
Universität Stuttgart

Sonderforschungsbereich 627

Umgebungsmodelle für
mobile kontextbezogene Systeme

www.nexus.uni-stuttgart.de

NEXUS

SFB 627 Bericht Nr. 2010/02

Autor(en):

Datum:

Reference Model for the
Quality of Context Information

(c) 2010 Susanne Becker, Andrè Blessing,
Frank Dürr, Lars Geiger,
Matthias Großmann, Andreas Gutscher,
Kai Häussermann, Jessica Heesen,
Uwe-Philipp Käppeler, Ralph Lange,
Michael Peter, Oliver Siemoneit,
Harald Weinschrott, Oliver Zweigle,
Paul Levi, Kurt Rothermel

Susanne Becker, Andrè Blessing,
Frank Dürr, Lars Geiger,
Matthias Großmann, Andreas Gutscher,
Kai Häussermann, Jessica Heesen,
Uwe-Philipp Käppeler, Ralph Lange,
Michael Peter, Oliver Siemoneit,
Harald Weinschrott, Oliver Zweigle,
Paul Levi, Kurt Rothermel

Sprecher des SFB:
Prof. Dr. Kurt Rothermel
Institut für Parallele und Verteilte Systeme
Universitätsstraße 38
70569 Stuttgart
Deutschland

11. Februar 2010

CR Klassifikation: G.1.2, G.3, H.3.1, H.3.3, I.2.6

Center of Excellence 627
Spatial World Models for
Mobile Context-Aware Applications

3

Abstract

Context-aware applications require context information for their oper-
ation. However, context information is inherently associated with un-
certainties, which need to be taken into account when processing such
information. This Quality of Context Information (QoC) comprises nu-
merous aspects, such as the uncertainty of sensed data, transmission
and update protocols, consistency between data from several providers,
or the trust placed into the information from individual providers.
Because of the technical and economical challenges, it is our vision that
a federation integrates many context models from different providers
into a global context model. This model is then shared by a number
of applications. Such a federated context management poses additional
challenges with regard to QoC. Therefore, a universal QoC model is
needed, which covers and integrates the different aspects of QoC on all
abstraction levels.
To enable a federated context management system such as Nexus to
incorporate QoC, we present a QoC reference model in this document.
Specifically, it consists of five main parts:

1. Abstract framework for quality aspects: This framework distin-
guishes three abstraction levels of context information – sensor
information, observable context, and high-level context –, as well
as three fundamental quality aspects – degradation, consistency,
and trust.

2. Degradation model: Sensed data is typically inaccurate due to
physical limitations of sensors or the employed update protocols.

3. Consistency model: Context information – even with degradation
information – may be inconsistent to the physical world or between
different providers.

4. Trust model: With arbitrary context providers, a comprehensive
approach for assessing the reliability and trustworthiness of each
provider is necessary.

5. Integrated QoC-aware processing model: We propose a universal
QoC-aware processing model for queries on context information.
It incorporates the specific models for degradation, consistency,
and trust and their dependencies.

4

Contents

1 Introduction 11

2 Overview to Reference Model 15
2.1 Requirements and Challenges . 15
2.2 Abstraction Layers of Context Information 16
2.3 Quality Aspects of Context Information 17
2.4 Abstract Framework for Quality of Context 18

3 Degradation Model 21
3.1 Universal Model for the Quality of Sensor Data 22

3.1.1 Modeling Quality of Sensor Data 22
3.1.2 Reliable updates for information in environmental models us-

ing sensors . 25
3.2 Generic Uncertainty Model for Position Information 30

3.2.1 Introduction . 30
3.2.2 Survey of Uncertainty Models 32
3.2.3 Mathematical Generalization for Time-dependent Point Data 33
3.2.4 Uncertainty-aware Query Interface for Position Information . 35
3.2.5 Related Work . 39
3.2.6 Summary . 40

3.3 Uncertainty Model for 3D Geodata 40
3.4 Uncertainty-Aware Situation Detection with Bayesian Networks . . . 43

3.4.1 Introduction . 43
3.4.2 Situation Template Model . 43
3.4.3 Parameter-Adaption . 47
3.4.4 Summary . 51

3.5 Degradation of high-level context derived from sensor data 52

4 Consistency Model 57
4.1 Inconsistency on the Context Information Layer 57

4.1.1 Discrete Domain . 58
4.1.2 Continuous Domain with Pdf 58
4.1.3 Continuous Domain without Pdf 59
4.1.4 3D-Domain . 60

4.2 Situation Recognition . 62

5 Trust Model 65
5.1 Introduction . 65

5

Contents

5.2 Related Work and Fundamentals . 66
5.2.1 Trust, Trustworthiness and Reputation 66
5.2.2 Modeling Trust . 69
5.2.3 Classification of Reputation Systems 71
5.2.4 Reasoning with Trust Relations 72
5.2.5 Computation of Reputation Values 73

5.3 Model of Trust and Authenticity Statements 78
5.4 Trust Values . 79

5.4.1 Representation of Discrete and Continuous Trust Values . . . 80
5.4.2 Deterministic Operators . 81

5.5 Inference Rules . 85
5.5.1 Transitive Trust Inference Rule 85
5.5.2 Trust in Entities, Keys and Descriptions 85
5.5.3 Local Authenticity Inference Rule 87
5.5.4 Authenticity Inference with Authenticity Confirmation 87
5.5.5 Uniqueness Conditions . 87

5.6 Trust Value Computation . 87
5.6.1 Probabilistic Model for the Trust Value Computation 88
5.6.2 Approximation and Exact Computation Algorithms 89

5.7 Evaluation of the Proposed Trust Model 95
5.7.1 Computation Time of the Proposed Computation Algorithms 95
5.7.2 Comparison with Other Trust Models 98
5.7.3 Trade-offs and Limitations . 99

5.8 Reliability of Context Information 99
5.9 Summary . 101

6 Reference Model 103
6.1 Interdependencies between Uncertainty, Consistency, and Trust . . . 103
6.2 Integrated Quality-Aware Processing Model 104

6.2.1 The Nexus System . 105
6.2.2 Three Aspects of Quality of Data 106
6.2.3 Query Processing . 107
6.2.4 Processing Model . 109
6.2.5 Revisiting the Example Scenario 112

7 Conclusions 115

Bibliography 117

6

List of Figures

2.1 3× 3 framework for quality of context. 19

3.1 Singular behavior: Absolute deviations in a simulation of 1000 nego-
tiations . 28

3.2 1000 consecutive simulated negotiations with 5 agents. The deviation
of one sensor is artificially set to 0 in negotiation 400 29

3.3 1000 consecutive simulated negotiations with 5 agents. Artificially
noise is added to the measurements of one sensor from negotiation
400 onward. 30

3.4 Taxonomy of major classes of the existing uncertainty models. 34
3.5 Mathematical generality of the major uncertainty models. 34
3.6 Distance query evaluation. 36
3.7 2D normal distribution. 37
3.8 Range query evaluation. 37
3.9 Uncertainty region of a plane (from [Haa96]). 41
3.10 Exemplary Nexus applications using uncertainty information of a 3D

building model. Left: Inside query based on a global uncertainty
value of the building. Middle: Range query based on local uncertainty
measures. Right: Navigation task based on local error descriptions. . 42

3.11 Situation Template: SAT-Structure. 47
3.12 Screenshot of Template Designer. 48

4.1 Temperature specified by probability density functions 59
4.2 Uncertain areas and corresponding probabilities 59
4.3 Clockwise: Inconsistencies of OpenStreetMap model, generalized

model and city model from airborne data collection in comparison
to the city model from terrestrial data collection (upper left) 62

4.4 Structure of a meta-template . 63

5.1 Exemplification of trust types and categories (trust context “landing
a plane”) . 68

5.2 Reputation System . 68
5.3 Different possibilities to represent trust values 70
5.4 Classification of reputation systems 71
5.5 Operator-based reputation computation 74
5.6 Deterministic conjunction, disjunction and negation operators (Bald-

win, Jøsang) . 74
5.7 Recommendation operator (Jøsang) 75

7

List of Figures

5.8 Jøsang’s (top), Dempster-Shafer’s (middle) and Yager’s (bottom) con-
sensus operators . 75

5.9 Probability theoretical reputation computation 77
5.10 Our deterministic conjunction, disjunction and negation operators . 82
5.11 Consensus, recommendation and authentication operator truth tables 83
5.12 Example for application of the transitive trust inference rule 86
5.13 Scenario and possible worlds table of the Trust Example 1 90
5.14 Scenario of the Trust Example 2 . 92
5.15 Scenario of the Trust Example 3 . 94
5.16 Scenario of the simple chain example 96
5.17 Computation time in the simple chain example 96
5.18 Scenario of the full mesh example . 97
5.19 Computation time in the full mesh example 97

6.1 Interdependencies between Degradation, Consistency, and Trust . . . 104
6.2 Architecture of the Nexus system [LCG+09a] 105
6.3 Extending the possible worlds model to support uncertainty 107
6.4 Example scenario: PDFs of the positions of o1 and o2 108
6.5 Measuring the quality of the query result 109
6.6 Processing model (data providers, trust and reliability) 110
6.7 Processing model (data fusion and query processing) 110
6.8 Processing the query (v(o1

1.p) = v(o1
2.p) = v(o2

2.p) = 1) 113
6.9 Processing the query (v(o1

1.p) = v(o1
2.p) = 0.5, v(o2

2.p) = 1) 113

8

List of Tables

3.1 Example of an extension table Tcvi with fictitious context data. . . . 51

4.1 Example values . 58
4.2 Inconsistent position information and resulting consistency values . . 60

5.1 Trust statements (relations and certificates) 78
5.2 Authenticity statements (relations and certificates) 79
5.3 Discrete trust values . 80
5.4 Preparation step for the groups in the Trust Example 2 92
5.5 Trust value computation in the Trust Example 2 92
5.6 Propositions and applied inference rules in the Trust Example 3 . . . 94

9

1 Introduction

Advances in sensor technology, wireless communication, and mobile devices allow for
applications that take into account the context of entities of the physical world such
as current locations of users, climatic conditions, and user activities. These context-
aware applications adapt to changes in the physical world and select and present
information depending on their context. The required context information can be
acquired from associated sensors (e.g., embedded GPS-receiver of smartphones) as
well as retrieved from digital context models of clippings of the physical world pro-
vided by various sources. Context models often combine static spatial data such as
maps and building plans with dynamic information from numerous sensors and can
be used for a variety of applications.
Context information is inherently associated with uncertainties which must be

taken into account by context management as well as context-aware applications.
We say context management and applications have to factor in theQuality of Context
Information (QoC).
QoC comprises many different aspects such as the uncertainty of sensed data

values, the timeliness of transmission protocols from remote sensors, the trustability
of providers of context models, the reliability of sensors, the consistency between
providers of context information on the same phenomenon of the real world, and
many more. Therefore ontologies, models, and metrics are required to specify the
different aspects of QoC for context management and applications. In addition,
different levels of abstraction of context information have to be taken into account,
including raw sensor data, observable context, and high-level context deduced by
situation recognition and reasoning techniques.
Consider, for example, a context-aware call manager for mobile phones. To decide

whether and how to notify the user on an incoming call, it has to consider the position
and activity of the user, the time of day, the user’s calendar, the relation of the caller
to the user, etc. The decision process involves a number of uncertainties such as
the accuracy of the sensed position, the certainty of activity recognition, and the
(typical) actuality of the user’s calendar. This requires metrics for the uncertainty of
position sensing and activity recognition methods, depending on the accuracy of the
underlying input, as well as models how to specify and acquire the actuality of the
calendar. To be able to account for wants of the user regarding uncertain situations
(e.g., if the call manager is not able to distinguish whether he gives a talk or just
attends a meeting), the decision process has to consider the QoC in an integrated
fashion, from the raw data to the final decision.

