9
78.9 | 3 79
9 80
3 80 | ,1 | 80./
81.3
81.8 | 81,8 | 82,
83,
84, | 9 8
5 8
2 8 | 3,9
4,6
5,3 | 84,
85, | 9 85
7 86
4 87 | . 6 | 86,7
87,6
88,4 | 87.6
88,5 | 90.6 | 91,0
92,3 | 92,2 | 93.0 | 91.6
93.5
95.2
96.9
98.6 | 93, | 5
4 07. | 7
6 | | | | | | | | | | | | | | | 102
104
106
108
110 | 81.0 | 82
82
82
82 | , 5
, 3
, 7 | 83,3
83,7
84,1 | 84,6
85,6 | 85,
86,
86, | 8 8
3 8
7 8 | 7.0
7.6
8.6 | 88,
88, | 2 89
8 90
3 96 | . 6 | 96,5
91,1
91,7 | 91.6
92.3 | 94,2 | 95,6
96,5
97,4
98,2
99,6 | 98, | 1 1 4 | 102
103
104 | 10 | 3 10
4 10
5 10 | 13
15 | 102
104
105
107
109 | 104
106
108
109 | 108
110 | | | | | | | | | | | | 112
114
116
118
120 | 82,6 | 3 83
6 84
8 84 | • 7
• 6 | 85,5
85,8 | 86,9 | 88,
88, | 5 8
3 8
7 9 | 9.3
9.7 | 90.
91. | 7 92
1 92
4 92 | .4 | 93,3
93,7 | 94,5 | 97.5 | 99.7
100
101
102
102 | 10 | 10 | 5 108
5 108
7 109 | 10'
110 | 9 11
9 11
1 11 | 1
2
3 | 112
113
115 | 111
113
114
116
117 | 112
113
115
117
118 | 112
114
115
117
119 | 116
118
119 | 126 | | | | | | | | | 125
130
135
140
145 | 84,2 | 2 85
6 86
8 86 | ,7
,2
,7 | 87,3
87,8
88,3 | 88,8 | 96,
96,
91. | 4 9
9 9
5 9 | 1.9
2.5 | 93, | 4 94
11 95
6 96 | .5 | 96,3
97,6 | 96,9
97,7
98,5
99,2 | 101 | 165
166
167 | 10 | 3 11:
9 11: | 1 114
2 115
3 117 | 11
11
12 | 7 11
3 12
3 12 | .9
21
23 | 121
124
125 | 121
123
126
128
130 | 122
125
128
130
132 | 130 | 124
128
131
134
137 | 124
129
133
136
139 | 133
137 | 130
134
138
142 | 139 | 135
139
144 | 146
144 | 145 | | | 150
155
160
165
170 | 86,
86, | 1 87
3 88
6 88 | ,7
,0
,3 | 89,4
89,7
90,0 | 95,3
91,3
91,4
91,5
92,6 | 92, | 7 9 1 9 4 9 | 4.4 | 96,
96, | 0 97
4 98
8 98 | .6 | 99,2 | 151
161 | 105 | 109
109
110 | | 3 11
4 11 | 126
7 126
7 121 | 12 | 3 12
4 12
5 12 | 7
8
8 | 130
131
132 | 131
133
134
135
136 | 134
136
137
138
140 | 137
139
140
142 | 139
141
143
145 | 141
144
146 | | 145
148
150 | 147
150
152 | 148
151
154
157 | 148
152
156 | 149
153 | 154
158 | | 175
180
185
190
200 | | 88 | . 8 | 90,5
90,7 | 92, | 94,
94,
94, | 2 9 | 5,9 | 97, | 7 99
9 99
1 99 | 1.6 | 101
101
102 | 163 | 107
107
108 | 111
111
112 | 11:
11:
11:
11:
11: | 5 11'
5 12'
5 12' | 123 | 12 | 7 13
8 13
8 13 | 1 2 | 136 | 137
138
139
140
141 | 141
142
142
143
145 | 147 | 147
148
149
150
152 | 150
152
153
154
156 | 153
155
156
157
159 | 156
158
159
160
163 | 159
161
162 | 161
163
165
167 | 164
166 | 166
168
170
172 | 168
171
173
175 | Y in Erl Z = 2.0 k = 30 Table 4 -25 Table 4 -26 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 k = 50 | n | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 65 | 62 | 64 | 66 | 68 | 76 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | 86 | 88 | 96 | |----------------------------|------------|----|--------------------------|----|----|------------------------------|----|----|----|--|--------------------------------------|----------------------|-----------------------|----------------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|----|------------------|-------------|----|---|----|-----------------| | 1
2
3
4 | | | | | | | | | | | | | 1444 and Tagerook St. | | S). | | | | 5926094(HA)) | | | | 95954554665464 | | estusiing sistem | | | 11 ST 15 | | inamentalistis. | | 5
6
7 | 2005
2005
2005 | | | | | 3 | | | | | | 8
9
10 | | | | | | 1973
1974
1975
1975 | 11
12
13
14
15 | 16
17
18
19
20 | 21
22
23
24
25 | | | | | | £ | | | | رور در | | | | | | | | | | | | | | | | | | رواند کارواند از این از این از از این از از
این از این از این از از این از از این | | | | 26
27
28
29
30 | | | | | | | | | | 28,9 | 29.9 | 31
32
33
34
35 | | | enika.
Lijin
Karif | | | | | | | 30,8
31,7
32,6 | 30,9
31,8
32,8
33,7
34,6 | 31,9
32,9
33,8 | 32,9 | 33,9 | | | | | | | | | ار استان استان
استان استان اس | | | | | | | | | 36
37
38
39
40 | | | | | | | | | | 35,9
36,7
37,4 | 36,2
37,5
37,8 | 36,5
37,3
38,1 | 36,7
37,5
38,4 | 7 36.8
5 37.7
4 38.6 | 35,9
36,9
37,8
38,7
39,6 | 36,9
37,9
38,8 | 38,9 | | | | | | | | | | | | | | | 41
42
43
44
45 | , 37
25 | | | | | | | | | 39,3
39,8
40,3 | 39.8
46.4
41.6 | 40,3
41,0
41,7 | 40,8 | 41.5
41.9
2 42.7 | 40,5
41,4
42,2
43,0
43,8 | 41,6
42,5
43,3 | 41,7
42,6
43,5 | 41,8
42,8
43,7 | 41,9
42,9
43,8 | 42,9 | 44,9 | | | | | <i>3</i> 7. | | | | | | 46
47
48
49
50 | | | | | | | | | | 41,7
42,1
42,5 | 42,5
43,6
43,4 | 43,3
43,8
44,3 | 44,1
44,6
45,1 | 44.7 | 44,5
45,2
45,9
46,5
47,1 | 45,7
46,4
47,1 | 46,8
46,8
47,5 | 46,3
47,1
47,9 | 46,5
47,4
48,2 | 46,7
47,6
48,5 | 46,8
47,7
48,6 | 46,9
47,8
48,8 | 47.9 | | | | | | | | Y in Erl k = 50 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n | 32 34 36 38 49 | 42 44 | 46 48 | 56 | 52 | 54 | 56 | 58 | 60 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 85 | 82 | 84 | .86 | 88 | 90 | |---------------------------------|----------------|-------|------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------
------------------------------|------------------------------|----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|--------------------------------------| | 52
54
56
58
60 | | | 4
4
4 | 4.5 | 45.6
45.6 | 46,2
46,8
67,4 | 47,3
48,0
48,6 | 48.3
49.1
49.8 | 49,2
56,1
56,8 | 50,0
51,0
51.8 | 50,7
51,8
52,8 | 51,4
52,6
53,6 | 51,9
53,2 | 53.8
55.6 | 52,8
54,3 | 53.1
54.7
56.2 | 53,4
55,0 | 53.6
55.3 | 53,7
55,5 | 53,8
55,7
57,5
59,1 | 55,8 | F7 7 | R7 A | 59,8 | | 62
64
66
68
70 | | | 4
4
4
4 | 5,6 | 46.9
47.2
47.5
47.8 | 48.3
48.7
49.0
49.3 | 49,6
50,1
50,5
50,8 | 50.9
51.4
51.8
52.2 | 52.1
52.7
53.2
53.6 | 53,3
53,9
54,4
54,9 | 54.4
55,1
55,7 | 55,4
56,1
56,8
57,4 | 56,3
57,2
57,9 | 57.2
58.1
58.9 | 58,0
59,0
59,9 | 58,7
59,8
66,8 | 59,3
60,5
61,6 | 59,9
61,2
62,3 | 60,3
61,7
63,0 | 60,7
62,2
63,6 | 61,1
62,6
64,1 | 61,3
63,0
64,5 | 61,5
63,2
64,9 | 61.7 | | 72
74
76
78
80 | | | 4 4 | 7.0
7.1
7.3 | 48,5
48,6
48,8 | 50,1
50,3 | 51.6
51.9
52.1 | 53.2
53.4
53.7 | 54,7
55.6
55.2 | 56,1
56,5 | 57.5
57.9
58.2 | 58,9
59,3
59.7 | 60,2
60,7 | 62.5 | 63,3 | 63,9
64,5 | 65,7 | 66.8 | 67,1
67,8 | 68,8 | 68,8 | 69,6
70,7 | 70,4 | 69,7
71,0
72,2
73,3
74,3 | | 82
84
86
88
90 | | | 4
4
4
4 | 7,5
7,6
7,7
7,8 | 49,1
49,2
49,3
49,5 | 50,8
50,9
51,1
51,2 | 52,4
52,6
52,8
52,9 | 54.1
54.3
54.4 | 55,7
55,9
56,1
56,3 | 57,3
57,5
57,7 | 58,8
59,1
59,3 | 60,6
60,6
60,9 | 61,8
62,1
62,4
62,7 | 63;2
63;6
63;9 | 64.6
65.0
65.4 | 66.0
66.4
66.8 | 67,3
67,8
68,2 | 68,6
69,1
69,6 | 69,8
70,4
70,9 | 71.6
71.6
72.2 | 72.1
72.8
73.4 | 73,2
73,9
74,6 | 74,2
75,0
75,7 | 75,2
76.0
76.8
77,5
78.1 | | 92
94
96
98
100 | | | 4 | 8.0 | 49.7
49.7
49.8 | 51.4
51.5
51.6 | 53,1
53,3
53,4 | 54,9
55,6
55,1 | 56,6
56,7
56,8 | 58,2
58,4
58,5 | 59,9
60,0
60,2 | 61,5
61,7
61,9 | 63,1
63,3
63,5 | 64,7
64,9
65,1 | 66,2 | 67.8
68.0
68.3 | 69,3
69,6
69,8 | 70.7
71.0
71.4 | 72,1
72,5
72,8 | 73,5
73,9
74,3 | 74,9
75,3
75,7 | 76,2
76,7
77,1 | 77,5
78,6
78,5 | 78,7
79,3
79,8
80,2
80,7 | | 102
104
106
108
110 | | | | | | | 53,6
53,7 | 55,4
55,5
55,6 | 57.2
57.3
57.3 | 58,9
59,6
59,1 | 60,6
60,7
60,9 | 62,3
62,5
62,6 | 64,6
64,2
64,3 | 65,7
65,8
66,0 | 67.3
67.5
67.7 | 68,9
69,1
69,3 | 70.6
70.8
71.0 | 72:1
72:4
72:6 | 73,7
73,9
74,2 | 75.2
75.5
75.7 | 76.7
77.0
77.3 | 78,2
78,5
78,8 | 79,6
80,0
80,3 | 81,1
81,4
81,8
82,1
82,4 | | 112
114
116
118
120 | | | | | | | | | 57,6 | 59,4
59,5 | 61,2
61,3
61,4 | 62,9
63,0
63,1
63,2 | 64,7 | 66,4 | 68,1
68,2
68,3
68,5 | 69,8
69,9
70,1
75,2 | 71,5
71,6
71,8
71,9 | 73.1
73.3
73.4
73.6 | 74,8
75,0
75,1
75,3 | 76.4
76.6
76.8
76.9 | 78.0
78.2
78.4
78.6 | 79,6
79,8
80,0 | 81,1
81,4
81,6 | 82,7
82,9
83,2
83,4
83,6 | | 125
130
135
140
145 | | | | | | | | | | | | 63,5 | 65,2
65,4 | 67.5
67.2 | 69.0 | 70.8
71.0 | 72,6
72,8
73,0 | 74.3
74.6
74.8 | 76,1
76,3
76,5 | 77,8
78,1
78,3 | 79,5
79,8
85,1 | 81,2
81,5
81,8 | 82,9
83,2
83,5 | 84,1
84,6
84,9
85,3
85,6 | | 150
155
160
165
170 | | | | | | | | | | | | | | | | | | 75,1 | 76,9 | | 85.7 | 82,5
82,7 | 84,5 | 85,8
86,1
86,3
86,5
86,6 | | 175
180
185
190
200 | $Y_{in Erl}$ Z = 2.0 k = 50 Table 4-27 Table 4 -28 A = offered nonrandom traffic Y in Erl Z = 2.0 k = 50 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | _ | | | | | | T | | | | | | | | | | · | | | | | _ | | | | | _ | | | | | |---------------------------------|----------------------|---|---|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|---------------------------------|----------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------------|-------------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--| | A | 92 | 94 | 96 | 98 | 100 | 102 | 164 | 106 | 108 | 115 | 115 | 120 | 125 | 130 | 135 | 146 | 145 | 150 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 196 | 195 | 200 | 205 | 210 | | 52
54
56
58
60 | 59,9 | 19-19-18-18-18-18-18-18-18-18-18-18-18-18-18- | ادا المدارس
دا المدارس
دا المدارس | ار المعادل المادية الم | | 62
64
66
68
70 | 63,6
65,4
67,1 | 67,3 | 63,8
65,7
67,5
69,3 | 67,7 | 67.8 | 67.9 | 69.8 | 72
74
76
78
80 | 71,6
72,8
74,0 | 72,1
73,4
74,7 | 72,5
73,9
75,3 | 72,8
74,4
75,8 | 73,1
74,7
76,3 | 73,4
75,6
76,6 | 73,5
75,3
77,6 | 71.8
73.7
75.5
77.2
78.9 | 75.6 | 75.7 | 77.8 | | | | | | | | | ر
در کردار مادر
در کردار مادر | 2 | ار میراند از این برای میراند
این از است سراری این
این است این | | | | | | | | | | 82
84
86
88
90 | 77,6
77,8
78,6 | 77,9
78,8
79,6 | 78.7
79.7
80.6 | 79,5
80,5
81,5 | 80,2
81,3
82,3 | 80,8
82,0
83,1 | 81.4
82.7
83.9 | 80,4
81,9
83,3
84,5
85,7 | 82,3
83,8
85,1 | 82,7
84,2
85,7 | 83,4
85,1
86,7 | 83.7
85.6
87.4 | 85,8
87,7 | 89.8 | | | | | | | | | | | | | | | | | | 92
94
96
98
100 | 80,5
81,0
81,5 | 81,7
82,3
82,8 | 82.8
83.5
84.0 | 83,9
84,6
85,2 | 85,5
85,7
86,4 | 86.8
86.8
87.5 | 86.9
87.8
88.6 | 86.8
87.8
88.7
89.6
90.4 | 88,6
89,6
90,5 | 89,4
90,4
91,4 | 91.0
92.3
93.4 | 92,2
93,7
95,0 | 93.1
94.7
96.2 | 93,5
95,3
97,0 | 95,7
97,5 | 97,8
99,7 | | | | | Á | | | | | | | | | | | 102
104
106
108
110 | 82,8
83,2
83,6 | 84,2
84,6
85,5 | 85,6
86,9
86,4 | 86,9
87,4
87,8 | 88,2
88,7
89,1 | 89.4
89.9
95.5 | 90.6
91.2
91.7 | 91.1
91.8
92.4
93.6
93.5 | 92,9
93,5
94,2 | 93,9
94.7
95,3 | 96,4
97,3
98,1 | 98.5
99.5 | 100
101
103 | 152 | 103
104
106 | 102
103
105
107
108 | 102
104
106
107
109 | 108
110 | | | | | | | | | | | | | | 112
114
116
118
120 | 84,5
84,7
85,0 | 86,5
86,5 | 87,5
87,8
88,1 | 88,9
89,3
89,6 | 90.4
90.7
91.0 | 91.8
92.1
92.5 | 93,1
93,6
93,9 | 94.6
94.5
94.9
95.3
95.7 | 95,8
96,3
96,7 | 97.1
97.6
98.1 | 100
101
101 | 103
104
104 | 105
106
107 | 108
109 | 108
110
111
112
113 | 110
111
112
114
115 | | 111
113
115
116
118 | 112
114
115
117
119 | 116 | 125 | | | | | 1 | | ر میشود از این است.
میشود میشود این | | | | 125
130
135
140
145 | 86.2
86.6
87.0 | 87,9
88,3
88,7 | 89,5
89,9
90,4 | 91,1
91,6
92,0 | 92,7
93,2
93,7 | 94,3
94,8
95,3 | 95.8
96.4
96.7 | 96,6
97,3
98,0
98,6
99,0 | 98.8
99.5
100 | 166
161
162 | 104
105
106 | 106
107
108
109
110 | 111
112
113 | 114 | 118
120 | 117
119
121
123
124 | 119
122
124
126
127 | 121
124
126
128
130 | 122
126
129
131
133 | 127
136
133 | 128
132
135 | | 134
138 | 134
139
143 | 135
139
144 | 140
144 | 145 | | | | | 150
155
160
165
170 | 87,8
88,1
88,3 | 89,6
89,8
90,0 | 91,3
91,6
91,8 | 93,1
93,3
93,6 | 94,8
95,1
95,3 | 96.5
96.8
97.1 | 98,2
98,5
98,8 | 99.5
99.9
100
101
101 | 162
162
162 | 163
164
154 | 168 | | 115
116
116 | 118
119
125
125
121 | 124 | 125
126
127
128
129 | 131
132 | 132
133
134
135
136 | 135
136
138
139
146 | 141
142 | 142
144
145 | 142
145
147
148
150 | 149 | 146
149
152
154
156 | 147
151
154
156
158 | 148
152
155
158
161 | 149
153
157
166
163 | 158 | 154
159
163
166 | | | 175
180
185
190
200 | | | 92.4 | 94,2 | 96,5
96,2 | 97.8
98.5 | 99,5
99,8
155 |
101
101
102
102
102 | 103
103
104 | 165
165
165 | | 114
114
114 | 118 | 122
122
123 | 127 | 129
130
131
131
132 | 133
134
135
135
136 | 137
138
139
139
140 | 141
142
142
143
144 | 146 | 151 | 151
153
154
156 | 154
156
157
158
160 | 157
159
168
161
163 | 160
162
163
165
167 | 168 | 165
167
169
171
174 | 167
170
172
174
177 | 169
172
174
176
180 | 171
174
177
179
183 | A = offered nonrandom traffic $Y_{in} Erl$ Z = 2.0 k = 80 Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Y = carried traffic | \n
A\n | 32 34 36 38 40 | 42 44 46 48 55 | 52 54 56 58 60 | 62 64 66 68 70 | 72 74 76 78 80 | 82 84 86 88 90 | |---------------------------------|----------------|----------------|----------------|----------------|------------------------------|--| | 52
54
56
58
60 | | | | | 55,7
57,5 | 53.9
55.8 55.9
57.6 57.8 57.8
59.4 59.6 59.7 59.8 | | 62
64
66
68
70 | | | | | 60,8
62,4
63,8
65,1 | 61.1 61.4 61.6 61.7 61.8
62.7 63.1 63.3 63.5 63.7
64.3 64.7 65.0 65.3 65.5
65.7 66.2 66.6 66.9 67.2
66.9 67.5 68.0 68.5 68.8 | | 72
74
76
78
80 | | | | | 68,4
69,3
70,1 | 68,1 68,8 69,4 69,9 70,4
69,2 70,0 70,7 71,3 71,8
70,2 71,0 71,8 72,5 73,2
71,1 72,0 72,9 73,7 74,4
71,8 72,9 73,8 74,7 75,5 | | 82
84
86
88
90 | | | | | 72,0
72,5
73,0 | 72.6 73.7 74.7 75.7 76.6 73.2 74.4 75.5 76.5 77.5 73.8 75.0 76.2 77.3 78.4 74.3 75.6 76.8 78.0 79.1 74.8 76.1 77.4 78.7 79.8 | | 92
94
96
98
100 | | | | | 74,2
74,5
74,8 | 75.2 76.6 77.9 79.2 80.5
75.6 77.0 78.4 79.8 81.1
76.0 77.4 78.9 80.2 81.6
76.3 77.8 79.3 80.7 82.1
76.6 78.1 79.6 81.1 82.5 | | 102
104
106
108
110 | | | | | 75.5
75.7
75.9 | 76.8 78,4 79,9 81,4 82,9
77,1 78,7 80.2 81,8 83,3
77,3 78,9 80,5 82,1 83,6
77,5 79,2 80,8 82,4 83,9
77,7 79,4 81,0 82,6 84,2 | | 112
114
116
118
120 | | | | | 76,4
76,5
76,7 | 77.9 79.6 81.2 82.9 84.5 78.1 79.8 81.4 83.1 84.7 78.2 79.9 81.6 83.3 84.9 78.4 80.1 81.8 83.5 85.1 78.5 80.2 82.0 83.7 85.3 | | 125
130
135
140
145 | | | | | 77.3
77.5
77.7 | 78,8 86,6 82,3 84,0 85,8 79,1 80,8 82,6 84,4 86,1 79,3 81,1 82,9 84,7 86,4 79,5 81,3 83,1 84,9 86,7 79,6 81,5 83,3 85,1 86,9 | | 150
155
160
165
170 | | | | | | 79.8 81.6 83,5 85,3 87,1
79.9 81.8 83.6 85.5 87,3
80.0 81.9 83.8 89.6 87,5
83.9 85.8 87.6
85.9 87.7 | | 175
180
185
190
200 | | | | | | 87,9 | Table 4 -30 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Z = 2.0 k = 80Y in Erl | • | | | | | | , |---------------------------------|----------------------|----------------------|--------------------------------------|----------------------|------------------------------|----------------------|----------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------|---------------------------------|----------------------|--------------|---------------------------------|---------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------------|---------------------------------|---------------------------------| | A | 92 | 94 | 95 | 98 | 105 | 152 | .154 | 106 | 198 | 114 | 115 | 125 | 125 | 130 | 135 | 140 | 145 | 158 | 155 | 160 | 165 | 176 | 175 | 180 | 185 | 195 | 195 | 206 | 205 | 210 | | 52
54
56
58
60 | | | | | | | | | | | | | | | | | ار از در از در | | e anno ann an ann an an an an an an an an an a | | | | | | | | | | | | | 62
64
66
68
70 | 65,6
67,4 | 63,8
65,7
67,6 | 65.8
67.7
69.5 | | 69,8 | 69,9 | 72
74
76
78
80 | 72,3
73,7
75,0 | 72,7
74,2
75,6 | 74.6
75.1 | 73,2
74,9
76,5 | 73,5
75,2
76,8 | 73,6
75,4
77,1 | 73,7
75.6
77.4 | 73.8
75.7
77.5
79.3 | 75,8
77,7 | 77.8 | Ž. | 82
84
86
88
90 | 78.4
79.3
80.2 | 79,2
85,2
81,2 | 80,0
81,1
82,1 | 80,6
81,8
82,9 | 81,2
82,5
83,7 | 81,8
83,1
84,4 | 82,2
83,7
85.5 | 82,6
84,1
85,6 | 82,9
84,5
86,0 | 81,4
83,2
84,9
86,4
87,9 | 83,6
85,4
87,2 | 87,6 | 89,8 | | | | | | | | | | | | | | | | | | | 92
94
96
98
100 | 82,3
82,9
83,4 | 83,5
84,1
84,7 | 84.6
85.3
85.9 | 85,7
86,4
87,1 | 86,7
87,5
88,2 | 87,6
88,5
89,3 | 88,5
89,4
90,3 | 89.3
95.3
91.3 | 90.0
91.1
92.1 | 89,3
90,6
91,8
93,0
94,6 | 92.0
93.4
94.7 | 92,9
94,5
96,0 | 93.4
95.2
96.9 | 95.6
97.4 | | | | | | | :00
//61
//3/ | | | | | | | | | | | 102
104
106
108
110 | 84.7
85.1
85.4 | 86,1
86,6
86,9 | 87,5
88,6
88,4 | 88,9
89,4
89,8 | 90,2
90,7
91,2 | 91.4
92.0
92.5 | 92,6
93,2
93,8 | 93.7
94.4
95.0 | 94,8
95,5
96,2 | 94,9
95,8
96,6
97,4
98,1 | 98,1
99,1
100 | 100 | 101
103
104 | 103
104 | 163
165
167 | 104
105
107 | 106
108
109 | 116 | | | | | | | | | | | | | | 112
114
116
118
120 | 86,3
86,5
86,8 | 87,9
88,1
88,4 | 89,4
89,7
90,0 | 90,9
91,3
91,6 | 92.4
92.8
93.1 | 93,9
94,2
94,6 | 95.3
95.7
96.1 | 96.1
96.6
97.1
97.5
97.9 | 98.5
98.5
98.9 | 99,3
99,8 | | 104
105
106
106
107 | 108
109 | 159
110 | | 111
112
114
115
116 | 111
113
115
116
118 | 112
113
115
117
119 | 116 | 118
126 | | | | | | | | | | | | 125
130
135
140
145 | 87,9
88,2
88,5 | 89,6
89,9
90,3 | 91,3
91,7
92,0 | 92,9
93,4
93,7 | 94,6
95,1
95,5 | 96.2
96.8
97.2 | 97.9
98.4
98.9 | 98,7
99,5
100
101
101 | 101
102
102 | 163
163
164 | 157
158 | 109
110
111
112
112 | 113
114 | | 121
122 | 119
122
124
125
127 | 121
124
126
128
130 | 122
126
129
131
133 | 123
127
130
133
135 | 124
128
132
135
138 | 125
129
133
137
140 | 134
138 | 134
139
143 | | | 145 | | | | | | 150
155
160
165
170 | 89,1
89,3
89,5 | 91,0
91,2
91,3 | 92.6
92.8
93.6
93.2
93.3 | 94,6
94,8
95,0 | 96,4
96,6
96,8 | 98,2
98,4
98,6 | 99,9
168
165 | 102
132
102 | 103
104 | 105
106
106 | 109
109
110
110 | 113
114
114
115
115 | 118
118 | 122 | 125
126
126
127
128 | 128
129
135
131
132 | 131
133
134
135
135 | 135
136
137
138
139 | 137
139
141
142
143 | 140
142
144
145
146 | 142
145
147
148
150 | 1447149151 | 146
149
152
154
156 | 147
151
154
156
159 | 148
152
156
159
161 | 149
153
157
166
163 | 154
158
162 | 159 | 159
164
168 | 164
169 | | 175
180
185
190
200 | 89,7 | 91.6
91.7 | 93,5
93,6
93,7 | 95,5
95,6 | 97,2
97,3
97,5
97,6 | 99.2 | 161
161 | 163
163
163 | 105
105 | 167
167 | 111
111
111 | 115
115
116
116
116 | 120
120
120 | 125
125 | 129
129
129 | 133
133
134 | | 141
141
142 | | 148
148
149
150
151 | 152
153
154 | 158 | 159
160
161 | 162
164
165 | | 168
170
171 | 176
172
174 | 170
173
175
177
180 | 171
174
177
186
183 | 173
176
179
182
186 | $Y_{in Erl}$ Z = 2.0 k = 110 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | \n
A | 92 94 | 96 98 100 | 192 | 104 i | 06 108 | 115 | 115 | 120 | 125 | 139 | 135 | 140 | 145 | 155 | 155 | 160 | 165 | 170 | 175 | 180 | 185 | 195 | 195 | 200 | 205 | 210 | |----------------------------------|-------|-----------|-----|-------|--------|----------------------------------|--------------------------------------|--------------------------|----------------------|---------------------------------|-------------------|-------------------|---------------------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|--------------------------|-------------------| | 52
54
56 | 58
60 | 62
64
66
68 | 76
72 | <u> </u> | | 74
76
78 | | | | | | 77,8 | 80
82
84
86
88
90 | | | | | | 83,3
85,5
86,7 | 81.8
33.7
85.5
87.3
89.1 | 87.7 | 89.8 | | | | | | |
| | | | | | | | | | | | 92
94
96
98
00 | | | | | | 91,1
92,4
93,6 | 95.7
92.3
93.8
95.2
96.5 | 93,1
94,8
96,3 | 93,6
95,4
97,1 | 95.7
97.6 | 99,7 | | | | | | | | | | | | | | | | | .02
.04
.06
.08
.10 | | | | | | 96,7 | | 101 | 103
105 | 103
104 | 107 | 106
107 | 108
110 | | | | | | | | | | | | | | | 112
114
116
118
120 | | | | | | 99,;
160
15:
16: | 103
104
105 | 106
107
108 | 108
109
110 | 169
110
111
112
113 | 111
113
114 | 114
116 | 111
113
115
117
118 | 117 | 116
118
119 | 120 | | | | | | | | | | | | 125
136
135
146
145 | | | | | | 19;
19;
18;
16;
16; | 157
158
159 | 112
113 | 114
116
117 | 116
118
119
120
121 | 120
122
124 | 123
125
127 | 122
125
127
130
131 | 126
130 | 128
131
134 | | 134
137 | 136
134
138
142 | 139 | 145
144 | 144 | | | | | | | 150
155
160
165
170 | | | | | | 100
100
100
101 | 110
111
111 | 115 | 11.9
120 | 123
124
124 | 127
128
128 | 132 | 133
134
135
136
137 | | 141
142
143 | | 148
150 | 145
148
151
153
155 | 147
150
153
155
157 | 148
152
155
158
166 | 149
153
156
160
162 | 149
154
158
161
164 | | 155
159
163
167 | | 165 | | 175
180
185
190
200 | | | | | | 16
16
16
16
16
16 | 7 112
7 112
3 112 | 116
116
117
117 | 121
121
121 | 125
126
126 | 136
136
136 | 134
134
135 | 138
138
139
139 | 142
143
143 | 147
148 | 150
151
152 | 154
155
156 | 158
159 | 161
162
163 | 167 | 167
168
170 | 173 | 169
172
174
176 | 171
174
176
179
182 | 172
176
179
181 | 177
186
183 | Table k = n A = offered nonrandom traffic Y = carried trattic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Y in Erl Z = 2.0 k = n | n | 1 | 2 | 3 | | 4 | 5 | 6 | 7 | 8 | 9 | 1,5 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | |----------------------------|----------------------|------|-------------------------------|-------------------|----------------------|----------------------|----------------------|----------------------|--|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|---|--------| | 1
2
3
4
5 | 0,50
0,60
0,67 | 1,1 | 2 1,2
5 1,5
3 1,8 | 5 1
9 1
3 2 | .,51
.,98
2,32 | 1,69
2,28
2,73 | 1,82
2,52
3.07 | 1,96
2,69
3,35 | 1,95
2,81
3,56 | 1,00
1,97
2,89
3,71
4,42 | 1,99
2,94
3,82 | 2.97 | 3,94 | 3,97 | 3,98 | 3,99 | 4,98 | | | | | | | | | | Ş | | | ا مستوری در | | | 6
7
8
9 | 0.78 | 1.5 | 2 2 2 2
7 2 3 3
1 2 3 3 | 4 2
2 3
8 3 | ,91
,03 | 3,54
3,76
3,83 | 4,11 | 4.64
4.95 | 5,11
5,45
5,73 | 5,62
5,51
5,92
6,26
6,55 | 5,86
6,35
6,75 | 6.15 | 6.38
7.62
7.56 | 6,56
7,27
7,88 | 6,70
7,47
8,15 | 6,80
7,62
8,37 | 6,87
7,74
8,55 | 6,92
7,83
8.68 | 6,95
7,89
8,78 | 7:93 | 7,96 | 8.94 | 8,96 | 8,98
9,95 | 10.0 | | | | | | | | 11
12
13
14
15 | 0:85
0:86 | 1:70 | 2,5 | 2 3
6 3
9 3 | 33
38
42 | 4,12
4,18
4,24 | 4,88 | 5:61
5:72
5:82 | 6,32 | 6,79
6,99
7,16
7,31
7,43 | 7,62
7,83
8,61 | 8,22
8,47
8,68 | 8,77
9,66
9,32 | 9,28
9,62
9,91 | 9,74
10.1
10.5 | 10,1 | 10,5 | 10,8 | 11,1 | 12.6 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11,9
12,8 | 11.9 | 12.9 | 13,6 | 48.0 | 3 | | 16
17
18
19
20 | | 1,79 | 2,6 | 0 3
8 3
9 3 | ,55
,55 | 4,41 | 5,26 | 6:15 | 6,92 | 7,54
7,64
7,73
7,81
7,87 | 8,41
8,52
8,61 | 9,16 | 10.0 | 15,6
15,8
15,9 | 11.5 | 12,1 | 12,5 | 13,4 | 13,6 | 14.5 | 14,5 | 14.9 | 15.8 | 15.6 | 15.9 | 16:1 | 16.3 | 16,5 | 16,6 | 16.7 | 7
5 | | 21
22
23
24
25 | | | | | | | | | | | | | | 11.2
11.3 | 12.0 | 12,8
12,9
13,1 | 13,4
13,5
13,7
13,8
13,9 | 14,3
14,4
14,6 | 15.0
15.2
15.3 | 15,6
15,8
16,5 | 16.3
16.5
16.7 | 16,9
17,1
17,4 | 17.5
17.8
18.0 | 18.0
18.3
18.6 | 18,5
18,9
19,2 | 19.6
19.4
19.8 | 19,4 | 19,8
25,3
25,8 | 20.1 | 26,5 | 5 | | 26
27
28
29
30 | | | | | | | | | | | | | | | | 13.3 | 14,1 | 15.0
15.1
15.2 | 15,7
15,9
16,6 | 16,5
16,6
16,8 | 17,3
17,4
17,5 | 18,5
18,2
18,3 | 18.7
18.9
19.1 | 19,4
19,6
19,8 | 20.1 20.3 20.5 | 20,7
21,0
21,2 | 21.3
21.6
21.9 | 21.9 22.2 22.5 | 22,1
