Trust Modeling

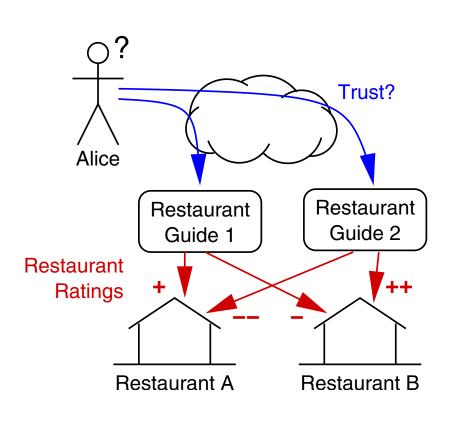
Reasoning with Uncertainty

Andreas Gutscher
Institute of Communication Networks and Computer Engineering (IKR)
Universität Stuttgart
gutscher@ikr.uni-stuttgart.de

2. Treffen der ITG Fachgruppe 5.2.2 "Sicherheit in Netzen" 15.6.2007

Trust Modeling

Outline

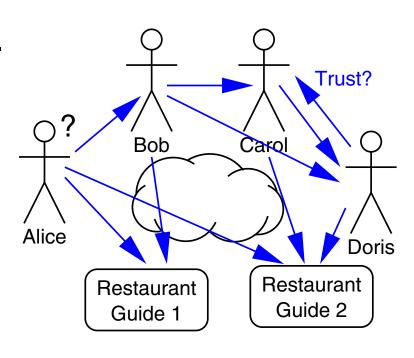

- Motivation
- Trust Modeling
 - Trust Relations
 - Reasoning with Trust
 - Representation of Trust Values
 - Trust Computation
- Proposal for a New Trust Model
- Conclusion and Outlook

Example: Restaurant Guides

- Restaurant guide web services
- Problem
 - different restaurant guides may provide different results
 - anyone can offer a restaurant guide and disseminate falsified ratings
- ⇒ "Whom can I trust?"

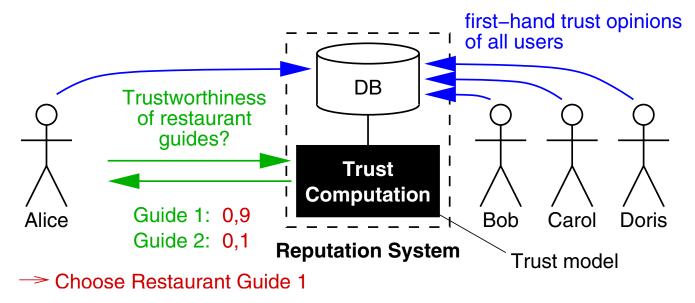
Trustworthiness

- Competence ("is able to ...")
- Benevolence ("is willing to ...")
- **→** Need estimation of trustworthiness, e.g. for
 - decision whether or not to use a service
 - weighted combination of ratings


Motivation

First-hand knowledge

- Good / bad own experiences, technical knowledge, guarantees, ...
- **→** But: often only for few services available!

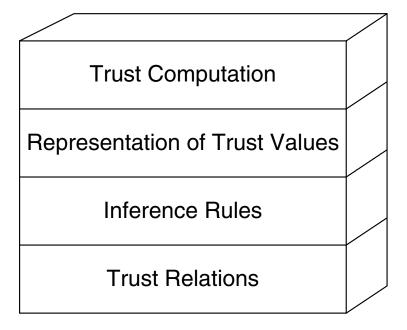

Second-hand knowledge

- Exchange and evaluate trust estimations of other users
- → Again: "Whom can I trust?"
- Malicious / incompetent users
- Conflicting opinions, uncertainty, ...
- **▶** Need estimation of trustworthiness of trust estimations
- **→ Complex** graphs of trust relations, "Web of Trust"

Goal

Reputation System

- All users publish (possibly false) first-hand trust opinions about other users and services
- Reputation system computes trustworthiness of any user / service


Note:

Reputation system do not aim to create or increase trust, nor to emulate (possibly irrational) human behaviour, but to serve a basis for a risk estimation.

Trust Modeling

Questions to answer

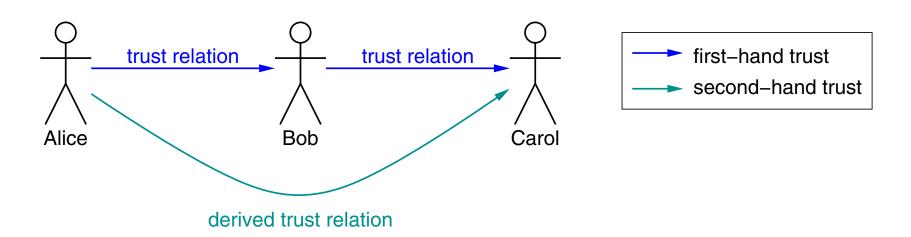
- Nature of trust relations (properties)
- Reasoning with trust relations (inference rules)
- Representation of trust values (trustworthiness)
- Trust computation (trustworthiness of derived trust relations)