For economic and technical reasons, it is highly desirable for context information
to be shared by context-aware applications. In the Nexus project we envision—in
analogy to the WWW—a World Wide Space, which provides the conceptual and

11

1 Introduction

technological framework for integrating and sharing context models. It enables ar-
bitrary commercial and non-commercial providers to make context models available
for a wide range of context-aware applications and services. The collection of con-
text models is federated and leads to a large-scale context model, offering a global
view on the available context information. The federation allows for complex spatial
queries, including continuous, stream-based processing.
Federated context-management by a framework such as Nexus poses additional

requirements to the models and metrics for QoC. A universal model for QoC is
needed which covers and integrates the different aspects of QoC at all levels of
abstractions—not only for a specific application but comprehensively for a wide
range of applications. This particularly also includes methods and calculi for assess-
ing the quality of context information between different abstraction layers as well as
dependencies between different aspects of QoC.
Consider, for example, a 3D building model combining a static building plan with

dynamic information on the state of the doors and windows, obstacles (e.g., recog-
nized using the cameras of smartphones), room occupancies, and so on. This model
may be used for a number of purposes, including navigation of blind persons and
energy-efficient building automation. However, both applications pose very differ-
ent requirements to the QoC of the model—e.g., consider the occupancy of a glazed
meeting room: A blind person may want to be warned if there is a slight probability
that the meeting room is occupied, whereas the heating temperature should be only
increased if the room is likely occupied. Therefore, boolean statements on the room
occupancies are not sufficient, but the building model has to provide the reliability
of this information as well. Since the occupancies again have to be deduced from
sensors, wireless network connections, and calendars, an integrated and comprehen-
sive approach how to cope with QoC from the raw sensor data to the reliability of
occupancy statements is needed, which fits for both applications.

In this report, we present a reference model for QoC which meets the requirements
for federated context-management—in particular for Nexus. The reference model
consists of five parts:

1. Abstract framework for quality aspects: We propose an abstract framework
for QoC which distinguishes between three fundamental abstraction levels of
context information, namely sensor information, observable context, and high-
level context, as well as three fundamental quality aspects, namely degrada-
tion, consistency, and trust.

2. Degradation model: We propose a integrated approach how to cope with phys-
ical limitations of sensors and the corresponding sensing inaccuracies, impreci-
sion, etc.—from the raw sensor data, via observable context to high-level con-
text. Moreover, for applications, we present QoC-aware interfaces for querying
context information.

3. Consistency model: Context information with assessed degradation may be
inconsistent when different context data providers disagree about the value of a

12

context data item. Such disagreements may be caused by incorrect degradation
information, typing errors or tampering. We present a metrics for measuring
consistency considering the degradation model.

4. Trust model: With an open context-management platform such as Nexus,
trustworthiness of context providers is an important issue. For this reason we
propose a comprehensive approach for assessing the reliability and trustwor-
thiness of each provider.

5. Integrated QoC-aware processing model: We propose a universal QoC-aware
processing model for queries for context information of arbitrary applications.
This model incorporates the specific models for degradation, consistency, and
trust and the dependencies between these aspects.

The remainder of this report is structured as follows: In Chapter 2 we render the
requirements and challenges to the reference model more precisely and discuss the
abstract framework for QoC, before we present the degradation model in Chapter 3.
In Chapter 4 we present the consistency model followed by the trust model in Chap-
ter 5. In Chapter 6 we present the integrated QoC-aware processing model. Finally,
the report is concluded in Chapter 7 with a summary and an outlook.

13

2 Overview to Reference Model

In this chapter, we provide an overview of the developed reference model. We begin
by deriving the requirements for this model as well as the challenges it poses. Then,
we introduce the different abstraction layers for context information, which we use
in our reference model. The different aspects of Quality of Context is the topic of the
next Section, before finally putting all of these parts together to form our abstract
framework for Quality of Context.

2.1 Requirements and Challenges

As introduced and exemplified in Chapter 1, the reference model has to allow for in-
tegrated quality-aware processing of context information in federated context man-
agement. This particularly requires a generic approach which is appropriate for
different types applications and their needs. We distinguish three fundamental re-
quirements to the reference model:

1. Comprehensiveness: The reference model has to account for the various quality
aspects depending on different types of context information and their abstrac-
tion levels. In detail, it has to cover all basic quality aspects such as accuracy,
precision, timeliness, consistency, and trustworthiness for all types of context
information including time-dependent numerical data, complex spatial infor-
mation, and textual context information at all abstraction levels from raw
sensor data to high-level logical statements deduced by situation recognition
and reasoning techniques. This also requires to define QoC-aware interfaces
for applications at different abstraction levels since applications may process
simple, sensed context information just as high-level context information at
the same time.

2. Universality: Federated context management aims at supporting a variety
of context-aware applications and services with diverse needs regarding QoC:
Some applications pose strict requirements to the quality of context infor-
mation and cannot cope with less. Others are able to cope with any degree
of quality—e.g., they may just visualize the uncertainty to the user corre-
spondingly. Other, legacy applications, simply ignore QoC and thus require
corresponding methods to retrieve the most probable state of the physical
world.

3. Processability: The reference model has to allow for integrated QoC-aware
processing between different abstraction levels of context information. It has
to provide the foundation for mapping quality aspects from lower levels (e.g.,

15

2 Overview to Reference Model

of sensor data) to higher levels (e.g., recognized situations). Similarly is has to
allow for mapping the requirements of applications from higher levels to lower
levels and to adapt the processing within the federation accordingly.

These requirements lead to a number of challenging research questions: How to
define appropriate abstraction levels for context information that apply to all types
of context? How to classify the fundamental aspects of quality? How to model
and measure each quality aspect at each abstraction level comprehensively? How
do the models and metrics depend on the type of context information? How to
map between these models and metrics at different abstraction levels—e.g., from
the Dilution of Precision (DOP) values provided by GPS to a generic uncertainty
measure for position data? How to map between these models and metrics when
processing different types of context information together—e.g., to answer whether
an uncertain position is inside an uncertain spatial range or to derive a probability
value for a situation recognized by a Bayesian network?

We propose an answer to the first two questions on the following two sections and
present the resulting abstract framework for QoC in Section 2.4. The other questions
are tackled in the Chapters 3 to 6.

2.2 Abstraction Layers of Context Information

Context-aware systems are widely considered as layered systems. The sur-
vey [BDR07] introduces common architecture principles of context-aware systems
and derives a layered conceptual design framework that allows to classify the dif-
ferent elements of context-aware architectures. In essence, [BDR07] identifies five
abstraction layers. The lowest layer consists of sensors, i.e., the sources of context
data. The next layer abstracts from raw sensor data by providing context informa-
tion. In the third layer, reasoning on and interpretation of context information is
performed. The fourth layer deals with managing the context models and provid-
ing them synchronously or asynchronously to the applications, which compose the
fifth layer. Similar to this generic layered architecture of context-aware systems,
works such as [HIMB05, FC04,HSP+03,KMK+03,WDC+04] also consider layered
architectures for their systems.
In accordance with the principle of a layered architecture for context-aware sys-

tems, we identified the three layers of such systems that are relevant for quality of
context (QoC) considerations as layers one to three. First, the sensor layer deals
with raw sensor data that is acquired. Then, the second layer produces context in-
formation from this raw data by associating it to context models. This layer relates
the sensor data to static context information to provide a dynamic object-oriented
context model of the physical world. For instance, it attaches the position data of
a GPS receiver which is embedded into a car to the corresponding car object in the
context model. Finally, the third layer derives higher level context by reasoning and
situation recognition techniques from the context information provided by the sec-
ond layer. These three types of information are handled by context-aware systems

16

2.3 Quality Aspects of Context Information

and, therefore, in the following, we consider this simplistic, but universal, three layer
model.
One example for data on these layers is position information. Positioning systems

as GPS or RFID can serve as source for position data and report specific raw sensor
data such as NMEA data sentences [Nat02] with longitude and latitude values in case
of GPS receivers. The context layer associates the position data to the corresponding
moving object such as cars which makes up the context information about this
object. It also hides data specifics by representing position information in a generic
format. In the third layer, a meeting might be detected by inferring from position
information of people in a room and their calendars.

2.3 Quality Aspects of Context Information

Context information mostly is acquired by sensors and therefore subject to physical
limitations and measurement errors of sensing hardware. Depending on the type of
context information such as position, temperature, open/closed states, etc. these
limitations and errors lead to inaccuracies, imprecisions, delays and other kinds of
degradation. The context information may be further degraded due to networking
and processing delays and conversions between different schemas. Therefore, we
subsume all these quality aspects under the term degradation in the following. Note
that the degradation by conversion and processing generally applies to all types of
context information, not only to sensor data. Mathematical models for the degra-
dation of context information typically base on probability distributions, tolerance
regions, or statistical measures.
Context information with defined degradation may nevertheless be inconsistent to

the physical state of the world—e.g., due to failures of sensors, human errors, or even
tampering. Such inconsistencies can be only detected by redundant observations
of the same phenomenon. A federated context management platform particularly
allows to detect such inconsistencies by means of contradictory context information
of different (independent) providers. Hence, inconsistencies between the context
models of providers may be used to detect inconsistencies to the physical world.
Consistency therefore is another integral aspect of quality of context information
in an open context management platform such as Nexus. Defining appropriate
concepts to assess the consistency between providers is a difficult task given the
degradation of context information. In general, the consistency can be only evaluated
by probabilistic measures.
The possibility of tampering of data or sensors points to the third fundamental

quality aspect namely trust. An open context platform comprises a large number
of different actors including users, service providers, application vendors, network
providers, sensor manufacturers, and providers of context information. Users have
different requirements regarding the trustworthiness of providers, etc. depending
on personal experiences and attitudes as well as the use of context information.
Therefore, an open context platform must inherently feature approaches to assess
the trustworthiness of providers and to select trustworthy providers correspondingly.

17

2 Overview to Reference Model

2.4 Abstract Framework for Quality of Context

To summarize the previous two sections, an abstract framework for providing
context-information in a quality-aware manner needs to comprise the three qual-
ity aspects, degradation, consistency and trust. Each of the three facets needs to
be modelled along the layers of the system: from the low level sensor data via the
context information layer up to the higher level context in such a system. The pro-
cessing steps can also influence the quality of the data, so the processing steps need
to take this into account as well. This leads us to an abstract framework as shown
by the 3× 3 matrix in Figure 2.1.
The different quality aspects are — at first glance — rather independent: it is

possible to discuss the degradation of information without any knowledge about the
trust in the source or the consistency of the information and vice versa. Therefore,
in Chapters 3 through 5, we first show how the degradation of numerical values –
using position data as an example – can be modelled for different sensors and their
specific uncertainty models. We also show how applications can access this quality
information in a consistent manner via a defined uncertainty-aware query interface.
After that, we present an approach to handle multiple pieces of information with
regard to the same real world phenomenon and the inconsistencies that arise from
it. And finally, we show how a trust model allows us to judge the correctness of data
according to the trust we place in sources or indirectly via the trust in third parties
making statements about the correctness.
These buidling blocks provide the vertical processing for data quality in a context-

aware system such as Nexus. Chapter 6 shows our model for a quality-aware, hori-
zontally integrated processing of queries for context information.

18

2.4 Abstract Framework for Quality of Context

Degradation Consistency Trust

High level
context layer

Context infor-
mation layer

Sensor layer

Consistency
Metric

Trust /
Reliability

Model

Bayes Model

(Partial)
Distribution

Function

Figure 2.1: 3× 3 framework for quality of context.