22,5
22,8
23,1
23,4 | 23,5 | 3 | | 31
32
33
34
35 | . 3
34. | | | | | | | | | | | A
A |)
 | | | | | | | 17,1 | 17,9
18,0
18,1 | 18,7
18,8
18,9 | 19.5
19.6
19.7 | 20,3
20,4
20,5 | 21.0
21.2
21.3 | 21,8
21,9
22,1 | 22,5
22,7
22,8 | 23.2
23.4
23.6 | 23,7
23,9
24,1
24,3
24,5 | 24,6
24,8
25,6 | 3 | | 36
37
38
39
46 | | | | | | | | | | | | 31
13
33 | | | | | | | | | 18,2 | 19,1 | 26,5
26,1
26,1 | 20,8
20,9
21,6 | 21,6
21,7
21,8 | 22,5
22,6
22,7 | 23,3
23,4
23,5 | 24.0
24.2
24.3 | 24,7
24.8
25.0
25.1
25.1 | 25,6
25,7
25,9 | , | | 41
42
43
44
45 | | | | | | | Š | | (استعماری در دستانی ر
۱۳ برای به دستانی ایر
آزاری در دستانی ایران ساله
در استانی استانی | | | | | | | | | | | | | | | | 22:1 | 22,9
23,6
23,1 | 23.8
23.8
23.9 | 24.6
24.7
24.8 | 25,3
25,4
25,5
25,6
25,7 | 26.2
26.4
26.5 | | | 46
47
48
49 | 23,2 | 24,1 | 25.0
25.1 | 25,8
25,9
25,9
26,6 | 26,7 | | k = n A = offered nonrandom traffic Y in Erl Z = 2.0 k = n Table 4 -33 Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility | \n
A | 32 | 34 | 36 | 38 | 46 | 42 | 44 | 46 | 48 | 56 | 52 | 54 | 56 | 58 | 69 | 62 | 64 | 6 | 6 | 68 | 76 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 98 | |----------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------|-----------------------|------------------------------------|----------------------------|----------------------|----------------------------------|-------------------------|----------------------------|-------------------------|------------------------------|----------------------|------------|----------------------------|----------------------|------|------|------|----|----|----|----|----|----|----| | 1
2
3 | 5 | 7
8
9
10 | 11
12 | • | | | | | | | | | | | | | 13
14
15 | 15,0 | 16
17
18
19
20 | 15,9
16,9
17,8
18,7
19,6 | 17,9 | 18,9 | 21
22
23
24
25 | 20,4
21,2
21,9
22,6
23,2 | 21,5
22,3
23,0 | 21,7
22,6
23,4 | 21,8 | 21,9 | 22,6 | 23,9 | 24.9 |) | 26
27
28
29
30 | 23,8 24,3 24,8 25,3 25,7 | 25,0
25,6
26,1 | 25,6
26,3
26,9 | 26,5
26,8
27,5 | 26,4 | 26,6 | 26.8
27.7
28.6 | 26,9 | 26,
3 27,
7 28, | 9
8 28.9 | 29,9 | ı | 31
32
33
34
35 | 26,1
26,4
26,7
27,0
27,0 | 27,5 | 28,4 | 29,8
29,8 | 30,6
30,6
31,1 | 30,5 | 31,6 | 31,3
32,1
32,9 | 31,
132,
33. | 6 31,
4 32,
2 33. | 7 31,8
32,8 | 31,9 | 9 32,
9 33. | 0 | 9 | | | | | | | | | | | | | | | | | | 36
37
38
39
40 | 27,5
27,7
27,9
28,1
28,3 | 29,1 | 30,6
30,9 | 31,8 | 32,5
32,9
33,3 | 33,9 | 34,8
34,8 | 34,9
35,9
36.1 | 35,
36,
36, | 35,0
2 36,0
8 37. | 36.3
7 37.1 | 36,5 | 36,
4 37, | 7 36,
6 37, | 8 36,9
7 37,8 | 37, | 0 78 | 9 | | | | | | | | | | | | | | | 41
42
43
44
45 | 28,5
28,6
28,8
28,9
29,0 | 30,0
30,1
30,3 | 31,4
31,6
31,8
32,0 | 32,3
33,0
33,2 | 34,6
34,6
34,6 | 35,1
35,5
35,8 | 36,2
36,6
37,6 | 37,6
37,6
38,6 | 38,1
38,1
39,1 | 5 38,
5 39,
5 39, | 7 39,3
3 39,9
3 40,5 | 39,5
40,5
41,5 | 7 40, | 1 46,
9 41,
6 42, | 4 40,4
2 41,5
0 42,5 | 5 40,
5 41,
3 42, | 7 46
7 41
5 42 | 8 40
8 41
7 42 | ,9
,8 4 | 7 0 | 43,9
44,9 | | | | | | | | | | | | 46
47
48
49
50 | 29,1
29,2
29,3
29,4 | 30,7
30,9
31,0
31,1 | 32,3
32,5
32,6
32,7 | 33,8
34,0
34,2
34,2 | 35,3
35,5
35,7
35,8 | 36,6
36,9
37,1
37,3 | 37,9
38,5
38,5 | 39,2
39,5
39,6 | 40,
5 40,
3
41, | 3 41,;
7 41,
6 42,;
3 42. | 3 42,2
7 42,7
1 43,1 | 43,0
43,5
44,5 | 9 43,
5 44,
1 44,
5 45. | 7 44,
3 44,
9 45, | 2 44,
9 45,
6 46, | 7 45,
4 45,
1 46, | 1 45
9 46
6 47
3 47 | 4 45
2 46
0 47 | ,6 4 | 15,7 4
16,6 4
17,5 4 | 45,8
46,8
47,7 | 46.8 | 47,9 | 40.0 | | | | | | | | k = n Table 4 -34 A = offered nonrandom traffic Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks Y in Erl Z = 2.0 k = n | n
A | 32 | 34 | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 | 56 | 58 | 65 | 62 | 64 | 66 | 68 | 70 | 72 | 74 | 76 | 78 | 8 ტ | 82 | 84 | 86 | 88 | 90 | |---------------------------------|------|--------------|------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------------------------|------------------------------|--|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | 52
54
56
58
60 | 29.9 | 31,7 | 33,4 | 34,9
35,1
35,3 | 36,6
36,8
37,0 | 38.2 | 39.7
40.6
40.3 | 41.2
41.6
41.9 | 42,6
43,1
43,4 | 44.0
44.5
44.9 | 44,7
45,3
45,9
46,4
46,8 | 46,5
47,2
47,7 | 47.7
48.4
49.0 | 48.7
49.5
56.2 | 49,6
50,6
51,4 | 50,5 | 51,2
52,3
53,4 | 51,8
53,1
54.2 | 52.3
53.7
55.0 | 52,8
54,2
55,6 | 53,1
54,7 | 55.6
56.6 | 53,6
55,3 | 53.7
55.5 | 53,8
55,7 | 53,9
55,8 | 57.8 | 57,8
59,7 | 59,8 | | | 62
64
66
68
75 | | 32,1
32,2 | 34,1 | 35,7
35,9
36,0 | 37,5
37,6
37,8 | 39.4 | 41.0
41.1
41.3 | 42.6 | 44.5 | 45,9
46,2
46,4 | 47.2
47.5
47.8
48.1
48.3 | 49.0 | 56,5
56,9 | 51.9
52.4
52.8 | 53,3
53,8
54.2 | 54,6
55,2 | 55,8
56,5 | 57,6
57,7
58.3 | 58,6
58,8 | 59:0
59:9 | 59,9
66,9 | 60.6 | 61,3 | 61.9 | 62,4 | 64.3 | 63.1 | 63,3 | 63,5 | 63,7 | | 72
74
76
78
86 | | | | 36,1 | 38.1 | 39.9
40.0
40.1 | 41,7
41,8
41,9 | 43.5
43.6
43.7 | 45,2
45,4
45,5 | 47.5
47.1
47.3 | 48,5
48,7
48,9
49,0
49,2 | 56,4
56,6
56,8 | 52.1
52.3
52.5 | 53,7
53,9
54,2 | 55,3
55,6
55,8 | 56,9
57,2
57,5 | 58,4
58,7
59,1 | 59,9
60,3
60.6 | 61:3
61:7
62:1 | 62,6
63,1
63,6 | 63,9
64,5 | 65.2
65.8 | 66,3
67,0 | 68.2 | 68,4
69,3 | 69.3
76.2 | 70:1 | 70,8
72,6 | 71.4
72.7 | 71,9
73,3 | | 82
84
86
88
90 | | | | | | سبر
سر
سر | 42.1
42.1 | 44.0 | 45,8
45,9
46,0 | 47.6
47.7
47.8 | 49,3
49,4
49,5
49,6
49,7 | 51.2
51.3
51.4 | 53,6
53,1
53,2 | 54.7
54.9
55.0 | 56,5
56,6
56,8 | 58,2
58,4
58,5 | 59,9
60,1
60,3 | 61,5
61,7
62,0 | 63,1
63,4
63,6 | 64.7
65.0
65.3 | 66,3 | 67.8
68.2
68.5 | 69,2
69,7 | 70.6
71.1
71.5 | 72.5
72.5
73.6 | 73,3
73,9
74.4 | 74.5
75.2
75.8 | 75,7
76,4
77.1 | 76.8
77.6
78.3 | 77,8
78,7
79.4 | | 92
94
96
98
100 | | | | | | ž | | | | 48.0 | 49,8
49,9
50,6
50,6 | 51.7
51.7
51.8
51.9 | 53,5
53,6
53,7
53,8 | 55,3
55,4
55,5
55,6 | 57.1
57.2 | 58,8
59,0
59,1
59,2 | 60,6
65,8
60,9
61,0 | 62,4
62,5
62,7
62,8 | 64.1
64.3
64.4
64.6 | 65,8
66,0
66,2
66,3 | 67,4
67,7
67,9
68,1 | 69,1
69,3
69,6 | 75.7
71.6
71.2
71.5 | 72:3
72:6
72:9
73:1 | 73,8
74,2
74,5
74.8 | 75:3
75:7
76:1
76:4 | 76.8
77.2
77.6
78.6 | 78,2
78,7
79,1
79.5 | 79,5
80,1
80,5 | 85,8
81,4
81,9
82.4 | | 102
104
106
108
110 | | | | | | | | | | | | 52,0 | 53,9
54,0
54,0 | 55.8
55.8
55.9
56.0 | 57.6
57.7
57.8
57.8
57.8 | 59,4
59,5
59,6
59,7 | 61,3
61,4
61,5
61,6 | 63,1
63,2
63,3
63,4 | 64,9
65,0
65,1
65,2 | 66,6
66,8
66,9
67,0 | 68,4
68,6
68,7
68,8 | 76.2
76.3
76.5
76.6 | 71,9
72,1
72,2
72,4 | 73.6
73.8
74.0
74.2 | 75,3
75,5
75,7
75,9 | 76.9
77.2
77.4
77.6 | 78.6
78.8
79.1
79.3 | 80,2
80,5
80,7 | 81,7
82,1
82,4
82,7 | 83,3
83,6
84,0
84,3 | | 112
114
116
118
120 | | | | | | 47.
47. | | | | | | | 2000
- 1000
- 1000 | | 58.0
58.0 | 59,9
59,9
60,0 | 61,7
61,8
61,9
61,9 | 63,6
63,6
63,7
63,8 | 65,4
65,5
65,6
65,7 | 67:2
67:3
67:4
67:5 | 69,1
69,2
69,3
69,4 | 70,9
71.0
71.1
71.2 | 72,7
72,8
72,9
73,6 | 74.5
74.6
74.7
74.9 | 76,2
76,4
76,5
76,7 | | 79,7
79,9
80,1
85,2 | 81,4
81,6
81,8
82,6 | 83,1
83,4
83,6
83,7 | 84,8
85,1
85,3
85,5 | | 125
130
135
140
145 | | | | | | | | | | | | | | | | | | | 65,9 | 67.8
67.9 | 69.6
69.8
70.0 | 71.5
71.7
71.8
72.6 | 73,4
73,6
73,7
73,9 | 75.2
75.4
75.6
75.8 | 77,0
77,3
77,5
77,7 | 78,9
79,1
79,3
79,5
79,7 | 80.7
81.0
81.2
81.4 | 82,5
82,8
83,6
83,3 | 84.3
84.6
84.9
85.1 | 86,1
86,4
86,7
87,0 | | 150
155
160
165
170 | | | | | | Á | | | | | i di | | in i | | | | | | | | | era. | | | 77,9 | 79;8
80;0 | 81.7
81.9
82.0 | 83,6
83,8 | 85,5
85,7
85,8
85,9 | 87,4
87,5
87,7 | | 175
180
185
190
200 | 88,1 | k = n A = offered nonrandom traffic Y in Erl Z = 2.0 k = n Y = carried traffic Z = variance - to - mean ratio of the offered traffic k = accessibility | \sqrt{n} | 92 | 94 | 96 | 98 | 106 | 162 | 104 | 106 | 108 | 116 | 115 | 128 | 125 | 130 | 135 | 146 | 145 | 154 | 155 | 168 | 165 | 176 | 175 | 400 | 105 | 100 | 405 | 090 | | | |-------------------|--------------|--------------|--------------|--------------|--------------|----------------------|------------|------------|-------------------|--------------|------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------| | A 52 | | | | | | | | | | | | | * | 100 | | | | *-0 | 100 | 100 | 109 | 170 | 1/5 | 100 | 100 | 195 | 195 | 206 | 205 | 216 | | 54
56
58 | 60
62 | 64
66 | 65.6 | 63,9
65,8 | 65,8 | 68
70 | 69,2 | 67.6 | 69,6 | 69,7 | 72
74
76 | | 72,8 | 73,1 | 73,3 | 73.5 | 71.8
73.7
75.5 | 73.8 | | 75.8 | 78
80 | 75,2 | 75,8 | 76,3 | 76,7 | 77.0 | 77,2
78,9 | 77,4 | 77.6 | 77,7 | 77,8
79.7 | 82
84
86 | 78.7 | 77,5 | 80,3 | 81,0 | 81,5 | 80,5 | 82.5 | 82,8 | 83,1 | 83.3 | 83.7 | 88
90 | 80,5 | ∴81,5 | 82.5 | 83,3 | 84.1 | 83,5
84,8
86,0 | 85,4 | 85,9 | 86.3 | 86,7 | 87.3 | 87.7 | 89,8 | | | | | | | | | | | | | | | | | | | 92
94 | 82.7 | 83,9 | 85.1 | 86,2 | 87,2 | 87.1
88.2 | 89.0 | 89,8 | 90,5 | 91.1 | 92.3 | 93.1 | 93.6 | | | | | | | | | | | | | | | | | | | 96
98
100 | 83,8 | 85,2 | 86,5 | 87,5 | 88,1 | 89.1
90.0
90.8 | 90.1 | 92.0 | 91.7 | 92.4 | 93,8 | 94,8 | 95.4 | 97.6 | 99.7 | | | | | | | | | | | | | | | | | 102
104 | 84,8 | 86,2 | 87,6 | 89,6 | 90.3 | 91,5
92,1 | 92,7 | 93,8 | 94,8 | 95.7 | 97.8 | 99,4 | 100 | 101 | 162
163 | 104 | | | | | | | | | | | | | | | | 106
108
110 | 85.5
85.9 | 87.1
87.4 | 88,6
89,6 | 90,6
90,4 | 91.4 | 92.7
93.3
93.8 | 94,6 | 95.3 | 96,4 | 97,5
98,3 | 100 | 102
103 | 103
105 | 105
106 | 105
107
109 | 166
167
169 | 168
110 | | | | | | | | | | | | | | | 112 | 86,5 | 88,1 | 89.7 | 91,2 | 92,8 | 94.2 | 95,7 | 97,1 | 98,4 | 99.7 | 103 | 165 | 107 | 169 | 116 | 111 | 111 | 112 | | | | | | | | | | | | | | 116
118
120 | 87.0 | 88,6 | 95.5 | 91,9 | 93.5 | 95.0
95.4
95.7 | 96.6 | 98.5 | 99.5 | 101 | | 107
108 | 110
110 | 112
113 | 112
113
114 | 113
114
116 | 113
115
117 | 117 | 116
118 | | | | | | | | | | | | | 125 | 87,8 | 89,6 | 91,3 | 93,6 | 94.7 | 96,4 | 98,1 | 99,7 | 101 | 103 | 105
107 | | | 114
116 | 116
119 | 117
121 | 118 | 119 | 126 | 124 | 125 | | | | | | | | | | | 130
135
140 | 88,5 | 90,3
90,6 | 92.1 | 93,9 | 95,7
96,1 | 97.5
97.5
97.9 | 99,2 | 101
101 | 102
103
103 | 164 | | | 116 | 120 | 121
123
124 | 123
126
128 | 125
128
130 | 127
130
133 | 128
132
135 | 129
133
137 | | 136
134
139 | | 148 | | | | | | | | 145 | 89,0 | 96.9 | 92,7 | 94,6 | 96,4 | 98.2 | 169 | 162 | 104 | 165
166 | 110 | 114 | 118 | 122 | | 129 | 132 | | 138 | 140 | 141 | 143 | 144 | 144 | 145 | | | | | | | 155
168
165 |
89,4
89,6 | 91,3 | 93,2 | 95,0
95,2 | 96.9 | 98.8
99.0
99.2 | 101
101 | 102
103 | 104
105 | 166
166 | 111
111 | 115
115 | 119
120 | 124
124 | 128
128 | 131
132 | 135
136 | 139
140 | 142
143 | 142
145
147 | 145
147
150 | 152 | | 148
152
156 | 149
153
157 | 154
158 | | 159 | | | | 170 | 89,9 | 91,8 | 93,7 | 95,6 | 97.5 | 99,3 | 101 | | 105 | 167 | 111 | 116 | 121 | 125 | 129
129 | 133
134 | 137
138 | 142 | 145 | 148
150 | 151
153 | 154
156 | 157
159 | | 161
164 | | | 164
168 | 164
169 | | | 180
185 | | | 93,9 | 95,8
95,9 | 97.7
97.8 | 99,5
99,6
99,8 | 162
162 | 104 | | | 112 | 116
117
117 | 121 | 125
126
126 | 130
130
131 | 134
135
135 | 139
139
140 | 143 | 147
148
148 | 151
152
152 | 154
155
156 | 158
159
160 | 161
163
164 | | 166
169
171 | 171 | 176
173
176 | 172
175
178 | 173
177
180 | 174
178
182 | | 190
200 | | | | 96,8 | 98,9 | 99,9 | 16?
162 | 104
104 | 106
106 | 168
168 | 112 | 117 | 122 | 126 | 131 | 135 | 146 | 144 | 149 | 153 | 157 | 161 | | 460 | 172 | 175 | | 181 | 183 | 185
196 | # TABELLE 5 Bestimmung der Leitungszahl n für 2., 3. ... Q1-Bündel als Funktion des angebotenen Überlaufverkehrs A, der Erreichbarkeit k und der Überlaufwahrscheinlichkeit B = 20 % #### TABLE 5 Determination of the number of trunks n for high usage groups of second, third ... order as a function of the offered nonrandom traffic A, the accessibility k and a probability of overflow B = 20 % # Parameter: - a) Accessibility Erreichbarkeit - k = 6, 8, 10, 15, 20, 30, 50, 80, 110, k=n - b) Number of Trunks n = 1, 2,...100, 102,...250, 300, 350, 400, Leitungszahl 500,...900, 1100 - How to use the table - Ablesemethode # Contents: Inhalt: B = 20.0 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility | | n k | 6 | 8 | 15 | 15 | 20 | 30 | 56 | 85 | 115 | k=n | n | |------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|----|-----|--------------------------------------|----------------------------| | | 1
2
3
4
5 | | | | | | | | | | 5,66
1,6
2,5 | 1
2
3
4
5 | | | 6
7
8
9
10 | 3,6
4,1
4,9
5,7
6,5 | 5,7
6,3
7,1 | 7,8 | | | | | | | 3,6
4,6
5,7
6,7
7,8 | 6
7
8
9
10 | | | 11
12
13
14
15 | 7,3
8,1
8,9
9,7
10,5 | 8,0
8,9
9,7
10,6
11,5 | 8,5
9,4
10,3
11,3
12,2 | 13,5 | | | | | | 9,0
10,1
11,2
12,4
13,5 | 11
12
13
14
15 | | | 16
17
18
19
20 | 11,4
12,2
13,0
13,9
14,7 | 12,4
13,3
14,2
15,1
16,0 | 13,1
14,0
15,0
15,9
16,8 | 14,3
15,3
16,2
17,2
18,3 | 19,3 | | | | | 14,7
15.8
17.0
18.1
19,3 | 16
17
18
19
20 | | | 21
22
23
24
25 | 15,5
16,4
17,2
18,0
18,9 | 16,9
17,8
18,7
19,6
20,5 | 17,8
18,7
19,7
20,6
21,6 | 19.2
20.2
21.3
22.3
23.3 | 20,1
21,2
22,2
23,2
24,3 | | | | | 20,5
21,7
22,9
24,1
25,2 | 21
22
23
24
25 | | | 26
27
28
29
30 | 19,7
20,6
21,4
22,3
23,1 | 21,4
22,3
23,3
24,2
25,1 | 22,5
23,5
24,4
25,4
26,4 | 24,3
25,3
26,3
27,3
28,3 | 25,3
26,4
27,4
28,5
29,5 | 31,2 | | | | 26,4
27,6
28,8
30,0
31,2 | 26
27
28
29
30 | | | 31
32
33
34
35 | 24,0
24,8
25,7
26,5
27,4 | 26,0
26,9
27,8
28,7
29,7 | 27,3
28,3
29,3
30,2
31,2 | 29,4
30,4
31,4
32,4
33,4 | 30,6
31,6
32,7
33,7
34,8 | 32.0
33.1
34.2
35.3
36.4 | | | | 32,4
33,6
34,8
36,0
37,2 | 31
32
33
34
35 | | | 36
37
38
39
40 | 28,2
29,0
29,8
30,6
31,3 | 30,6
31,5
32,4
33,3
34,3 | 32,1
33,1
34,1
35,0
36,0 | 34,5
35,5
36,5
37,5
38,6 | 35,8
36,9
37,9
39,0
40,1 | 37.5
38.6
39.7
40.8
41.9 | | | | 38,4
39,7
40,9
42,1
43,3 | 36
37
38
39
40 | | | 41
42
43
44
45 | 32,1
32,9
33,7
34,5
35,3 | 35,2
36,1
37,0
37,9
38,9 | 37,0
37,9
38,9
39,9
40,8 | 39,6
40,6
41,6
42,7
43,7 | 41,1
42,2
43,3
44,3
45,4 | 43,0
44,1
45,2
46,3
47,4 | | | | 44,5
45,7
46,9
48,2
49,4 | 41
42
43
44
45 | | ble
-02 | 46
47
48
49
50 | 36,1
36,8
37,6
38,4
39,2 | 39,8
40,7
41,6
42,5
43,5 | 41,8
42,8
43,7
44,7
45,7 | 44,8
45,8
46,8
47,9
48,9 | 46,4
47,5
48,6
49,6
50,7 | 48,5
49.6
50.7
51.8
52.9 | 55.5 | | | 50,6
51,8
53,0
54,3
55,5 | 46
47
48
49
50 | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 6 | 8 | 10 | 15 | 50 | 30 | 50 | 80 | 110 k = n | n | |--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|---|---|-----------------------------| | 58 | 39,2 | 43,5 | 45,7 | 48,9 | 50,7 | 52,9 | 55,5 | | 55,5 | 5 0 | | 51 | 40,0 | 44,4 | 46,6 | 49,9 | 51,8 | 54.0 | 56,4 | | 56,7 | 51 | | 52 | 40,8 | 45,3 | 47,6 | 51,0 | 52,8 | 55,1 | 57,5 | | 57,9 | 52 | | 53 | 41,5 | 46,2 | 48,6 | 52,0 | 53,9 | 56,2 | 58,6 | | 59,1 | 53 | | 54 | 42,3 | 47,2 | 49,6 | 53,0 | 55,0 | 57,3 | 59,8 | | 60,4 | 54 | | 55 | 43,1 | 48,1 | 50,5 | 54,1 | 56,1 | 58,4 | 60,9 | | 61,6 | 55 | | 56 | 43,9 | 49,0 | 51,5 | 55,4 | 57,1 | 59,5 | 62,1 | | 62,8 | 56 | | 57 | 44,7 | 49,9 | 52,5 | 56,2 | 58,2 | 60,6 | 63,2 | | 64,0 | 57 | | 58 | 45,5 | 50,9 | 53,4 | 57,2 | 59,3 | 61,7 | 64,4 | | 65,3 | 58 | | 59 | 46,2 | 51,8 | 54,4 | 58,2 | 60,3 | 62,8 | 65,5 | | 66,5 | 59 | | 60 | 47,0 | 52,7 | 55,4 | 59,3 | 61,4 | 64,0 | 66,6 | | 67,7 | 60 | | 61 | 47,8 | 53,6 | 56,3 | 60,3 | 62,5 | 65,1 | 67,8 | | 69,0 | 61 | | 62 | 48,6 | 54,5 | 57,3 | 61,3 | 63,6 | 66,2 | 68,9 | | 70,2 | 62 | | 63 | 49,4 | 55,4 | 58,3 | 62,4 | 64,6 | 67,3 | 70,1 | | 71,4 | 63 | | 64 | 50,2 | 56,3 | 59,2 | 63,4 | 65,7 | 68,4 | 71,2 | | 72,6 | 64 | | 65 | 50,9 | 57,1 | 60,2 | 64,5 | 65,8 | 69,5 | 72,4 | | 73,9 | 65 | | 66 | 51,7 | 58,0 | 61,2 | 65,5 | 67,9 | 70,6 | 73,5 | | 75.1 | 66 | | 67 | 52,5 | 58,9 | 62,1 | 66,6 | 68,9 | 71.7 | 74,7 | | 76,3 | 67 | | 68 | 53,3 | 59,8 | 63,1 | 67,6 | 70.0 | 72.8 | 75,8 | | 77,6 | 68 | | 69 | 54,1 | 60,7 | 64,1 | 68,6 | 71,1 | 74.0 | 77,0 | | 78,8 | 69 | | 70 | 54,9 | 61,5 | 65,1 | 69,7 | 72,2 | 75.1 | 78,1 | | 80,0 | 70 | | 71 | 55,6 | 62,4 | 66,0 | 70,7 | 73,2 | 76,2 | 79,2 | | 81,3 | 71 | | 72 | 56,4 | 63,3 | 67,0 | 71,8 | 74,3 | 77,3 | 80,4 | | 82,5 | 72 | | 73 | 57,2 | 64,2 | 68,0 | 72,8 | 75,4 | 78,4 | 81,5 | | 83,7 | 73 | | 74 | 58,0 | 65,1 | 68,9 | 73,8 | 76,5 | 79,5 | 82,7 | | 84,9 | 74 | | 75 | 58,8 | 65,9 | 69,9 | 74,9 | 77,6 | 80,6 | 83,8 | | 86,2 | 75 | | 76 | 59,6 | 66,8 | 70,9 | 75,9 | 78.6 | 81.8 | 85,0 | 92,3 | 87,4 | 76 | | 77 | 60,3 | 67,7 | 71,9 | 77,0 | 79.7 | 82,9 | 86,1 | | 88,6 | 77 | | 78 | 61,1 | 68,6 | 72,8 | 78,0 | 80.8 | 84.0 | 87,3 | | 89,9 | 78 | | 79 | 61,9 | 69,4 | 73,8 | 79,1 | 81.9 | 85.1 | 88,4 | | 91,1 | 79 | | 80 | 62,7 | 70,3 | 74,7 | 80,1 | 83.0 | 86.2 | 89,6 | | 92,3 | 80 | | 81 | 63,5 | 71,2 | 75.7 | 81,1 | 84.0 | 87,3 | 96,7 | 93,5 | 93,6 | 81 | | 82 | 64,3 | 72,1 | 76.6 | 82,2 | 85.1 | 88,5 | 91,9 | 94,6 | 94,8 | 82 | | 83 | 65,0 | 73,0 | 77.5 | 83,2 | 86.2 | 89,6 | 93,0 | 95,8 | 96,0 | 83 | | 84 | 65,8 | 73,8 | 78.5 | 84,3 | 87.3 | 90,7 | 94,2 | 97,0 | 97,3 | 84 | | 85 | 66,6 | 74,7 | 79.4 | 85,3 | 88.4 | 91,8 | 95,3 | 98,2 | 98,5 | 85 | | 86
87
88
89
90 | 67,4
68,2
69,0
69,8
70,5 | 75,6
76,5
77,4
78,2
79,1 | 80,3
81,3
82,2
83,1
84,1 | 86.4
87.4
88.5
89.5
95.6 | 89,4
90,5
91,6
92,7
93,8 | 92,9
94,0
95,2
96,3
97,4 | 96,5
97,6
98,8
99,9
101,1 | 99,4
100,6
101,7
102,9
104,1 | 99,8
101,0
102,2
103,5
104,7 | 86
87
88
89 | | 91
92
93
94
95 | 71,3
72,1
72,9
73,7
74,5 | 80,0
80,9
81,8
82,6
83,5 | 85,5
86,5
86,9
87,8
88,8 | 91.6
92.6
93.7
94.7
95.8 | 94,9
95,9
97,0
98,1
99,2 | 100,8 | 102,2
103,4
104,5
105,7
106,9 | | 105,9
107,2
108,4
109,6
110,9 | 91
92
93
94
95 | | 96
97
98
99
100 | 75,2
76,8
76,8
77,6
78,4 | 84,4
85,3
86,2
87,0
87,9 | 89,7
90,6
91,6
92,5
93,4 | 97,9
98,9 | 101,3
102,4
103,5 | 165,2
166,4
167.5 | 110,3 | 111,2
112,4
113,6
114,8
115,9 | 112,1
113,4
114,6
115,8
117,1 | 96
97
98
99
100 | A in Erl Z = 2.0 B = 20.0 % B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility | $\overline{}$ | | | | | | | | | | | | | | | | Г | | | 1 | | | | - | |---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|---|----------------------------------|----------------------------------|--
-------------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------------| | <u>c</u> × | 6 | 8 | 10 | 15 | 20 | 30 | 58 | 80 | 115 k | = n | n | n k | 6 | 8 | 10 | 15 | 26 | 30 | 50 | 80 | 116 | k=n | n | | 100 | 78,4 | 87,9 | 93,4 | 101,0 | 104,6 | 108,6 | 112.6 | 115,9 | 11 | 7,1 | 100 | 200 | 156,7 | 175,8 | 186,9 | 203,4 | 212,4 | 221,3 | 228,7 | 234,5 | 237,5 | 241,3 | 200 | | 102
104
106
108
110 | 81,5
83,1
84,6 | 91,4
93,2
94,9 | 97,2
99,0
100,9 | 105,2
107,3
109,3 | 108,9
111,1
113,3 | 110.8
113.1
115.3
117.6
119.8 | 117,2
119,6
121,9 | 120,7
123.0
125.4 | 12
12 | 9,5
22,0
24,5
27,0
29,5 | 102
104
106
108
110 | 202
204
206
208
210 | 159,9
161,4
163,0 | 179,3
131,1
182,9 | 190,6
192,5
194,3 | 205,4
207,4
209,5
211,5
213.5 | 216,6
218,8
220,9 | 225.9
228.1
230.4 | 233,3
235,7
238,0 | 239,2
241,6
244,6 | 242,3
244,7
247.1 | 246,3
248.8
251.3 | 202
204
206
208
210 | | 112
114
116
118
120 | 89,3
90,9
92,5 | 100,2
102,0
103,7 | 106,5
108,4
110,2 | 115,6
117,7
119,8 | 119,8
121,9
124,1 | 124,3
126,6
128,8 | 128,8
131,1
133,4 | 132,5
134,9
137,2 | 131,9 13
134,3 13
136,7 13
139,1 13
141,5 14 | 34,4
36,9
39,4 | 112
114
116
118
120 | 212
214
216
218
220 | 167,7
169,3
170,9 | 188,1
189,9
191,6 | 199,9
201,8
203,7 | 215,6
217,6
219,6
221,7
223,7 | 227,2
229,4
231,5 | 237,2
239,4
241,7 | 245,0
247,3
249,7 | 251,1
253,5
255,9 | 254,3
256,7
259,1 | 258,8
261,3
263,8 | 212
214
216
218
220 | | 122
124
126
128
130 | 97,2
98,7
100,3 | 109,0
110,8
112,5 | 115,9
117,7
119,6 | 126,1
128,1
130,1 | 130,6
132,6
135,6 | 135,6
137,8
140,1 | 140.4
142.7
145.0 | 144.3
146.7
149.1 | 143,9 14
146,3 14
148,7 14
151,1 15
153,5 15 | 46,8
49,3
51,8 | 122
124
126
128
130 | 222
224
226
228
236 | 175,6
177,1
178,7 | 196,9
198,7
200,4 | 209,3
211,1
213.0 | 225,7
227,8
229,8
231,8
233,9 | 237,9
240,0
242,1 | 248,5
250,8
253,6 | 256,7
259,0
261.3 | 263,5
265,4
267.8 | 266,3
268,7
271.1 | 271,2 | 222
224
226
228
230 | | 132
134
136
138
140 | 105,0
106,6
108,2 | 117,8
119,6
121,3 | 125,2
127,1
128,9 | 136,2
138,3
140,3 | 141,
143,
145, | 5 146,8
7 149,1
3 151,3 | 152,0
154,3
156,6 | 156,2
158,5
160,9 | 155.9 15
158.3 15
160.7 16
163.1 16
165.5 16 | 59,2
61,7
64,2 | 132
134
136
138
140 | 232
234
236
238
248 | 183,4
185,0
186,5 | 205,7
207,5
209,2 | 218,6
220,5
222,4 | 235,9
237,9
240,0
242,0
244,0 | 248,5
250,6
252,7 | 259,8
262,1
264,4 | 268,3
278,7
273,0 | 274,9
277.3
279.7 | 278,3
280,7
283.1 | 283,7
286,2
288,7 | 232
234
236
238
240 | | 142
144
146
148
150 | 112,9
114,4
116,0
117,6 | 126,6
128,3
130,1
131,9 | 134,5
136,4
138,3
140,1 | 146,4
148,4
150,5
152,5 | 152,
154,
156,
158, | 3 158,1
5 160,3
7 162,6
9 164,9 | 163,5
165,9
168,2
170,5 | 168.0
170.4
172.8
175.1 | 167,9 16
170,3 17
172,7 17
175,1 17
177,5 17 | 71,7
74,1
76,6
79,1 | 142
144
146
148
150 | 242
244
246
248
250 | 191,2
192,8
194,4
195,9 | 214,5
216,3
218,0
219,8 | 228,6
229,8
231,7
233.6 | 246,1
248,1
250,1
252,2
254,2
1,017 | 259,1
261,2
263,4
265.5 | 271,2
273,4
275,7
278,0 | 280,0
282,4
284,7 | 286,8
289,2
291,6 | 290,3
292,7
295,1 | 296,2
298,7
301,1 | 242
244
246
248
250 | | 152
154
156
158 | 120,7
122,3
123,8 | 135,4
137,1
138,9 | 143,9
145,7
147,6 | 156,6
158,6
160,6 | 163,
165,
167, | 2 169,4
4 171,6
6 173,9 | 175,2
177,5
179,8 | 179.9
182.3
184.6 | 179,9 18
182,3 18
184,7 18
187,1 18 | 84,1
86,6
89,1 | 152
154
156
158 | 300
1 | 235,1
6,784 | 263,7
0,879 | 280,3
0,934 | 305,0 | 318,6
1,062 | 333,6
1,112 | 345,5
1,171 | 353,5
1,194 | 357,7
1,264 | 366,0
1,248 | 355
1 | | 160 | | | | | | | | | 189,4 19 | | 160 | 350
1 | 274,3
0,784 | 307,7
0,879 | 327,0
0,934 | 355,9
1,017 | 371,7
1,662 | 389,2
1,112 | 1,173 | 413,2 | 417.9
1.2d5 | 428,4
1,248 | 350
1 | | 164
166
168 | 128,5 | 144,2
145,9 | 153,2
155,1 | 166,7 | 174,
176, | 1 180,7
3 182,9 | 186,8 | 191.7 | 194,3 1°
196,6 1°
199,1 2° | 96,5
99, 0 | 164
166
168 | 400
1 | 313,5
0,784 | 351,6
0,879 | 373,7
0,934 | 406.7 | 424.8
1.062 | 444,8
1,112 | 462,7 | 472.9
1.197 | 478,2
1,267 | 490,8
1,249 | 400
1 | | 176 | 133,2 | 149,4 | 158,8 | 172,8 | 186, | 5 187,4 | 193,7 | 198,9 | 201,5 2 | 04,0 | 170 | 500
1 | 391,9
0,784 | 439,6 | 467,1
0,934 | 508,4
1,017 | 531.6
1.062 | 556,1
1,112 | 578,9
1,158 | 592.6
1.198 | 598,8
1,208 | 615,7
1,249 | 500
1 | | 172
174
176
178 | 136,4
137,9 | 153,0
154,7 | 162,6 | 176,9 | 184.