Nature of Trust Relations

Working Definition

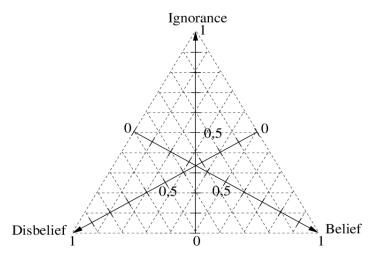
- Trust is a unidirectional relation from truster to trustee, expressing the belief of the truster that the trustee will behave as expected.
- Distinguish between
 - direct (functional) trust: "Trustee has this property."
 - indirect (recommender) trust:
 "Trustee can recommend someone who has this property."
 - limit of recommendation hops

Trust Properties


- Trust is specific to a given property / context
- Trust is not symmetric
- Trust is not reflexive
- Trust is not transitive in general
 - "A trusts B" and "B trusts C" does not necessarily imply "A trusts C"
 - must be specified in inference rules

Reasoning with Trust

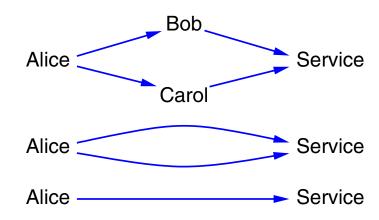
- Set of inference rules defining
 - Which trust relations can be derived from a set of existing trust relations?
- Example: Recommendation rule [A. Jøsang]


concatenation of two trust relations:

 $trust(Alice, Bob) \land trust(Bob, Carol) \Rightarrow trust(Alice, Carol)$

Representation of Trust Values (Trust Metrics)

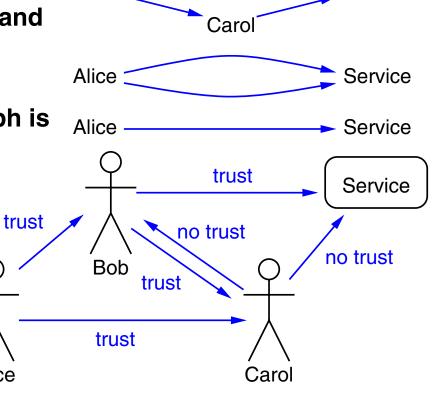
- Range: "distrust" ↔ "no trust" ↔ "trust"
 - in open systems: negative trust values often not useful
- Default value:
 - in open system: choose lowest possible value
- Uncertainty required?
- Granularity:
 - discrete values, e.g."no trust", "marginally trust", "full trust"
 - continuous, e.g.trust ∈ [0...1]
 - multi-value:trust ∈ [-1...1], confidence ∈ [0...1]
 - upper and lower bound / opinion triangle



From: Audun Jøsang, "Artificial Reasoning with Subjective Logic"

Trust Computation

Operator-based Trust Computation


- Arithmetic operator for each combination rule
- Combining trust values of the involved trust relations
 - e.g. multiplication, min()/max(), average, fuzzy logic operators, ...
- Successive composition of serial and parallel trust relations

Trust Computation

Operator-based Trust Computation

- Arithmetic operator for each combination rule
- Combining trust values of the involved trust relations
 - e.g. multiplication, min()/max(), average, fuzzy logic operators, ...
- Successive composition of serial and parallel trust relations
- → Problem: only possible, if trust relation graph is a directed series-parallel graph

Bob


Alice

Alice

Service

Proposal for a New Trust Model

Overview

Why Authenticity Relations?

- Authenticity of exchanged trust opinions must be protected, e.g. with dititally signed trust certificates
- Recommendation systems used for authenticity validation of public keys (e.g., PGP Web of Trust)

Trust Relations

Relations (not signed)	Certificates (signed)
$ \begin{array}{c c} \hline & c, h \\ \hline & E_{A} \\ \hline & E_{B} \\ \hline & E_{B}, c, h) \end{array} $	
$ \begin{array}{c c} \hline & c, h \\ \hline & K_B \end{array} $ $ \begin{array}{c c} \hline & K_B \end{array} $ $ \begin{array}{c c} \hline & K_B \end{array} $ $ \begin{array}{c c} \hline & E_A: Trust(K_B, c, h) \end{array} $	$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & $
C, h Address eMail Phone D _B E _A :Trust(D _B , c, h)	Name Address eMail Phone D _B K _A :Trust(D _B , c, h)

E = entity

K = public key

D = description

c = context / property

h = recommendation hops

Authenticity Relations

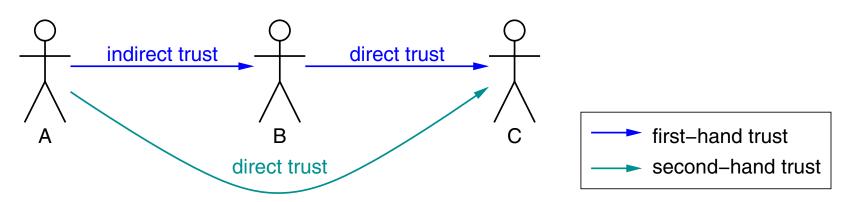
Relations (not signed)	Certificates (signed)
E _A E _B	
E _A :Auth(K _B , E _B)	
E _A Name Address eMail Phone D _B	
E_A :Auth(D_B , E_B)	
K _B — m K _B — m Name Address eMail Phone D _B	Name Address eMail Phone
E_A :Auth(K_B , D_B)	K_A :Auth(K_B , D_B)