19

3 Degradation Model

In contrast to other parts of the quality reference model, degradation in general de-
scribes quality of information without any comparison to other information sets and
without any subjective rating from users [DKN+06]. A quantification for degrada-
tion is derived from its source when obtaining or updating data in an environmental
model. Basically quality of degradation is deduced from physical limitations of sen-
sors or from an error analysis performed by data fusion algorithms which were used
to generate the accordant information. This chapter describes summarized

• a modeling of degradation of numeric context information,

• handling of uncertainty of numeric context information without given seman-
tics,

• handling of uncertainty of position information,

• handling of uncertainty of complex information like building models,

• handling uncertainty of methods for situation detection

• and methods for transfer degradation of context to highlevel context

Defining different aspects of degradation we distinguish between different types
of information. First of all degradation of sensor data and context information is
described. In both cases it is possible to derive the degradation from attributes of
data sources like sensors and their physical constraints. But in an open system like
the nexus platform it is necessary to give a first definition for degradation without
required assumptions about semantics of the information or required knowledge of
applications and their use cases which have access to the rated information. Only
statistical methods can be used to define and handle degradation of information
when the semantics are no predefined. Modeling of quality of sensor data and
a normalized weighted arithmetic mean algorithm which can be used for updates
and extension of an environmental model using scalar sensor data is described in
section 3.1.
Information in the context layer can be combined with semantics like position

information. Therefore it is possible to apply specialized methods for the handling
of degradation concerning the semantics of this numeric information. Assumptions
concerning values and their history can be used to rate their degradation based on
special models like the possible movement of pedestrians, cars, trains or other vehi-
cles. A quality model for position information based on different kinds of distribution
functions is described in section 3.2.

21

3 Degradation Model

Degradation of more complex information concisting of several values can also be
handled using predefined assumptions and conditions that must be applicable on
linked datasets. We define degradation models for 3D geodata in section 3.3. These
models can be used for example to describe and compare 3D models of buildings in
different levels of detail.
Concerning high-level context information the degradation in the process of a sit-

uation detection is described in section 3.4. This defines degradation for information
that can not be observed directly but is derived from context information using spe-
cialized knowledge about situations. Finally a method for transferring degradation
from context information to high-level context is explained in section 3.5.

3.1 Universal Model for the Quality of Sensor Data

This chapter describes the handling of quality aspects of sensor data. First the
model for degradation is described, which is used in the nexus platform by servies
and applications to provide and process information and its degradation. Afterwards
methods are described for extending and updating environmental models. The last
section describes procedures to derive higher-level context from sensor data together
with a corresponding quality rating.

3.1.1 Modeling Quality of Sensor Data

In this section we describe syntax and semantics of meta data concerning all types
of degradation of sensor data. The complete Extended Attribute Schema is listed
in [Käp08]. The meta data is attached optionally to single attributes or nexus
objects of the environmental model [HKN+05].

Different levels of detail for modeling degradation
Modeling of degradation needs different levels of detail to allow for different appli-
cations to handle degradation and inaccurate context information in different ways.
Therefore one important aspect of modeling degradation is the optional integration
of single attributes concerning different details of degradation and attributes that
accumulate the information about degradation to a simple and short overall dimen-
sion of degradation. This is mandatory in an open system like the Nexus Platform
because it is impossible to force all software designers to completely interpret all
aspects of degradation in every application as well as it is impossible to force all
providers to offer meaningful meta data about degradation for all information in
the environmental model.

Applications and services can be classified in thee different types in terms of
handling the quality of information. First of all there are systems that ignore
the quality of information. Other systems get by with a total value for quality
that describes the overall degradation. The third type of applications and services

22

3.1 Universal Model for the Quality of Sensor Data

depends on detailed descriptions of several kinds of degradation.

The first type of services and applications refrains from handling any quality as-
pects of information. Services do not provide quality information and applications
just ignore it when processing any context information. This procedure complies
with the behaviour of most applications and services down to the present day. For
special use cases a desired degree of quality is predetermined assumed implicitly.
Data sources and sensors are selected accordingly. No drawback follows from this
approach as long as sensors are used for a single purpose or a limited and known
amount of applications.

The second type of services and applications processes short total values for
quality. One value describing a maximum relative or absolute error enables the
processing and comparison of information from different sources. This is mandatory
in an open system like the nexus platform whithout any predetermined assignment
of sensors to applications.

Applications can imply different requirements for several aspects of degradation.
This can be necessary when fusing data from different sensors. This also enables
applications to elect the important aspects of degradation according to an intention.
For example some applications might attach importance to up-to-dateness to be
able to react rapidly on changes in the environment whilst other applications pre-
fer accurate sources of information for example to initiate any security relevant task.

To satisfy the different requirements concerning the description of quality the
corresponding schema in the nexus platform is split into a part consisting of several
attributes desribing different sorts of degradation and a part consisting of summa-
rizing attributes.

Attributes of meta data concerning a total value of degradation
The following attributes of information can be derived from a sensors manufac-

turer’s data in the majority of cases.
uncertaintyAbsolute

This attribute describes an absolute error. A single floating point value is sufficient
for describing the error. The unit has to match to the corresponding attribute,
to which the meta data refers, implicitly. The attribute <uncertaintyAbsolute>
relates to a maximum of aberration.

uncertaintyRelative
This attribute describes an error, whose maximum aberration is depending on the
currently measured value itself. The relative error er is a function of the measured
value xm and the true value x described by equation 3.1.

23

3 Degradation Model

er = |xm − x|
xm

∗ 100% (3.1)

uncertaintyReduced
Another possibility to give a description of quality is a reduced error. Here the
aberration from the true value is not related to the measured value but described as
ratio of the measurement range. The reduced error ez depending on the lower and
upper boundary of the domain xmin and xmax is described by:

ez = |xm − x|
xmax − xmin

∗ 100% (3.2)

uncertaintyStandard
The declaration of a standard deviation σ enables the description of a sensors’s Gaus-
sian distribution. It can be determined empirically by n reference measurements as
described in equation 3.3.

σ =

√√√√ 1
n

n∑
i=1

(xmi − xi) (3.3)

Degradation of scalar sensor data
Meta data about degradation can be attached to objects or attributes. When cor-
responding to a value of an attribute, the information about degradation can be
derived from the physical attributes of the sensor, that measured that particular
value. The meta data can as well be derived from error analysis when several mea-
surements are combined to one value as it is for example when a gps sensor calculates
a position from several distance measurements. In addition to the total values for
quality described in the previous section there are the following optional elements
of the meta data concerning degradation, which describe particular types of degra-
dation in detail. The element <resolution> consists of a <range> together with
an <lowerBoundary> and <upperBoundary> which gives the domain of a sensors
measurements. Then there is a <quantification> element that describes the resolu-
tion of a sensor and a <discrimination> element, describing the minimum change
of an observed phenomenon, that leads to a change in the measured value. The
element <processing> represents influences on the quality produced by signal
processing. The element itself consists of <digitalization>, <amplification> and
<linearization>. All sorts of temporal aspects are described by the meta data el-
ement <temporal>. Here the reason for a degradation is described as <drift>,
<hysteresis>, <responsetime>, <samplingrate> and a <precision> which describes
the repeat accuracy. The last element is <crossSensitivity> which describes dif-
ferent physical influences on the sensor or measurement. This element sonsists of
several <conditions> that are described by name, ranges together with a resulting
error and a current state. Her it is possible to numerate different working conditions
for sensors. For example a humidity sensor could be given a range for a working

24

3.1 Universal Model for the Quality of Sensor Data

temperature and a resulting error. <maintenance> <durability> and <abrasion>
elements also describe aspects of cross sensitivity and a resulting error.
The complete extended attribute schema for degradatin in the nexus platform is

listed in [Käp08]. Further explanations for the terms used can be found in [fMuG95].
A complete list of metrics describing the quality of different kinds of scalar sensor
data is described in [Käp09].

3.1.2 Reliable updates for information in environmental models using sensors

The main objective of the Nexus Center of Excellence is the definition and real-
ization of dynamic shared context models for context-aware applications. In this
scope, issues concerning communication, information management, methods for
model representation and sensor data integration are covered. Based on these
digital world models, new innovative applications become possible, which can access
information of the real world originating from sensors and additional, aggregated
information. We currently witness the rapid proliferation of different kinds of sensor
systems. These systems allow the acquisition of context information and make the
integration of the sensor data an important research aspect. An open questions is,
which sensors are suitable for providing context information to the world model
with as little redundancy as possible. The problem in updating the world models
by sensor measurements is to reduce uncertainty and inconsistency.

If a local world model of an application or agent conflicts with data in the shared
context model the system contains an inconsistency. It is hard to decide, whether
the data of one single local world model based on sensor data is erroneous or if the
shared world model is out of date and needs a correction. If the application needs
to be sure about this specific information to work properly, the inconsistency needs
to be resolved. One solution to this problem is to repeat the measurement with
different sensors and to reduce uncertainty by redundancy. Methods to address
other agents with access to sensors and to communicate the sensor data are provided
by the Nexus Platform. The study described in this paper examines methods to
statistically optimize the reduction of uncertainty where only a few measurements of
corresponding physical values are available, which leads to critical and inescapable
statistical problems in the rating of the sensors. The reduction of uncertainty is
necessary to make relevant contributions to the shared world model, maintaining
a high degree of reliability while keeping costs and expenditure of time within an
acceptable range by involving only a few number of sensors, services or devices in
the process.

This section describes the normalized arithmetic mean algorithm to reliably up-
date and extend environmental models. An evaluation of the algorithm using real
sensor data is described in [KBZ+08], a more detailed description of the underlying
agent negotiation is described in [BKZ+09].

25

3 Degradation Model

Agent Negotiation
If a measurement of an agent’s sensor does not fit to the corresponding data in
the shared context model the system contains an inconsistency. In this case a
negotiation protocol is initiated to resolve the inconsistency using several sensors.
The Nexus platform identifies registered mobile or static agents with corresponding
sensors. The more sensors and measurements are available, the easier it is to increase
the accuracy of the measurement statistically. But to keep the duration and costs to
resolve the inconsistency in an acceptable range we assume that only a few number
of measurements are available to the platform. Therefore we try to get the best
results from only a few measurements by rating each sensor. After the negotiation
has been completed the agent can decide whether the reason for the conflict was
its own measurement or erroneous data in the shared context model. If necessary
it should update the data on the context server and add meta data describing key
data from the negotiation as well as the reliabilities of the participating agents.
Calculating the weighted arithmetic mean of all the gathered measurements, the
reliabilities of the agents and processing the fuzzy clustering is described in detail
in the following sections.

Sensor Data Processing
The statistically optimzed approach is based on statistics considering optimized
combination of measurements from the book by Dietrich [Die91]. In use of the open
Nexus platform as described above we assume that we can reach only a few agents
that are able to execute measurements of one single physical value keeping costs and
expenditure of time within an acceptable range. This limitation forbids to rely only
on the arithmetic mean of the measurements. One solution to reduce the error in
calculating a result from multiple sensor data is to estimate the standard deviation
of each sensor, which leads to a maximum likelihood estimator.
A value x is measured by n different sensors giving the results x1, x2, . . . , xn.