186. | 7 192.0
9 194.2 | 198,4 | 203,6 | 203,9 2
206,3 2
208,7 2 | 59,5
11,5 | 172
174
176 | 600
1 | 470,2 | 527,5 | 560,6 | 616,1 | 637,1 | 667.3 | 694.7 | 712.4 | 719.7 | 740.6 | 600
1 | | 185 | 141,1 | 158,2 | 168,2 | 183,6 | 191, | 1 198,7 | 205,4 | 210,7 | 211.1 2 213.5 2 | 16,4 | 178 | 766
1 | 548,6
0,784 | 615,4 | 654,0
0,934 | 711.7 | 743,3
1,562 | 778,5
1,112 | 810,5 | 832,4 | 840,6 | 865,5
1,249 | 700
1 | | 182
134
186
188 | 144,2 | 161,8 | 171,9
173,8 | 187,1 | L 195,
L 197, | 4.253,3
5.255,5 | 210.6 | 215.5 | 215,9 2
218,3 2
220,7 2
223,1 2 | 21,4 | 182
184
186
188 | 800 | 627,6 | 703,3 | 747,4 | 813,4 | 849,5 | 889,7 | 926.3 | 952.2 | 961.7 | 990.5 | 800 | | 196 | 148,9 | 167,0 | 1, 177,5 | 193, | 2 201. | 8 210,6 | 217.0 | 222.6 | 225,5 2 | 28,9 | 190 | 900
1 | 785,3
0,784 | 791,2 | 840,9 | 915,1
1,017 | 955,7
1,062 | 1001 | 1042 | 1671
1:196 | 1083 | 1115
1,250 | 900
1 | | 192
194
196
198
200 | 152,6
153,6
155,2 | 170,5
172,3
174,1 | 181,3
183,1
185,6 | 197,
199,
201, | 3 206,
3 208,
3 210, | 0 214,6
1 216,8
2 219,3 | 221,
224,
226, | 227.4
229.7
232.1 | 227,9 2
230,3 2
232,7 2
235,1 2
237,5 2 | 33,9
36,4
38,8 | 192
194
196
198
200 | 1100
1 | 862,1 | . 967.0 | 1028 | 1118 | 1168 | 1223 | 1274 | 1359 | 1325 | | 1100 | # TABELLE 6 Bestimmung der Leitungszahl n des Letztweg-Bündels als Funktion des angebotenen Überlaufverkehrs A, der Erreichbarkeit k und des Verlustes B # TABLE 6 Determination of the number of trunks n of the final group as a function of the offered non-random traffic A, the accessibility k and the probability of loss B ### Parameter: - a) Accessibility Erreichbarkeit - b) Number of Trunks Leitungszahl - c) Probability of Loss Verlustwahrscheinlichkeit - k = 6, 8, 10, 15, 20, 30, 50, 80, 110, k=n - n = 1, 2,...100, 102,...250, 300, 350, 400, 500,...900, 1100 - B = 0.1 %, 0.2 %, 0.5 %, 1.0 %, 2.0 %, 3.0 %, 5.0 %, 10.0 % - How to use the table - Ablesemethode | n k 6 | A in Erl | Z = 2.0
B = 1 % | |-------|----------|--------------------| | 1 | | • | | | 1 | • | | n | Ā | • | | • | | | | • | | • | | 1100l | | | # Contents: Inhalt: | B | Table | |-------|-------| | 0.1% | 6-02 | | 0.2% | 04 | | 0.5% | 06 | | 1.0% | 08 | | 2.0% | 10 | | 3.0% | 12 | | 5.0% | 14 | | 10.0% | 16 | Table 6-02 A in Eri Z = 2.0 B = 0.1 % B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility | n k | 6 | 8 | 16 | 15 | 26 | 30 | 50 80 110 k = n | n | |----------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------| | 1
2
3
4
5 | | | | | | | | 1
2
3
4
5 | | 6
7
8
9
16 | | 0,33 | 0,93 | | | | 0,48
0,93 | 6
7
8
9 | | 11
12
13
14
15 | | 0.64
0.88
1,2
1,4
1,7 | 1,6
1,4
1,7
2,0
2,4 | 3,3 | | | 1,4
1,8
2,3
2,8
3,3 | 11
12
13
14
15 | | 16
17
18
19
20 | 0,37
0,49
0,57 | 2,0
2,3
2,5
2,8
3,1 | 2,7
3,1
3,5
3,8
4,2 | 3,6
4,1
4,5
5,0
5,5 | 6,1 | | 3,9
4,4
5,0
5,5
6,1 | 16
17
18
19
25 | | 21
22
23
24
25 | 0,72
0,79
0,94
1,0 | 3,3
3,6
3,9
4,1
4,4 | 4,6
5,0
5,3
5,7
6,1 | 5,9
6,4
6,9
7,4
7,9 | 6,5
7,1
7,6
8,1
8,7 | | 6,7
7,3
7,9
8,5
9,2 | 21
22
23
24
25 | | 26
27
28
29
35 | 1,2
1,3
1,4
1,5 | 4,7
5,0
5,3
5,6
5,8 | 6,5
6,9
7,3
7,6
8,5 | 8,4
8,9
9,4
9,9
15,4 | 9,2
9,7
10,3
10,9 | 12,4 | 9,8
10,4
11,1
11,7
12,4 | 26
27
28
29
30 | | 31
32
33
34
35 | 1,7
1,8
1,9
2,1
2,1 |
6,1
6,4
6,6
6,9
7,1 | 8,4
8,8
9,2
9,6
10,0 | 11,0
11,5
12,0
12,5
13,0 | 12,6
13,2
13,7
14,3 | 3,6 | 13,1
13,7
14,4
15,1
15,8 | 31
32
33
34
35 | | 36
37
38
39
40 | 2,2
2,2
2,3
2,4
2,4 | 7,4
7,7
7,9
8,2
8,5 | 10,3
10,7
11,1
11,5
11,9 | 13,6
14,1
14,7
15,2
15,7 | 14.9
15.5
16.1
16.7
17.2 | 16,1
16,7
17,3
18,6 | 16,4
17,1
17,8
18,5
19,2 | 36
37
38
39
40 | | 41
42
43
44
45 | 2,5
2,5
2,6
2,7
2,7 | 8,7
9,0
9,3
9,5
9,8 | 12,3
12,6
13,0
13,4
13,8 | 16.2
16.8
17.3
17.8
18.4 | 17,8
18,5
19,1
19,7
20,2 | 19,3
19,9
20,6
21,2
21,9 | 20,0
20,7
21,4
22,1
22,8 | 41
42
43
44
45 | | 46
47
48
49
50 | 2,8
2,8
2,9
3,0
3,0 | 10,1
10,3
10,6
10,8
11,0 | 14,2
14,5
14,8
15,2
15,6 | 19,0
19,5
20,0
20,6
21,1 | 20,9
21,5
22,1
22,7
23,3 | 22,5
23,2
23,8
24,5
25,2 | 23,6
24,3
25,0
25,8
26,5 | 46
47
48
49
50 | | | | | riin tutus
<u>Notesati</u> | | | | | | | | |----------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------| | ا
کر | 6 | 8 | 16 | 15 | 25 | 30 | 50 | 85 | 116 k = n | U | | 50 | 3,6 | 11,0 | 15,6 | 21,1 | 23,3 | 25,2 | 26,5 | | 26,5 | 50 | | 51 | 3,1 | 11,3 | 16,0 | 21,6 | 23,9 | 25,8 | 27,3 | | 27,2 | 51 | | 52 | 3,1 | 11,5 | 16,4 | 22,2 | 24,6 | 26,5 | 28,0 | | 28,0 | 52 | | 53 | 3,2 | 11,8 | 16,7 | 22,8 | 25,2 | 27,2 | 28,7 | | 28,7 | 53 | | 54 | 3,3 | 12,1 | 17,1 | 23,3 | 25,8 | 27,9 | 29,4 | | 29,5 | 54 | | 55 | 3,3 | 12,3 | 17,5 | 23,8 | 26,4 | 28,5 | 30,1 | | 30,2 | 55 | | 56 | 3,4 | 12,6 | 17,9 | 24,4 | 27,6 | 29,2 | 30,9 | | 31,0 | 56 | | 57 | 3,5 | 12,8 | 18,2 | 24,9 | 27,7 | 29,9 | 31,6 | | 31,7 | 57 | | 58 | 3,5 | 13,0 | 18,6 | 25,5 | 28,3 | 30,6 | 32,3 | | 32,5 | 58 | | 59 | 3,6 | 13,3 | 19,6 | 26,1 | 28,9 | 31,3 | 33,0 | | 33,3 | 59 | | 60 | 3,6 | 13,6 | 19,4 | 26,6 | 29,5 | 32,0 | 33,7 | | 34,0 | 60 | | 61 | 3,7 | 13,8 | 19,7 | 27,1 | 36,2 | 32,6 | 34,5 | | 34,8 | 61 | | 62 | 3,8 | 14,1 | 20,1 | 27,7 | 36,8 | 33,3 | 35,2 | | 35,5 | 62 | | 63 | 3,8 | 14,2 | 20,5 | 28,2 | 31,4 | 34,6 | 35,9 | | 36,3 | 63 | | 64 | 3,9 | 14,5 | 20,9 | 28,7 | 32,1 | 34,7 | 36,7 | | 37,1 | 64 | | 65 | 3,9 | 14,7 | 21,2 | 29,3 | 32,7 | 35,4 | 37,4 | | 37,9 | 65 | | 66 | 4,0 | 14,9 | 21,6 | 29,9 | 33,3 | 36,1 | 38,1 | | 38,6 | 66 | | 67 | 4,1 | 15,2 | 22,6 | 30,4 | 33,9 | 36,8 | 38,8 | | 39,4 | 67 | | 68 | 4,1 | 15,4 | 22,3 | 31,0 | 34,6 | 37,5 | 39,6 | | 40,2 | 68 | | 69 | 4,2 | 15,6 | 22,7 | 31,5 | 35,2 | 38,2 | 40,3 | | 41,0 | 69 | | 70 | 4,2 | 15,8 | 23,1 | 32,0 | 35,8 | 38,9 | 41,1 | | 41,8 | 70 | | 71 | 4,3 | 16,1 | 23,4 | 32,6 | 36,4 | 39,6 | 41,8 | | 42,5 | 71 | | 72 | 4,4 | 16,3 | 23,8 | 33,1 | 37,1 | 40,3 | 42,5 | | 43,3 | 72 | | 73 | 4,4 | 16,5 | 24,2 | 33,7 | 37,7 | 41,0 | 43,3 | | 44,1 | 73 | | 74 | 4,5 | 16,7 | 24,5 | 34,2 | 38,4 | 41,7 | 44,0 | | 44,9 | 74 | | 75 | 4,5 | 17,0 | 24,9 | 34,8 | 39,6 | 42,4 | 44,8 | | 45,7 | 75 | | 76 | 4,6 | 17,2 | 25,3 | 35,3 | 39,6 | 43,1 | 45,5 | 49,7 | 46,5 | 76 | | 77 | 4,7 | 17,4 | 25,6 | 35,8 | 40,3 | 43,8 | 46,3 | | 47,3 | 77 | | 78 | 4,7 | 17,7 | 26,0 | 36,4 | 40,9 | 44,5 | 47,0 | | 48,1 | 78 | | 79 | 4,8 | 17,9 | 26,2 | 37,0 | 41,5 | 45,2 | 47,8 | | 48,9 | 79 | | 80 | 4,8 | 18,1 | 26,6 | 37,5 | 42,2 | 45,9 | 48,5 | | 49,7 | 80 | | 81 | 4,9 | 18,3 | 27,6 | 38,6 | 42,8 | 46,6 | 49,3 | 50,6 | 50,5 | 81 | | 82 | 5,0 | 18,6 | 27,3 | 38,6 | 43,5 | 47,3 | 50,0 | 51,4 | 51,3 | 82 | | 83 | 5,0 | 18,8 | 27,7 | 39,1 | 44,1 | 48,0 | 50,8 | 52,1 | 52,1 | 83 | | 84 | 5,1 | 19,0 | 28,6 | 39,6 | 44,7 | 48,8 | 51,5 | 52,9 | 52,9 | 84 | | 85 | 5,1 | 19,2 | 28,4 | 46,2 | 45,3 | 49,5 | 52,3 | 53,7 | 53,7 | 85 | | 86
87
88
89
90 | 5,2
5,3
5,4
5,5 | 19,5
19,7
19,9
20,1
20,4 | 28,7
29,6
29,4
29,7
30,6 | 40,8
41,3
41,8
42,4
42,9 | 46,6
46,6
47,3
47,9
48,6 | 50,2
50,9
51,6
52,3
53,0 | 53,0
53,8
54,5
55,3
56,1 | 54.5
55.3
56.1
56.9
57.7 | 54,5
55,3
56,1
56,9
57,7 | 86
87
88
89
90 | | 91 | 5,5 | 20,6 | 30,4 | 43,4 | 49,2 | 53,8 | 56,8 | 58,5 | 58,5 | 91 | | 92 | 5,6 | 20,8 | 30,7 | 43,9 | 49,8 | 54,5 | 57,6 | 59,3 | 59,4 | 92 | | 93 | 5,6 | 21,0 | 31,0 | 44,5 | 56,5 | 55,2 | 58,3 | 60,1 | 60,2 | 93 | | 94 | 5,7 | 21,3 | 31,4 | 45,1 | 51,1 | 55,9 | 59,1 | 60,8 | 61,0 | 94 | | 95 | 5,8 | 21,5 | 31,7 | 45,6 | 51,8 | 56,6 | 59,9 | 61,6 | 61,8 | 95 | | 96 | 5,8 | 21,7 | 32,1 | 46,1 | 52,4 | 57,4 | 60,6 | 62.4 | 62,6 | 96 | | 97 | 5,9 | 22,0 | 32,4 | 46,6 | 53,6 | 58,1 | 61,4 | 63.2 | 63,4 | 97 | | 98 | 5,9 | 22,2 | 32,7 | 47,2 | 53,7 | 58,8 | 62,2 | 64.0 | 64,3 | 98 | | 99 | 6,0 | 22,4 | 33,1 | 47,7 | 54,3 | 59,5 | 62,9 | 64.8 | 65,1 | 99 | | 100 | 6,1 | 22,6 | 33,4 | 48,3 | 54,9 | 60,2 | 63,7 | 65.6 | 65,9 | 100 | B = 0.1 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | n k | 6 | 8 | 16 | 15 | 20 | 30 | 50 | 80 | 116 | k=n | n | nk | -6 | 8 | 18 | 15 | 20 | 30 | 50 | 80 | 116 | k=n | |------------|--------------|--------------|--------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------------|--------------|--------------|--------------|------------|-------|----------------|-----------|----------------|----------------|--------------------| | 100 | 6,1 | 22,6 | 33,4 | 48,3 | 54,9 | 60,2 | 63,7 | 65,6 | | 65,9 | 100 | 200 | 12,1 | 45,3 | 66,9 | 98,7 | 117,1 | 133,7 | 143,1 | 147;9 | 149,9 | 151,6 | | 102 | 6,2 | 23,1 | 34,1 | 49,3 | 56,2 | 61,7 | 65,2 | 67,2 | | 67,5 | 102 | 202 | 12,2 | 45,7 | 67,5 | 99,7 | 118,2 | 135,2 | 144,8 | 149,6 | 151,7 | 153,3 | | 104
106 | 6,3 | 23,5 | 34,8
35,4 | 50,4 | 57,5
58,8 | 63,1 | 66,8 | 68 8 | | 69,2
70,9 | 104
106 | 204
206 | 12,4
12,5 | 46,2 | 68,2 | 100.7 | 119,4 | 136,6 | 146,4 | 151,3 | 153,4 | 155,1 | | 108 | 6,5 | 24,4 | 36,1 | 52,6 | 60.0 | 66,0 | 69,9 | 72.0 | | 72,5 | 108 | 208 | 12,6 | 47,1 | 69,5 | 102.7 | 121.7 | 139,6 | 149,7 | 153.0
154.7 | 156,8 | 158,6 | | 116 | 6,7 | 24,9 | 36,8 | 53,6 | 61,3 | 67,5 | 71,4 | 73,6 | 74,2 | 74,2 | 116 | 216 | 12,7 | 47,5 | 70,2 | 163,7 | 122,9 | 141,1 | 151,3 | 156,4 | 158,5 | 160,4 | | 112
114 | 6,8
6,9 | 25,3
25,8 | 37,4
38,1 | 54,7 | 62,6 | 68,9
70,4 | | 75,2
76,9 | | 75,8
77,5 | 112
114 | 212
214 | 12,8
13,0 | 48,0
48,4 | | | | | | 158.0 | | | | 116 | 7,6 | 26,3 | 38,8 | 56,8 | 65,1 | 71,9 | 76,1 | 78,5 | 79,1 | 79,2 | 116 | 216 | 13,1 | 48,9 | 72,2 | 106,6 | 126.4 | 145,5 | 156,2 | 159.7
161.4 | 163,7 | 165,7 | | 118
120 | 7,1
7,3 | 26,7 | 39,4
40,1 | 57,8 | 66,4 | 73.3 | 77,7 | 80,1
81,7 | | 80,9
82,5 | 118 | 218
226 | 13,2 | 49,3 | 72,9
73,5 | 107,6 | 127,6 | 147,0 | 157,8 | 163,1 | 165,4 | 167,5
169,2 | | 122 | 7,4 | 27,6 | 40,8 | 60,0 | 69,0 | 76,2 | 86,8 | 83,3 | 84,1 | | 122 | 222 | 13,4 | 50,2 | | | | | | 166,5 | | | | 124 | 7,5 | 28,1 | 41,5 | 61,0 | 70,2 | 77,7 | 82,4 | 85,0 | 85,8 | 85,9 | 124 | 224 | 13,6 | 50,7 | 74,9 | 110,6 | 131,1 | 151,4 | 162,7 | 168,2 | 170,5 | 172,8 | | 126
128 | 7,6
7,8 | 28,5
29,0 | 42,1
42,8 | 62,0 | 71,5
72.8 | 79.2 | 83,9
85,5 | | 87,5
89,1 | 87,6
89,3 | 126
128 | 226
228 | 13,7
13,8 | 51,1
51,6 | 75,5
76,2 | 111,6 | 132,3 | 152,9
154,3 | 164,3 | 169,9 | 172,3
174.0 | 174,6 | | 130 | 7,9 | 29,4 | 43,5 | 64,2 | 74.1 | 82,1 | 87,1 | 89,8 | 90,8 | 91,6 | 136 | 236 | 13,9 | 52,0 | 76,9 | 113,5 | 134,6 | 155,8 | 167,6 | 173,3 | 175,7 | 178,1 | | 132 | 8,0 | 29,9 | 44,1 | | 75.3 | | 88,7 | 91,5 | 92,5 | 92,7 | 132 | 232 | 14,1 | 52,5 | 77,6 | 114,5 | 135,8 | 157,3 | 169,2 | 175.6 | 177,4 | 179,9 | | 134
136 | 8,1
8,2 | 30,3
30,8 | 44,8
45,5 | 66,2 | 76.6
77.9 | 85.0
86,5 | 90,2 | 93.1 | 94,1
95,8 | 94,4
96,1 | 134 | 234
236 | 14,2 | 53,0
53,4 | 78,2 | 115,5 | 136,9 | 158,8 | 170,8 | 176.7 | 179,2 | 181,7 | | 138
140 | 8,4
8,5 | 31,2
31,7 | 46,1
46,8 | 68,1 | | 88,0 | | 96.4 | 97,5 | 97,8 | 138 | 238
240 | 14,4
14,5 | 53,9 | 79,6 | 117,5 | 139,3 | 161,7 | 174,1 | 180,1 | 182,6 | 185,3 | | | | | | | | | | | | 99,5 | 140 | | | | | - | | | | | | 187,0 | | 142
144 | 8,6 | 32,1 | 47,5
48,1 | 70,1 | 81,6 | | | 99,7 | | | 142 | 242
244 | 14,7 | 54,8
55,2 | | | | | | | | 188,8 | | 146
148 | 8,8 | 33,6 | 48,8 | 72,0 | 84,1 | 93,8 | 99.7 | 103,0 | 104,2 | 104,6 | 146 | 246 | 14,9 | 55,7 | 82,2 | 121,4 | 144,0 | 167,6 | 180,6 | 186,9 | 189,5 | 192,4 | | 150 | 9,1 | 33,5
33,9 | 49,5
50,1 | 73,1 | 85,4
86,7 | | 101,3 | | | | 148
150 | 248
25 6 | 15,0
15,1 | 56,1
56,6 | | | | | | | | 194,2
196,0 | | 152 | 9.2 | 34,4 | 58,8 | 75.0 | 88.6 | 98.3 | 104,5 | 167.0 | 169.2 | 169.7 | 152 | 1 | 0,061 | 0,226 | 0,334 | 0,494 | 0,585 | 0,699 | 0,821 | 0,858 | 0,870 | 0,901 | | 154 | 9,3 | 34,8 | 51,5 | 76,0 | 89,2 | 99,7 | 106,1 | 109.6 | 110,9 | 111,5 | 154 | 300 | 18,2 | 67,9 | 100,3 | 148,1 | 175,6 | 205,5 | 225,0 | 233,2 | 236,5 | 241,0 | | 156
158 | 9,4 | 35,3
35,8 | 52,1
52,8 | 77,0 | | | 107,7 | | | | 156
158 | 1 | 0,061 | 0,226 | 0,334 | 0,494 | 0,585 | 0,685 | 0,824 | 0,865 | 6.878 | 3 0,910 | | 160 | 9,7 | 36,2 | 53,5 | 79,0 | | | 110,9 | | | | 160 | 35g
1 | | | | | | | | | | 286,5
0,918 | | 162 | 9,8 | 36,7 | 54,2 | 80,0 | | | 112,5 | | | |
162 | | | | | Laurence . | | | | | | | | 164
166 | 9,9 | 37,1
37,6 | 54,8
55,5 | 81,0 | | | 114,1 | | | | 164 | 400
1 | | | | | | | | | | 332,4 | | 168
170 | 10,2 | 38,0
38,5 | 56,2
56,8 | 82,9 | 98,6 | 110,1 | 117,3 | 121,2 | 122,7 | 123,6 | 168
170 | 566 | 1 | | | | | | | | | | 425,0
7 0,935 | | 172
174 | 10,4 | 38,9
39,4 | 57,5
58,2 | | | | 120,5 | | | | 172
174 | 600 | 36.3 | 135.8 | 200.6 | 296.2 | 351.9 | 411.6 | 464.4 | 495:4 | 563 : | 5 518.5 | | 176
178 | 10,7 | 39,8 | 58,8 | 86,9 | 103,0 | 116,0 | 123,8 | 127,8 | 129,5 | 130,5 | 176 | i | | | | | | | | | | 2 0,941 | | 180 | 10,9 | 40,7 | | | | | 125,4 | | | | 178
180 | 700 | 42,4 | 158,4 | 234,0 | 345,6 | 469,7 | 479,5 | 541,8 | 584:1 | 593,5 | 612,6 | | 182 | 11,0 | 41,2 | 60,8 | 89.8 | 106.5 | 120.4 | 128,6 | 132.8 | 134.6 | 135.8 | 182 | 1 | 0,061 | 0,226 | 0,334 | 5,494 | 0,585 | 0,685 | 0,774 | 6,872 | 0,900 | 5 0,946 | | 184 | 11,1 | | 61,5 | 90,8 | 107.6 | 121,9 | 136,2 | 134,5 | 136,3 | 137,5 | 184 | 800 | | | | | | | | | | 1 707,2 | | 186
188 | 11,3
11,4 | 42,5 | | | | | 131,8 | | | | 186
188 | 1 | 0,061 | đ,226 | 0,334 | 0,494 | 0,585 | 0,685 | 0,774 | 0,839 | 0.908 | 8 0,950 | | 190 | 11,5 | 43,0 | 63,5 | | | | 135,0 | | | | 190 | 966 | | | | | | | | | | 862.2 | | 192 | 11,6 | | | 94,8 | 112,3 | 127,8 | 136,7 | 141,2 | 143,1 | 144,5 | 192 | 1 | | | | A hataless | | | 4 5-355-6 | | | 1 0,955 | | 194
196 | 11,7
11,9 | | | 95,8 | 113,5 | 129,3 | 138,3 | 142,9 | 144,8 | 146,3 | 194 | 1100 | | | | | | | | | | 1 993,2
0 0,959 | | 198
200 | 12,0 | | 66,2 | 97,7 | 115,8 | 132,2 | 141,5 | 146,3 | 148,2 | 149,8 | 198 | • | | 0.220 | 0.004 | الاتران | ,,, | 0,085 | .10,,, | 0,009 | 0,0/(| , 0,707 | | | | , 0 | | 1 201/ | /-1 | 100,7 | TACAT | 74117 | エロア・ブ | エンエリロ | 1 200 | | | | | | | | | | | | A in Erl Table 6-03 Z = 2.0 B = 0.1 % 1 B = 0.2 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks A in Erl Z = 2.0 B = 0.2 % | | L
K | 6 | 8 | 10 | 15 | 20 | 30 | 56 | 80 | 110 | <= n | ח | |----------------|----------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|------------------|-----|--------------------------------------|-----------------------------| | | 10345 67890 | | 0,34
0,41
0,70 | 1,3 | | | | | | | 0,34
0,80
1,3 | 12345
6789 | | | 11
12
13
14
15 | 0,33
0,51
0,71
0,88 | 1,6 | 1,4
1,8
2,2
2,5
2,9 | 3,9 | <u> </u> | | | annani in Carta. | | 1,7
2,3
2,8
3,3
3,9 | 11
12
13
14
15 | | | 16
17
18
19
20 | 1,0
1,2
1,4
1,6
1,7 | 2,6
2,9
3,2
3,5
3,9 | 3,3
3,7
4,1
4,5
4,9 | 4,2
4,6
5,2
5,7
6,1 | 6,8 | | | | | 4,4
5,0
5,6
6,2
6,8 | 16
17
18
19
20 | | | 21
22
23
24
25 | 1,8
2,0
2,2
2,3
2,5 | 4,1
4,5
4,8
5,1
5,5 | 5,3
5,7
6,2
6,6
7,6 | 6,6
7,1
7,7
8,2
8,7 | 7,3
7,8
8,4
8,9
9,5 | | | | | 7,4
8,1
8,7
9,4
10,0 | 21
22
23
24
25 | | | 26
27
28
29
30 | 2,6
2,8
3,0
3,2
3,3 | 5,8
6,1
6,4
6,8
7,0 | 7,4
7,9
8,3
8,7
9,1 | 9,3
9,8
10,3
10,9
11,4 | 10,1
10,6
11,2
11,8
12,4 | 13,4 | | | | 10,7
11,3
12,0
12,7
13,4 | 26
27
28
29
30 | | | 31
32
33
34
35 | 3,5
3,6
3,8
3,9
4,1 | 7,4
7,7
8,0
8,3
8,6 | 9,6
10,0
10,4
10,9
11,3 | 12,5
12,5
13,1
13,6
14,2 | 13,6
13,6
14,2
14,8
15,4 | 14,0
14,6
15,3
15,9
16,5 | | | | 14,1
14,8
15,5
16,2
16,9 | 31
32
33
34
35 | | | 36
37
38
39
40 | 4,2
4,3
4,4
4,5
4,7 | 9,0
9,3
9,6
9,9
10,3 | 11,7
12,1
12,6
13,0
13,4 | 14,7
15,3
15,9
16,4
17,0 | 16,6
16,6
17,2
17,9
18,5 | 17,2
17,9
18,5
19,2
19,9 | | | | 17,6
18,3
19,1
19,8
20,5 | 36
37
38
39
40 | | | 41
42
43
44
45 | 4,8
4,9
5,0
5,1
5,2 | 10,5
10,9
11,2
11,5
11,8 | 13,8
14,3
14,7
15,1
15,5 | 17,6
18,1
18,7
19,3
19,9 | 19,1
19,7
20,4
21,6 | 20,5
21,2
21,9
22,5
23,2 | | | | 21,3
22,0
22,7
23,5
24,2 | 41
42
43
44
45 | | Table
6 -04 | 46
47
48
49
50 | 5,4
5,5
5,6
5,7
5,8 | 12,2
12,4
12,8
13,0
13,3 | 16,8
16,8
17,2
17,6 | 20,4
21,0
21,6
22,1
22,7 | 22,2
22,9
23,5
24,1
24,8 | 23,9
24,6
25,3
25,9
26,6 | 28,6 | | | 25,0
25,7
26,5
27,3
28,0 | .46
47
48
49
50 | | L K | 6 | 8 | 10 | 15 | 26 | 30 | 56 | 80 | 110 k = N | n | |----------------------------|---------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|--------------------------------------|----------------------------| | 50 | 5,8 | 13,3 | 17,6 | 22,7 | 24,8 | 26,6 | 28,0 | | 28,0 | 50 | | 51
52
53
54
55 | 5,9
6,1
6,2
6,3
6,4 | 13,7
13,9
14,2
14,6
14,8 | 18,5
18,9
19,3
19,7 | 23,3
23,9
24,5
25,0
25,6 | 25,4
26,1
26,7
27,4
28,6 | 27,3
28,0
28,7
29,4
30,1 | 28,8
29,6
30,3
31,0
31,8 | | 28,8
29,6
30,3
31,1
31,9 | 51
52
53
54