E = entity

K = public key

D = description

12 Inference rules

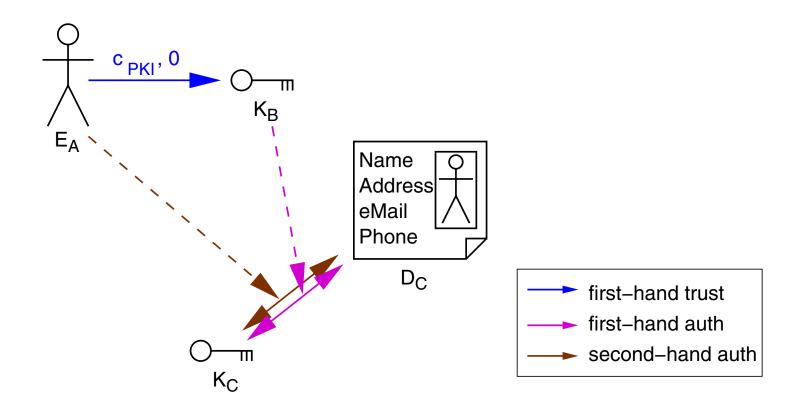

Example 1: Transitive Trust Rule (2 parts):

1. indirect trust + direct trust ⇒ direct trust

A:Trust(B, c, h) \land B:Trust(C, c, 0) \land h>0 \Rightarrow A:Trust(C, c, 0)

A, B: entity or public key

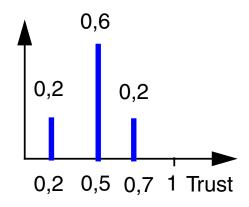
C: entity or public key or description


2. indirect trust + indirect trust \Rightarrow indirect trust

A:Trust(B, c, h_1) \land B:Trust(C, c, h_2) \land $h_1>1 <math>\land$ $h_2>0$ \Rightarrow A:Trust(C, c, min(h_1 -1, h_2))

Example 2: Authenticity Inference with Identity Certificate Rule

 E_A :Trust(K_B , C_{PKI} , 0) $\land K_B$:Auth(K_C , D_C) $\Rightarrow E_A$:Auth(K_C , D_C)


c_{PKI}: property "issues valid identity certificates"

Representation of Trust Values

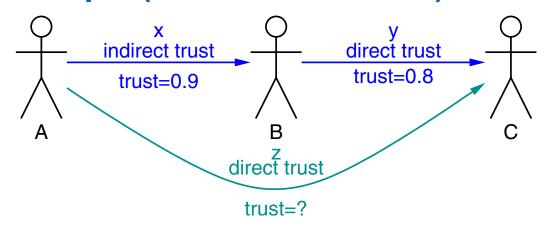
3 Possibilities to represent trust values

- Boolean value: true / false very simple
- **2. Scalar Value:** $t \in [0, 1]$ trust value interpreted as probability that the assumption is correct
- 3. Discrete distribution function
 allows to express uncertainty
 interpretation as second-order probability values

Trust Computation

Holistic Trust Computation

- Interpretation of "trust" as "probability that the trustee has the named property"¹
- **→** Trust values have well defined semantic
- **→** Computation with probability theory
 - → works for arbitrary trust structures!(in contrast to operator-based methods)


"Possible Worlds" Algorithm (for scalar trust values)

Each trust / authentication relation can be valid or invalid

- ⇒ 2ⁿ possible combinations (="possible worlds")
- 1. Check (for each "possible world"), whether the intended trust relation can be derived or not
- 2. Calculate the probability of occurence for each "successful" world
- 3. Resulting trust value = sum of probabilities of all "successful" worlds = probability of occurence of any "successful" world

^{1.} Ueli Maurer, "Modelling a Public-Key Infrastructure"

Example (scalar trust values)

first-hand trust
second-hand trust

X	у	Z	probability
0	0	0	$(1-0.9)\cdot(1-0.8)$
0	1	0	$(1-0.9) \cdot 0.8$
1	0	0	0.9 · (1 – 0.8)
1	1	1	0.9 · 0.8

Resulting trust value: $t = 0.9 \cdot 0.8$

(high computational complexity, more efficient computation algorithms exist)

Conclusion and Outlook

Conclusion

- Reputation systems useful for various applications:
 - online auctions, PGP, P2P networks, ... (esp. for open user groups)
- Trust models must be designed carefully
 - distinguish direct and indirect trust
 - distinguish first-hand and second-hand trust estimations
 - be careful and precise with transitivity
- Operator-based trust computation → bad approach, better try holistic approach based on probability theory
- Integration of trust + authentication computation makes sense

Outlook

- Trust model evaluation
 - look out for counterintuitive effects → indicator for a bad model.
 - play attacker, try to fool your reputation system