Assuming the noise in the sensor data is normally distributed and that we know
the standard deviations σ1, σ2, . . . , σn, where q is the most likely value of x the
deviations of the results are q − x1, q − x2, . . . , q − xn. So the combined probability
of the deviations is the product

n∏
i=1

e
−(xi−q)2

2σ2
i

σi
√

2π

 = e
−
∑r=n

r=1
(xr−q)2

2σ2
r

(2π)
n
2
∏n

1 σr

The maximum of the combined probability results in the most likely value for q.
This leads to

q =
∑n

1
xr
σ2
r∑n

1
1
σ2
r

or q̄ =
∑n

1
x̄rmr
σ2
r∑n

1
mr
σ2
r

26

3.1 Universal Model for the Quality of Sensor Data

where arithmetic means x̄r and standard deviations σ̄r are approximated from a
limited number m of measurements of the sensors in the past, with

x̄r = 1
m

m∑
1
xri and σ̄r = σr√

mr

To adopt this method to the multiagent system we set

σ2 =
m∑
1

(xr − x̄)2

m− 1

and assume x̄ = 0 which means that the result of negotiations in the past re-
sults in a correct value without noise. In fact each result still contains noise if
it is not derived from an infinite number of measurements. But the simulations
described later in this section withm > 200 show that this assumption is acceptable.

Disadvantage of the Statistically Optimized Approach
The described limitations to only a few participating agents can lead to a situation
where every negotiation ends in taking the result from the same agent. This hap-
pens if the result of the negotiation is incidentally more than once in a row near
the measurement of one single agent. In this case the estimated deviations that
improve the result of a single negotiation compared to the simple arithmetic mean
can run the system into a singular behavior because of the positive feedback from
updating the deviations from the result after each negotiation. A problem occurs
when one single agent wins a big part of negotiations that are kept in the buffer for
the estimation, which is the more likely the fewer agents are participating in the
negotiations.

Fig. 3.1 shows the singular behavior of the system in a simulation. The buffer
stores 200 negotiation results to estimate the standard deviations which is reflected
by the initialization phase visible in the diagram. After several negotiations the
standard deviation of a single agent converges to 0.As soon as the standard deviation
of one agent is estimated to be 0 the system is not able to leave this state anymore.
Each following negotiation of measurements is reduced to an acceptation of the
measurement of this agent as a result. Therefore an application of this method in
the open nexus platform is not practicable. A complete description of the system
and its singular behaviour can be found in [Käp08].

Normalized Weighted Arithmetic Mean
The singular behavior of the above described negotiation method can not be avoided,
but an enhancement enables the system to recover from such a situation immediately.
The enhancement is based on a preparatory description of the accuracy of each
sensor. A restricted quality description of each sensor prevents an infinite weight of
a single measurement. To realize the restriction we normalize the standard deviation
of a sensor from the range [0;∞] to a reliability zr in the range (0; 1] where it is

27

3 Degradation Model

0 200 400 600 800 1000
0

50

100

150

200

250

300

Figure 3.1: Singular behavior: Absolute deviations in a simulation of 1000
negotiations

important to distinguish several good measurements from each other. Therefore we
use f(x) := 1 − e−x for the normalization. In a negotiation the weight for each
measurement xr of a sensor is defined by wr = 1− zr = e−x. And the combination
of several measurements to one result is

q =
∑n

1 wrxr∑n
1 wr

Normalizing
It is necessary to use the same normalization for each sensor with the same standard
deviation. Consider a negotiation with three participating agents. Using sensors
with identical standard deviations but different normalizations the system again
runs into a singular behavior and in the end takes the measurements from the agent
that benefits from its normalization. But on the other hand, if we have different types
of sensors with unequal standard deviations or resolutions it is not practicable to use
the same normalization for the sensors reliabilities. Hence individual normalizing is
necessary for each sensor and it has to be calibrated once before the sensor data can
be included in negotiation processes.
To realize an individual normalization the corresponding function f(x) has to be

modified using a coefficient. This leads to

f(x) := 1− e−γx with γ = − ln (η)
σ

where σ is the anticipated standard deviation of the sensor and η the desired
normalized value. The anticipated standard deviation of the sensor has to be
acquired manually by measuring reference values or can be adopted from the
sensor’s hardware specification (which has to be reliable). We set the target for
the normalized value which represents a deviation of a single measurement in the
range of the standard deviation to η = 0.5 which is in the middle of the range of

28

3.1 Universal Model for the Quality of Sensor Data

the weights. The definite value of η can be varied, but it should not be near the
boundary of the range of the sensor’s reliability to maintain proper differentiation
and avoid numerical problems. The target value η has to be the same for every
agent participating in a negotiation process.

Results from Simulated Negotiations - Proving Robustness
The system did not run into a singular behavior itself using the normalized weighted
arithmetic mean. To prove the robustness and to test the recovery of the system
from disturbances we artificially altered the system. First the weighted deviation of
one agent with an offset in the measurement results was set to a very low value which
results in a big weight of this agent’s measurements in the following negotiations.
The estimation of the standard deviations of the other agents is also influenced. The
disturbance was added in negotiation 400 and the modification is shown in Fig. 3.2.
This test shows that the system can recover from the state that one agent’s deviation
is estimated to be 0 where the system described before ran into the singular behavior.
After the number of negotiations corresponding to the buffer size the system has
completely recovered. Similar to the behavior in the initialization process.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
760

780

800

820

840

860

880

Figure 3.2: 1000 consecutive simulated negotiations with 5 agents. The deviation of
one sensor is artificially set to 0 in negotiation 400

The second disturbance to the system is an artificially added noise to the mea-
surements of one sensor. In reality this could be the result of a physical influence
to the sensor from which it gets decalibrated. The effect is similar to the one
of the first disturbance and shown in Fig. 3.3. One agent overestimates its own
reliability after the disturbance. This influences the results of the negotiations and
the self-assessment of the other agents. The system adapts to the new conditions
during a number of negotiations according to the described buffer size.

Preprocessing to Exclude Erroneous Measurements
Each agent providing sensor data has to execute a preprocessing to improve the
quality of the information. The described negotiation process combines the mea-
surements in general to one result without any knowledge about its semantics. But
an agent itself can preprocess the sensor data with regards to specific properties of
the sensor, e.g. using a low-pass filter. In contrast to the preprocessing by the agent,

29

3 Degradation Model

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
760

780

800

820

840

860

880

Figure 3.3: 1000 consecutive simulated negotiations with 5 agents. Artificially noise
is added to the measurements of one sensor from negotiation 400 onward.

the preprocessing in the negotiation process can compare the measurements from
different sensors to the same phenomenon before combining them to one result.
Clustering of the sensor data is one solution to identify and exclude erroneous

or at least abnormal measurements from calculating the result [Bac96]. Clustering
works fine if we have lots of measurements from which it has to identify out-
liers. To prevent the preprocessing from excluding non-outliers from only a few
measurements we use Fuzzy Clustering [Tim02]. An evaluation of the normalized
weighted arithemtic mean using real sensor data and more details to the algorithm
are described in [BKZ+08].

3.2 Generic Uncertainty Model for Position Information

3.2.1 Introduction

Position information on moving objects such as mobile devices, vehicles, and users as
well as stationary objects such as buildings, rooms, and furnishings is an important
kind of context information for context-aware applications. The authors of [SBG99]
and [DA00] even refer to the locations of objects as primary context.
Position information is generally subject to uncertainties at every stage of pro-

cessing: Already position information acquired by positioning sensors such as GPS
receivers only approximates the actual position of the respective sensor or object due
to physical limitations and measurement errors of the sensing hardware. Update
protocols for transmitting position information from sensors to remote databases
or location services further degenerate the position information for the sake of re-
duced communication cost [LR01, vJP05, LFDR09]. Interpolating in time between
consecutive pairs of position records may result in further uncertainties, depending
on the temporal density of the position information. Fusion of position information
on the same phenomenon improves the accuracy but cannot eliminate uncertainties
altogether.

30

3.2 Generic Uncertainty Model for Position Information

Many context-aware applications must not neglect such uncertainties. For in-
stance, navigating a blind person around obstacles [HKBE07] requires estimates for
the uncertainty of the position information about the blind person as well as about
the obstacles.
Therefore, a variety of mathematical models for uncertainty of position infor-

mation have been researched and proposed in the last decades, depending on the
specifics and properties of the different technologies and algorithms. For instance,
GPS receivers model the distance between sensed and actual position by normal
distributions depending on measurement errors and satellite constellation [UN08].
The authors of [PJ99,CKP04] model all possible positions in-between two given po-
sition records by intersecting two circles around the positions given in the records,
resulting in a lense-shaped area.
Based on these findings, different uncertainty-aware interfaces for accessing and

querying position information have been proposed for the different system com-
ponents such as positioning sensors, update protocol endpoints, moving objects
databases, and location services.
With the advent of large-scale context-aware systems such as the Nexus plat-

form [LCG+09b], applications more and more rely on position information from
many different sources. Therefore independent and technology-specific uncertainty
models and query interfaces are not sufficient but a generic approach allowing for
homogeneous and uncertainty-aware access to position information is required.
Regarding such an approach, we can again distinguish between a generic, math-

ematically principled model for uncertain position information and a suitable, ex-
tended query interface based on this generic uncertainty model. The requirements
for the generic uncertainty model are as follows:

• Expressiveness and generality: The generic uncertainty model has to be fully
compatible with all existing specific uncertainty models for position informa-
tion of the different positioning sensors, update protocols, and fusion and in-
terpolation algorithms and reflect them with minimal loss of information.

• Directness: For simplicity and for minimizing the computational and storage
overhead in implementations, the generic uncertainty model has to represent
the uncertainty of position information in a self-evident way corresponding to
the specific uncertainty models.

The resulting basic requirements for the extended, uncertainty-aware query interface
are the following ones:

• Immediacy and comprehensiveness: The query interface should immediately
build upon the generic uncertainty model to minimize computational effort
and exploit all information provided by the uncertainty model.

• Generality: The query interface has to provide all prevalent spatial query types
for position information such as position query, range query, and next-neighbor
query, cf. [GS05].

31

3 Degradation Model

For position information in context-aware systems, we propose a generic uncer-
tainty model based on partial spatial distribution functions and a corresponding
extended query interface supporting five prevalent query types satisfying the above
requirements. Our approach is suitable for all (uncertain) point-shaped position
information in the two-dimensional space.
In detail, we present the following contributions: In Section 3.2.2, we survey

existing, specific uncertainty models for position information. In Section 3.2.3, we
show that they can be classified into three fundamental types and that they all base
on partial spatial distribution functions and then derive our generic uncertainty
model. Based on this finding we present an extended query interface for uncertain
position information in Section 3.2.4 and show how to implement this interface for
different specific uncertainty models. Section 3.2.5 discusses related work, before we
present a summary in Section 3.2.6.

3.2.2 Survey of Uncertainty Models

In this section, we survey the existing uncertainty models for position information.
Most of these models only consider two-dimensional positions. Height information
of indoor positioning systems is often reduced to information about the floor and, in
case of outdoor systems such as GPS, the height information is handled separately.
Therefore, we restrict this survey to two-dimensional positions.

3.2.2.1 Specific Uncertainty Models for Position Information

Positioning systems use different techniques like triangulation/-lateration, scene
analysis, or proximity sensing to determine positions [HB01]. Different positioning
techniques not only yield different scales of accuracy—from millimeters to hundreds
of meters—but also result in different uncertainty models.
Positioning systems based on trilateration mostly model the position sensed at

time t and denoted by st as a normal distribution. This particularly applies to global
navigation satellite systems such as GPS [UN08] and ultrasonic-based positioning
systems such as Cricket [SBGP04]. For instance, according to [UN08] the standard
deviation σ of a two-dimensional position determined by GPS can be calculated
based on the User Equivalent Range Error σUERE and the Horizontal Dilution of
Precision, HDOP, as

σ = HDOP · σUERE (3.4)

Other systems—e.g., the WiFi positioning system presented in [BP00]—only give a
center point and several percentile values around that point, i.e. st consists of several
concentric circles expressing the probability that the actual position, denoted by at,
lies within a given circle. In beaconing systems, such as Active Badge [HH94], the
sensed position may only specify an area such as a room—i.e. at is known to be
in that area but without any further distribution information. The same applies
to the Smart Floor positioning systems using pressure-sensitive tiles [OA00] and
positioning using passive RFID tags [MKT08].