55 | | 56 | 6,5 | 15,2 | 20,1 | 26,2 | 28,7 | 30,8 | 32,5 | | 32,7 | 56 | | 57 | 6,6 | 15,5 | 20,6 | 26,7 | 29,3 | 31,5 | 33,2 | | 33,4 | 57 | | 58 | 6,8 | 15,7 | 21,0 | 27,3 | 29,9 | 32,2 | 34,0 | | 34,2 | 58 | | 59 | 6,9 | 16,0 | 21,4 | 27,9 | 30,6 | 32,9 | 34,7 | | 35,0 | 59 | | 60 | 7,5 | 16,4 | 21,9 | 28,5 | 31,2 | 33,6 | 35,4 | | 35,8 | 60 | | 61 | 7,1 | 16,6 | 22,2 | 29,1 | 31,9 | 34,3 | 36,2 | | 36,6 | 61 | | 62 | 7,2 | 16,9 | 22,7 | 29,7 | 32,5 | 35,0 | 36,9 | | 37,4 | 62 | | 63 | 7,3 | 17,1 | 23,1 | 30,2 | 33,2 | 35,7 | 37,7 | | 38,2 | 63 | | 64 | 7,5 | 17,5 | 23,5 | 30,8 | 33,9 | 36,4 | 38,4 | | 39,0 | 64 | | 65 | 7,6 | 17,7 | 23,9 | 31,4 | 34,5 | 37,2 | 39,2 | | 39,8 | 65 | | 66 | 7,7 | 18,0 | 24,3 | 32,6 | 35,2 | 37,9 | 39,9 | | 40,6 | 66 | | 67 | 7,8 | 18,3 | 24,7 | 32,6 | 35,8 | 38,6 | 40,7 | | 41,4 | 67 | | 68 | 7,9 | 18,6 | 25,2 | 33,1 | 36,5 | 39,3 | 41,4 | | 42,2 | 68 | | 69 | 8,0 | 18,8 | 25,6 | 33,7 | 37,1 | 40,0 | 42,2 | | 43,0 | 69 | | 70 | 8,2 | 19,1 | 26,6 | 34,3 | 37,8 | 40,7 | 43,0 | | 43,8 | 70 | | 71 | 8,3 | 19,4 | 26,4 | 34,9 | 38,4 | 41,4 | 43,7 | | 44,6 | 71 | | 72 | 8,4 | 19,6 | 26,8 | 35,4 | 39,1 | 42,2 | 44,5 | | 45,4 | 72 | | 73 | 8,5 | 19,9 | 27,2 | 36,1 | 39,8 | 42,9 | 45,2 | | 46,2 | 73 | | 74 | 8,6 | 20,2 | 27,6 | 36,6 | 40,4 | 43,6 | 46,0 | | 47,0 | 74 | | 75 | 8,7 | 20,5 | 28,6 | 37,2 | 41,1 | 44,3 | 46,7 | | 47,8 | 75 | | 76 | 8,9 | 20,7 | 28,4 | 37,8 | 41,7 | 45,0 | 47,5 | 51,9 | 48,6 | 76 | | 77 | 9,0 | 21,0 | 28,8 | 38,3 | 42,4 | 45.8 | 48,3 | | 49,4 | 77 | | 78 | 9,1 | 21,3 | 29,2 | 38,9 | 43,1 | 46,5 | 49,0 | | 50,3 | 78 | | 79 | 9,2 | 21,6 | 29,6 | 39,5 | 43,8 | 47.2 | 49,8 | | 51,1 | 79 | | 80 | 9,3 | 21,8 | 30,0 | 40,1 | 44,4 | 48,0 | 50,6 | | 51,9 | 80 | | 81 | 9,4 | 22,1 | 30,4 | 45,7 | 45,1 | 48,7 | 51,3 | 52,8 | 52,7 | 81 | | 82 | 9,6 | 22,4 | 30,8 | 41,2 | 45,7 | 49,4 | 52,1 | 53,6 | 53,5 | 82 | | 83 | 9,7 | 22,6 | 31,2 | 41,8 | 46,4 | 50,1 | 52,9 | 54,4 | 54,4 | 83 | | 84 | 9,8 | 22,9 | 31,6 | 42,4 | 47,6 | 50,9 | 53,6 | 55,2 | 55,2 | 84 | | 85 | 9,9 | 23,2 | 31,9 | 43,5 | 47,7 | 51,6 | 54,4 | 56,0 | 56,0 | 85 | | 86 | 10,0 | 23,5 | 32,3 | 43,6 | 48,4 | 52,3 | 55,2 | 56,8 | 56,8 | 86 | | 87 | 10,1 | 23,7 | 32,7 | 44,2 | 49,1 | 53,1 | 56,0 | 57,6 | 57,7 | 87 | | 88 | 10,3 | 24,0 | 33,1 | 44,7 | 49,7 | 53,8 | 56,7 | 58,4 | 58,5 | 88 | | 89 | 10,4 | 24,3 | 33,5 | 45,3 | 50,4 | 54,5 | 57,5 | 59,2 | 59,3 | 89 | | 90 | 10,5 | 24,6 | 33,8 | 45,9 | 51,6 | 55,3 | 58,3 | 60,0 | 60,2 | 90 | | 91 | 10,6 | 24,8 | 34,2 | 46,4 | 51,7 | 56,0 | 59,1 | 60,9 | 61,0 | 91 | | 92 | 10,7 | 25,1 | 34,6 | 47,0 | 52,4 | 56.8 | 59,8 | 61,7 | 61,8 | 92 | | 93 | 10,8 | 25,4 | 35,0 | 47,6 | 53,1 | 57,5 | 60,6 | 62,5 | 62,7 | 93 | | 94 | 10,9 | 25,6 | 35,4 | 48,2 | 53,7 | 58,2 | 61,4 | 63,3 | 63,5 | 94 | | 95 | 11,1 | 25,9 | 35,7 | 48,7 | 54,4 | 58,9 | 62,2 | 64,1 | 64,3 | 95 | | 96 | 11,2 | 26,2 | 36,1 | 49,3 | 55,6 | 59,7 | 63,0 | 64,9 | 65,2 | 96 | | 97 | 11,3 | 26,5 | 36,5 | 49,9 | 55,7 | 60,4 | 63,7 | 65,7 | 66,0 | 97 | | 98 | 11,4 | 26,7 | 36,9 | 50,4 | 56,4 | 61,2 | 64,5 | 66,5 | 66,8 | 98 | | 99 | 11,5 | 27,0 | 37,2 | 51,0 | 57,1 | 61,9 | 65,3 | 67,3 | 67,7 | 99 | | 100 | 11,6 | 27,3 | 37,6 | 51,6 | 57,7 | 62,7 | 66,1 | 68,1 | 68,5 | 188 | B = 0.2 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | \leftarrow | | | | | | | 1 | | | | | | | | | | | | | | | | | |---------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------
----------------------------------|--|-------------------------|----------------------------------|----------------------------------|---------------------------------| | , r | 6 | 8 | 16 | 15 | 26 | 30 | 50 | 80 | 116 | k=n | n | nk | 6 | 8 | 10 | 15 | 26 | 30 | 50 | 80 | 110 | k=n | n | | 100 | 11,6 | 27.3 | 37,6 | 51,6 | 57,7 | 62,7 | 66,1 | 68,1 | | 68,5 | 100 | 200 | 23,3 | 54,6 | 75,3 | 105,5 | 122,7 | 138,6 | 146,9 | 151,7 | 153,9 | 155,9 | 200 | | 102
104
106
108
110 | 12,1
12,3
12,6 | 27,8
28,4
28,9
29,5
30,0 | 38,4
39,1
39,9
40,6
41,4 | 52,7
53,9
55,0
56,2
57,3 | 59,0
60,4
61,7
63,0
64,3 | 64,1
65,6
67,1
68,6
70,1 | 70,8 | 69,8
71,4
73.0
74.7
76,3 | 77,8 | 70,2
71,9
73,6
75,3
77,0 | 102
104
106
108
110 | 202
204
206
208
210 | 23,8
24,6
24,2 | 55,7
56,2
56,8 | 76,8
77,5
78,3 | 107,6
108,6
109,7 | 125,1
126,4
127,6 | 141,0
142,5
144,0 | 148,5
150,2
151,8
153,5
155,1 | 155,1
156,8
158,5 | 157,3
159,1
160,8 | 159,5
161,3
163,0 | 202
204
206
208
210 | | 112
114
116
118
120 | 13,3
13,5
13,7 | 30,6
31,1
31,7
32,2
32,7 | 42,2
42,9
43,7
44,4
45,2 | 58,4
59,6
60,7
61,8
62,9 | 67,6 | 71,6
73,1
74,6
76,1
77,6 | 77,1
78,7 | 77,9
79,6
81,2
82,9
84,5 | | | 112
114
116
118
120 | 212
214
216
218
220 | 24,9 | 58,4
58,9
59,5 | 80,5
81,3
82,0 | 112,9
113,9
115,0 | 131,3
132,5
133,7 | 148,6
150,1
151,6 | 156,8
158,4
160,1
161,7
163,4 | 163.7
165.4
167.1 | 166,0
167,8
169.5 | 168,4
170,2
172.0 | 212
214
216
218
220 | | 122
124
126
128
130 | 14,4
14,7
14,9 | 33,3
33,8
34,4
34,9
35,5 | 45,9
46,7
47,4
48,2
48,9 | 64,1
65,2
66,3
67,5
68,6 | 73,7
75,6
76,3 | 79,0
80,6
82,0
83,6
85,1 | 85,1
86,7
88,3 | 86,2
87,8
89,5
91,1
92,8 | 87,1
88,8
90,5
92,2
93,9 | 87,2
89,0
90,7
92,4
94,1 | 122
124
126
128
130 | 222
224
226
228
230 | 26,3 | 60,6
61,1
61,7
62,2
62,8 | 84,3
85,1
85,8 | 118,1
119,2
120,2 | 137,4
138,6
139,9 | 156,2
157,7
159,2 | 165,0
166,7
168,3
170,0
171,6 | 172,2
174,0
175,7 | 174,7
176,5
178,2 | 177,5
179,3
181,1 | 222
224
226
228
230 | | 132
134
136
138
140 | 15,6
15,8
16,1 | 36,0
36,6
37,1
37,7
38,2 | 49,7
50,4
51,2
51,9
52,7 | | 80,3
81,7
83,6 | 86,6
88,1
89,6
91,1
92,6 | 93,1
94,7
96,3 | 94.5
96.1
97.8
99.4
101.1 | 97.3
99.0
100.7 | 99,3 | 132
134
136
138
140 | 232
234
236
238
240 | 27,3
27,5
27,7 | 63,8
64,4
64,9 | 88,1
88,8
89,6 | 123,4
124,5
125,5 | 143,6
144,8
146,0 | 163,8
165,3
166,8 | 173,3
175,0
176,6
178,3
179,9 | 180,8
182,6
184,3 | 183,4
185,2
186,9 | 186,5
188,3
190,1 | 232
234
236
238
240 | | 142
144
146
148
150 | 16,8
17,0
17,2
17,5 | 38,7
39,3
39,8
40,4
40,9 | 53,4
54,2
54,9
55,7
56,5 | 74,9
75,9
77,0
78,1
79,1 | 86,9
88,2
89,6 | 94,1
95,6
97,1
98,6
100,1 | 101,2
102,8
104,4 | 106.1 | 105,8
107,5
109,2 | 106,3
108,1
109,8 | 142
144
146
148
150 | 242
244
246
248
250 | 28,4
28,7
28,9
29,1 | 67,7
68,2 | 91,8
92,6
93,3
94,1 | 128,7
129,7
130,8
131,8 | 149,7
150,9
152,1
153,4 | 171,3
172,8
174,4
175,9 | 181,6
183,3
184,9
186,6
188,2
0,833 | 189,5
191,2
192,9 | 192,2
193,9
195,7 | 195,6
197,4
199,2
201,5 | 242
244
246
248
250 | | 152
154
156
158
160 | 17,9
18,2
18,4 | 41,5
42,0
42,6
43,1
43,7 | 57,2
58,0
58,7
59,5
60,2 | 83,3 | 93,5
94,9
96,2 | 161,6
163,1
164,7
166,2
167,7 | 109,3
110,9
112,5 | 112,8
114,5
116,2 | 114,3
116,0
117,7 | 115,1
116,8
118,6 | 152
154
156
158
160 | 300
1
350 | 34,9
0,116
40,8 | 81,9
6,273
95,5 | 112,9
0,376
131,7 | 158,2
0,527 | 184,6
6,613 | 211,8
0,706
247,1 | 229,9
0,837 | 238,0
0,874 | 241,4
0,887 | 246,7
0,923 | 360
1
350 | | 162
164
166
168
170 | 19,1
19,3 | 44,2
44,7
45,3
45,8
46,4 | 61,0
61,7
62,5
63,2
64,0 | 86,5
87,5
88,6 | 100,1
101,4
102,8 | 109,2
110,7
112,2
113,7
115,3 | 117,4
119,0
120,7 | 121,2
122,9
124,6 | 122,9
124,6
126,3 | 123,9
125,6
127,4 | 162
164
166
168
170 | 400
1
500 | 46,6
0,116
58,2 | 109,1
0,273 | 150,5
0,376
188,2 | 211,0
0,527
263,7 | 245,4
0,613
306,7 | 282,4
0,766
353,0 | 313,7
0,808
394,5 | 325,6
0,884
414,1 | 0,892
330,4
0,898
420,2 | 339,3
0,937
433.0 | 400
1
500 | | 172
174
176
178
180 | 20,5 | 46,9
47,5
48,0
48,6
49,1 | 64,7
65,5
66,2
67,0
67,7 | 91,8
92,8
93,9 | 106,7
107,9
109,1 | 116,8
118,3
119,8
121,3
122,8 | 125,6
127,2
128,8 | 129,6
131,3
133,6 | 131,4
133,2
134,9 | 132,7
134,5
136,3 | 172
174
176
178
180 | 1
600
1
700 | 69,9
6,116
81,5 | 0,273
163,7
0,273
191,0 | 0,376
225,8
0,376
263,5 | 316,4
3,527
369,2 | 0,613
368,1
0,613
429,4 | 0,706
423,6
0,706
494,2 | 473,4
6,789
552,3 | 503,6
0,892
592,2 | 0,904
 510,6
 0,909 | 0,945
527,5
0,950
622,5 | 1
600
1
700 | | 182
184
186
188
190 | 21,4
21,7
21,9 | 49,7
50,2
50,7
51,3
51,8 | 68,5
69,3
70,0
70,8
71,5 | 97,0
98,1
99,1 | 112,8
114,6
115,3 | 124,4
125,9
127,4
128,9
130,4 | 133,7
135,4
137,0 | 138,1
139,8
141,5 | 140,1
141,8
143,5 | 141,6
143,4
145,2 | 182
184
186
188
190 | 800
1
900 | 93,2
0,116
104,8 | 218,3
0,273
245,6 | 301,1
0,376
338,7 | 421,9
0,527
474,6 | 490,8
0,613
552,1 | 564.8
5.766
635,4 | 631,2
6,789
716,1 | 680,2
0,850
765,3 | 0,912
692,7
0,915 | 718,0
0,958
813,9 | 855
1
955 | | 192
194
196
198
200 | 22,6
22,8
23,1 | 52,4
52,9
53,5
54,0
54,6 | 73,8
73,8
74,5 | 102,3
103,4
104,4 | 119,6
120,2
121.4 | 131,9
133,5
135,0
136,5
138,0 | 141,9 | 146,6
148,3
150.0 | 148,7
150,4 | 150,5
152,3 | 192
194
196
198
200 | 1
1100
1 | 6,116 | 300,1 | 0,376
414,0 | 0,527
580,1 | 674,8 | 0,706
776,6 | 867,9 | 935,3 | 967.6 | 0,963
1886 | 1
1100
1 | A in Erl Z = 2.0 B = 0.2 % Table 6 - 05 B = 0.5 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks $oldsymbol{\mathsf{A}}$ in Erl Z = 2.0 B = 0.5 % | | c
K | 6 | 8 | 15 | 15 | 26 | 30 | 56 | 80 | 116 | k=n | n | |-----------------|----------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|----|-----|--------------------------------------|---| | | 1 2 3 4 5 6 7 8 9 10 | 0,10
0,39
0,65 | 0,79
0,93
1,3 | 1,8 | | | | | | | 0,30
0,79
1,3
1,8 | 1
2
3
4
5
6
7
8
9 | | | 11
12
13
14
15 | 0,90
1,1
1,4
1,6
1,9 | 1,6
2,0
2,3
2,7
3,1 | 2,0
2,5
2,9
3,3
3,7 | 4,7 | | | | | | 2,3
2,9
3,5
4,1
4,7 | 11
12
13
14
15 | | | 16
17
18
19
20 | 2,1
2,4
2,7
2,9
3,2 | 3,5
3,9
4,3
4,6
5,0 | 4,2
4,6
5,1
5,5
6,0 | 5,1
5,6
6,1
6,7
7,2 | 7.9 | | | | | 5,3
5,9
6,6
7,2
7,9 | 16
17
18
19
20 | | | 21
22
23
24
25 | 3,4
3,6
3,9
4,1
4,3 | 5,4
5,8
6,2
6,6
7,0 | 6,5
7,0
7,4
7,9
8,4 | 7,7
8,3
8,9
9,4
10,0 | 8,4
9,6
9,6
10,2
10,8 | | | | | 8,6
9,2
9,9
10,6
11,3 | 21
22
23
24
25 | | | 26
27
28
29
30 | 4,6
4,8
5,1
5,3
5,6 | 7,4
7,8
8,2
8,6
8,9 | 8,9
9,4
9,8
10,3
10,8 | 10,6
11,1
11,7
12,3
12,9 | 11,4
12,6
12,6
13,3
13,9 | 14,9 | en
Tenens
Tenens
Tenens
Tenens
Tenens | | | 12,0
12,8
13,5
14,2
14,9 | 26
27
28
29
30 | | | 31
32
33
34
35 | 5,8
6,1
6,3
6,5
6,8 | 9,3
9,8
10,1
10,5
10,9 | 11,3
11,8
12,3
12,8
13,2 | 13,5
14,1
14,7
15,3
15,9 | 14,5
15,1
15,8
16,4
17,1 | 15,6
16,2
16,9
17,6
18,3 | | | | 15,7
16,4
17,2
17,9
18,7 | 31
32
33
34
35 | | | 36
37
38
39
40 | 7,0
7,2
7,4
7,6
7,8 | 11,3
11,7
12,0
12,5
12,9 | 13,7
14,2
14,7
15,2
15,7 | 16,5
17,1
17,7
18,3
18,9 | 17,7
18,4
19,6
19,7
26,3 | 19,0
19,7
20,4
21,1
21,7 | | | | 19,4
20,2
21,0
21,7
22,5 | 36
37
38
39
40 | | | 41
42
43
44
45 | 7,9
8,1
8,3
8,5
8,7 | 13,2
13,6
14,1
14,4
14,8 | 16,2
16,7
17,2
17,7
18,1 | 19.5
20.1
20.8
21.4
22.0 | 21,5
21,7
22,3
23,6
23,7 |
22,5
23,2
23,9
24,6
25,3 | | | | 23,3
24,1
24,8
25,6
26,4 | 41
42
43
44
45 | | Table
6 – 06 | 46
47
48
49
50 | 8,9
9,1
9,3
9,5
9,7 | 15,2
15,5
16,0
16,3
16,7 | 18,6
19,1
19,6
20,1
20,5 | 22,6
23,2
23,8
24,5
25,1 | 24,3
25,6
25,7
26,3
27,6 | 26,0
26,7
27,4
28,1
28,9 | 30,4 | | | 27,2
28,0
28,8
29,6
30,4 | 46
47
48
49
50 | | | | | | | | | | | | <u> </u> | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|--------------------------------------|----------------------------| | L K | 6 | 8 | 15 | 15 | 25 | 35 | 56 | 80 | 110 k=n | n | | 50 | 9,7 | 16,7 | 20,5 | 25,1 | 27,6 | 28,9 | 30,4 | | 36,4 | 50 | | 51 | 9,9 | 17,1 | 21,0 | 25,7 | 27,7 | 29,6 | 31,2 | | 31,2 | 51 | | 52 | 10,1 | 17,4 | 21,5 | 26,3 | 28,4 | 30,3 | 32,6 | | 32,0 | 52 | | 53 | 10,3 | 17,8 | 22,0 | 26,9 | 29,6 | 31,0 | 32,7 | | 32,8 | 53 | | 54 | 10,5 | 18,2 | 22,5 | 27,6 | 29,7 | 31,8 | 33,5 | | 33,6 | 54 | | 55 | 10,7 | 18,6 | 23,0 | 28,2 | 36,4 | 32,5 | 34,2 | | 34,5 | 55 | | 56 | 10,9 | 19,0 | 23,5 | 28,8 | 31,1 | 33,2 | 35,0 | | 35,3 | 56 | | 57 | 11,0 | 19,3 | 24,0 | 29,4 | 31,8 | 33,9 | 35,8 | | 36,1 | 57 | | 58 | 11,2 | 19,7 | 24,4 | 30,0 | 32,5 | 34,7 | 36,5 | | 36,9 | 58 | | 59 | 11,4 | 20,1 | 24,9 | 30,7 | 33,1 | 35,4 | 37,3 | | 37,7 | 59 | | 60 | 11,6 | 20,5 | 25,4 | 31,3 | 33,8 | 36,1 | 38,1 | | 38,5 | 60 | | 61 | 11,8 | 20,8 | 25,9 | 32,6 | 34,5 | 36,9 | 38,9 | | 39,4 | 61 | | 62 | 12,0 | 21,2 | 26,4 | 32,6 | 35,2 | 37,6 | 39,6 | | 40,2 | 62 | | 63 | 12,2 | 21,5 | 26,9 | 33,2 | 35,9 | 38,3 | 40,4 | | 41,0 | 63 | | 64 | 12,4 | 21,9 | 27,4 | 33,8 | 36,6 | 39,1 | 41,2 | | 41,9 | 64 | | 65 | 12,6 | 22,2 | 27,8 | 34,5 | 37,3 | 39,8 | 42,0 | | 42,7 | 65 | | 66 | 12,8 | 22,5 | 28,3 | 35,1 | 38,0 | 40,6 | 42,7 | | 43,5 | 66 | | 67 | 13,0 | 22,9 | 28,8 | 35,7 | 38,7 | 41,3 | 43,5 | | 44,4 | 67 | | 68 | 13,2 | 23,2 | 29,3 | 36,3 | 39,4 | 42,1 | 44,3 | | 45,2 | 68 | | 69 | 13,4 | 23,6 | 29,7 | 37,0 | 40,1 | 42,8 | 45,1 | | 46,0 | 69 | | 70 | 13,6 | 23,9 | 30,2 | 37,6 | 40,7 | 43,5 | 45,9 | | 46,9 | 70 | | 71
72
73
74
75 | 13,8
14,0
14,1
14,3
14,5 | 24,2
24,6
24,9
25,3
25,6 | 30,7
31,1
31,6
32,1
32,6 | 38,2
38,8
39,5
40,1
40,7 | 41,4
42, <u>1</u>
42,8
43,5 | 44,3
45,0
45,8
46,5
47,3 | 46,6
47,4
48,2
49,0
49,8 | | 47,7
48,6
49,4
50,2
51,1 | 71
72
73
74
75 | | 76 | 14,7 | 25,9 | 33,1 | 41,3 | 44,9 | 48,0 | 50,6 | 55,3 | 51,9 | 76 | | 77 | 14,9 | 26,3 | 33,5 | 42,0 | 45,6 | 48,8 | 51,4 | | 52,8 | 77 | | 78 | 15,1 | 26,6 | 34,0 | 42,6 | 46,3 | 49,5 | 52,2 | | 53,6 | 78 | | 79 | 15,3 | 27,0 | 34,4 | 43,2 | 47,6 | 50,3 | 53,0 | | 54,5 | 79 | | 80 | 15,5 | 27,3 | 34,9 | 43,9 | 47,7 | 51,1 | 53,7 | | 55,3 | 80 | | 81 | 15,7 | 27,7 | 35,4 | 44,5 | 48,4 | 51,8 | 54,5 | 56,2 | 56,2 | 81 | | 82 | 15,9 | 28,0 | 35,8 | 45,1 | 49,1 | 52,6 | 55,3 | 57,1 | 57,0 | 82 | | 83 | 16,1 | 28,3 | 36,3 | 45,8 | 49,8 | 53,3 | 56,1 | 57,9 | 57,9 | 83 | | 84 | 16,3 | 28,7 | 36,7 | 46,4 | 50,5 | 54,1 | 56,9 | 58,7 | 58,8 | 84 | | 85 | 16,5 | 29,0 | 37,2 | 47,0 | 51,2 | 54,8 | 57,7 | 59,5 | 59,6 | 85 | | 86 | 16,7 | 29,4 | 37,6 | 47,6 | 51,9 | 55,6 | 58,5 | 60,4 | 60,5 | 86 | | 87 | 16,9 | 29,7 | 38,0 | 48,3 | 52,6 | 56,4 | 59,3 | 61,2 | 61,3 | 87 | | 88 | 17,1 | 30,0 | 38,5 | 48,9 | 53,3 | 57,1 | 60,1 | 62,0 | 62,2 | 88 | | 89 | 17,2 | 30,4 | 38,9 | 49,5 | 54,0 | 57,9 | 60,9 | 62,9 | 63,1 | 89 | | 90 | 17,4 | 30,7 | 39,4 | 55,1 | 54,7 | 58,6 | 61,7 | 63,7 | 63,9 | 90 | | 91 | 17,6 | 31,1 | 39,8 | 50,8 | 55,4 | 59,4 | 62,5 | 64,5 | 64,8 | 91 | | 92 | 17,8 | 31,4 | 40,2 | 51,4 | 56,1 | 60,2 | 63,3 | 65,4 | 65,6 | 92 | | 93 | 18,0 | 31,8 | 40,7 | 52,0 | 56,8 | 60,9 | 64,1 | 66,2 | 66,5 | 93 | | 94 | 18,2 | 32,1 | 41,1 | 52,6 | 57,5 | 61,7 | 64,9 | 67,0 | 67,4 | 94 | | 95 | 18,4 | 32,4 | 41,6 | 53,2 | 58,2 | 62,4 | 65,7 | 67,9 | 68,2 | 95 | | 96 | 18,6 | 32,8 | 42,0 | 53,9 | 58,9 | 63,2 | 66,5 | 68,7 | 69,1 | 96 | | 97 | 18,8 | 33,1 | 42,5 | 54,5 | 59,6 | 64,0 | 67,3 | 69,5 | 70,0 | 97 | | 98 | 19,5 | 33,5 | 42,8 | 55,1 | 60,4 | 64,8 | 68,1 | 70.4 | 70,8 | 98 | | 99 | 19,2 | 33,8 | 43,3 | 55,7 | 61,1 | 65,5 | 68,9 | 71.2 | 71,7 | 99 | | 100 | 19,4 | 34,1 | 43,8 | 56,4 | 61,7 | 66,3 | 69,7 | 72.0 | 72,6 | 100 | B = 0.5 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility | 110 21,3 37.6 48.1 62.6 68.8 74.0 77.8 88.4 81.4 81.4 110 210 40.7 73. 112 21,7 38.2 49.0 63.8 76.2 75.5 79.5 82.1 83.1 83.1 112 212 41.1 72. 114 22.1 38.9 49.9 65.1 71.6 77.1 81.1 83.8 84.8 84.9 114 214 41.5 73. 116 22.5 39.6 50.8 66.3 73.0 78.6 82.7 85.5 86.5 86.6 116 216 41.9 73. 118 22.9 40.3 51.6 67.7 74.4 80.2 84.4 87.2 88.3 88.4 118 218 42.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2 | | | | | | | | | | | | | | | |--|---------|----------|------|---------|-----------------|---------------------|----------|-------|---------|-------|---------|---|------------|----------| | 102 | n k | 6 | 8 | 16 | 15 | 26 | 30 | 56 | 86 | 116 | k=n | n | n k | 6 | | 104 | 100 | 19,4 | 34,1 | 43,8 | 56,4 | 61.7 | 66,3 | 69,7 | 72,6 | | 72,6 | 100 | 256 | 38,8 68 | | 104 | 162 | 19.8 | 34.8 | 44.6 | 57.6 | 63.1 | 67.8 | 71.4 | 73.7 | | 74.3 | 102 | 262 | 39.1 69 | | 106 | | | | | | | | | | | | | | | | 108 | | | | | | | 70.9 | | | | | | | | | 110 21,3 37,6 48,1 62,6 68,8 74,0 77,8 80,4 81,4 81,4 110 210 40,7 73 112 21,7 38,2 49,0 63,8 76,2 75,5 79,5 82,1 83,1 112 212 41,1 72 114 22,1 38,9 49,9 65,1 71,6 77,1 81,1 83,8 84,8 84,9 11,4 214 41,5 73 116 22,5 39,6 55,8 66,3 73,0 75,8 82,7 85,5 86,5 86,6 116 216 41,9 73 120 23,8 41,0 32,5 68,7 75,8 81,7 86,0 88,9 90,0 90,2 128 122 23,6 41,7 53,4 70,0 77,2 83,3 87,6 90,0 90,2 128 124 24,0 42,3 54,3 71,2 78,6 84,8 89,3 92,2 93,5 93,7 124 224 43,4 7,2 81,3 81,2 81,2 81,2 81,2 81,2 81,2 81,2 81,2 | | | | | | | | | | | | | | | | 114 | 110 | 21,3 | 37,6 | | | | | | | 81,4 | 81,4 | 110 | | | | 114 | 112 | 21.7 | 38,2 | 49,6 | 63.8 | 70.2 | 75.5 | 79,5 | 82,1 | 83,1 | 83,1 | 112 | 212 | 41.1 72 | | 116 | | | 38,9 | 49,9 | | | 77,1 | 81,1 | 83,8 | 84,8 | 84,9 | 114 | | | | 120 23,3 41,0 52,5 68,7 75,8 81,7 86,0 88,9 90,0 90,2 120 220 42,6 75 | 116 | | 39,6 | 50,8 | | | | | 85,5 | 86,5 | 86,6 | | | | | 122 23,6 41,7 53,4 70,0 77,2 83,3 87,6 90,6 91,7 92,0 122 222 43,0 77 124 24,0 42,3 54,3 71,2 78,6 84,8 89,3 92,2 93,5 93,7 124 224 43,4 77 126 24,4 43,6 55,1 72,4 80,6 86,4 90,9 93,9 95,2 95,5 126 226 43,8 77 128 24,8 43,7 56,0 73,6 81,4 87,9 92,6 95,6 96,9 97,3 128 228 44,2 77 130 25,2 44,4 56,9 74,9 82,9 89,5 94,2 97,3 98,7 99,1 130 230 44,6 77 132 25,6 45,1 57,8 76,6 84,3 91,0 95,9 99,0 100,4 100,9 132 232 45,0 7 134 26,0 45,7 58,6 77,2 85,6 92,6 97,5 100,7 102,1 102,6 134 234 45,3 7 136 26,4 46,4 59,5 78,3 87,1 94,2 99,1 20,2 41,3 10,2 6 138 26,7 47,1 60,4 79,4 88,5 95,7 100,8 104,1 105,6 106,2 138 238 46,1 8 140 27,1 47,8 61,3 80,8 99,9 77,3 102,7 107,4 108,0 140 240 46,5 8 142 27,5 48,5 62,1 81,7 91,2 98,8 104,1 107,6 109,1 109,8 142 27,5 48,5 62,1 81,7 91,2 98,8 104,1 107,6 109,1 109,8 142 27,5 48,5 62,1 81,7 91,2 98,8 104,1 107,6 109,1 109,8 142 27,9 49,2 63,0 82,9 92,7 100,4 105,8 109,3 110,8 111,6 144 244 47,3 8 146 28,3 49,8 63,9 84,0 94,1 102,0 107,4 111,0 112,6 113,4 146 246 47,7 8 159 29,5 51,9 66,5 88,3 96,9 105,1 110,7 114,4 116,1 117,0 150 250 48,4 8 150 29,5 51,9 66,5 88,5 95,5 105,5 109,1 112,7 114,3 115,2 148 248 48,1 8 150 29,5 51,9 66,5 87,5 98,3 106,7 112,4 116,1 117,8 118,6 152 160 31,0 54,6 70,0 92,1 103,9 112,9 112,7 114,3 115,2 148 248 48,1
8 150 29,5 51,3 68,3 88,8 101,1 109,8 115,7 117,5 121,3 122,4 156 160 32,2 56,7 72,6 95,5 108,1 117,6 122,4 126,1 128,1 133,5 166 160 32,2 56,7 72,6 95,5 108,1 117,6 122,4 126,1 135,1 131,5 166 170 34,5 50,7 74,6 70,9 93,2 105,3 112,9 113,0 17,4 121,3 135,1 166 170 34,5 50,7 74,6 70,9 93,2 105,3 112,9 113,0 17,4 121,3 135,1 106,1 106,1 10,1 106,1 106,1 106,1 106,1 106,1 106,1 107,1 114,4 116,1 117,6 118,6 | | 22,9 | | | | | | | | | | | | | | 124 | 120 | 23,3 | 41,0 | 52,5 | 68,7 | 75,8 | 81,7 | 86,0 | 88,9 | 90,0 | 90,2 | 120 | 220 | 42,6 75 | | 126 | | | | | | | | | | | | | 222 | | | 128 | | | | | | | | | | | | | | | | 130 | | | | | | | | | | | | | | | | 132 | | | | | | | | | | | | | | | | 134 | 130 | 25,2 | 44,4 | 50,9 | 74,9 | 82,9 | 89,5 | 94,2 | 97.3 | 98,7 | 99,1 | 130 | 236 | 44,6 /8 | | 134 | 132 | 25,6 | 45,1 | 57,8 | 76,6 | 84,3 | 91,0 | 95,9 | 99.0 | 100,4 | 100,9 | 132 | 232 | 45,6 7 | | 136 | 134 | 26,0 | 45,7 | 58,6 | 77,2 | 85,6 | 92,6 | 97,5 | | | | 134 | 234 | 45,3 7 | | 140 | 136 | | 46,4 | 59,5 | 78,3 | 87.1 | 94,2 | 99,2 | 102,4 | 103,9 | 104,4 | 136 | | 45,7 80 | | 142 27,5 48,5 62,1 81,7 91,2 98,8 104,1 107,6 109,1 109,8 142 242 46,9 8 144 27,9 49,2 63,0 82,9 92,7 100,4 105,8 109,3 110,8 111,6 144 244 47,3 8 146 28,7 50,5 64,8 85,2 95,5 103,5 109,1 112,7 114,3 115,2 148 248 48,1 8 150 29,1 51,2 65,6 86,3 96,9 105,1 110,7 114,4 116,1 117,0 150 250 48,4 8 81,4 8 150 29,1 51,2 65,6 86,3 96,9 105,1 110,7 114,4 116,1 117,0 150 250 48,4 8 16,1 8 16 29,5 5 103,3 10,8 111,0 112,7 114,3 115,2 148 248 48,1 8 152 29,5 51,9 66,5 87,5 98,3 106,7 112,7 114,4 116,1 117,0 150 250 48,4 8 16,1 8 16 154 29,8 52,6 67,4 88,6 99,7 108,2 114,1 117,8 118,8 152 11,1 11,1 11,1 11,1 11,1 11,1 11,1 | 138 | 26,7 | | 60,4 | 79,4 | 88,5 | 95,7 | 100,8 | 104,1 | 105,6 | 106,2 | 138 | 238 | | | 144 | 146 | 27,1 | 47,8 | 61,3 | 80,6 | 89,9 | 97,3 | 102,5 | 105,9 | 187,4 | 108,0 | 140 | 240 | 46,5 8: | | 146 | | | | | 81.7 | 91,2 | 98,8 | 104,1 | 107,6 | 109,1 | 109,8 | | 242 | | | 148 | | | | | | | | | | | | | | | | 150 | | | | | | | | | | | | | | | | 152 29,5 51,9 66,5 87,5 98.3 106,7 112,4 116,1 117,8 118,8 152 300 58,1 10 156 30,2 53,3 68,3 89,8 101,1 109,8 115,7 119,5 121,3 122,4 156 1 0,194 0,198 0,1 | | | | | | | | | | | | | | | | 152 29,5 51,9 66,5 87,5 98,3 106,7 112,4 116,1 117,8 118,8 152 154 29,8 52,6 67,4 88,6 99,7 108,2 114,1 117,8 119,6 120,6 154 300 58,1 10 156 30,2 53,3 68,3 89,8 101,1 109,8 115,7 119,5 121,3 122,4 156 1 0,194 0,1 158 30,6 53,9 69,1 90,9 102,5 111,3 117,4 121,3 123,1 124,2 158 160 31,0 54,6 70,0 92,1 103,9 112,9 119,0 123,0 124,8 126,1 160 350 67,8 11 164 31,8 56,0 71,8 94,4 106,7 116,0 122,4 126,4 128,3 129,7 164 400 77,5 13 166 32,2 56,7 72,6 95,5 108,1 117,6 124,1 128,1 130,1 131,5 166 1 0,194 0, | 150 | 29,1 | 51,2 | 65,6 | 86,3 | 96,9 | 100,1 | 110,/ | 114,4 | 110,1 | 11/,0 | 150 | | | | 154 | 150 | 20 R | 51.0 | 66.5 | 07.5 | 08 7 | 186 7 | 110 4 | 116 1 | 447 8 | 418 B | 150 | 1 | 0,194 0, | | 156 | | | | | 600 A. A. A. A. | | | | | | | | ZAA | 58 1 18 | | 158 | | | | | | | | | | | | | | | | 160 31,0 54,6 70,0 92,1 103,9 112,9 119,0 123,0 124,8 126,1 160 350 67,8 11 162 31,4 55,3 70,9 93,2 105,3 114,5 120,7 124,7 126,6 127,9 162 164 31,8 56,0 71,8 94,4 106,7 116,0 122,4 126,4 128,3 129,7 164 400 77,5 13 166 32,2 56,7 72,6 95,5 108,1 117,6 124,1 128,1 130,1 131,5 166 1 0,194 0, 170 32,9 58,0 74,4 97,8 110,9 120,8 127,4 131,6 133,3 168 170 32,9 58,0 74,4 97,8 110,9 120,8 127,4 131,6 133,6 135,1 170 500 96,9 17 172 33,3 58,7 75,3 99,0 112,3 122,3 129,1 133,3 135,3 137,0 172 174 33,7 59,4 76,1 100,1 113,6 123,9 130,7 135,0 137,1 138,8 174 600 116,3 20 176 34,1 60,1 77,0 101,3 114,9 125,5 132,4 136,8 138,8 140,6 176 178 34,5 60,8 77,9 122,4 116,2 127,0 134,1 138,5 140,6 142,4 178 180 34,9 61,5 78,8 103,6 117,5 128,6 135,8 140,6 142,4 178 180 35,7 62,8 80,5 105,9 120,1 131,7 135,8 140,2 142,4 144,2 180 700 135,7 23 182 35,3 62,1 79,6 104,8 118,8 136,2 137,4 142,0 144,1 146,1 182 184 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 188 36,4 64,2 82,3 108,2 122,8 134,9 142,5 147,1 149,4 151,6 188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 30 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 31 196 38,4 67,6 86,6 114,0 129,3 144,2 149,2 154,1 156,4 158,9 196 10,194 0 | | | | | | | | | | | | | | 0,1,1,0, | | 162 31,4 55,3 70,9 93,2 105,3 114,5 120,7 124,7 126,6 127,9 162 164 31,8 56,0 71,8 94,4 106,7 116,0 122,4 126,4 128,3 129,7 164 405 77,5 13 166 32,2 56,7 72,6 95,5 108,1 117,6 128,1 130,1 131,5 166 1 0,194 0,18 32,6 57,4 73,5 96,7 109,5 119,2 125,7 129,9 131,8 133,3 168 170 32,9 58,0 74,4 97,8 110,9 120,8 127,4 131,6 133,6 135,1 170 500 96,9 17 172 33,3 58,7 75,3 99,6 112,3 122,3 122,3 129,1 133,3 135,3 137,0 172 174 33,7 59,4 76,1 100,1 113,6 123,9 130,7 135,0 137,1 138,8 174 600 116,3 20 176 34,1 60,1 77,0 101,3 114,9 125,5 132,4 136,8 138,8 140,6 176 1 0,194 0,194 0,195 178 34,5 60,8 77,9 102,4 116,2 127,0 134,1 138,5 140,6 142,4 178 180 34,9 61,5 78,8 103,6 117,5 128,6 135,8 140,2 142,4 144,2 180 700 135,7 23 188 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 188 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 188 36,4 64,2 82,3 108,2 122,8 134,9 142,5 147,1 149,4 151,6 188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 36 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 37 198 38,4 67,6 86,6 114,0 129,3 144,7 150,9 155,8 158,2 100,7 198 | | | | | | | | | | | | | 358 | 67.8 11 | | 164 | <u></u> | - | | | | <u> Bararananan</u> | <u> </u> | | | | | | | 0,194 0, | | 166 32,2 56,7 72,6 95,5 108,1 117,6 124,1 128,1 130,1 131,5 166 1 0,194 | | | | | | | | | | | | 56 G 55 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 168 32,6 57,4 73,5 96,7 109,5 119,2 125,7 129,9 131,8 133,3 168 170 32,9 58,0 74,4 97,8 110,9 120,8 127,4 131,6 133,6 135,1 170 500 96,9 17 172 33,3 58,7 75,3 99,0 112,3 122,3 129,1 133,3 135,3 137,0 172 174 33,7 59,4 76,1 100,1 113,6 123,9 130,7 135,0 137,1 138,8
174 600 116,3 20 176 34,1 60,1 77,0 101,3 114,9 125,5 132,4 136,8 138,8 140,6 176 1 0,194 0,198 180 34,9 61,5 78,8 163,6 117,5 128,6 135,8 140,2 142,4 144,2 180 700 135,7 23 182 35,3 62,1 79,6 104,8 118,8 130,2 137,4 142,0 144,1 146,1 182 1 0,194 0,19 | | | | | | | | | | | | | | | | 170 | | | | | | | | | | | | | 1 | 0,194 0, | | 172 33,3 58,7 75,3 99,0 112,3 122,3 129,1 133,3 135,3 137,0 172 174 33,7 59,4 76,1 100,1 113,6 123,9 130,7 135,0 137,1 138,8 174 600 116,3 20 176 34,1 60,1 77,0 101,3 114,9 125,5 132,4 136,8 138,8 140,6 176 1 0,194 0,198 180 34,9 61,5 78,8 103,6 117,5 128,6 135,8 140,2 142,4 144,2 180 700 135,7 23 180,7 135,7 23 180,7 135,7 23 180,7 135,7 23 180,7 135,7 23 180,7 135,7 23 180,7 135, | | | | | | | | | | | | | CAA | 06 0 17 | | 172 33,3 58,7 75,3 99,0 112,3 122,3 129,1 133,3 135,3 137,0 172 174 33,7 59,4 76,1 106,1 113,6 123,9 130,7 135,0 137,1 138,8 174 600 116,3 20 176 34,1 60,1 77,0 101,3 114,9 125,5 132,4 136,8 138,8 140,6 176 1 0,194 0,188 180 34,5 60,8 77,9 102,4 116,2 127,0 134,1 138,5 140,6 142,4 178 180 700 135,7 23 180 34,9 61,5 78,8 163,6 117,5 128,6 135,8 140,2 142,4 144,2 180 700 135,7 23 182 35,3 62,1 79,6 104,8 118,8 130,2 137,4 142,0 144,1 146,1 182 1 0,194 0,194 0,194 0,195 1 184 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 188 36,0 63,5 81,4 107,1 121,4 133,3 140,8 145,4 147,6 149,7 186 1 0,194 0,194 0,195 1 188 36,4 64,2 82,3 108,2 122,8 134,9 142,5 147,1 149,4 151,6 188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 36 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 3 198 38,4 67,6 86,6 114,0 129,3 144,2 149,2 154,1 156,4 158,9 196 1 0,194 0 | 170 | 1 06,7 | 20,0 | , , , , | 97,0 | 110)9 | 120,6 | 12/17 | 10710 | 100,0 | , 100,1 | 1,0 | | | | 174 | 172 | 33.3 | 58.7 | 75.3 | 99.6 | 112.3 | 122.3 | 129.1 | 133.3 | 135.3 | 137.6 | 172 | • | 0,197 0, | | 176 | | | | | | | | | | | | | 688 | 116.3 20 | | 178 34,5 60,8 77,9 102,4 116,2 127,0 134,1 138,5 140,6 142,4 178 180 760 135,7 23 182 35,3 62,1 79,6 104,8 118,8 130,2 137,4 142,0 144,1 146,1 182 1 0,194 0, 186 36,0 63,5 81,4 105,9 120,1 131,7 139,1 143,7 147,9 184 800 155,0 27 188 36,0 63,5 81,4 107,1 121,4 133,3 146,8 145,4 147,6 149,7 184 800 155,0 27 188 36,0 64,2 82,3 108,2 122,8 134,9 142,5 147,1 149,7 188 10,194 0, | | | | | | | | | | | | | | | | 180 34,9 61,5 78,8 103,6 117,5 128,6 135,8 140,2 142,4 144,2 180 700 135,7 23 182 35,3 62,1 79,6 104,8 118,8 136,2 137,4 142,0 144,1 146,1 182 184 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 186 36,0 63,5 81,4 107,1 121,4 133,3 146,8 147,6 149,7 186 1 0,194 0 190 36,4 64,2 82,3 108,2 122,8 134,9 142,5 147,6 149,4 151,6 188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 30 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 156,9 156,4 158,9< | | | | 77,9 | 102.4 | 116,2 | 127.0 | 134,1 | 138,5 | 140.6 | 142.4 | | | | | 182 35,3 62,1 79,6 104,8 118,8 130,2 137,4 142,0 144,1 146,1 182 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 186 36,0 63,5 81,4 107,1 121,4 133,3 140,8 145,4 147,6 149,7 186 1 0,194 0,188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 30 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 3 196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0,198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | 185 | 34,9 | 61,5 | | | | | | | | | 180 | 700 | 135,7 23 | | 184 35,7 62,8 80,5 105,9 120,1 131,7 139,1 143,7 145,9 147,9 184 800 155,0 27 186 36,0 63,5 81,4 107,1 121,4 133,3 140,8 145,4 147,6 149,7 186 1 0,194 0,188 36,4 64,2 82,3 108,2 122,8 134,9 142,5 147,1 149,4 151,6 188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 30 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 31 196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0,198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | | | | | | | | | | | | | 1 | 0,194 0, | | 186 | | | | | | | | | | | | | | | | 188 36,4 64,2 82,3 108,2 122,8 134,9 142,5 147,1 149,4 151,6 188 190 36,8 64,9 83,1 109,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 30 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 30 196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 00 198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | | | | | | | | | | | | | | | | 190 36,8 64,9 83,1 100,4 124,1 136,5 144,2 148,9 151,2 153,4 190 900 174,4 30 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 37 196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0 198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | | | | | 10/,1 | 121,4 | 133,3 | 140,8 | 142,4 | 14/,6 | 149,7 | | 1 | 0.194 0. | | 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 37,1 196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0,194 0,198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | | | | | | | | | | | | | 064 | 174 4 76 | | 192 37,2 65,6 84,0 110,5 125,4 138,0 145,8 150,6 152,9 155,2 192 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 37,0 63,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0 198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | 170 | 30,0 | U717 | 00,1 | 109,4 | 14411 | 100,5 | 144,6 | . 1,017 | 12116 | _ 100,4 | 1,70 | | | | 194 37,6 66,2 84,9 111,7 126,7 139,6 147,5 152,4 154,7 157,1 194 1100 213,2 3
196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0
198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | 192 | 37.2 | 65.6 | 84.8 | 118.5 | 125.4 | 138.6 | 145.8 | 150.4 | 152.0 | 155.2 | 192 | 1 | 0,197 01 | | 196 38,0 66,9 85,8 112,8 128,0 141,2 149,2 154,1 156,4 158,9 196 1 0,194 0 | | | | | | | | | | | | | 1188 | 213.2 37 | | 198 38,4 67,6 86,6 114,0 129,3 142,7 150,9 155,8 158,2 160,7 198 | | | | | | | | | | | | | | 0,194 8 | | 200 38,8 68,3 87,5 115,1 130,6 144,3 152,6 157,6 160,0 162,6 200 | 198 | 38,4 | | 86,6 | 114,0 | 129,3
| 142,7 | 150,9 | 155.8 | 158,2 | 2 160,7 | 198 | | 1 | | | 200 | 38,8 | 68,3 | 87,5 | 115,1 | 130,6 | 144,3 | 152,6 | 157,6 | 160,0 | 162,6 | 200 | | | | k | 6 | 8 | 16 | 15 | 26 | 38 | 50 | 86 | 110 | k=n | n | |--------|--------------|--------------|----------------|-------|----------------|----------------|--|----------------|----------------|----------------|------------| | ie 3 | 8,8 | 68,3 | 87,5 | 115,1 | 130,6 | 144,3 | 152,6 | 157.6 | 160,0 | 162,6 | 200 | | 2 | 39.1 | 69.0 | 88,4 | 116,3 | 131,9 | 145,9 | 154,2 | 159,3 | 161,7 | 164,4 | 202 | | | 39,5 | 69,6 | 89,3 | 117.4 | 133,3 | 147.4 | 155,9 | 161.1 | 163,5 | 166,2 | 204 | | | 39,9 | 70,3 | 90,1 | 118,6 | 134,6 | 149.0 | 157,6 | 162.8 | 165,3 | 168,1 | 266 | | | 10,3
40,7 | 71.0
71.7 | 91,0
91,9 | 119,7 | 135,9
137,2 | 150,6
152,2 | 159,3 | 164,5
166,3 | 168,8 | 169,9
171,8 | 258
216 | | 2 | 41,1 | 72,4 | 92,8 | 122,0 | 138,5 | 153,7 | 1.62,7 | 168,0 | 170,6 | 173,6 | 212 | | | 41,5 | 73,1 | | | | 155,3 | | | | | 214 | | | 41,9 | 73,7 | | | | 156,9 | | | | | 216 | | | 42,2
42,6 | 74,4
75,1 | | | | 158,4
160,0 | | | | | 218
220 | | 22 | 43,6 | 75,8 | 97,1 | 127,8 | 145,6 | 161,6 | 171,1 | 176,8 | 179,4 | 182,8 | 222 | | | 43,4 | 76,5 | 98,0 | 128,9 | 146.3 | 163,2 | 172,8 | 178,5 | 181,2 | 184.7 | 224 | | 6 | 43,8 | 77,2 | 98,9 | 130,1 | 147,6 | 164.7 | 174,5 | 180,3 | 183,0 | 186,5 | 226 | | | 44,2
44,6 | 77,8
78,5 | | | | 166,3
167,9 | | | | | 228
230 | | 32 | 45,6 | 79,2 | 101,5 | 133,5 | 151,5 | 169,4 | 179,6 | 185,5 | 188,3 | 192,1 | 232 | | | 45,3 | | | | | 171.0 | | | | | 234 | | | 45,7 | 80,6 | 103,3 | 135,8 | 154,2 | 172,6 | 183,6 | 189.0 | 191,9 | 195,8 | 236 | | | 46,1
46,5 | 81,3
81,9 | 104,1
105,0 | 137,0 | 155,5
156,8 | 174,2
175,7 | 184,7 | 190.8 | 193,7
195,4 | 197,7 | 238
246 | | 2 | 46,9 | | ببنته فسيشين | - | | 177,3 | 1 - C S S. | | ote Stewart | | 242 | | 4 | 47,3 | 83,3 | 106,8 | 140,4 | 159,4 | 178,9 | 189,8 | 196,0 | 199,0 | 203,2 | 244 | | 6 | 47,7 | 84,0 | 107,6 | 141,6 | 160.7 | 180,4 | 191,5 | 197.8 | 200,8 | 205,1 | 246 | | 8 | 48,1 | | | | | 182,0 | | | | | 248 | | 1 0 | 48,4 | | | | | 183,6
0,748 | | | | | 250
1 | | 00 | -0. | 482.4 | | | | | 277 4 | 245 4 | 240 4 | 255,6 | 300 | | | | | | | | | | | | 0,942 | 1 | | 50 | 67 A | 110.5 | 153 1 | 261 4 | 228.4 | 557 A | 286.2 | 289.8 | 294.1 | 302,7 | 350 | | | | | | | | 0.737 | | | | | 1 | | øo . | 77 5 | 136.4 | 175.6 | 238.3 | 261. | 294.6 | 323.6 | 334.5 | 339.4 | 350,1 | 400 | | | | | | | | | | | | 0,954 | 1 | | 66 | 96.0 | 178.7 | 218.8 | 287 8 | 326. | 5 368,3 | 405.9 | 424 | 430. | 445,5 | 500 | | | | | | | | | | | | 0,961 | 1 | | | 116.3 | 264.8 | 262.5 | 345. | 391. | 9 441 9 | 487.1 | 514. | 4 522. | 541,6 | 600 | | | | | | | | | | | | 0,966 | i | | 00 : | 135.7 | 239.6 | 366-3 | 482. | 457. | 2 515.6 | 568.3 | 684. | 9 614. | 638,2 | 700 | | | | | | | | | | | | 3 0,969 | 1 | | 00 | 155.0 | 273,1 | 350.6 | 460. | 4 522. | 6 589.2 | 649.5 | 694, | 3 706, | 3 735,1 | 800 | | | | | | | | | | | | 5 0,972 | 1 | | 900 | 174.4 | 307.3 | 393. | 518. | 5 587. | 9 662.9 | 738.7 | 781. | 1 798. | 8 832,3 | 900 | | | | | | | | | | | | 7 8,976 | 1 | | A44 88 | | | | | | 5 810. | | | | | 1100 | | L | 0,194 | 0,341 | . 6,43 | 0,57 | 6 8,65 | 3 0,73 | / 0.812 | 2 0,86 | 8 5,89 | 5 6,979 | 1 1 | B = 1.0 % Table 6-08 A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks A in Erl Z = 2.0 B = 1.0 % | r k | 6 | 8 | 10 | 15 | 26 | 30 | 50 | 86 | 115 | k=n | n | |--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------|----|-----|--------------------------------------|----------------------------| | 1
2
3
4
5
6
7
8 | 0,15
0,27
0,58 | 1,2 | ur uur | | | | | | | 0,15
0,68
1,2 | 12345 | | 9
10 | 0,87
1,2 | 1,4 | 2,3 | | | | | | | 1,7 | 9
15 | | 11
12
13
14
15 | 1,5
1,8
2,1
2,4
2,8 | 2,2
2,6
3,0
3,4
3,9 | 2,6
3,1
3,5
4,0
4,5 | 5,4 | | | | | | 2,9
3,5
4,1
4,8
5,4 | 11
12
13
14
15 | | 16
17
18
19
20 | 3,1
3,4
3,7
4,1
4,4 | 4,3
4,7
5,2
5,6
6,1 | 5,0
5,5
6,0
6,5
7,0 | 5,9
6,4
7,0
7,6
8,2 | 8,9 | | | | | 6,1
6,8
7,5
8,2
8,9 | 16
17
18
19
20 | | 21
22
23
24
25 | 4,7
5,0
5,3
5,6
5,9 | 6,5
7,0
7,4
7,8
8,3 | 7,5
8,0
8,6
9,1
9,6 | 8,8
9,4
9,9
10,6
11,2 | 9,4
10,0
10,7
11,3
12,0 | Section 18 | | | | 9,6
10,3
11,1
11,8
12,6 | 21
22
23
24
25 | | 26
27
28
29
30 | 6,2
6,5
6,9
7,2
7,5 | 8,8
9,2
9,7
10,1
10,6 | 10,1
10,7
11,2
11,7 | 11,8
12,4
13,0
13,6
14,2 | 12,6
13,3
13,9
14,6
15,3 | 16,4 | | | | 13,3
14,1
14,8
15,6
16,4 | 26
27
28
29
30 | | 31
32
33
34
35 | 7,8
8,1
8,5
8,7
9,1 | 11,0
11,5
11,9
12,4
12,8 | 12,8
13,3
13,9
14,4
14,9 | 14,9
15,5
16,1
16,8
17,4 | 15,9
16,6
17,3
17,9
18,6 | 17,0
17,7
18,4
19,1 | | | | 17,2
17,9
18,7
19,5
20,3 | 31
32
33
34
35 | | 36
37
38
39
40 | 9,4
9,6
9,9
10,1
10,4 | 13,3
13,7
14,2
14,6
15,1 | 15,5
16,0
16,6
17,1
17,6 | 18,1
18,7
19,4
20,0
20,6 | 19,3
20,0
20,7
21,3
22,0 | 20,6
21,3
22,0
22,8
23,5 | | | | 21,1
21,9
22,7
23,5
24,3 | 36
37
38
39
40 | | 41
42
43
44
45 | 10,6
10,9
11,2
11,4
11,7 | 15,5
16,6
16,5
16,9
17,3 | 18,2
18,7
19,3
19,8
20,3 | 21,3
21,9
22,6
23,2
23,9 | 22,7
23,4
24,1
24,8
25,5 | 24,2
25,0
25,7
26,4
27,2 | | | | 25,1
26,0
26,8
27,6
28,4 | 41
42
43
44
45 | | 46
47
48
49
50 | 11,9
12,2
12,5
12,7
13,0 | 17,8
18,2
18,7
19,1 | 20,9
21,4
22,0
22,5
23,0 | 24,5
25,2
25,9
26,5
27,2 | 26,2
26,9
27,6
28,3
29,6 | 27,9
28,6
29,4
30,1
30,9 | 32,6 | | | 29,3
30,1
30,9
31,8
32,6 | 46
47
48
49
50 | | 3
X | 6 | 8 | 16 | 15 | 26 | 30 | 50 | 80 | 110 k=n | n | |--------|------|------|------|------|------|------|------|------|---------|-----| | 50 | 13,0 | 19.5 | 23,0 | 27,2 | 29,6 | 30,9 | 32,6 | | 32,6 | 50 | | 51 | 13,2 | 20,0 | 23,6 | 27,8 | 29,7 | 31,6 | 33,4 | | 33,4 | 51 | | 52 | 13,5 | 20,4 | 24,1 | 28,5 | 30,4 | 32,4 | 34,2 | | 34,3 | 52 | | 53 | 13,8 | 20,9 | 24,7 | 29,1 | 31,1 | 33,1 | 35,0 | | 35,1 | 53 | | 54 | 14,0 | 21,3 | 25,2 | 29,8 | 31,9 | 33,9 | 35,7 | | 36,0 | 55 | | 55 | 14,3 | 21,7 | 25,8 | 30,5 | 32,6 | 34,6 | 36,5 | | 36,8 | 55 | | 56 | 14,5 | 22,2 | 26,3 | 31,1 | 33,3 | 35,4 | 37,3 | | 37,7 | 56 | | 57 | 14,8 | 22,6 | 26,8 | 31,8 | 34,0 | 36,2 | 38,1 | | 38,5 | 57 | | 58 | 15,1 | 23,0 | 27,4 | 32,4 | 34,7 | 36,9 | 38,9 | | 39,4 | 58 | | 59 | 15,3 | 23,5 | 27,9 | 33,1 | 35,4 | 37,7 | 39,7 | | 40,2 | 59 | | 60 | 15,6 | 23,9 | 28,5 | 33,8 | 36,1 | 38,4 | 40,5 | | 41,1 | 60 | | 61 | 15,8 | 24,3 | 29,0 | 34,5 | 36,9 | 39,2 | 41,3 | | 41,9 | 61 | | 62 | 16,1 | 24,8 | 29,5 | 35,1 | 37,6 | 40,0 | 42,1 | | 42,8 | 62 | | 63 | 16,4 | 25,1 | 30,0 | 35,8 | 38,3 | 40,7 | 42,9 | | 43,7 | 63 | | 64 | 16,6 | 25,6 | 30,6 | 36,5 | 39,5 | 41,5 | 43,7 | | 44,5 | 64 | | 65 | 16,9 | 26,0 | 31,1 | 37,1 | 39,7 | 42,2 | 44,5 | | 45,4 | 65 | | 66 | 17,1 | 26,4 | 31,6 | 37,8 | 40,4 | 43,6 | 45,3 | | 46,2 | 66 | | 67 | 17,4 | 26,8 | 32,2 | 38,4 | 41,2 | 43,8 | 46,1 | | 47,1 | 67 | | 68 | 17,7 | 27,2 | 32,7 | 39,1 | 41,9 | 44,6 | 46,9 | | 48,0 | 68 | | 69 | 17,9 | 27,6 | 33,3 | 39,8 | 42,6 | 45,3 | 47,7 | | 48,8 | 69 | | 70 | 18,2 | 28,0 | 33,8 | 40,4 | 43,3 | 46,1 | 48,5 | | 49,7 | 70 | | 71 | 18,4 | 28,4 | 34,3 | 41,1 | 44,1 | 46,9 | 49,3 | | 50,6 | 71 | | 72 | 18,7 | 28,8 | 34,8 | 41,8 | 44,8 | 47.6 | 50,1 | | 51,5 | 72 | | 73 | 19,0 | 29,2 | 35,4 | 42,4 | 45,5 | 48,4 | 50,9 | | 52,3 | 73 | | 74 | 19,2 | 29,6 | 35,9 | 43,1 | 46,2 | 49,2 | 51,8 | | 53,2 | 74 | | 75 | 19,5 | 30,0 | 36,4 | 43,8 | 47,0 | 50,0 | 52,6 | | 54,1 | 75 | | 76 | 19,7 | 30,4 | 37,0 | 44,4 | 47,7 | 50,8 | 53,4 | 58,5 | 55,0 | 76 | | 77 | 20,0 | 30,8 | 37,4 | 45,1 | 48,4 | 51,5 | 54,2 | | 55,8 | 77 | | 78 | 20,3 | 31,2 | 38,0 | 45,8 | 49,2 | 52,3 | 55,0 | | 56,7 | 78 | | 79 | 20,5 | 31,6 | 38,5 | 46,4 | 49,9 | 53,1 | 55,8 | | 57,6 | 79 | | 80 | 20,8 | 32,0 | 39,0 | 47,1 | 50,6 | 53,9 | 56,6 | | 58,5 | 80 | | 81 | 21,0 | 32,4 | 39,6 | 47,7 | 51,3 | 54,6 | 57,4 | 59,4 | 59,4 | 81 | | 82 | 21,3 | 32,8 | 40,0 | 48,4 | 52,1 | 55,4 | 58,3 | 60,2 | 60,3 | 82 | | 83 | 21,6 | 33,2 | 40,5 | 49,1 | 52,8 | 56,2 | 59,1 | 61,1 | 61,1 | 83 | | 84 | 21,8 | 33,6 | 41,1 | 49,8 | 53,5 | 57,0 | 59,9 | 61,9 | 62,0 | 84 | | 85 | 22,1 | 34,0 | 41,6 | 50,4 | 54,3 | 57,8 | 60,7 | 62,8 | 62,9 | 85 | | 86 | 22,3 | 34,4 | 42,1 | 51,1 | 55,0 | 58,6 | 61,5 | 63,6 | 63,8 | 86 | | 87 | 22,6 | 34,8 | 42,5 | 51,8 | 55,7 | 59,3 | 62,4 | 64,5 | 64,7 | 87 | | 88 | 22,9 | 35,2 | 43,0 | 52,4 | 56,5 | 60,1 | 63,2 | 65,3 | 65,6 | 88 | | 89 | 23,1 | 35,6 | 43,5 | 53,1 | 57,2 | 60,9 | 64,0 | 66,2 | 66,5 | 89 | | 90 | 23,4 | 36,6 | 44,0 | 53,8 | 57,9 | 61,7 | 64,8 | 67,1 | 67,4 | 90 | | 91 | 23,6 | 36,4 | 44,5 | 54,4 | 58,7 | 62,5 | 65,7 | 67,9 | 68,3 | 91 | | 92 | 23,9 | 36,8 | 44,9 | 55,1 | 59,4 | 63,3 | 66,5 | 68,8 | 69,1 | 92 | | 93 | 24,2 | 37,2 | 45,4 | 55,8 | 60,1 | 64,0 | 67,3 | 69,6 | 70,0 | 93 | | 94 | 24,4 | 37,6 | 45,9 | 56,4 | 60,9 | 64,8 | 68,1 | 71,5 | 70,9 | 94 | | 95 | 24,7 | 38,0 | 46,5 | 57,1 |