32

3.2 Generic Uncertainty Model for Position Information

3.2.2.2 Modeling of Uncertainty in Update Protocols

Update protocols introduce further uncertainties to position information and lead
to new uncertainty models. Dead reckoning protocols trade uncertainty off against
communication cost for efficient transmission of position information from a remote
positioning sensor to stationary components managing the current position [LR01,
vJP05]. Remote trajectory simplification algorithms additionally consider the costs
for storing the current and past positions, i.e. the whole trajectory [LDR08,LFDR09].
For all these approaches, a position st is modeled by a center point and a distance
value for the maximum distance from that point. However, the distribution within
the resulting circle is undefined.

3.2.2.3 Uncertainty Models for Fusion and Interpolation

Fusion algorithms improve the accuracy of a sensed position from different sensor
data on the same phenomenon. Multi-Area Probability-based Positioning by Pred-
icates [Rot07] describes st by a number of polygons with probability values taking
into account even multiple predicates on the position. For fusion of arbitrary proba-
bility density functions different Bayes filter implementations are applicable, possibly
discretizing the plane using a grid [FHL+03].
Complex, uncertainty-aware interpolation algorithms allow for deriving positions

at times in-between two sensing operations taking into account the temporal dis-
cretization introduced by sensing. The authors of [PJ99,CKP04] show how to re-
strict the position st at such a time to a lense-shaped area—the intersection of two
circles—by means of the maximum speed between the sensing operations.

3.2.3 Mathematical Generalization for Time-dependent Point Data

The diversity of these specific models makes it difficult to incorporate uncertain posi-
tion information from different sources in applications. We show in the next section,
however, that all these different models can be reduced to a common mathemati-
cal model for uncertain position information. After that, we propose a consistent
interface for applications that need to access uncertain position data from different
specific models. This interface is based on our common mathematical model.

3.2.3.1 Classification of Uncertainty Models

Although a large number of different specific models for uncertain position informa-
tion exists, we can classify them into three major types as illustrated in Figure 3.4:

1. pdf-based models: These models use complete probability density functions to
describe the uncertainties of positions. Hence, with such a model, a position
at time t is described by a two-dimensional probability density function st :
R2 → [0,∞).
Amongst others, pdf-based models are used for specifying the uncertainty of
trilateration-based positioning systems such as GPS.

33

3 Degradation Model

Position

Exact/Accurate Uncertain

Normal-
dist. ...Uniform-

dist.

PDF-based Shape-based

Circle ...Lense Polygon

Figure 3.4: Taxonomy of major classes
of the existing uncertainty
models.

Shape-
based

PDF-
based

Exact

Figure 3.5: Mathematical
generality of
the major
uncertainty
models.

2. Shape-based models: Models of this class describe positions by geometric
shapes. These shapes have associated probability values, however, in contrast
to the pdf-based models, the approaches make no claims about the probability
distribution within a shape.
Hence, a position at time t is a set st = {(A1, p1), . . . , (An, pn)} where pj ∈ [0, 1]
and Aj ⊆ R2 are geometric shapes such as polygons or circles.
Shape-based models are used, for example, for position information from in-
frared beacons, RFID tags, or interpolation with the intersection of circles.

3. Accurate model: For completeness, we also include the accurate model for
specifying an exact position without uncertainty.
Formally, a position is described by a single point, representing the actual
position, i.e. st = at.

3.2.3.2 Generic Uncertainty Model

In terms of probability theory, all three classes of uncertainty models provide prob-
abilistic information on the actual position they describe as they allow for map-
ping from one or more geometric shapes A to cumulative probabilities p. More
precisely, they describe the position at time t by a (generally partial) function
st : P(R2)→ [0, 1] with

st(A) = P [at ∈ A] = p . (3.5)

We refer to such a function as partial spatial distribution function (psdf). Note that
pdf-based models even allow for computing a mapping for all A ∈ P(R2) and thus
can be treated as special, non-partial cases of psdf. Accurate positions given by the
accurate model likewise are special cases of psdf, where st(A) = 1 if at ∈ A, and
otherwise st(A) = 0.
Thus, regarding psdf, the three classes of uncertainty models can be nested ac-

cording to their mathematical generality as illustrated in Figure 3.5.

34

3.2 Generic Uncertainty Model for Position Information

It holds that Aj ⊆ Ak implies st(Aj) ≤ st(Ak) as well as st(R2) = 1. Thus, given
an arbitrary area A, a psdf st allows for deriving two estimates plower and pupper
with 0 ≤ plower ≤ st(A) ≤ pupper ≤ 1 for the position of the corresponding object at
time t.
The three major classes of uncertainty models and their common basis in terms

of probability theory is an important finding and composes the generic uncertainty
model for the extended query interface proposed in the next section.
As the generic uncertainty model includes all classes of specific uncertainty models,

it satisfies the requirements expressiveness and generality given in Section 3.2.1.
Furthermore, it satisfies directness as it immediately bases on shape-based models,
the most general class of uncertainty models in mathematical terms.

3.2.4 Uncertainty-aware Query Interface for Position Information

In this section we present an extended, uncertainty-aware query interface for position
information based on the above finding of a generic uncertainty model. Therefore,
the query interface can be implemented for every existing uncertainty model and
thus allows for uncertainty-aware processing of position information from different,
heterogeneous sources.
Next, we discuss the extended, uncertainty-aware versions of prevalent spatial

query types for position information and thus show that the query interface meets
the requirement generality given in Section 3.2.1. Then, we describe a number
of examples how to implement the query types and thereby the query interface
for different specific uncertainty models, which shows that the query interface also
satisfies the requirements immediacy and comprehensiveness.

3.2.4.1 Extended Query Types

In the following, we consider an arbitrary set of objects {O1, . . . , On}, moving or
stationary. Though most entities of the real-world have a certain extent, we only
consider point objects. For any given object, one can always define an anchor point
and thus reduce its position to this point. We denote the position of object Oi at
time t by si,t. All queries have two parameters Oi and t in common, specifying the
queried object and the queried time, respectively.
Besides the uncertain position information, we argue that the providers must

define most likely point positions for each time and object they manage. This defined
point ci,t for an object Oi at time t may be either modeled explicitly or computed
on the fly from the uncertain position information of Oi. Note that this point is
naturally given with most existing uncertainty models such as normal distributions
or circular shapes.
The defined point ci,t of Oi at time t serves to define an unambiguous mapping

c̄i,t : [0, 1]→ P(R2) from each cumulative probability p to the circular area c̄i,t(p) =
AC with center ci,t and minimum radius such that si,t(AC) ≥ p. This is needed,
as the inverse s−1

i,t (p) is generally ambiguous. For instance consider the 2D normal

35

3 Degradation Model

s1

s2

s4

s3
d mi
n

d ma
x

dmax
dmin

d
max

d
min

Figure 3.6: Distance query evaluation.

distribution illustrated in Figure 3.7: The left half, the right half, and the inner
circle are three examples of areas with si,t(A) = 0.5.
Where applicable, the circular areas c̄i,t(p) are clipped to A1

i,t, the smallest area
with si,t(A1

i,t) = 1, which always is unambiguous but may be equal to R2.

Position Query Besides Oi and t, the position query takes a parameter p ∈ [0, 1]
and returns the smallest area A = c̄i,t(p) ∩A1

i,t such that si,t(A) ≥ p:

Position Query: PQ (Oi, t, p)→ (A, c̄i,t(p), si,t(A)) (3.6)

Moreover, it returns c̄i,t(p) and the probability value si,t(A).

Inside and Range Query To test whether an object is within an area A with a
probability of at least ptrue > pfalse, the inside query is defined as:

Inside Query: IQ (Oi, t, A, ptrue, pfalse)→ ({true, maybe, false}) (3.7)

With the estimates for plower and pupper from Section 3.2.3, the inside query returns
true iff plower ≥ ptrue and false iff pupper ≤ pfalse. In all other cases, the uncertain
position obviously overlaps the area A as well as its inverse R2 \ A and the query
returns maybe.
The range query can be implemented easily by inside queries on the set of queried

objects.

Distance and Nearest-Neighbor Query The distance query returns an upper and
lower bound for the distance between two objects with a minimum probability of
p by computing the minimum and maximum distances dmin and dmax between the
two shapes c̄i,t(p) ∩A1

i,t and c̄j,t(p) ∩A1
j,t.

Distance Query: DQ (Oi, Oj , t, p)→ (dmin, dmax) (3.8)

Figure 3.6 illustrates several examples of how dmin and dmax are computed. In
Section 3.2.4.2, these examples are discussed in detail.

36

3.2 Generic Uncertainty Model for Position Information

x

y

Figure 3.7: 2D normal
distribution.

A

s1
s3

s2
s4

s6

s5

s7

s8

Figure 3.8: Range query
evaluation.

The nearest-neighbor query uses these distance bounds to derive the set of objects
that may be closest to a given object Oi. Given Oi and a probability value p, it
computes the pairwise distances between Oi and all other objects Oj (i 6= j) as
described above and determines the maximum distance d̂ for Oi’s nearest neighbor
as d̂ = min(dmax) for all Oj 6= Oi. Then, it returns the set of objects with their
distance bounds that may be closer to Oi than d̂:

Nearest-Neighbor Query: NNQ (Oi, t, p)→ (Oj , dmin, dmax)∗ where dmin ≤ d̂

Thus, depending on p, the result either contains only objects that are likely to be
nearest neighbors or also objects with a low probability of being nearest neighbor.

3.2.4.2 Implementing the Query Interface

In the following, we exemplarily discuss how to implement the proposed query in-
terface for three specific uncertainty models. For actual implementations different
spatial data models such as the simple feature types of the Open Geospatial Con-
sortium (OGC) are feasible1.
As a first example, we consider the uncertainty model of GPS [UN08] based on

normal distributions. Then, we discuss the lense-based uncertainty model of the
interpolation algorithm in [PJ99, CKP04]. Finally, we show how to map a grid-
based uncertainty model [FHL+03] to the extended query interface. For all of these
models, we show how to implement PQ, IQ, and DQ. We leave out RQ and NNQ
since these are straight-forward extensions of IQ and DQ.

GPS Uncertainty Model based on Normal Distribution A GPS position is given
by longitude, latitude, and the HDOP value specifying a 2D normal distribution.
Longitude and latitude can be directly used as defined point ci,t for the generic
model. As already described in Equation 3.4, the HDOP value is multiplied with
the device-specific User Equivalent Range Error, σUERE, to derive the standard
deviation σ of the normal distribution [UN08].
As an example consider a GPS sensor with accuracy σUERE = 5m reporting

(lat, lon,HDOP) as (48◦47′N, 9◦11′O, 1.5). In this case, a PQ with p = 0.75 returns
1Depending on the data model, curves (e.g., of circles or lenses) have to be approximated by
polygons at a suitable level of granularity.

37

3 Degradation Model

a circle AC that is centered at (48◦47′N, 9◦11′O) with radius r = 8.84 m by solving
the circular integral over the density function fN2(0,σ2)(x, y) of the two-dimensional
normal distribution with σ = HDOP ·σUERE = 1.5 ·5 m = 7.5 m for r, i.e. by solving

p =
∫
√
x2+y2≤r

fN2(0,σ2)(x, y) d(x, y) . (3.9)

Figure 3.8 shows a queried range A and the positions of eight objects. s1 and
s2 are GPS positions where an IQ can be unambigously evaluated by integrating
fN2(0,σ2)(x, y) over A. For ptrue = 0.8 and pfalse = 0.2, IQ returns maybe for s1 and
true for s2.
Figure 3.6 shows several positions of objects and the upper and lower bound for

the distances between pairs of these positions. In case of a DQ on two GPS positions
s1 and s2 with p = 0.75, AC is computed for each of these positions according to
the explanations for the PQ. The lower bound dmin for the distance between the
positions is then computed as the minimal distance between the resulting circles.
Similarly, the upper bound dmax is computed as the maximal distance between these
circles.