61,6 | 65,6 | 68,9 | 71,3 | 71,8 | 95 | | 96 | 24,9 | 38,4 | 47,0 | 57,7 | 62,3 | 66,4 | 69,8 | 72.2 | 72,7 | 96 | | 97 | 25,2 | 38,8 | 47,5 | 58,4 | 63,5 | 67,2 | 70,6 | 73.0 | 73,6 | 97 | | 98 | 25,5 | 39,2 | 47,9 | 59,1 | 63,8 | 68,0 | 71,4 | 73,9 | 74,5 | 98 | | 99 | 25,7 | 39,6 | 48,4 | 59,7 | 64,5 | 68,8 | 72,3 | 74.8 | 75,4 | 99 | | 100 | 26,0 | 40,0 | 48,9 | 60,4 | 65,3 | 69,6 | 73,1 | 75.6 | 76,3 | 100 | A in Erl Z = 2.0 B = 1.0 % B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks | $\overline{}$ | | | | | | | 1 | | | | | | | | | | | | | | | | | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|----------------------------------|---|---------------------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|----------------------------------|----------------------------------|---------------------------------| |)
 2
 x | 6 | 8 | 16 | 15 | 2f | 30 | 50 | 80 | 110 | k=n | n | n k | 6 | 8 | 15 | 15 | 28 | 30 | 50 | 86 | 110 | k=n | n, | | 100 | 26,0 | 40,0 | 48,9 | 60,4 | 65,3 | 69,6 | 73,1 | 75,6 | | 76,3 | 100 | 285 | 51,9 | 79,9 | 97,8 | 123,2 | 137,4 | 149,9 | 1.57,8 | 163,8 | 165,6 | 168,7 | 200 | | 102
104
106
108
110 | 27,0
27,5 | | 49,9
50,9
51,8
52,8
53,8 | 61,7
63,0
64,4
65,7
67,0 | 68,2
69,7
71,1 | 72,7
74,3
75,9 | 76,4 | 77.3
79.0
80,8
82.5
84.2 | 85,4 | 78,1
79,9
81,7
83,5
85,4 | 102
104
106
108
110 | 202
204
206
208
210 | 54,6 | 82,3 | 99,8
100,7
101,7 | 125,7
126,9
128,2 | 140,1
141,5
142,9 | 153,1
154,7
156.3 | 159,5
161,3
163,0
164,7
166,4 | 166,5
168,3 | 169,2
171,0
172,8 | 172,5
174,4 | 202
204
206
208
210 | | 112
114
116
118
120 | 29,6
30,1
30,6 | 44,8
45,6
46,4
47,2
48,0 | 54,8
55,7
56,7
57,7
58,7 | 69,7
71,0
72,3 | 75,5
77,6
78,5 | 79,1
80,7
82,3
83,9
85,5 | 83,1
84,7
86,4
88,1
89,8 | 89,4 | 88,9 | 90,8
92,6 | 112
114
116
118
120 | 212
214
216
218
220 | 55,6
56,1
56,6 | 85,5
86,3
87,1 | 104,6
105,6
106,6 | 131,9
133,1
134,3 | 147,5
148,3
149,7 | 161,2
162,8
164.4 | 168,2
169,9
171,6
173,3
175,1 | 175,4
177,2 | 178,2
180,0 | 181,9
183,8
185.7 | 212
214
216
218
220 | | 122
124
126
128
130 | 31,7
32,2
32,7
33,2
33,8 | 48,8
49,6
50,4
51,2
52,0 | 59,7
60,6
61,6
62,6
63,6 | | | | 96,5 | | 97,7
99,5
181,3 | 99,9
101,8 | 122
124
126
128
130 | 222
224
226
228
230 | 57,7
58,2
58,7
59,2
59,7 | 89,5
90,3
91,1 | 109,5
110,5
111,5 | 138,0
139,2
140,5 | 153,8
155,2
156,6 | 169,3
170,9
172,5 | 176.8
178.5
180.2
182.0
183.7 | 184.3
186,1
187.9 | 187,2
189,5 | 191,4
193,3 | 222
224
226
228
230 | | 132
134
136
138
140 | 34,3
34,8
35,3
35,8
36,4 | | 64,5
65,5
66,5
67,5
68,5 | 81,4
82,6
83,8
85,0
86,3 | 88,8
90,2
91,7
93,2
94,6 | 96,7
98,3
99,9 | 99,9
101,5
103,2
104,9
106,6 | 156,7 | 106,6
108,4
110,2 | 107,3
109,1
110,9 | 132
134
136
138
140 | 232
234
236
238
240 | 60,3
60,8
61,3
61,8
62,3 | 93,5
94,3
95,1 | 114,4
115,4
116,4 | 144,2
145,4
146,6 | 160,7
162,1
163,5 | 177,4
179,5
185,6 | 185,4
187,1
188,9
190,6
192,3 | 193,2
195,0
196.8 | 196,3
198,1
199.9 | 200,8 202,7 204.6 | 232
234
236
238
246 | | 142
144
146
148
150 | 36,9
37,4
37,9
38,4
39,0 | 56,8
57,6
58,4
59,2
60,0 | 69,4
70,4
71,4
72,4
73,4 | 88,7
90,0
91,2 | 97,6
99,8
188,5 | 104,7
106,3
107,9 | 168,3
110,0
111,7
113,4
115,1 | 113,7
115,5
117,2 | 115,5
117,3
119,1 | 116,5
118,3
120,2 | 142
144
146
148
150 | 242
244
246
248
250
1 | 53,9
54,4
64,9 | 97,5
98,3
99,1
99,9 | 119,3
120,3
121,3
122,3 | 150,3
151,6
152,8
154,0 | 167,6
169,6
170,3
171,7 | 185,5
187,1
188,7
190.3 | 194,1
195,8
197,5
199,3
201,0
0,868 | 202,2
203,9
205,7
207,5 | 205,3
207,1
209,0
210.8 | 210,3
212,2
214,1
216.0 | 242
244
246
248
250 | | 152
154
156
158
160 | 39,5
40,0
40,5
41,0
41,6 | 60,8
61,6
62,4
63,2
64,0 | | 94,9
96,1
97,3 | 104,9
106,4
107,9 | 112,7
114,4
116,0 | 116,8
118,5
120,2
121,9
123,6 | 122,5
124,2
126,0 | 124,4
126,2
128,0 | 125,7
127,6
129,4 | 152
154
156
158
160 | 300
1
350 | 77,9
0,260
90,9 | 119,9
5,450
139,9 | 146,7
0,489
171,2 | 164,8
3,616
215,6 | 206,0
0,687 | 229,0
0,763 | 244,4 | 252,4
0,903 | 256,2
0,915 | 263,8
0,961 | 300
1
350 | | 162
164
166
168
170 | 43,1
43,6 | 65,6
66,4 | 81,2
82,2 | 101,0
102,3
103,5 | 112,2
113,7
115,2 | 120,8
122,4
124,0 | 125,3
127,0
128,7
130,4
132,1 | 131,2
133,0
134,7 | 133,3
135,1
136,9 | 135,0
136,9
138,8 | 162
164
166
168
170 | 400
1
500 | 183,9
8,268 | 159,9
0,400 | 195,6
6,489 | 246,5
0,616 | 274,7
0,687 | 365,3
0,763 | 0,873
331,6
0,849 | 342,9
0,911 | 347,9
0,923 | 360,1
0,971 | 1
400
1 | | 172
174
176
178
180 | 45,2
45,7 | 68,8
69,6
70,4
71,2
72,0 | 84,1
85,1
86,1
87,0 | 106,0
107,2
108,4
109,7 | 118,1
119,5
120,8
122,2 | 127,3
128,9
130,5
132,1 | 133,8
135,5
137,2
139,0
140,7 | 138,3
140,0
141,8
143,5 | 140,5
142,3
144,1
145,8 | 142,5
144,4
146,2
148,1 | 172
174
176
178
180 | 1
600
1
700 | 0,260
155,8
0,260 | 239,8
0,400 | 7,489
293,4
7,489 | 369,7
0,616 | 0,687
412,1
0,687 | 0,763
458,0
0,763 | 416,5
6,833
499,8
6,833
583,1 | 5,914
525,4
5,917 | 0,928
533,1
0,932 | 554,9
5,980 | 500
1
600
1 | | 182
184
186 | | | 89,0
90,0 | 112,1 | 125,6 | 135,3
137,6 | 142,4
144,1
145,8 | 147,1 | 149,4 | 151,8
153,7 | 182
184
186 | 800 | 257,8 | 319,8 | 391,2 | 492,9 | 549,4 | 610,6 | 666,4 | 707.9 | 719.7 | 751.3 | 700
1
800 | | 188
190 | 48,8
49,3 | 75,1
75,9 | 91,9
92,9 | 115,8
117,1 | 129,1
130,5 | 140,2
141,8 | 147,5 | 152,4
154,1 | 154,8
156,6 | 157,5
159,3 | 188
190 | 1
900
1 | 233,8 | 359,8 | 440,1 | 554,5 | 618,1 | 686.9 | 749.7
0,833 | 796.3 | 813.2 | 849.9 | 900
1 | | 192
194
196
198
200 | 50,4
50,9
51,4 | 77,5
78,3
79,1 | 94,9
95,8
96,8 | 119,5
125,8
122,5 | 133,2
134,6
135,9 | 145,0
146,6
148,3 | 152,7
154,4
156,1 | 157.7
159.4
161.2 | 160,2
162,0
163,8 | 161,2
163,1
165,0
166,8
168,7 | 192
194
196
198
200 | 1105 | 285,7 | 439,7 | 537,9 | 677,7 | 755,5 | 839.6 | 916,3
0,833 | 973.3 | 1861 | 1048 | 1100 | Table 6-09 B = 2.0 % A = offered nonrandom traffic A in Erl Z = 2.0 B = 2.0 % B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility | n k | . 6 | 8 | 16 | 15 | 26 | 36 | 50 | 86 | 116 | N | N | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---------|----|---|--------------------------------------|----------------------------| | 1
2
3
4
5 | | | | | | | | | | | 1
2
3
4
5 | | 6
7
8
9
10 | 0,58
0,73
1,1
1,5
1,8 | 1,7 | 3,0 | - | | | | | | 0,58
1,1
1,7
2,3
3,0 | 6
7
8
9
10 | | 11
12
13
14
15 | 2,2
2,6
3,0
3,4
3,8 | 2,9
3,4
3,8
4,3
4,8 | 3,3
3,8
4,3
4,9
5,4 | 6.4 | | | | | | 3,6
4,3
5,0
5,7
6,4 | 11
12
13
14
15 | | 16
17
18
19
20 | 4,1
4,6
5,0
5,4
5,8 | 5,3
5,8
6,3
6,8
7,3 | 6,0
6,5
7,1
7,6
8,2 | 6.9
7.5
8.1
8.7
9.4 | 16:1 | | | | | 7,1
7,9
8,6
9,4
10,1 | 16
17
18
19
20 | | 21
22
23
24
25 | 6,1
6,5
6,9
7,3
7,7 | 7,8
8,3
8,8
9,3
9,9 | 8,8
9,3
9,9
10,5
11,0 | 10.6
10.6
111.9
12.6 | 16.7
11.4
12.1
12.7
13.4 | er. | | | | 10,9
11,7
12,5
13,3
14,1 | 21
22
23
24
25 | | 26
27
28
29
30 | 8,1
8,5
8,9
9,3
9,7 | 10,4
10,9
11,4
11,9
12,4 | 11,6
12,2
12,8
13,4
14,0 | 3,9
3,6
3,6
2,5
1,5
1,5
1,5
1,5
1,5
1,5
1,5
1,5
1,5
1 | 14.1
14.8
15.5
16.2
16.9 | 18.1 | | | | 14,9
15,7
16,5
17,3
18,1 |
26
27
28
29
36 | | 31
32
33
34
35 | 16,1
16,5
16,9
11,3
11,7 | 13,6
13,5
14,0
14,5
15,0 | 14,6
15,2
15,8
16,4
16,9 | 16.6
17.2
17.9
18.6
19.3 | 17.6
18.3
19.0
19.7
20.5 | 18,8
19,5
20,3
21,0
21,8 | ,,,,,,, | | | 19,0
19,8
20,6
21,5
22,3 | 31
32
33
34
35 | | 36
37
38
39
40 | 12,0
12,4
12,7
13,1 | 15,5
16,1
16,6
17,1
17,6 | 17,5
18,1
18,7
19,4
19,9 | 20,6
20,7
21,3
22,6
22,7 | 21:2
21:9
22:6
23:4
24:1 | 22.6
23.3
24.1
24.8
25.6 | | | | 23,2
24,0
24,9
25,7
26,6 | 36
37
38
39
40 | | 41
42
43
44
48 | 13,7
14,1
14,4
14,7
15,1 | 18.1
18.7
19.2
19.7
20.2 | 20,5
21,1
21,7
22,3
22,9 | 23.4
24.1
24.8
25.5
26.2 | 24:8
25:6
26:3
27:0
27:7 | 26.4
27.1
27.9
28.7
29.5 | | | 2-17-13
2-12-13-13
2-12-13-13-13-13-13-13-13-13-13-13-13-13-13- | 27,4
28,3
29,2
30,0
30,9 | 41
42
43
44
45 | | 46
47
48
49
50 | 15,4
15,7
16,1
16,4
16,7 | 20,8
21,3
21,8
22,3
22,8 | 23,5
24,1
24,7
25,3
25,9 | 26.9
27.6
28.3
29.6
29.7 | 28:5
29:2
30:7
31:5 | 30,2
31,8
31,8
32,6
33,4 | 35,3 | | | 31,8
32,6
33,5
34,4
35,3 | 46
47
48
49
50 | | | | | | | | | | | | | and the second | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|--------------------------------------|-----------------------------| | U K | 6 | 8 | 10 | 15 | 26 | 36 | 50 | 85 | 110 | N | N | | 50 | 16,7 | 22,8 | 25,9 | 29,7 | 31,5 | 33,4 | 35,3 | | | 35,3 | 56 | | 51
52
53
54
55 | 17,1
17,4
17,7
18,1
18,4 | 23,3
23,8
24,3
24,9
25,3 | 26,5
27,1
27,7
28,3
28,9 | 30.4
31.1
31.8
32.5
33.2 | 32.2
32.9
33.7
34.4
35.2 | 34.1
34.9
35.7
36.5
37.3 | 36,0
36,9
37,7
38,5
39,3 | | | 36,2
37,0
37,9
38,8
39,7 | 51
52
53
54
55 | | 56
57
58
59
60 | 18,7
19,1
19,4
19,7
20,1 | 25,9
26,4
26,8
27,4
27,9 | 29,5
30,1
30,7
31,3
31,9 | 33,9
34.6
35.3
36.0
36.7 | 35.9
36.7
37.4
38.2
38.9 | 38.1
38.9
39.7
40.5
41.2 | 40,1
41,0
41,8
42,6
43,5 | | | 40,6
41,5
42,4
43,3
44,2 | 56
57
58
59
60 | | 61
62
63
64
65 | 20,4
20,7
21,1
21,4
21,8 | 28,3
28,8
29,3
29,8
30,3 | 32,5
33,1
33,7
34,3
34,9 | 37,4
38,1
38,8
39,5
40,3 | 39.7
40.5
41.2
42.6
42.7 | 42.8
43.6
44.4
45.2 | 44,3
45.1
46,0
46,8
47,6 | | | 45,1
46,6
46,9
47,8
48,7 | 61
62
63
64
65 | | 66
67
68
69
70 | 22,1
22,4
22,8
23,1
23,4 | 30.7
31.2
31.7
32.1
32.6 | 35,4
36,6
36,6
37,2
37,8 | 41.0
41.7
42.4
43.1
43.8 | 43.5
44.2
45.5
45.7
46.5 | 46.0
46.8
47.6
48.4
49.2 | 48,5
49,3
50,1
51,0
51,8 | | | 49,6
50,5
51,4
52,3
53,2 | 66
67
68
69
70 | | 71
72
73
74
75 | 23,8
24,1
24,4
24,8
25,1 | 33,1
33,5
34,0
34,5
34,9 | 38,4
39,0
39,6
40,2
40,8 | 44.5
45.2
45.9
46.6
47.3 | 47.3
48.0
48.8
49.5
50.3 | 50.0
50.8
51.6
52.5
53.3 | 52,6
53,5
54,3
55,2
56,0 | | | 54,1
55.0
56.0
56,9
57,8 | 71
72
73
74
75 | | 76
77
78
79
80 | 25,4
25,8
26,1
26,4
26,8 | 35,4
35,9
36,3
36,8
37,3 | 41,4
41,9
42,5
43,1
43,7 | 48.0
48.7
49.5
50.2
50.9 | 51.1
51.8
52.6
53.4
54.1 | 54.1
54.9
55.7
56.5
57.3 | 56,8
57,7
58,5
59,4
60,2 | 62,4 | | 58,7
59,6
60,5
61,4
62,4 | 76
77
78
79
80 | | 81
82
83
84
85 | 27,1
27,4
27,8
28,1
28,4 | 37,7
38,2
38,6
39,1
39,6 | 44,3
44,8
45,4
45,9
46,5 | 51.6
52.3
53.0
53.7
54.5 | 54.9
55.7
56.4
57.2
57.9 | 58.1
58.9
59.7
60.6
61.4 | 61,1
61,9
62,8
63,6
64,4 | 63.3
64.1
65.0
65.9
66.8 | | 63,3
64,2
65,1
66,1 | 81
82
83
84
85 | | 86
87
88
89
90 | 28,8
29,1
29,4
29,8
35,1 | 40.0
40,5
41.0
41.4
41.9 | 47,1
47,5
48,1
48,7
49,2 | 55,2
55,9
56,6
57,3
58,0 | 58.7
59.5
60.2
61.0
61.8 | 62.2
63.0
63.8
64.6
65.4 | 65,3
66,1
67,0
67,8
68,7 | 67.7
68.5
69.4
70.3
71.2 | | 67,9
68,8
69,7
70,7 | 86
87
88
89
96 | | 91
92
93
94
95 | 30,5
30,8
31,1
31,5
31,8 | 42,4
42,8
43,3
43,8
44,2 | 49,8
50,3
50,8
51,4
52,0 | 58,7
59,4
60,1
60,8
61,5 | 62:6
63:3
64:1
64:9
65:6 | 66.3
67.1
67.9
68.7
69.5 | 69.6
70.4
71.3
72.1
73.0 | 72,1
73.0
73.8
74.7
75,6 | | 72,5
73,5
74,4
75,3
76,2 | 91
92
93
94
95 | | 96
97
98
99
100 | 32,1
32,5
32,8
33,1
33,5 | 44.7
45.2
45.6
46.1
46.6 | 52,5
53,1
53,6
54,1
54,7 | 62.2
62.9
63.7
64.4
65.1 | 66:4
67:2
67:9
68:7
69:5 | 70,3
71,2
72,0
72,8
73,6 | 73,8
74,7
75,5
76,4
77,2 | 76.5
77.4
78.3
79.1
80.0 | | 77.2
78.1
79.0
80.0
80.9 | 96
97
98
99
100 | B=2.0 % A = offered nonrandom traffic A in Erl Z=2.0 B = 2.0 % | n k | 6 | 8 | 10 | 15 | 26 | 30 | 50 | 80 | 115 | N | N | |---------------------------------|--------------------------------------|--------------------------------------|--|---|---|---|---|---|---|--------------------------------------|---------------------------------| | 100 | 33,5 | 46,6 | 54,7 | 65,1 | 69.5 | 73,6 | 77,2 | 80,0 | | 80,9 | 100 | | 102
104
106
108
110 | 34,1
34,8
35,5
36,1
36,8 | 47.5
48.4
49.4
50.3
51.2 | 55,8
56,9
58,0
59,1
60,2 | 66,5
67,9
69,3
70,8
72,2 | 71:0
72:6
74:1
75:6
77:2 | 75,3
76,9
78,6
80,2
81,8 | 78,9
80,7
82,4
84,1
85,8 | 81,8
93,6
85,4
87,1
88,9 | 90,3 | 82,8
84,7
86,5
88,4
90,3 | 102
104
106
108
110 | | 112
114
116
118
120 | 37,5
38,2
38,8
39,5
40,2 | 52,2
53,1
54,0
54,9
55,9 | 61,3
62,4
63,5
64,6
65,7 | 73,6
75,0
76,4
77,8
79,2 | 78:7
80:2
81:8
83:3
84:9 | 83,5
85,1
86,8
88,4
90,1 | 87,5
89,3
91,0
92,7
94,5 | 90,7
92,5
94,2
96,0
97,8 | 92,1
93,9
95,8
97,6
99,4 | 92,2
94,0
95,9
97,8
99,7 | 112
114
116
118
120 | | 122
124
126
128
130 | 40,8
41,5
42,2
42,8
43,5 | 56.8
57.7
58.7
59.6
60.5 | 66,7
67,8
68,9
70,0
71,1 | 80,6
82,0
83,5
84,8
86,2 | 86.4
88.0
89.5
91.0
92.6 | 91,7
93,4
95,1
96,7
98,4 | 96,2
97,9
99,6
101,4
103,1 | 101,4 | 101,2
103,0
104,9
106.7
108,5 | 103,5
105,4
107,3 | 122
124
126
128
130 | | 132
134
136
138
140 | 44,2
44,8
45,5
46,2
46,9 | 61,5
62,4
63,3
64,3
65,2 | 72,2
73,3
74,4
75,5
76,6 | 87,5
88,8
90,1
91,5
92,8 | 94.1
95.7
97.2
98.7
100.3 | 100,0
101,7
103,4
105,0
106,7 | 106.6 | 112,1
113,9 | 112,2 | 113,0
114,9
116,8 | 132
134
136
138
140 | | 142
144
146
148
150 | 47,5
48,2
48,9
49,5
50,2 | 66,1
67,1
68,0
68,9
69,8 | 77,7
78,8
79,9
81,0
82,1 | 94,1
95,5
96,8
98,1
99,4 | 103.4 | 108,3
110,0
111,7
113,3
115,0 | 113,5
115,3
117,0
118,8
120,5 | | | 122,5
124,4
126,3 | 142
144
146
148
150 | | 152
154
156
158
160 | 50,9
51,5
52,2
52,9
53,5 | 70,8
71,7
72,6
73,6
74,5 | 83,2
84,3
85,3
86,4
87,5 | 102,1
103,4
104,7 | 109.5
111.1
112.6
114.2
115.7 | 116.7
118.3
120.6
121.7
123.3 | 122,3
124,0
125,8
127,5
129,3 | 128,3
130,1
131,9 | 128,6
130,5
132,3
134,1
135,9 | 132,1
134,0
135,9 | 152
154
156
158
160 | | 162
164
166
168
170 | 54,2
54,9
55,6
56,2
56,9 | 75,4
76,4
77,3
78,2
79,2 | 88,6
89,7
90,8
91,9
93,0 | 108.7 | 120,3 | 130,0 | 134,5 | 135,5
137,3
139,1
140,9
142,7 | 139,6
141,4
143,3 | 141,7 | 162
164
166
168
170 | | 172
174
176
178
180 | 57,6
58,2
58,9
59,6
60,2 | 80,1
81,0
82,0
82,9
83,8 | 94,1
95,2
96,3
97,4
98,5 | 114,0
115,3
116,7
118.0
119,3 | 126.4
127.8 | 138,4 | 141,6
143,3
145,1 | 144.5
146.3
148.1
149.9
151.7 | 148,8
150,6
152,5 | 151,3
153,2
155,1 | 172
174
176
178
180 | | 182
184
186
188
190 | 60,9
61,6
62,2
62,9
63,6 | 84.8
85,7
86,6
87,5
88,5 | 99,6
100,7
101,8
102,9
104,0 | 120,6
122,0
123,3
124,6
126,0 | 133.6
135.1 |
143,4
145,1
146,7 | 150,4
152,1
153,9 | 157.2
159.0 | 158,0
159,8 | 160,9
162,9
164,8 | 182
184
186
188
190 | | 192
194
196
198
200 | 64,3
64,9
65,6
66,3
66,9 | 89,4
90,3
91,3
92,2
93,1 | | 127,3
128,6
129,9
131,3
132,6 | 140,9
142,3
143,8 | | 159,2
160,9
162,7 | 168,1 | 167,2
169,5
175,9 | 170,6
172,5
174,5 | 192
194
196
198
200 | | | | | | , | | | | | | | | |--------------------------------------|--------------------------------------|-------------------------|---|----------------------------------|---|--|---|-------------------------|---|--|---------------------------------| | n k | - 6 | 8 | 15 | 15 | 26 | 30 | 50 | កក | 110 | N | N | | 200 | 66,9 | 93,1 | 109,4 | 132,6 | 145;3 | 156,8 | 164,5 | 169.9 | 172,7 | 176,4 | 200 | | 202
204
206
208
210 | 67,6
68,3
68,9
69,6
70,3 | 95,0
95,9
96,9 | 111,6
112,7
113,8 | 135,2
136,6
137,9 | 146.7
148.2
149.6
151.1
152.5 | 160,1
161,8
163,4 | 168.0
169.8
171.5 | 173,5
175,3
177,2 | 174,6
176,4
178,3
180,1
182,0 | 180,3
182,2
184,2 | 202
204
206
208
210 | | 212
214
216
218
220 | 70,9
71,6
72,3
73,0
73,6 | 99,7
100,6
101,5 | 116,0
117,1
118,2
119,3
120,4 | 141,9
143,2
144,5 | 156.9
158.3 | 168,5
170,2
171.8 | 178,6 | 182,6
184,4
186,3 | 187,5 | 190,0
191,9
193,9 | 212
214
216
218
220 | | 222
224
226
228
230 | 75,6
75,6
76,3 | 105,2
106,2 | 121,5
122,6
123,6
124,7
125,8 | 148,5
149,8
151,1 | 164.2 | 176.9 | 183,9
185,7
187,5
189,3
191,0 | 191,7
193,6 | 193,0
194,9
196,7
198,6
200,4 | | 222
224
226
228
230 | | 232
234
236
238
240 | 78,3
79,8
79,6 | 110.8 | | 155,1
156,4
157,8 | 172.9 | 185,2
186,9
188,6 | 196,4 | 250,9
202,7
204,5 | 206,0 | 207,5
209,4
211,4
213,3
215,3 | 232
234
236
238
240 | | 242
244
246
248
250
1 | 81,7
82,3
83,6
83,7 | 114,6
115,5
116,4 | 133,5
134,6 | 161,8
163,1
164,4
165,7 | 178.7
180.1
181.6 | 191.9
193.6
195.3
196.9
198.6
0.804 | 208,8 | 210,0
211,8
213,7 | 217,1 | 217,2
219,2
221,2
223,1
225,1
0,980 | 242
244
246
248
250 | | 300
1 | | 139,7 | 164,1
0,547 | 198,9
0,663 | 217.9
0.726 | 238,8
0,796 | 253,3
0,893 | | 265,5
0,935 | 274,1
0,985 | 300
1 | | 350
1 | | 163,0 | 191,5
0,547 | 232,0 | | 278,6
5,796 | | | 312,2
0,938 | | 350
1 | | 400
1 | 133,9
0,335 | 186,3
0,466 | 218,8
0,547 | 265,2
0,663 | 290;5
0,726 | 318,4
0.796 | 342,7
0,873 | 353,9
0,930 | 359,1
0,942 | 372,8
0,993 | 400
1 | | 500
1 | 167,3
0,335 | 232.8
0,466 | 273,6
0,547 | 331,5
0,663 | 363;2
0,726 | 398;0
0;796 | 430,0 | 446,8
0,933 | 453,4
0,946 | 472,1
0,997 | 500
1 | | 600
1 | 200,8
0,335 | | 328,3
0,547 | | 435,8
0,726 | 477,7
0,796 | | 540;1
0;935 | 548,0
0,949 | 571,8
1,001 | 600
1 | | 700
1 | 234,3
5,335 | 326.0
0.466 | 383,0
0,547 | | 568;4
6;726 | 557.3
6.796 | 602,0
0,860 | 633,6
0,927 | 642,8
0,951 | 671,9 | 700
1 | | 800
1 | | 372,5
0,466 | | | 581;1
0,726 | | | 726;3
0,908 | 737,9
5,952 | 772,2
1,005 | 800 | | 900
1 | | | 492,4
ff,547 | | 653;7
0,726 | 716,5
0,796 | 774,0
0,860 | 817.1
0.908 | 833,2
0,954 | 872,7
1,007 | 900
1 | | 1100
1 | 368,1
0,335 | 512,2
0,466 | 601,8
0,547 | 729,2
0,663 | 799:0
0:726 | 875;7
0;796 | 946,0 | 998;6
0,908 | 1024
0,931 | 1074 | 1100 | Table 6 -12 A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility 'n = number of trunks A in Erl Z = 2.0 B = 3.0 % | n k | 6 | 8 | 10 | 15 | 26 | 30 | 50 | 86 | 116 | N | N | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------|----|-----|--------------------------------------|----------------------------| | 1
2
3
4
5 | | | | | | | | | | 0,29 | 1
2
3
4
5 | | 6
7
8
9 | 0,86
1,1
1,5
1,9
2,3 | 2,1
2,4
2,9 | 3,4 | | | | | | | 0,86
1,5
2,1
2,8
3,4 | 6
7
8
9
10 | | 11
12
13
14
15 | 2,7
3,1
3,6
4,0
4,5 | 3,4
3,9
4,4
4,9
5,5 | 3,8
4,4
4,9
5,5
6,1 | 7.1 | | | e Sin | | | 4,1
4,8
5,6
6,3
7,1 | 11
12
13
14
15 | | 16
17
18
19
20 | 4,9
5,4
5,8
6,3
6,7 | 6,5
7,1
7,6
8,2 | 6,6
7,2
7,8
8,4
9,0 | 7.6
8.2
8.9
9.6
10.2 | 11.0 | | | | | 7,9
8,6
9,4
10,2
11,0 | 16
17
18
19
20 | | 21
22
23
24
25 | 7,1
7,6
8,0
8,5
8,9 | 8.7
9,3
9,8
10.4
10.9 | 9,6
10,2
10,8
11,4
12,1 | 10.9
11.6
12.2
12.9
13.6 | 11:6
12:3
13:0
13:7
14:5 | et fet and Emili | 247.57 | | | 11,8
12,7
13,5
14,3 | 21
22
23
24
25 | | 26
27
28
29
30 | 9,3
9,8
10,3
10,7
11,2 | 11,5
12,0
12,6
13,2
13,7 | 12,7
13,3
13,9
14,5
15,2 | 14.3
15.0
15.7
16.4
17.1 | 15.2
15.9
16.6
17.4
18.1 | 19,4 | | | | 16.0
16.8
17.7
18.5
19.4 | 26
27
28
29
36 | | 31
32
33
34
35 | 11,6
12,1
12,5
13,0
13,4 | 14,3
14,9
15,4
16,0
16,5 | 15,8
16,4
17,1
17,7
18,3 | 17.8
18.5
19.2
19.9
20.6 | 18.8
19.6
20.3
21.0
21.8 | 20.1
20.8
21.6
22.4
23.2 | | | | 20,3
21,1
22,0
22,9
23,8 | 31
32
33
34
35 | | 36
37
38
39
40 | 13,8
14,2
14,6
15,0
15,4 | 17,1
17,6
18,2
18,8
19,3 | 19,0
19,6
20,2
20,9
21,5 | 21,3
22,0
22,7
23,5
24,2 | 22.6
23.3
24.1
24.8
25.6 | 24.0
24.8
25.5
26.3
27.1 | | | | 24,6
25,5
26,4
27,3
28,2 | 36
37
38
39
40 | | 41
42
43
44
45 | 15,8
16,1
16,5
16,9
17,3 | 19.9
25.5
21.6
21.6
22.2 | 22,1
22,8
23,4
24,0
24,6 | 24,9
25,6
26,3
27,1
27,8 | 26:3
27:1
27:8
28:6
29:3 | 27,9
28,7
29,5
30,3
31,1 | | | | 29,1
30,0
30,9
31,8
32,7 | 41
42
43
44
45 | | 46
47
48
49
50 | 17,7
18,1
18,4
18,8
19,2 | 22,7
23,3
23,8
24,4
25,0 | 25,3
25,9
26,6
27,2
27,8 | 28,5
29,2
30,0
30,7
31,4 | 30:1
30:9
31:7
32:4
33:2 | 31.9
32.7
33.5
34.3
35.1 | 37,2 | | | 33,6
34,5
35,4
36,3
37,2 | 46
47
48
49
50 | | ا
بر | 6 | 8 | 10 | 15 | 26 | 30 | 50 | 86 | ₁₁₀ k = n | n | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|--------------------------------------|------|--------------------------------------|----------------------------| | 50 | 19,2 | 25.0 | 27,8 | 31,4 | 33,2 | 35,1 | 37,2 | | 37,2 | 50 | | 51 | 19,6 | 25,5 | 28,5 | 32.1 | 34.0 | 36.0 | 37,9 | | 38,1 | 51 | | 52 | 20,0 | 26,1 | 29,1 | 32.9 | 34.7 | 36.8 | 38,8 | | 39,0 | 52 | | 53 | 20,4 | 26,6 | 29,7 | 33.6 | 35.5 | 37.6 | 39,6 | | 39,9 | 53 | | 54 | 20,8 | 27,2 | 30,4 | 34.3 | 36.3 | 38.4 | 40,5 | | 40,9 | 55 | | 55 | 21,1 | 27,7 | 31,6 | 35.1 | 37.6 | 39.2 | 41,3 | | 41,8 | 55 | | 56 | 21,5 | 28.3 | 31,6 | 35.8 | 37.8 | 40.0 | 42.2 | | 42,7 | 56 | | 57 | 21,9 | 28.8 | 32,3 | 36.5 | 38.6 | 40.8 | 43.0 | | 43,6 | 57 | | 58 | 22,3 | 29.4 | 32,9 | 37.3 | 39.4 | 41.6 | 43.9 | | 44,5 | 58 | | 59 | 22,7 | 29.9 | 33,6 | 38.6 | 40.1 | 42.5 | 44.7 | | 45,5 | 59 | | 60 | 23,1 | 30.5 | 34,2 | 38.8 | 40.9 | 43.3 | 45,6 | | 46,4 | 60 | | 61 | 23,4 | 31.0 | 34,8 | 39,5 | 41.7 | 44.1 | 46,4 | | 47,3 | 61 | | 62 | 23,8 | 31.6 | 35,5 | 40,2 | 42.5 | 44.9 | 47,3 | | 48,2 | 62 | | 63 | 24,2 | 32.1 | 36,1 | 41,0 | 43.3 | 45.7 | 48,1 | | 49,2 | 63 | | 64 | 24,6 | 32.6 | 36,7 | 41,7 | 44.1 | 46.6 | 49,0 | | 50,1 | 64 | | 65 | 25,0 | 33.1 | 37,4 | 42,4 | 44.8 | 47.4 | 49,9 | | 51,0 | 65 | | 66 | 25,4 | 33,6 | 38,6 | 43.2 | 45.6 | 48,2 | 50,7 | | 52,0 | 66 | | 67 | 25,7 | 34,1 | 38,6 | 43.9 | 46.4 | 49,6 | 51,6 | | 52,9 | 67 | | 68 | 26,1 | 34,6 | 39,3 | 44.7 | 47.2 | 49,8 | 52,4 | | 53,8 | 68 | | 69 | 26,5 | 35,1 | 39,9 | 45.4 | 48.0 | 50,7 | 53,3 | | 54,8 | 69 | | 70 | 26,9 | 35,7 | 40,5 | 46.1 | 48.7 | 51,5 | 54,2 | | 55,7 | 70 | | 71 | 27,3 | 36,2 | 41,1 | 46,9 | 49.5 | 52,3 | 55.0 | | 56,7 | 71 | | 72 | 27,7 | 36,7 | 41,8 | 47,6 | 50.3 | 53,2 | 55.9 | | 57,6 | 72 | | 73 | 28,1 | 37,2 | 42,4 | 48,3 | 51.1 | 54,0 | 56.7 | | 58,5 | 73 | | 74 | 28,4 | 37,7 | 43,0 | 49,1 | 51.9 | 54,8 | 57.6 | | 59,5 | 74 | | 75 | 28,8 | 38,2 | 43,7 | 49,8 | 52.7 | 55,6 | 58,5 | | 60,4 | 75 | | 76
77
78
79
80 | 29,2
29,6
30,0
30,4
30,7 | 38,7
39,2
39,7
40,2
40,7 | 44,3
44,9
45,5
46,2
46,8 | 50.6
51.3
52.0
52.8
53.5 | 53.5
54.3
55.1
55.8
56.6 | 56.5
57.3
58.1
59.8 | 59,3
60,2
61,1
61,9
62,8 | 65,1 | 61,4
62,3
63,2
64,2
65,1 | 76
77
78
79
80 |
| 81 | 31,1 | 41.3 | 47,4 | 54.3 | 57.4 | 60,6 | 63.7 | 66,0 | 66,1 | 81 | | 82 | 31,5 | 41.8 | 48,0 | 55.0 | 58.2 | 61,5 | 64.5 | 66,9 | 67,0 | 82 | | 83 | 31,9 | 42.3 | 48,6 | 55.8 | 59.0 | 62,3 | 65.4 | 67,8 | 68,0 | 83 | | 84 | 32,3 | 42.8 | 49,2 | 56.5 | 59.8 | 63,1 | 66.3 | 68,7 | 68,9 | 84 | | 85 | 32,7 | 43.3 | 49,8 | 57.2 | 60.6 | 64,0 | 67.1 | 69,6 | 69,9 | 85 | | 86 | 33,0 | 43,8 | 50,4 | 58.0 | 61,4 | 64.8 | 68,0 | 70,5 | 70,8 | 86 | | 87 | 33,4 | 44,3 | 50,9 | 58.7 | 62,2 | 65.6 | 68,9 | 71,5 | 71,8 | 87 | | 88 | 33,8 | 44,8 | 51,5 | 59.5 | 62,9 | 66.5 | 69,8 | 72,4 | 72,7 | 88 | | 89 | 34,2 | 45,3 | 52,1 | 60.2 | 63,7 | 67.3 | 70,6 | 73,3 | 73,7 | 89 | | 90 | 34,6 | 45,8 | 52,7 | 60.9 | 64,5 | 68.2 | 71,5 | 74,2 | 74,6 | 90 | | 91 | 35,0 | 46,4 | 53,3 | 61,7 | 65.3 | 69,0 | 72,4 | 75,1 | 75,6 | 91 | | 92 | 35,4 | 46,9 | 53,9 | 62.4 | 66.1 | 69.8 | 73,2 | 76,0 | 76,5 | 92 | | 93 | 35,7 | 47,4 | 54,5 | 63,1 | 66.9 | 70.7 | 74,1 | 76,9 | 77,5 | 93 | | 94 | 36,1 | 47,9 | 55,1 | 63,9 | 67.7 | 71.5 | 75,0 | 77,8 | 78,5 | 94 | | 95 | 36,5 | 48,4 | 55,6 | 64,6 | 68.5 | 72.3 | 75,9 | 78,7 | 79,4 | 95 | | 96 | 36,9 | 48.9 | 56,2 | 65,4 | 69.3 | 73.2 | 76,7 | 79,6 | 80,4 | 96 | | 97 | 37,3 | 49.4 | 56,8 | 66,1 | 70.1 | 74.0 | 77,6 | 80,5 | 81,3 | 97 | | 98 | 37,7 | 49.9 | 57,4 | 66,8 | 70.9 | 74.9 | 78,5 | 81,4 | 82,3 | 98 | | 99 | 38,5 | 50.4 | 58,0 | 67,6 | 71.7 | 75.7 | 79,4 | 82,3 | 83,2 | 99 | | 100 | 38,4 | 50.9 | 58,6 | 68,3 | 72.5 | 76,6 | 80,2 | 83,2 | 84,2 | 100 | B = 3.0 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility | | 6 | 8 | 16 | 15 | 26 | 30 | 50 | 85 | 110 | k=n | | |------------|--------------|--------------|--------------|-------|-------------------------|-------|--------|-------|-------|------------------|------------| | n k | | | | | - 0 | | | | | | n | | 100 | 38,4 | 50,9 | 58,6 | 68,3 | 72;5 | 76,6 | 80,2 | 83.2 | | 84,2 | 100 | | 102 | 39,2 | 52.0 | 59,8 | 69.8 | 74;1 | 78,2 | 82,0 | 85,0 | | 86,1 | 102 | | 164 | 40,0 | 53,0 | 60,9 | 71,3 | 75,7 | 79:9 | 83,8 | 86,9 | | 88,0 | 104 | | 106 | 40,7 | 54,0 | 62,1 | 72,8 | 77.3 | 81,6 | 85,5 | 88,7 | | 90,0 | 106 | | 188 | 41,5 | 55.0 | 63,3 | 74.2 | 78.8 | 83,3 | 87.3 | 90,5 | | 91,9 | 108 | | 110 | 42,3 | 56,0 | 64,4 | 75.7 | 80.4 | 85,0 | 89.0 | 92,3 | 93,8 | 93,8 | 110 | | 112 | 43,0 | 57.0 | 65,6 | 77,2 | 82:0 | 86,7 | 90,8 | 94;1 | 95,7 | 95,8 | 112 | | 114 | 43,8 | 58,1 | 66,8 | 78,6 | 83,6 | 88,4 | 92,6 | 95,9 | 97,5 | 97,7 | 114 | | 116 | 44,6 | 59.1 | 68,0 | 86,1 | 85.2 | 90,1 | 94.3 | 97,8 | 99,4 | 99,6 | 116 | | 118 | 45,3 | 60.1 | 69,1 | 81,6 | 86.8 | 91,8 | 96,1 | 99.6 | 101,3 | | 118 | | 120 | 46,1 | 61,1 | 76,3 | 83,1 | 88,4 | 93,5 | 97.9 | 101,4 | 163,1 | 103,5 | 120 | | 122 | 46,9 | 62,1 | 71,5 | 84,6 | 90.0 | 95,2 | 99,6 | 103.2 | 105,0 | 105,4 | 122 | | 124 | 47,6 | 63,2 | 72,6 | 86,0 | 91.6 | 96.9 | | 165,1 | | | 124 | | 126
128 | 48,4
49,2 | 64,2 | 73,8
75,6 | 87,5 | 93.2 | 98,6 | | 106,9 | | | 126 | | 130 | 50,0 | 66,2 | 76.2 | 90,3 | 94.7 | 100.3 | 106,7 | 108,7 | 110,6 | | 128
130 | | | | | | | | | | | | | | | 132
134 | 50,7
51,5 | 67,2
68,3 | 77,3
78,5 | 91.7 | 97.9 | 163,7 | | 112.4 | | | 132 | | 136 | 52,3 | 69.3 | 79,7 | 93,1 | 9915 | 105,4 | | 114.2 | | | 134 | | 138 | 53,0 | 70.3 | 80.8 | 94,5 | 101:1 | 107,1 | | 116,0 | | | 136 | | 140 | 53,8 | 71.3 | 82,0 | | 104.3 | 110,5 | | 119.7 | | | 140 | | 142 | 54,6 | 72,3 | 83,2 | 98.7 | 105:9 | 112:2 | 117.4 | 121.5 | 123.6 | 124.9 | 142 | | 144 | 55,3 | 73,3 | 84,4 | 100.1 | 107.5 | 113.9 | 119.2 | | | 126,8 | 144 | | 146 | 56,1 | 74,4 | 85,5 | 101,5 | 109:1 | 115,6 | 121.0 | 125.2 | 127.4 | 128,8 | 146 | | 148 | 56,9 | 75,4 | 86,7 | 102,8 | 110.7 | 117,3 | 122,8 | 127.0 | 129,3 | 130,8 | 148 | | 150 | 57,6 | 76,4 | 87.9 | 104,2 | 109.1
110.7
112.3 | 119,0 | 124,5 | 128,9 | 131,1 | 132,7 | 150 | | 152 | 58,4 | 77,4 | 89,1 | 105,6 | 113;9 | | | 130,7 | 133,6 | 134,7 | 152 | | 154 | 59,2 | 78,4 | 90,2 | | 115,5 | 122,4 | 128.1 | | | 136,6 | 154 | | 156 | 59,9 | 79,5 | 91,4 | 108,4 | 117:0 | 124.1 | 1129.9 | | 136,7 | | 156 | | 158 | 60,7 | 80.5 | 92,6 | 109.8 | 118.7 | 125,9 | 131.7 | 136,2 | | 140,6 | 158 | | 160 | 61,5 | 81,5 | 93,7 | 111.2 | 120.2 | 127,6 | 133,5 | 138,6 | 140,5 | 142,5 | 160 | | 162 | 62,3 | 82,5 | 94,9 | 112,6 | 121.8 | 129,3 | 135,3 | | | 144,5 | 162 | | 164 | 63,0 | 83,5 | 96,1 | 114.0 | | | | | | 146,4 | 164 | | 166
168 | 63,8
64,6 | 84,6
85,6 | 97,3
98,4 | 115,4 | 125.0 | 132,7 | 138,9 | | 146,1 | 148,4 | 166 | | 170 | 65,3 | 86,6 | 99,6 | 118.1 | 126.6
128.2 | 136,1 | 140,7 | | | 150,4
152,3 | 168
170 | | 172 | 66,1 | 87.6 | 100,8 | 110 = | 129.7 | 177'0 | | 149,1 | | 154,3 | 172 | | 174 | 66,9 | | 101,9 | 126.0 | 131,2 | 170 F | 146,0 | | | 156,3 | 174 | | 176 | 67,6 | 89,6 | | 122.3 | 132.8 | 141 3 | 147,8 | 152.8 | 155.4 | 158,3 | 176 | | 178 | 68,4 | 90.7 | | 123.7 | 134.3 | 143.6 | 149.6 | 154,7 | | 160,2 | 178 | | 180 | 69,2 | 91.7 | | 125.1 | 135.8 | 144,7 | 151.4 | | | 162,2 | 180 | | 182 | 69,9 | 92.7 | 106,6 | 126,5 | 137:3 | 146,4 | 153.2 | 158,3 | 161,1 | 164,2 | 182 | | 184 | 70,7 | 93,7 | | 127.9 | 138.8 | 148:1 | 155.0 | | | 166,1 | 184 | | 186 | 71,5 | 94,7 | | 129.3 | 140.3 | 149,8 | 156,8 | 162,0 | 164,8 | 168,1 | 186 | | 188
190 | 72,2
73,0 | 95,8 | 110,1 | 130.6 | 140.3
141.8
143.3 | 151,5 | 158,6 | | | 170.1 | 188 | | | | | | | | | | | | 172,1 | 190 | | 192
194 | 73,8
74,5 | 97.8
98.8 | 112,5 | | 144.8 | 155.0 | 162,2 | 167.6 | 170,5 | | 192 | | 196 | 75.3 | 99.8 | 113,7 | | 146.3 | | | | | 176,0 | 194 | | 198 | 76,1 | | 116.8 | 137.6 | 147.8 | 1681 | 167.6 | | 174,2 | 178,0
. 180,0 | 196
198 | | | | | , | 139.0 | | | | | | | | | , c | 6 | 8 | 16 | 15 | 20 | 30 | 50 | 86 | 116 | k=n | C | |------------|-------|-------|--------------|-------|----------------|-------|----------------|-------|----------------|----------------|------------| | 200 | 76,9 | 101,9 | 117,2 | 139,0 | 150,9 | 161,8 | 169,4 | 175,0 | 178,6 | 182,0 | 200 | | 202
204 | | 102,9 | | | 152;4
153;9 | | 171,2
173,0 | 176,9 | 179,9 | | 202
204 | | 206 | | 104.9 | 120,7 | | 155.4 | | 174,8 | | 183.6 | 187,9 | 206 | | 208 | 79,9 | | 121,9 | | 156.9 | 168,7 | 176.7 | | 185,5 | | 208 | | 210 | 80,7 | 107.0 | 123,0 | 145,9 | 158,4 | 170,4 | | | 187,4 | 191,9 | 210 | | 212
214 | | 108,0 | | | 159.9 | | | | 189,3 | | 212 | | 216 | | 110,0 | | | 161.4
163.0 | | | | 191,2 | | 214 | | 218 | | 111,0 | | 151,5 | | | 185,7 | 189,9 | 194,9 | 197,8 | 216
218 | | 220 | | 112.1 | | 152.9 | | 179,0 | | | 196,8 | 201,8 | 220 | | 222 | | 113,1 | | | 167.5 | | | | 198,7 | 203,8 | 222 | | 224
226 | | 114,1 | | 155.7 | | | 191,1 | | 200,6 | 205,8 | 224 | | 228 | 87.6 | 115,1 | 133 6 | 157,1 | 172.0 | 184,1 | 192,9 | | 202,5 | | 226 | | 236 | 88,4 | 117,2 | 134,7 | | 173.5 | | 196,5 | | 204,4 | 209,7 | 228
236 | | 232 | | 118.2 | | | 175.0 | | | | 208,1 | 213,7 | 232 | | 234 | 89,9 | | 137,1 | | | 191,0 | | 206,6 | | 215.7 | 234 | | 236
238 | 98,7 | 120,2 | 138,3 | 164,0 | 178.0 | 192,7 | 202,0 | | 211,9 | | 236 | | 240 | | 122,2 | 140,6 | 166,8 | 179,5
181,1 | 196,1 | | | 213,8
215,7 | | 238
240 | | 242 | | 123.3 | 141,8 | 168,2 | 182;6 | 197,8 | 207,4 | 214,0 | 217,6 | 223,7 | 242 | | 244 | | 124.3 | 143,0 | | 184.1 | | 259.2 | 215,9 | | 225,7 | 244 | | 246
248 | | 125,3 | 144,1 | | 185.6 | | 211,0 | 217,8 | 221,3 | 227,6 | 246 | | 256 | | 126,3 | 145,3 | 172.3 | 188.6 | 203,0 | 212,8 | | | 229,6 | 248 | | 1 | 0.384 | | 0,586 | | 0,754 | | 214,7 | | 0,947 | 231,6
0,999 | 250
1 | | 300 | | 152,8 | | | 226;3 | | 260,1 | 268,3 | 272,5 | 281,6 | 300 | | 1 | 0,384 | 0.509 | 0,586 | 0.695 | 0,754 | 0,820 | 0,910 | 0;939 | 0.951 | 1,004 | 1 | | 350 | 134,5 | 178,3 | 205,1 | 243,2 | 264.0 | 287,1 | 305,6 | 315.2 | 320,1 | 331.8 | 350 | | _ 1 | 0,384 | 0,509 | 0,586 | | 0,754 | | | | 0,954 | | 1 | | 400 | 153,7 | | 94 - A P S 1 | | 301.8 | | | | 367,8 | | 400 | | 1 | 0.384 | | | 0,695 | | | la de la des | | 0,958 | | 1 | | 500 | | 254.7 | | 347,5 | | | | | 463,6 | | 500 | | 1 | | 0.509 | | 0,695 | 0,754 | 0;820 | 0,881 | 0.948 | 0.961 | 1,014 | 1 | | 600 | | 305,6 | | | 452.6 | | 528,4 | 551,7 | 559,7 | 584,6 | 600 | | 1 | | 0.509 | | 0,695 | 0,754 | 0,820 | 0,881 | 0.950 | 0,964 | 1,016 | 1 | | 700 | | 356,6 | | | 528;1 | 574,2 | 616,5 | 646,7 | 656,1 | 686,2 | 700 | | 1 | 0,384 | 0,509 | 0,586 | 0,695 | 0;754 | 0,820 | 0,881 | 0,943 | 0,966 | 1,018 | 1 | | 800 | | | 468,7 | 556.5 | 603.5 | 656,2 | 704,6 | 741.1 | 752,6 | 788,5 | 800 | | 1 | 0,384 | 0,509 | d,586 | 0,695 | 0,754 | 0:820 | 0,881 | 0,926 | 0,967 | 1,020 | 1 | | 900 | 345,8 | 458,4 | 527,3 | 625.4 | 679;0 | 738,2 | 792.7 | 833.7 | 849.3 | 890,0 | 988 | | 1 | 0,384 | 0.509 | 0,586 | 0,695 | 0,754 | 0.820 | 0,881 | 0.926 | 0,968 | 1,021 | 1 | | 1100 | 422,7 | 560,3 | 644,4 | 764.4 | 829:0 | 962;3 | 968.8 | 1019 | 1043 | 1094 | 1100 | | 1 | | | 0,586 | 0.695 | 0.754 | 0.820 | 0.881 | 0,926 | 0,948 | 1,023 | 1100 | B = 5.0 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic A in Erl k = accessibility n = number of trunks | D K | 6 | 8 | 10 | 15 | 20 | 30 | 50 | 86 | 110 | k=n | n | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|------|------|-----|--------------------------------------|----------------------------| | 1
2
3
4
5 | | | | | | | | | | Ø,66 | 12345 | | 6
7
8
9
10 | 1,3
1,6
2,0
2,5
3,0 | 2,7
3,0
3,6 | 4,2 | | | | | | | 1,3
2,0
2,7
3,4
4,2 | 6
7
8
9 | | 11
12
13
14
15 | 3,5
4,0
4,5
5,0
5,5 | 4,1
4,7
5,3
5,9
6,5 |
4,6
5,2
5,8
6,4
7,1 | 8,1 | | · · · · · · · · · · · · · · · · · · · | | | | 4,9
5,7
6,5
7,3
8,1 | 11
12
13
14
15 | | 16
17
18
19
20 | 6,0
6,5
7,0
7,6
8,1 | 7,0
7,7
8,2
8,8
9,5 | 7,7
8,3
9,6
9,6
16,3 | 8,7
9,4
10,1
10,8
11,5 | 12,4 | | | | | 9,6
9,8
10,7
11,5
12,4 | 16
17
18
19
20 | | 21
22
23
24
25 | 8,6
9,1
9,6
10,1
10,6 | 10,0
10,7
11,3
11,9
12,5 | 11,0
11,6
12,3
12,9
13,6 | 12,2
13,6
13,7
14,4
15,2 | 13,6
13,8
14,5
15,3
16,6 | | | | | 13,3
14,1
15,0
15,9
16,8 | 21
22
23
24
25 | | 26
27
28
29
30 | 11,2
11,7
12,3
12,8
13,3 | 13,1
13,8
14,4
15,0
15,6 | 14,3
15,0
15,6
16,3
17,0 | 15,9
16,6
17,4
18,1
18,9 | 16,8
17,6
18,4
19,1 | 21,3 | | | | 17,7
18,6
19,5
20,4
21,3 | 26
27
28
29
30 | | 31
32
33
34
35 | 13,8
14,3
14,9
15,4
15,9 | 16,2
16,9
17,5
18,1
18,7 | 17,7
18,4
19,0
19,7
20,4 | 19,6
20,4
21,1
21,9
22,6 | 25,7
21,5
22,3
23,1
23,9 | 22,0
22,8
23,6
24,5
25,3 | | jan. | | 22,3
23,2
24,1
25,0
26,0 | 31
32
33
34
35 | | 36
37
38
39
40 | 16,4
16,9
17,3
17,8
18,2 | 19,3
20,6
20,6
21,2
21,9 | 21,1
21,8
22,5
23,2
23,8 | 23,4
24,1
24,9
25,7
26,4 | 24,7
25,4
26,2
27,6
27,8 | 26,1
27,0
27,8
28,6
29,5 | | | | 26,9
27,8
28,8
29,7
30,6 | 36
37
38
39
40 | | 41
42
43
44
45 | 18,7
19,1
19,6
20,1
20,5 | 22,5
23,1
23,7
24,3
25,0 | 24,5
25,2
25,9
26,6
27,3 | 27,2
28,0
28,7
29,5
30,3 | 28,6
29,4
36,2
31,6
31,8 | 30,3
31,1
32,0
32,8
33,7 | | | | 31,6
32,5
33,5
34,4
35,4 | 41
42
43
44
45 | | 46
47
48
49
50 | 21,0
21,4
21,9
22,3
22,8 | 25,6
26,2
26,9
27,5
28,1 | 28,0
28,7
29,4
30,1
30,7 | 31,1
31,8
32,6
33,4
34,2 | 32,7
33,5
34,3
35,1
35,9 | 34,5
35,4
36,2
37,1
37,9 | 40,1 | | | 36,3
37,3
38,2
39,2
40,1 | 46
47
48
49
50 | | | | | | | | taling to
<u>Managara</u> | <u> </u> | | | | | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|--------------------------------------|-----------------------------| | n k | 6 | 8 | 10 | 15 | 20 | 30 | 50 | 80 | 115 | k=n | n | | 50 | 22,8 | 28,1 | 30,7 | 34,2 | 35,9 | 37,9 | 40,1 | | | 40,1 | 50 | | 51
52
53
54
55 | 23,2
23,7
24,2
24,6
25,1 | 28,7
29,3
30,0
30,6
31,2 | 31,4
32,1
32,8
33,5
34,2 | 34,9
35,7
36,5
37,2
38,6 | 36,7
37,5
38,3
39,1
40,0 | 38,8
39,6
40,5
41,3
42,2 | 40,9
41,8
42,7
43,5
44,4 | | | 41,1
42,1
43,0
44,0
45,0 | 51
52
53
54
55 | | 56
57
58
59
60 | 25,5
26,0
26,4
26,9
27,3 | 31,8
32,4
33,1
33,7
34,3 | 34,9
35,6
36,2
36,9
37,6 | 38,8
39,6
40,4
41,1
41,9 | 40,8
41,6
42,4
43,2
44,1 | 43.0
43.9
44.7
45.6
46.4 | 45,3
46,2
47,1
48,0
48,9 | | | 45,9
46,9
47,9
48,8
49,8 | 56
57
58
59
60 | | 61
62
63
64
65 | 27,8
28,3
28,7
29,2
29,6 | 34,9
35,5
36,1
36,7
37,2 | 38,3
39,0
39,7
40,4
41,1 | 42,7
43,5
44,3
45,0
45,8 | 44,9
45,7
46,5
47,3
48,2 | 47,3
48,2
49,0
49,9
50,7 | 49,8
50,7
51,6
52,5
53,4 | | | 50,8
51,8
52,7
53,7
54,7 | 61
62
63
64
65 | | 66
67
68
69
70 | 30,1
30,5
31,0
31,5
31,9 | 37,8
38,4
39,0
39,5
40,1 | 41,8
42,5
43,2
43,9
44,5 | 46,6
47,4
48,2
49,0
49,8 | 49.6
49.8
50.6
51.5
52.3 | 51,6
52,5
53,3
54,2
55,1 | 54,3
55,2
56,1
57,0
57,9 | | | 55,7
56,6
57,6
58,6
59,6 | 66
67
63
69
70 | | 71
72
73
74
75 | 32,4
32,8
33,3
33,7
34,2 | 40,7
41,2