Lense-based Uncertainty Model For interpolation with lenses [PJ99, CKP04]
(cf. Section 3.2.2), we consider two consecutive position fixes of an object Oi at
times t1 = 0 s and t2 = 100 s in the Euclidean plane with si,t1 = (0 m, 0 m) and
si,t2 = (100 m, 0 m). In addition, we assume the maximum speed of the object is
known to be 1.5 m/s. The position query PQ for time t = 50 s returns the intersec-
tion of the circles centered at si,t1 and si,t2 with radius r = 1.5 m/s · 50 s = 75 m for
any queried p. Note that the probability si,t(A) given in the query result always is
1.0.
Also note that any point within the lense can be chosen as defined point ci,t

without affecting the result A = c̄i,t(p) ∩ A1
i,t of the PQ (cf. Equation 3.6). An

obvious choice for ci,t is the linear interpolation between si,t1 and si,t2 .
For the queried range A given in Figure 3.8, the IQ returns true for position

information s3, false for s6, and maybe for s4 and s5 for any value of p specified in
the queries.
Figure 3.6 shows an example for a DQ involving a lense-based position s3. To

evaluate the DQ between s3 and the GPS position s2 with p = 0.75, a PQ on s3
is processed, which results in a lense shape. Then, the lower bound dmin for the
distance between the positions is computed as the minimal distance between the
lense shape of s3 and AC of s2. Similarly, the upper bound dmax is computed as the
maximal distance.

Grid-based Uncertainty Model Consider a grid-based [FHL+03] position that is
given by a set of tuples (xj , yj , pj) where xj , yj are cell coordinates and pj is the
corresponding probability. Thus, the grid-based position is given by a set of disjoint
quadratic shapes with associated probabilities. As defined point ci,t for the generic

38

3.2 Generic Uncertainty Model for Position Information

uncertainty model, a couple of alternatives are conceivable: First, the center of the
cell with highest probability pj is chosen. Second, the defined point is selected as
the centroid.
As an example consider a grid-based position defined by

si,t = (1, 1, 0.15), (2, 1, 0.05), (2, 2, 0.2), (3, 2, 0.5), (3, 3, 0.1) .

We compute the centroid (xc, yc) of this position as defined point by taking the
weighted sum of cell indices over each dimension:

xc = 1 · 0.15 + 2 · (0.05 + 0.2) + 3 · (0.5 + 0.1) = 2.45
yc = 1 · (0.15 + 0.05) + 2 · (0.2 + 0.5) + 3 · 0.1 = 1.9

A PQ with p = 0.75 is evaluated by selecting the cells closest to the centroid until
the aggregated probability of the cell equals or exceeds 0.75. In this example the
polygon enclosing the cells (2, 1, 0.05), (2, 2, 0.2), (3, 2, 0.5) is returned. For si,t(A), a
value of 0.75 is returned, since the sum of these cells’ probabilities equals 0.75.
For the queried range A in Figure 3.8, the IQ for the grid-based position informa-

tion s7 can be evaluated unambiguously since the range A is aligned to its grid. As
the grid of position s8 is not aligned to the range A, pupper and plower differ. plower is
the sum of probabilities of the cells that are covered by range A. In contrast, pupper
is evaluated as the sum of probabilities of cells that overlap with A.
Figure 3.6 shows an example for a DQ involving a grid-based position s4. The

processing of the DQ between s4 and the GPS position s1 with p = 0.75 is based on
the result of a PQ on s4. With the grid-based uncertainty model, a PQ results in a
polygonal area possibly consisting of multiple unconnected parts. The lower bound
dmin for the distance is computed as the minimal distance between AC of s1 and the
nearest part of the area returned by the PQ. The upper bound dmax is computed as
the maximal distance to the most distant part.

3.2.5 Related Work

The proposed query interface for uncertain position information and its generic
uncertainty model relates to two fields: Models for uncertain spatial data in general
and specific approaches for uncertain position information of moving objects.
Pauly and Schneider [PS05] classify the former into models based on rough sets

like the Egg-Yolk approach [CG96] and models based on fuzzy sets like the fuzzy
spatial data types proposed in [Sch08]. The models particularly define topological
predicates for vague spatial regions but do not aim at a generic model integrating
the variety of existing uncertainty models.
A variety of algorithms for processing range and next-neighbor queries on un-

certainty position information have been proposed in recent years, e.g., [CKP04,
TWZC02,YM03]. Most approaches model uncertain positions as circular areas which
can be mapped to the proposed generic model. Moreover, they use compatible se-
mantics for query results such as the MAY/MUST semantics for the containment in
queried regions proposed in [YM03].

39

3 Degradation Model

Existing approaches for fusion of position sensor data—particularly Bayesian fil-
tering [FHL+03] and inferring from location predicates [Rot07]—are also covered by
the generic uncertainty model as discussed in the previous sections.

3.2.6 Summary

We discussed the need for a generic uncertainty model for position information in
large-scale context-aware systems and formulated the requirements for a suitable
model and uncertainty-aware query interface.
In addition, we surveyed and classified the variety of existing technology-specific

uncertainty models and showed that they all can be considered as partial spatial
distribution functions (psdf) with respect to their mathematical generality.
Based on this finding, we proposed an extended query interface for position infor-

mation by extending common query types with information on the position uncer-
tainty. Furthermore, we discussed how to implement these types for certain preva-
lent uncertainty models. These examples show that the proposed query interface
can provide homogeneous access to uncertain position information from different
sources and sensors and that the proposed approach meets the various requirements
formulated in Section 3.2.1.
Although we only discussed position information, the mathematical approach can

be extended easily to scalar data types (e.g., temperature and velocity) as well as
data with three or more dimensions. Of course, the query interface has to be adapted
to the relevant query types for these data types.

3.3 Uncertainty Model for 3D Geodata

One issue of cross section project “Metrics and Valuation of Context” is to provide
concepts and metrics for the quality evaluation of 3D context models. By means of
appropriate quality descriptions, the degradation of 3D data can be modeled and
made available for uncertainty-aware queries and applications with geographical
reference. For instance, quality information of 3D building models is the basis for
analyzing the consistency of different building representations.
While in the area of geodesy and geoinformatics a number of metrics and ap-

proaches already exists for the evaluation of 2D data [Gle01], the search for appro-
priate quality descriptions for 3D geometries is still going on [SHF07]. Different
applications require different quality criteria. For example, polyhedral error rep-
resentations are suited for tasks that are based on volumes such as line of sight
calculations [FS08]. Other methods apply 3D surface elements in order to deter-
mine Euclidean distances as a quality measure through a Least Squares 3D surface
matching [AFGS08]. In statistical theory, covariance matrices are a powerful metric
to quantify the uncertainty of geometric entities. The matrix dimension depends on
the number of parameters which are used to mathematically define the geometric
entity. The standard deviations and correlations of these parameters can be ex-
tracted from the diagonal and non-diagonal matrix elements, respectively. Usually,

40

3.3 Uncertainty Model for 3D Geodata

Figure 3.9: Uncertainty region of a plane (from [Haa96]).

the measuring and the generation of basic geometric entities yield uncertainty infor-
mation as a byproduct. This fact will be utilized for the quality assessment of 3D
objects which are relevant for the spatial world model.
One example of 3D data used within Nexus is 3D building models. These are

composed of planes specifying the object’s surface. Planes are typically derived
from at least three 3D points. The uncertainty of a point pT = (x, y, z)T can
be represented by a 3 × 3 covariance matrix with six independent elements. The
corresponding uncertainty region is a standard ellipsoid which is defined by the
orientations and the lengths of its three semiaxes u, v and w. The orientations
are given by the angles αx, αy, αz; the lengths correspond to the standard deviations
σu, σv, σw in the direction of the respective axis. Consequently, an uncertain 3D point
is fully described by the 9-tuple p : (x, y, z;αx, αy, αz;σu, σv, σw). The degradation
of a plane estimated from uncertain 3D points can be obtained by error propagation.
In Hesse’s normal form, a plane π is defined by four parameters a, b, c, d and can be
written as π : ax+ by+ cz− 1 = 0 with d = 1/

√
a2 + b2 + c2 and a2 + b2 + c2 6= 0. If

only the normal vector nT = 1/
√
a2 + b2 + c2 · (a, b, c)T is uncertain, the error figure

of the plane is an elliptic cone through a point (x0, y0, z0) ∈ π. When additionally the
distance d of the plane from the origin is degraded, the uncertainty region becomes an
elliptic bipartite hyperboloid (see Figure 3.9). Relating to an appropriate (u, v, w)-
coordinate system, its mathematical form is given by w2 = σ2

w = σ2
d + σ2

αu
2 + σ2

βv
2,

where σα and σβ describe the maximum and minimum slope error and σd represents
the standard deviation of parameter d. Thus, an uncertain plane with the center
of gravity (x0, y0, z0) is defined by the 9-tuple π : (x0, y0, z0;αx, αy, αz;σα, σβ, σd)
with αx, αy, αz denoting the three angles for the major axis of the hyperboloid. The
uncertainty parameters σα, σβ and σd can be calculated from the eigenvalues of
the plane’s 4 × 4 covariance matrix resulting from error propagation or the plane
estimation process itself [För92].
This uncertainty information can now be used for location based applications in

Nexus. In the following, three exemplary use cases are introduced. The first one is
an inside query of the type “Is person X in building A?”. To answer this question,
the uncertainty of both the 3D building model and the person’s position have to be

41

3 Degradation Model

Figure 3.10: Exemplary Nexus applications using uncertainty information of a 3D
building model. Left: Inside query based on a global uncertainty value
of the building. Middle: Range query based on local uncertainty mea-
sures. Right: Navigation task based on local error descriptions.

considered. In contrast to person X that can be treated geometrically as a point
object, the significant spatial extent of building A has to be taken into account.
The uncertainty of the whole building can be obtained by propagating the errors of
its surface planes. The result is a complex uncertainty figure which is difficult to
describe mathematically and, thus, hard to handle. However, in cases where such
a detailed error representation for the whole building is not required, it may be
reasonable to approximate the intricate uncertainty figure by a simple buffer area
dilating the building perpendicular to all planes. Here, a threshold ε could be used
representing a global uncertainty value of the building. Figure 3.10 (left) illustrates
this situation in 2D as a projection on the ground.
The second example is a range query referring to specific building parts, as for

instance “Is person Y in the entrance area of building B?”. The range in question
is the area in front of the entrance door. It can be specified by a circle with a
predefined radius r. Considering reconstruction errors of the door, the circle has to
be enlarged. For this purpose, the uncertainties of the planes defining the 3D object
door are analyzed and propagated to the entrance area (see Figure 3.10, middle).
The third uncertainty-aware application is a navigation task, for example, the

navigation of person Z to the entrance of building C (see Figure 3.10, right). Similar
to the range query, as discussed before, the uncertainty of the door object must be
taken into account. However, when the uncertain planes are used to derive the center
of the door area, the problem is reduced to a task where only uncertain positions
have to be evaluated.

3.4 Uncertainty-Aware Situation Detection with Bayesian Networks

3.4.1 Introduction

In the domain of context reasoning the determination of high level context (hereafter
also called as “situation”) is usually done on the basis of environment models that can

42

3.4 Uncertainty-Aware Situation Detection with Bayesian Networks

be shared by multiple applications [CFJ04] [RAMC04] [GPZ04] [WZGP04]. These
are typically ontology based techniques or methods which interferes the context by
predefined user-specific rules or pattern. A high level situation recognition process
which bases on constraints and correlation of multiple real world sensor data, for
example a position information of a GPS receiver, is generally subject to uncertain-
ties. In contrast to approaches in the domain of context modeling, such as [HIR02],
most of the methods described in the literature take the degradation [DKN+06]
of contextual information not consistently into account [GPZ04]. Furthermore all
these related approaches base on spatially highly restricted environments and do
the reasoning-process in a central component. Accordingly no aspects of distributed
systems or positioning strategies has been developed to improve the situation recog-
nition process, determining quality aspects, improve the accuracy or optimize the
system load due to positioning information.
Thus we developed a new situation-recognition method, which enables the reason-

ing process in a general and distributed way. Furthermore the system is able to han-
dle with uncertainties during the situation detection process and even an automatic
adaption of uncertainty-aspects during runtime is possible. Therefore a supervised-
learning method has been included using only a simple boolean feedback-information
of the user. During the implementation different procedures for the recognition of
situations were examined and developed based on uncertain context data gained
from the Nexus-Context-Servers (NCS).
Due to the novelty a very special focus was on creating a general approach to

use common methods for a large set of different situations. During this work two
concrete problems within this domain became clear: On the one hand the possibility
of uncertain context data due to poor sensor quality, and on the other hand the
uncertainty of the actual inference of the situation recognition, for instance due to
an incorrect recognition model. To solve this problem we developed an method
which uses two different sequential running adaption-steps, which refines the model
to improve the recognition process iteratively.

3.4.2 Situation Template Model

To reduce the complexity of the situation recognition process, most context rea-
soning systems [CFJ04], [WZGP04], [HIR02] use ontology- or predefined rule-based
approaches. Another advantage of this proof is the user-friendly and simple de-
signing of rules and models, because of the affinity to human ways of clustering
information. In contrary to most of the existing context aware systems which are
supposed to cover only a limited geographical area or support only a specific use
case scenario [BMK+00], [PL03], our focus was on the development of a novel dis-
tributable and general situation recognition approach to detect a wide spread of
different situations and scenarios. In our approach the coherences and operators
as well as the constraints of the different context data are modeled before runtime,
based on the implicit knowledge of an expert.

43

3 Degradation Model

Furthermore we define a situation template as an abstract, machine readable
model of a certain basic situation type which could be used by different applications
to detect their situation. Thereby the situation template consists of a composition of
relations, constraints and coherences of (high-level) context-data. As a consequence
a situation template indicates a form of explicit knowledge.
To cover the system requirements, we identified the following necessity of our new

recognition model:

• Generality : To cover a wide range of possible application scenarios, the tem-
plate and its representation has to be in an abstract and general way. Both
the generality of the model and the generality of the corresponding inference
method is to considered there.

• Distributable : Due to the idea of the nexus-project, the recognition process
has to be distributed in the infrastructure. Thus the model and the corre-
sponding inference process should support the possibility of a distribution and
handle with the aspects of a distributed system with the resulting assets and
drawbacks too.

• Uncertainty-awareness : Because of the use of real sensors, which underlie
specific uncertainties, tolerances and latencies, the recognition-process above
the sensors-layer has to support accordant metrics and propagation-processes
to handle these uncertainties and aggregate these to the application to evaluate
their situation.

• Modularity and Extensibility : Due to the desired diversity and universality of
the recognition process the model should support corresponding interchange-
ability, expandability and modularity. According to this, the model and even
the corresponding inference mechanism has to support the use of several met-
rics of uncertainty depending on the needs of the application.

According to these necessities a set of different models, techniques and inference
approaches has been analyzed and evaluated. Due to the advantage properties of
the model we implemented an approach based on probability networks here.

Template structure The representation of a situation-template, based on a prob-
ability network, can be modeled as a directed graph, which has a special polytree
structure. Because of this polytree structure, the graph is called Situation Aggre-
gation Tree (SAT). Thus in more detail the graph is defined mathematically as
SAT = (O,E), where O = o1, o2, ..., on represents a set of operators. Furthermore
the operators can be differentiated into two different types, the so called constraint-
validators CV = cv1, cv2, ..., cvn and the subsituations SN = sn1, sn2, ..., snn.
We define constraint-validators as operators which checks whether their input-
value (i.e. sensor value) satisfies a predefined condition (using a specific sigmoid
operator-function f).

44

3.4 Uncertainty-Aware Situation Detection with Bayesian Networks

We define subsituations as operators that aggregate several operators in one higher
aggregated (subsituation-) operator. As a consequence of the template-structure all
paths and operators are aggregated in one single top operator. That means, if we
want to evaluate a situation-template, we first have to start a reasoning-process and
finally check the results of the single top operator.
Furthermore E = e1, e2, ..., en represents a set of directed edges or links between

the operators which represents the relations between them. Furthermore ei = (ok, oj)
is a directed edge from operator ok to operator oj . In other words, ok is the parent-
operator of oj , thus we will say formally pa(oj) = ok.

Uncertainty metrics As already mentioned above, our reasoning-approach bases
on probabilistic networks where we furthermore distinct between two different uncer-
tainty-metrics, similar to other existing reasoning approaches [DA00,MYCD]. One
advantage of such a distinction is the resulting modularity, the replaceability of the
inference mechanism below and the possibility to expand the uncertainty metric
for new ones. This is why we draw a distinction between the probability- and the
confidence-metrics for uncertainty.

• probability (P): The probability-metric is defined as a value in the range of
0..1, which represents the probability of the occurrence of the situation from
the recognition-process view. For example a probability value of 0.8 means
that the situation-recognition-process assumes that the situation is occurring
with a probability of 80 percent.

• confidence (C): The confidence-metric is defined as a normalized value,
which reflects the quality or the correctness of the used situation-template.
For example a confidence value of 0.99 means, that the recognition-process
will detect the situation (“occurrence” or “nonoccurrence”) with a very high
correctness. In contrast a confidence of 0.1 means that the quality of the
template (or the underneath context-data) is poor.

Furthermore we differ between these two metrics, because of the desired generality
and the possibility of different applications and their individual handling of the
confidence. E.g. a high-security-application which controls the access to a banks
vault should insist on a high confidence to prevent false-positive-results. On the
other hand a navigation-application, which warns a blind person not to come across
an obstacle, could handle with less confidence (in return with a faster recognition)
because the blind person can put up with false-alarm with less consequences.
According the idea of the nexus-project the information of each uncertainty-metric

of every single context data can achieved from the Nexus-Context-Server initially.
Nevertheless it should be clear, that these uncertainties can also be simply obtained
from the sensors technical documentation or it can be determined by comparing the
sensors observations through training and statistical calculations. For a more detail
view, how the nexus framework determine the uncertainty metrics of the sensors,
we refer back to the chapter 3.2.

45

3 Degradation Model

Template representation During the inference the according metric of each used
context-data is combined with the corresponding uncertainty metric of the operators
in the SAT using Bayesian methods. While this process, the cumulative uncertainty-
values are propagated from the bottom to the top of the SAT to evaluate the situa-
tion. That means, the uncertainty of the context data is derived from the (physical)
sensor, next the constraint-validator uncertainty is derived from the context data,
and finally the subsituation-operators uncertainty is determined by aggregating the
uncertainties of its parents-operators. Because of the SAT structure and the stochas-
tic independence of the context data, the uncertainty-metrics are propagated in the
tree structure bottom-up to the top node. To aggregate the uncertainties during
evaluation a set of probability distributions has to be added for each uncertainty
metric to the structure of the current SAT.
So we get the new extended structure (see also figure 3.11):

SAT = (O,E,Θ,Γ)
Θ = {CPTΘ(o1), ..., CPTΘ(on)}
Γ = {CPTΓ(o1), ..., CPTΓ(on)}

Whereas Θ stands for the probability-metric and accordingly Γ stand for the
confidence-metric. Furthermore CPT (oi) equates to the Conditional Probability Ta-
ble (CPT) of operator oi. In detail the CPT (oi) makes assertions about the accord-
ing conditional probability of the probability-metric (CPTΘ) and the confidence-
metric (CPTΓ) of operator oi in correspondence to its parent pa(oi). Using this
extension a Bayesian Belief approach is implemented.
The situation-template itself is stored in the template repository in a XML-

structure, exploiting the tree-structure of the SAT. For a fast and simple design-
ing of situation-templates and further evaluation purposes we implemented a simple
prototype (Template Designer) as shown in figure 3.12
To determine the total uncertainty-metrics of the templates we use a common

reasoning-mechanism. This reasoning-mechanisms, i.e. the calculation of the un-
certainties of the actual situation-template (here: probability P and confidence C)
is done by exploiting the polytree-structure of the situation templates, using the
Bayesian Theorem and the message-passing-algorithm of Pearl [Pea88], which re-
alize the distributed belief propagation in Bayesian Networks based on Θ and Γ of
the according operators.

3.4.3 Parameter-Adaption

For our novel adaption approach we developed an iterative estimation algorithm.
Thus the overall method consists of two iteratively running processes:
Step 1: adaption of metrics and step 2: adaption of ontology.

46

3.4 Uncertainty-Aware Situation Detection with Bayesian Networks

Figure 3.11: Situation Template: SAT-Structure.

Thus the algorithm iteratively adjusts the uncertainty-metric based on the current
ontology (= adaption of metrics-step) and in the next step the ontology is adapted
based on the (new) uncertainty-metric of the first step (= adaption of ontology-step)
and so on. The algorithm terminates appropriately when a local optimum has been
reached.

3.4.3.1 Adaption of metrics

As mentioned above the reasoning-method for situation-detection is done by a
Bayesian inference approach using the CPTX(oi) of node oi and the according met-
ric X ∈ {Θ,Γ} for all oi ∈ O. In this chapter we want to show the method how to
adapt these metrics, based on the assumption that the ontology is correct - i.e. with-
out any design-errors or constraint-errors. Thus we are able to adapt automatically
the uncertainty-parameters of the operators in the situation template we are using
for reasoning. In statistics, many general inference techniques [Tan93], [KR95] have
been developed that have been applied to learning of probabilistic networks. Because
we assume that the constraints and the ontology are correct we examine the param-

47

3 Degradation Model

Figure 3.12: Screenshot of Template Designer.

eter fitting problem, i.e. learn the parameters from data. These fitting algorithms
exist for probability network (e.g. Bayesian networks) in the cases of complete and
missing data [Edw90], [JP95], [Lau95]. Because of the existing uncertainty and the
non-observability in our real world domain, we will only consider methods which can
deal with missing or incomplete data. Therefore the Expectation-Maximization (EM)
algorithm [Lau95], [DLR+77] is a common and proven approach for dealing with in-
complete information when building statistical models. Other common techniques
in this domain are the iterative proportional fitting algorithm [JP95] and approaches
using evolutionary algorithms [MLD99], [TLS01]. Despite these approaches we use
another technique which allows the automatic adaption only with a simple boolean
feedback-information based on supervised-learning-methods and even exploits the
tree-structure of our SAT. Thus we are using the existing overlaps between learning
of Bayesian Networks and Neural Networks, described in [Nea92], [SJJ96], [Bun94].
As already mentioned, each metric X ∈ {Θ,Γ} is represented via an individual

and operator specific Conditional Probability Table. These CPTs are predefined
by an expert or they can be set randomly initially. We assume that after each
reasoning-process the system gets a trustful boolean user-feedback which determine,
whether the situation actual occurred or not occurred. With this simple feedback
we are able to adapt the uncertainty-metrics in the following way:
During the adaption-step we transform the SAT into a neural net (NN) and in-

terpret each CPT entry as a weight of an according edge of the NN introduced in
the work of [RM96]. Furthermore we use a Backpropagation-Algorithm to teach
the weights of the NN. For each metric we use an own NN because the CPTs, the
input-values and the teaching-vector is different for each metric. I.e. to adapt the

48

3.4 Uncertainty-Aware Situation Detection with Bayesian Networks

probability-metric we use as input-values for the NN the context-probability-values
given by the nexus-platform. As teaching-vector for the NN we use the actual
boolean user-feedback, whether the situation occurred or not. Thus we are able
to adapt the weights iterative using a simple NN-Backpropagation-Algorithm ac-
cording to the given context-data (input-value(s) of the NN) and the information of
the actual occurrence of the situation (output-value of NN). Furthermore to adapt
the confidence-metric we use instead as input-values of the NN the context-quality
provided by the Nexus-Context-Server. As teaching-vector we use a statistical mea-
surement of the correctness of the corresponding template based on multiple training
instances by summarizing the numbers of true-positives and true-negatives results
divided by the number of all reasoning-processes. After the optimal adaption of
the weights of the NN we transform the adapted neural network back to the SAT-
structure, by interpreting the weights of the NN to the corresponding CPT-entry.