41,8
42,4
43,0 | 45,2
45,9
46,6
47,3
48,0 | 50,5
51,3
52,1
52,9
53,7 | 53,1
53,9
54,8
55,6
56,4 | 55,9
56,8
57,7
58,5
59,4 | 58,8
59,7
60,6
61,5
62,4 | | | 60,6
61,5
62,5
63,5
64,5 | 71
72
73
74
75 | | 76
77
78
79
80 | 34,6
35,1
35,6
36,0
36,5 | 43,5
44,1
44,7
45,3
45,8 | 48,6
49,3
50,0
50,7
51,4 | 54,4
55,2
56,0
56,8
57,6 | 57.3
58.1
58.9
59.7
60.6 | 60,2
61,1
62,0
62,9
63,7 | 63,3
64,2
65,1
66,0
66,9 | 69,4 | | 65,5
66,5
67,5
68,4
69,4 | 76
77
78
79
80 | | 81
82
83
84
85 | 36,9
37,4
37,8
38,3
38,7 | 46,4
47,0
47,6
48,1
48,7 | 52,0
52,7
53,4
54,0
54,6 | 58,4
59,2
59,9
60,7
61,5 | 61,4
62,2
63,1
63,9
64,7 | 64,6
65,5
66,4
67,2
68,1 | 67,8
68,7
69,6
70,5
71,4 | 70,3
71,3
72,2
73,2
74,1 | | 70,4
71,4
72,4
73,4
74,4 | 81
82
83
84
85 | | 86
87
88
89
90 | 39,2
39,7
40,1
40,6
41,0 | 49,3
49,8
50,4
51,0
51,6 | 55,3
55,9
56,6
57,2
57,9 | 62,3
63,1
63,9
64,7
65,4 | 65,5
66,4
67,2
68,0
68,9 | 69,0
69,8
70,7
71,6
72,5 | 72,3
73,2
74,1
75,0
75,9 | 75,6
76,0
76,9
77,9
78.8 | | 75,4
76,4
77,4
78,4
79,3 | 86
87
88
89
90 | | 91
92
93
94
95 | 41,5
41,9
42,4
42,8
43,3 | 52,1
52,7
53,3
53,9
54,4 | 58,5
59,1
59,8
60,4
61,1 | 66,2
67,0
67,8
68,6
69,3 | 69,7
70,5
71,4
72,2
73,0 | 73,3
74,2
75,1
76,0
76,8 | 76,9
77,8
78,7
79,6
80,5 | 79,7
80,7
81,6
82,6
83,5 | | 80,3
81,3
82,3
83,3
84,3 | 91
92
93
94
95 | | 96
97
98
99
100 | 43,8
44,2
44,7
45,1
45,6 | 55,0
55,6
56,1
56,7
57,3 | 61,7
62,4
63,0
63,6
64,3 | 70,1
70,9
71,7
72,5
73,3 | 73,9
74,7
75,5
76,4
77,2 | 77,7
78,6
79,5
80,4
81,2 | 81,4
82,3
83,2
84,1
85,1 | 84,4
85,4
86,3
87,3
88,2 | | 85,3
86,3
87,3
88,3
89,3 | 96
97
98
99
100 | Z = 2.0 B = 5.0 % Table 6 -14 B = 5.0 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks A in Erl Z = 2.0 B = 5.0 % | n k | 6 | 8 | 15 | 15 | 26 | 30 | 50 | 86 | 110 | k=n | ņ | |---------------------------------|--------------------------------------|--------------------------------------|---|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | 100 | 45,6 | 57,3 | 64,3 | 73,3 | 77.2 | 81,2 | 85,1 | 88;2 | | 89,3 | 155 | | 102
104
106
108
110 | 46,5
47,4
48,3
49,2
50,1 | 58,4
59,6
60,7
61,9
63,0 | 65,6
66,9
68,2
69,4
70,7 | 74,8
76,4
78,0
79,6
81,1 | 78,9
80,6
82,2
83,9
85,6 | 83,0
84,8
86,5
88,3
90,0 | 86,9
88,7
90,5
92,4
94,2 | 90,1
92,0
93,9
95,8
97,7 | 99,3 | 91,3
93,3
95,3
97,3
99,3 | 162
164
166
108
110 | | 112
114
116
118
120 | 51,1
52,0
52,9
53,8
54,7 | 64,2
65,3
66,5
67,6
68,7 | 72,0
73,3
74,6
75,9
77,2 | 82,7
84,2
85,8
87,4
89,0 | 87,2
88,9
90,6
92,3
93,9 | 91,8
93,6
95,3
97,1
98,9 | 99,7 | 161,4
163,3
165,2 | 101,3
103,2
105,1
107,1
109,0 | 103,4
105,4
107,4 | 112
114
116
118
120 | | 122
124
126
128
130 | 55,6
56,5
57,4
58,3
59,3 | 69,9
71,0
72,2
73,3
74,5 | 78,5
79,7
81,0
82,3
83,6 | 90,5
92,1
93,6
95,2
96,7 | 97,3
98,9 | 100,6
102,4
104,2
105,9
107,7 | 107,1
108,9
110,7 | 110,9
112,8
114,7 | 110,9
112,9
114,8
116,7
118,7 | 113,4
115,4
117,5 | 122
124
126
128
130 | | 132
134
136
138
140 | 60,2
61,1
62,0
62,9
63,8 | 75,6
76,8
77,9
79,1
80,2 | 84,9
86,2
87,5
88,7
90,0 | 99,6
101,1
102,6 | 107,3 | 111,3 | 116,3
118,1
120,0 | 120,4
122,3
124,2 | 124,5
126,4 | 123,5
125,5
127,6 | 132
134
136
138
140 | | 142
144
146
148
150 | 64,7
65,6
66,5
67,5
68,4 | 81,4
82,5
83,6
84,8
85,9 | 91,3
92,6
93,9
95,2
96,5 | 107,1
108,6
110,1 | 114,0
115,7
117,3 | 121,9 | 127,4 | 129,9
131,8
133,7 | 134,1 | 133,7
135,7
137,7 | 142
144
146
148
150 | | 152
154
156
158
160 | 69,3
70,2
71,1
72,0
72,9 | 87,1
88,2
89,4
90,5
91,7 | 97,7
99,0
100,3
101,6
102,9 | 113,0
114,5
116,0
117,5
119,0 | 122,4
124,0
125,7 | | 134,8
136,6
138,5 | 139,4
141,3
143,2 | 139,9
141,9
143,8
145,7
147,7 | 143,8
145,8
147,9 | 152
154
156
158
160 | |
162
164
166
168
170 | 73,8
74,8
75,7
76,6
77,5 | 95,1
96,2 | | 120,5
122,0
123,4
124,9
126,4 | 130,7
132,4
134,1 | 136,2
137,9
139,7
141,5
143,3 | 144,1
145,9
147,8 | 148,9
150,8
152,7 | 151,5
153,5 | 154,0
156,0
158,1 | 162
164
166
168
175 | | 172
174
176
178
180 | 78,4
79,3
80,2
81,1
82,0 | 99,7
100,8
102,0 | 113,2 | 127,9
129,4
130,9
132,4
133,9 | 138,9
140,5
142,1 | | 153,4
155,2
157,1 | 158,5
160,4
162,3 | 159,3
161,2
163,2
165,1
167,1 | 164,2
166,2
168,3 | 172
174
176
178
180 | | 182
184
186
188
190 | 83,0
83,9
84,8
85,7
86,6 | 105,4
106,6
107,7 | | 138,3 | 146,9 | 157.5
159.3 | 162,7
164,5
166,4 | 168.0 | 170,9
172,9
174,8 | 174,4
176,4 | 182
184
186
188
190 | | 192
194
196
198
200 | 89,3 | 111,1
112,3 | 123,5
124,8
126,0
127,3
128,6 | 144,3 | 154,9 | 162,9
164,7
166,5
168,2
170,0 | 172.0 | 177.6 | 180,6 | 184,6 | 192
194
196
198
200 | | nk | 6 | 8 | 16 | 15 | 20 | 30 | 50 | 86 | 110 | k=n | n | |---------------------------------|----------------------------------|---|-------------------------|---|---|---|-------------------------|-------------------------|---|---|---------------------------------| | 200 | 91,2 | 114,6 | 128,6 | 148,7 | 159.7 | 170,0 | 177,6 | 183,4 | 186,5 | 190,7 | 200 | | 202
204
206
208
210 | 93,0
93,9
94,8 | 115,7
116,9
118,0
119,2
120,3 | 131,2
132,5
133,8 | 150,2
151,7
153,2
154,7
156,2 | 162,9
164,5
166,1 | 175,4
177,2 | 181,3 | 187,2
189,1
191,0 | 188,4
190,4
192,3
194,3
196,2 | 194,8
196,9
198,9 | 202
204
206
208
210 | | 212
214
216
218
220 | 97,5
98,5
99,4 | 121,5
122,6
123,7
124,9
126,0 | 137,6
138,9 | 159,1
160,6
162,1 | 169,3
170,9
172,5
174,1
175,7 | 182,5
184,3
186,1 | 190,7
192,5
194,4 | | 200,1 | 203,0
205,1
207,2
209,2
211,3 | 212
214
216
218
220 | | 222
224
226
228
230 | 102,1
103,0
103,9 | 127,2
128,3
129,5
130,6
131,8 | 144,0 | 166,6
168,1
169,6 | 178,9
180,5
182,1 | 189,6
191,4
193,2
195,0
196,8 | 200,0
201,9
203,8 | 206,4
208,3
210,2 | 209,8 | 217,4
219,5 | 222
224
226
228
230 | | 232
234
236
238
240 | 106,7
107,6
108,5 | 132,9
134,1
135,2
136,4
137,5 | 150,5
151,8
153,6 | 174,0
175,5
177,0 | 185,3
186,9
188,5
190,1
191,7 | 260,4
262,2
263,9 | 209,4
211,3
213,2 | 216.0
217.9
219.9 | 217,6
219,6
221,5
223,5
225,4 | 225,6
227,7
229,8 | 232
234
236
238
240 | | 242
244
246
248
250 | 111,2
112,1
113,0
114,0 | 139,8
140,9
142,1
143,2 | 158,2
159,5 | 181,5
182,9
184,4
185,9 | 194,9
196,5
198,1
199,7 | 209,3
211,1
212,9
214.6 | 220,7
222,5
224,4 | 225,6
227,6
229,5 | 229,3
231,3
233,2
235,2 | 235,9
238,0
240,0 | 242
244
246
248
250 | | 366
1 | | 171,9
0,573 | | 223,1 | 239,6
6,799 | 257,9
0,860 | | | 284,1
0,981 | | 300 | | 358
1 | | 200,5 | 225,1
0,643 | | | 300,9
0,860 | | | 333,1
0,983 | | 350
1 | | 400
1 | | 229,2
0,573 | | | | 343,9
0,860 | | | | 397,3
1,040 | 400 | | 500
1 | 227,9
0,456 | | | 371.8
0,744 | 399.3
0,799 | 429,9 | 458,2
0,916 | 474.2 | 481,0 | 501,2
1,042 | 500
1 | | 600
1 | | 343,7
0,573 | | 446,2
0,744 | 479,2
0,799 | 515,8
0,860 | | | 579,9
5,992 | 605,5
1,044 | .600
1 | | 766
1 | | | 450,1
0,643 | | 559,6
6,799 | 601,8
0,860 | | | 679,1
0,993 | 709.9
1,045 | 766
1 | | 800
1 | | | 514,4
0,643 | | 638,9 | 687,8
0,860 | | 767,0 | 778,4
6,994 | 814,4 | 800 | | 900
1 | | 515,6
0,573 | | | 718.8
5.799 | 773,7 | 824.7 | | | 919.0
1.047 | 900
1 | | 1100 | 501,4
0,456 | 630,2
0,573 | 707,4
0,643 | 818,0
0,744 | 878,5
0,799 | 945,7
0,860 | 1008 | 1055
0.959 | 1077 | 1128
1,048 | 1100
1 | Table 6 -15 B = 10.0 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks A in Erl Z = 2.0 B = 10.0 % | | C K | 6 | 8 | 10 | 15 | 25 | 30 | 50 | 85 | 115 | k=n | C | | |----------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|----|-----|--|-----------------------------|---| | | 12345
6789 | 2,1
2,5
3,1
3,7
4,3 | 3,8
4,2
4,9 | 5,5 | | | | Ta a | | | 0,63
1,4
2,1
2,9
3,8
4,7
5,5 | 12345 67895 | | | | 11
12
13
14
15 | 4,9
5,5
6,1
6,7
7,4 | 5,6
6,2
6,9
7,6
8,3 | 5,0
5,8
7,5
8,2
9,0 | 10.1 | | · . | | | | 6,4
7,3
8,3
9,2
15,1 | 11
12
13
14
15 | • | | | 16
17
18
19
20 | 8,0
8,7
9,3
9,9
10,6 | 9,5
9,7
10,4
11,1 | 9,7
10,4
11,2
11,9
12,7 | 10,8
11,6
12,4
13,2
14,0 | 15,6 | | 20
0
2 | | | 11,1
12,1
13,0
14,0
15,0 | 16
17
18
19
25 | | | | 21
22
23
24
25 | 11,2
11,8
12,5
13,1
13,8 | 12,6
13,3
14,0
14,8
15,5 | 13,5
14,2
15,0
15,8
16,5 | 14,8
15,7
16,5
17,3
18,1 | 15,6
16,5
17,4
18,2
19,1 | | | | | 16,0
17,0
17,9
18,9
19,9 | 21
22
23
24
25 | | | | 26
27
28
29
30 | 14,4
15,1
15,7
16,4
17,0 | 16,2
16,9
17,6
18,4
19,1 | 17,3
18,1
18,9
19,6
20,4 | 19,0
19,8
20,6
21,5
22,3 | 19,9
20,8
21,7
22,6
23,4 | 25,0 | | | | 21,0
22,0
23,0
24,0
25,0 | 26
27
28
29
30 | | | | 31
32
33
34
35 | 17,7
18,3
19,6
19,6
20,3 | 19,9
20,6
21,3
22,0
22,8 | 21,2
22,0
22,8
23,5
24,3 | 23,2
24,0
24,8
25,7
26,5 | 24,3
25,2
26,1
26,9
27,8 | 25,7
26,6
27,5
28,5
29,4 | | | | 26,5
27,5
28,1
29,1
35,1 | 31
32
33
34
35 | - | | | 36
37
38
39
40 | 20,9
21,5
22,1
22,7
23,2 | 23,5
24,2
25,0
25,7
26,4 | 25,1
25,9
26,7
27,5
28,3 | 27,4
28,2
29,1
35,0
36,8 | 28,7
29,6
35,5
31,4
32,3 | 30,3
31,2
32,1
33,1
34,0 | 14
15
15
27 | | | 31,2
32,2
33,2
34,3
35,3 | 36
37
38
39
40 | | | | 41
42
43
44
45 | 23,8
24,4
25,0
25,6
26,2 | 27,2
27,9
28,6
29,4
30,1 | 29,0
29,8
30,6
31,4
32,2 | 31,7
32,5
33,4
34,2
35,1 | 33,1
34,0
34,9
35,8
36,7 | 34,9
35,8
36,8
37,7
38,6 | | , | | 36,3
37,4
38,4
39,5
40,5 | 41
42
43
44
45 | | | Table
6 -16 | 46
47
48
49
50 | 26,7
27,3
27,9
28,5
29,1 | 30,9
31,6
32,3
33,1
33,8 | 33,8
33,8
34,6
35,4
36,2 | 36,8
36,8
37,7
38,5
39,4 | 37,6
38,5
39,4
40,3
41,2 | 39,6
40,5
41,4
42,4
43,3 | 45,8 | | | 41,6
42,6
43,7
44,7
45,8 | .46
47
48
49
50 | | |)

 X | 6 | 8 | 10 | 15 | 25 | 35 | 50 | 85 | 110 k | = n | | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------|---------------------------------|-----------------------------| | 50 | 29,1 | 33,8 | 36,2 | 39,4 | 41,2 | 43,3 | 45,8 | | 4 | 5,8 | 56 | | 51
52
53
54
55 | 29,6
30,2
30,8
31,4
32,0 | 34,6
35,3
36,0
36,8
37,5 | 36,9
37,7
38,5
39,3
40,1 | 40,3
41,1
42,5
42,9
43,7 | 42,1
43,6
43,9
44,8
45,7 | 44.2
45.2
46.1
47.5
48,6 | 46,5
47,5
48,5
49,4
50,4 | | 4
4
5 | 6,8
7,9
8,9
5.0
1,0 | 51
52
53
54
55 | | 56
57
58
59
60 | 32,5
33,1
33,7
34,3
34,9 | 38,2
38,9
39,7
40,4
41,1 | 40,9
41,7
42,5
43,3
44,1 | 44,6
45,5
46,3
47,2
48,1 | 46,6
47,5
48,4
49,3
50,2 | 48,9
49,8
50,8
51,7
52,7 | 51,4
52,4
53,3
54,3
55,3 | | 5
5
5 | 2,1
3,2
4,2
5,3
6,3 | 56
57
58
59
60 | | 61
62
63
64
65 | 35,5
36,6
36,6
37,2
37,8 | 41,9
42,6
43,3
44,0
44,6 | 44,8
45,6
46,4
47,2
48,0 | 48,9
49,8
55,7
51,6
52,4 | 51,1
52,6
52,9
53,8
54,8 | 53,6
54,6
55,5
56,5
57,4 | 56,3
57,3
58,2
59,2
60,2 | | 5
5
6 | 7,4
8,5
9,5
0,6
1,7 | 51
52
63
64
55 | | 66
67
68
69
76 | 38,4
38,9
39,5
40,1
40,7 | 45,3
46,0
46,7
47,4
48,1 | 48,8
49,6
50,4
51,2
52,0 | 53,3
54,2
55,0
55,9
56,8 | 55,7
56,6
57,5
58,4
59,3 | 58,3
59,3
60,2
61,2
62,1 | 61,2
62,1
63,1
64,1
65,1 | | 6
6
6 | 2,7
3,8
4,9
5,9
7,0 |
66
67
68
69
70 | | 71
72
73
74
75 | 41,3
41,8
42,4
43,0
43,6 | 48,8
49,5
50,1
50,8
51,5 | 52,8
53,5
54,3
55,1
55,9 | 57,7
58,5
59,4
60,3
61,2 | 60,2
61,1
62,5
63,5
63,9 | 63,1
64,0
65,0
65,9
66,9 | 66,1
67,1
68,0
69,0
70,0 | | 6
7
 | 8,1
9,1
0,2
1,3
2,3 | 71
72
73
74
75 | | 76
77
78
79
80 | 44,2
44,8
45,3
45,9
46,5 | 52,2
52,9
53,6
54,3
55,0 | 56,7
57,5
58,3
59,1
59,9 | 62,0
62,9
63,3
64,7
65,5 | 64,8
65,7
66,6
67,5
68,4 | 67,8
68,8
69,7
70,7
71,6 | 71,0
72,0
73,0
73,9
74,9 | 77,7 | 7
7
7 | 3,4
4,5
5,6
6,6
7,7 | 76
77
78
79
80 | | 81
82
83
84
85 | 47,1
47,7
48,2
48,8
49,4 | 55,6
56,3
57,0
57,7
58,4 | 60,6
61,4
62,1
62,9
63,6 | 66,4
67,3
68,1
69,0
69,9 | 69,3
70,3
71,2
72,1
73,5 | 72,6
73,5
74,5
75,4
76,4 | 75,9
76,9
77,9
78,9
79,9 | 78,7
79,7
80,7
81,7
82,8 | 7
8
8 | 8,8
9,9
5,9
2,5
3,1 | 81
82
83
84
85 | | 86
87
88
89
90 | 50,0
50,6
51,1
51,7
52,3 | 59,1
59,8
60,4
61,1
61,8 | 64,4
65,1
65,9
66,6
67,4 | 75,8
71,6
72,5
73,4
74,3 | 73,9
74,8
75,7
76,7
77,6 | 77,3
78,3
79,3
80,2
81,2 | 80,9
81,8
82,8
83,8
84,8 | 83.8
84.8
85.8
86.8
87.9 | 8
8
8 | 4,2
5,2
6,3
7.4
8,5 | 86
87
88
89
90 | | 91
92
93
94
95 | 52,9
53,5
54,1
54,6
55,2 | 62,5
63,2
63,9
64,6
65,3 | 68,1
68,9
69,6
70,4
71,1 | 75,1
76,0
76,9
77,7
78,6 | 78,5
79,4
80,3
81,2
82,2 | 82,1
83,1
84,0
85,0
85,9 | 85,8
86,8
87,8
88,8
89,8 | 88.9
89.9
90.9
91.9
93.0 | 9
9
9 | 9,5
0,6
1,7
2,8
3,9 | 91
92
93
94
95 | | 96
97
98
99
100 | 55,8
56,4
57,0
57,5
58,1 | 65,9
66,6
67,3
68,0
68,7 | 71,9
72,6
73,4
74,1
74,9 | 79,5
80,4
81,3
82,1
83,0 | 83,1
84,6
84,9
85,8
86,8 | 86,9
87,9
88,8
89,8
93,7 | 90.7
91.7
92.7
93.7
94.7 | 94.0
95.0
96.0
97.1
98.1 | 9
9
9 | 4,9
6,0
7,1
3,2
9,3 | 96
97
98
99
100 | B = 10.0 % A = offered nonrandom traffic B = probability of loss Z = variance - to - mean ratio of the offered traffic k = accessibility n = number of trunks A in Erl Z = 2.0 B = 10.0 % | n k | 6 | .8 | 16 | 15 | 25 | 30 | 50 | 86 | 110 k=n | n | |---------------------------------|--------------------------------------|---|---|---|--------------------------------------|---|---|---|---|---------------------------------| | 100 | 58,1 | 68,7 | 74,9 | 83,5 | 86,8 | 90,7 | 94,7 | 98.1 | 99,3 | 100 | | 102
104
106
108
110 | 59,3
60,4
61,6
62,8
63,9 | 70,1
71,4
72,8
74,2
75,6 | 76,4
77,9
79,4
80,9
82,4 | 84,7
86,5
88,2
90,0
91,7 | 88,6
90,4
92,3
94,1
95,9 | 98,4 | 96,7
98,7
100,7
102,7 | 102,2
104,2
106,3 | 161,4
163,6
165,8
167,9
115,1 116,1 | 102
104
106
108
110 | | 112
114
116
118
120 | 65,1
66,3
67,4
68,6
69,7 | 76,9
78,3
79,7
81,1
82,4 | 83,9
85,4
86,9
88,4
89,9 | 93,5
95,2
97,0
98,7
100,5 | 161,4 | 104,2
106,1
108,0 | 108,6
110,6
112,6 | 114,4 | | 112
114
116
118
120 | | 122
124
126
128
130 | 70,9
72,1
73,2
74,4
75,6 | 83,8
85,2
86,6
87,9
89,3 | 91,4
92,9
94,4
95,9
97,4 | 103.9
105.7
107.4 | 108,8
110,6
112,5 | 117,7 | 118,6
120,6
122,6 | 122,6
124,7
126,7 | 122,6 123,1
124,7 125,3
126,8 127,5
128,9 129,6
130,9 131,8 | 122
124
126
128
130 | | 132
134
136
138
140 | 76,7
77,9
79,0
80,2
81,4 | | 98,9
100,4
101,8
103,3
104,8 | 112,4
114,1
115,7 | 118,5 | | 128,6
136,6
132,6 | 130.8
132.9
134.9
137.0
139.0 | 133,0 134,0
135,1 136,2
137,2 138,4
139,3 140,5
141,4 142,7 | 132
134
136
138
140 | | 142
144
146
148
150 | 86,0 | 97,5
98,9
100,3
101,7
103,0 | 110,8 | 119,1
120,8
122,5
124,2
125,8 | 127,2
129,0
130,9 | | 138,6
140,6
142,6 | 143,1
145,2
147,2 | 147,6 149,3 | 142
144
146
148
150 | | 152
154
156
158
160 | 89,5
90,7
91,8 | 104,4
105,8
107,2
108,5
109,9 | 113,8
115,3
116,8
118,3
119,8 | 129,2
130,9
132,5 | 136,4
138,2
140,1 | 146.6 | 148,6
150,6
152,6 | | 186,0 158,0 | 152
154
156
158
160 | | 162
164
166
168
170 | 95,3
96,5
97,6 | 111.3
112.7
114.0
115.4
116.8 | 122,8
124,3
125,8 | 137,6
139,2
140,9 | 145,6
147,4
149,3 | 150,5
152,4
154,4
156,3
158,3 | 156.6
158.7
160.7
162.7
164.7 | 163.7
165.7
167.8 | | 162
164
166
168
170 | | 172
174
176
178
180 | 101,1
102,3
103,5 | 118,1
119,5
126,9
122,3
123,6 | 130,3
131,8
133,3 | 146,0 | 154.6
156.4 | 160,2
162,1
164,1
166,0
167,9 | 166.7
168.7
176.7
172.7
174.7 | 174.0
176.1
178.1 | 178,9 182,1 | 172
174
176
178
185 | | 182
184
186
188
190 | 106,9
108,1
109,3 | 127,8 | 137,8
139,3
140,8 | 154,3
156,6
157,7 | 163,5 | 169.9
171.8
173.8
175.7
177.6 | 180,8 | 184,3 | 189,4 193,0
191,5 195,2 | 182
184
186
188
190 | | 192
194
196
198
200 | 112,8
113,9
115,1 | 131,9
133,3
134,6
136,0
137,4 | 145,3
146,8
148,3 | 162.7
164.4
166.1 | 172,4
174,2
176,6 | 179,6
181,5
183,4
185,4
187,3 | 188.8
195.9 | 194,6
196,7
198.7 | 195,6 199,6
197,7 201,8
199,8 204,0
201,9 206,2
204,0 208,4 | 192
194
196
198
200 | | _r
K | 6 | 8 | 16 | 15 | 20 | 36 | 50 | 80 | 110 | k=n | n | | |---------------------------------|----------------------------------|--|---|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|---|----------------------------------|--------------------------------------|--| | 200 | 116,2 | 137,4 | 149,8 | 167,8 | 177,7 | 187,3 | 194,9 | 200,8 | 204,0 | 208,4 | 200 | | | 202
204
206
208
210 | 118,6
119,7
120,9 | 138,8
140,1
141,5
142,9
144,3 | 155,8 | 171,1
172,8
174,5 | 181,3
183,1
184,9 | 191,2
193,1
195,1 | 198,9
200,9
202,9 | 204,9
207.0
209,1 | 206,1
208,2
210,3
212,4
214,5 | 212,8
214,9
217,1 | 202
204
206
208
210 | | | 212
214
216
218
220 | 124.4 | 147,0
148,4
149,7 | 158,8
160,3
161,8
163,3
164,8 | 179,5
181,2
182,9 | 190,2
192,6
193,7 | 200,9
202,8
204.8 | 209,0
211,0
213,0 | 215,3
217,3
219,4 | 216,6
218,6
220,7
222,8
224,9 | 223,7
225,9
228,1 | 212
214
216
218
220 | | | 222
224
226
228
230 | 130,2
131,3
132,5 | 153,9
155,2
156,6 | 166,3
167,8
169,2
170,7
172,2 | 187,9
189,6
191,2 | 199,1
200,9
202.6 | 210,6
212,5
214.5 | 219,1 | 225.6 227.7 | 229,1 | 234,7 236,9 | 222
224
226
228
230 | | | 232
234
236
238
240 | 136,0
137,2
138,3 | 159,4
160,7
162,1
163,5
164,9 | 178,2 | 196,3
198,0
199,6 | 208,6
209,7
211,5 | 218,4
220,3
222,2
224,2
226,1 | 229,2
231,2
233,3 | 235,9
238,0
240,1 | 239,6
241,7
243,8 | 245,7
247,9
250,1 | 232
234
236
238
240 | | | 242
244
246
248
250 | 141,8
143,6
144,1
145,3 | 166,2
167,6
169,0
170,4
171,7
0,687 | 184,2
185,7
187,2 | 204,7
206,3
208,0
209,7 | 216,8
218,6
220,4
222,2 | 230,0 | 239,3
241,3
243,4
245,4 | 246,3
248,4
250,4
252,5 | 250,1
252,2
254,3
256,4 | 256,7
258,9
261,1
263,3 | 242
244
246
248
250
1 | | | 300
1 | 174,4
0,581 | 206,1
0,687 | 224,7 | 251,6
0,839 | 266,6 | 283,1 | 296,0 | 364,4 | 308,8 | 318,4 | 300
1 | | | 350
1 | 203,4
0,581 | 240,4
0,687 | 262,1
0,749 | 293,6 | 311,1 | | 346,8 | 356,4 | 361.4 | 373.5 | 350
1 | | | 466
1 | | 274,8
0,687 | 299,6
0,749 | 335,5
0,839 | | 377,5
0,944 | | 408,5
1,044 | 414,1
1,056 | 428,8 | 400
1 | | | 500
1 | | 343,5
0,687 | 374,4
0,749 | | | 471,9
0,944 | | 513,0
1,046 | 519,7
1,058 | 539,4 | 5 6 6 | | | 600
1 | | | 449,3 | 503,3 | 533,2 | 566,3 | 597.4 | 617.6 | 625.5 | 650.1 | 600
1 | | | 766
1 | | 480,8 | 524,2
0,749 | | | 660,7 | | 722,4 | 731,4 | 760,9
1,109 | 700
1 | | | 800
1 | | 549,5
0,687 | 599,1
0,749 | | | 755,1
0,944 | | 826,8
1,633 | 837,5 | 871,7
1,159 | 800 | | | 900
1 | | | 674,0 | | 799,9 | 849,4 | 896.0 | 930,1 | 943,7 | 982,6 | 900
1 | | | 1100
1 | 639,3
0,581 | 755,6
0,687 | 823,8
0,749 | 922.7 | 977.6 | 1038 | 1695 | 1137 | 1156 | 1244 | 1100 | | | | | | | 1 | | | | | | | 5 | | Table 6 -17