3.4.3.2 Adaption of ontology

In this section we want to give an overview of our approach to adapt the specific
operator-function of each constraint-validator. This step is necessary because the
situation-template is initially designed by a human expert and thus we have to
cope with ontology and design errors. In order to be able to correct ontology and
constraint errors, they have to be located in the ontology first. One possibility
of locating errors is to accomplish data by new measurements several times until
the fault location can be clearly determined. Corresponding work can be found
in [DKW87], [Rei87], and [Hou94]. In [MRF04] an approach for recognizing and
predicting context by learning from user behavior is described.
In one of our previous work [ZHKL09], an algorithm (Template Adaption Algo-

rithm (TAA)) for ontology based learning is presented which basic principles are
shown next. We assume that the expert already specified a situation template (e.g.
using the “Template Designer”). Furthermore we assume that the uncertainty met-
rics of each operator are already adapted and filled up with the corresponding values
in the previous step.
In the next step we create a table, called Global Control Table (GCT). This

GCT consists of entries which represents discrete switching states of the constraint-
validator function f , as well as the probability value p of each value combination.
The probability value p of the according switching combination can be achieved
using a simple mapping algorithm based on the confidence-metric of the constraint-
validators. For unknown switching combinations or if there are no confidence values
available, random values or the value of p = 0.5 can be used instead.
For the learning-step we use a supervised learning approach based on the same

feedback modul already uses in the adaption step for the metrics. Using this
simple boolean feedback-information of the user, the probability value pi of row
i of the GCT depending on the switching state, can be updated according to a
simple Delta-∆-Rule in every recognition step (episode). It appears that for faulty
template values and small enough ∆ the probability pi converts with a growing

49

3 Degradation Model

number of episodes towards 0.

Formally: lim#episodes→∞ pi = 0.

For every pi which is under a predefined threshold ε, the corresponding row i in
the GCT is selected. Afterwards for each of the selected rows a new vector with
the switching status will be created. Every created vector represents a potentially
faulty template value.
Afterwards statistics, counting the number of all switching states in the vectors is

used. For that we define a function ψ(value)cvi accordingly. Furthermore a helping
function numSet(X, value) is defined. This function returns the number of elements
x ∈ X which has the given switching state value. We can say formally:

numSet(X, value) = {x|(valueOf(x) = value)AND(x ∈ X)}
ψ(value)cvi = |numSet(cvi, value)|

In order to be able to correct errors, we first locate the potential error using the
previously calculated statistics. It is clear that the vector with the highest value
of same switching states in the statistics ψ represents the constraint-validator cvj
which has to be corrected. Afterwards this (faulty) sigmoid constraint-vaidator-
function f will be adapted by shifting the inflection point of f for a predefined factor
d (random or fixed value). The result is the automatic correction of wrong or
imprecise constraint-vaidators over n learning episodes. In case that m > 1 vectors
(cvj ..cvk) have the same maximum amount of switching states compared to another
vector two cases have to be distinguished.

• Case 1: The complete set of m selected template values is faulty.

• Case 2: The error is caused by a faulty operator (subsituation which aggregates
these m constraint-validators) or by a faulty network-connection.

To detect and distinguish the two error cases a resolving strategy was developed:
At first a random context-data value (of cvi) within the m selected vectors is chosen
and updated with the previously described Delta-∆-Rule. If the statistics of the
adjusted vector i improves, the process is continued gradually with the remaining
m− 1 vectors. If the statistics remains unchanged the error is located in one of the
operators which joins the m underlying constraint-validators.

Improvement The basic idea of the improvement of the above described algorithm
is not to change the template values with a fixed value or a random factor but
change them selectively. For that extension a new table Tcvi has to be created for
every constraint-validator. In the case of n constraint-validators a set of n tables
Tvci for i=1..n have to be created. The newly added tables include as columns the
calculated global binarized probability-value P of the situation recognition process
called result, the binary value of the feedback of the user called feedback and

50

3.4 Uncertainty-Aware Situation Detection with Bayesian Networks

the context-data (input of the constraint-validator) queried from the context server
called value. See also table 3.1 for an simple example.

row i result feedback value
1 1 0 16
2 0 0 15
3 0 1 17
4 1 1 18

Table 3.1: Example of an extension table Tcvi with fictitious context data.

Furthermore it has to be distinguished between the amount of so called “Error
Cases” (EC) and “Non Error Cases” (NEC). These are defined as:

EC = {rowi ∈ Tcvi |(resulti XOR feedbacki) == true}
NEC = {rowi ∈ Tcvi |(resulti XOR feedbacki) == false}

In order to adapt the values in the template a case distinction is necessary. This
fact is presented with the example of the operator-function f equates greater-than
“>” -function.
Example: constraint-validator function “greater-than” “>”
• Case 1: maximum value is unequal to the current template value ∈ EC.
−→ The template value is updated using the value with the smallest difference
to the value V = max(NEC).

• Case 2: maximum value is equal to the current template value ∈ NEC.
−→ The template value is updated using the value with the smallest difference
to the value V = min(NEC).

3.4.4 Summary

We gave a short survey about the existing methods and approaches of situation de-
tection in context-aware systems. Furthermore we discussed the need of a generic,
distributed situation recognition process in a large-scale context-aware system and
formulated the requirements of such a system. Based on these necessities we intro-
duced an abstract, machine readable descriptions of a certain basic situation type
which could be used by different applications to evaluate their situation, called sit-
uation template. Furthermore we introduced the data-structure of the template
and the advantages to exploit during the reasoning process on uncertain informa-
tion. Due to the desired modularity and extensibility of the uncertainty-metric we
consider different kinds of uncertainty, where we introduced the uncertainty-metrics
Probability and Confidence. Finally we gave an overview of our iterative novel adap-
tion process, which refines the parameters of the uncertainty-metrics in the situation
template, to get a more robust and reliable situation recognition system.

51

3 Degradation Model

3.5 Degradation of high-level context derived from sensor data

Situation recognition based on context information is described for example
in [Mie03] and [Fre92] where situations are predefined by conditions. Situation
recognition in general combines learned knowledge and observation of the environ-
ment. A matching algorithm has to determine which predefined situation fits best
to the current state of the world or to the environment of an application or it’s user.
The learned knowledge in this case can consist of situation templates [ZKLL06] that
are configured by users or application designers or it can be the result of learning
algorithms that cluster context information.

Situation templates are arranged in situation libraries for different context aware
applications. It is common that situations concerning the same use case have
overlapping preconditions or are correlated with the same phenomenon in the
environment but for each situation template with different attributes. To detect
a meeting in a room for example a noise level could be used. In this example the
same phenomenon would be used for the detection of a meeting where the noise
level should be above a defined threshold or for the detection of a situation where
some people work in a room and the noise level should be below a defined threshold.
To get a more reliable system the situation detection normally is done via bayesian
networks which do not only rely on the noise information itself but additionally on
corresponding probabilites. Especially when the situation recognition itself should
output a quality rating to the determined situation it is necessary that all the ana-
lyzed information to the preconditions are rated with qualities or probabilities. A
situation recognition that provides probabilites to each possible situation therefore
needs probabilities to each information that is assigned to a precondition. This
leads to the need of a conversion from uncertainty to probabilites when using sensor
data to observe the environment to recognize situations.

In this section we describe the method for deriving high-level context together
with a quality measurement from sensor data using logistic regression. An evalua-
tion of the method and a comparison to other methods using neural networks or an
empiric approach is described in [KGS+09].

Augmented World Model, Degradation and Stochastic Errors
The Nexus platform [NGS+01] provides access to context which is managed in dis-
tributed augmented environmental models. To extend the environmental models or
to update the models to adapt them to the current state of the real world not only
user input is used but also sensor data. The platform provides services for reliable
sensor data integration by SensorContextServers which offer raw and processed sen-
sor data together with ratings such as relative, absolute or standard deviations to
context aware applications.
Uncertainty of sensor data is represented in meta data which is divided into several

domains of degradation [Käp08] concerning different aspects of quality like temporal

52

3.5 Degradation of high-level context derived from sensor data

aspects, cross sensitivity or stochastic errors. Since in the nexus platform sensors can
be used for different applications. Therefore there is no simple possibility to rate the
quality of measurements since quality ratings always have to be related to certain
requirements. On a SensorContextServer the quality of a measurement is rated
in relation to the physical attributes of a sensor itself as long as there is no other
specification from an application. For example when a physical sensor has a sampling
rate of 10 Hz but the value for applications provided by the SensorContextServer is
updated only once a second then the quality rating concerning timeliness is 10% or
0,1 respectively.
Since each application can have different quality requirements the SensorCon-

textServer can manage weights for particular domains of degradation or complete
rating specifications based on physical attributes for each application. An applica-
tion can for example give higher rates for timeliness instead of accuracy to be able
to react fast on changes in the environment. The advantage of this quality manage-
ment by the platform is to shift the effort of quality monitoring from applications
on devices to the servers.
Nevertheless we still have only quality ratings for measurements and no probabil-

ities of information that can be used in a situation recognition. A conversion from
these ratings to probabilities is needed on the sensor data level. The goal is to obtain
information from sensors for preconditions of situation templates. This means for
the situation recognition that each single sensor observing phenomena related to a
situation is used individually to give a probability to the relevant situation. These
probabilities are combined to obtain a reliable situation recognition using all defined
preconditions.

Conversion from raw Sensor Data to Probabilities
To obtain more reliable results for situations which are not directly related to one
single phenomenon in the environment of a user or application we define periods of
time in which the related phenomenon is observed.
A Logistic regression [HL04] is used to determine the probability for an occur-

rence of an event. Adapted to a situation recognition this can be used to determine
probabilities for situations or probabilities for single preconditions of situation tem-
plates by learning the assignment of reference measurements to known predefined
situations.
As input to a binary logistic regression we used the same information from the

periods of time as we used for the neural network approach. The logistic regression
learns weights called regression coefficients by a maximum likelihood estimation to
all the input variables corresponding to the derived information of each period of
time. The learning is based on reference measurements where the outcome of the
logistic regression is already known. In practice a test set of measurements has to be
generated where each measurement can be assigned to one of the situation templates
manually. A linear combination of the measurements xj and the corresponding
weights βj is given in equation (3.10). A situation is assigned to the result z or
underlying measurement respectively when z > 0. To obtain a quality rating to

53

3 Degradation Model

the determined situation z is normalized to the interval]0; 1[as shown in equation
(3.11).

z = β0 +
n∑
j=1

βj ∗ xj (3.10)

p(y = 1) = 1
1 + e−z

(3.11)

The binary logistic regression is only suitable for distinguishing two mutually
exclusive situations or for determining if one single situation is valid or not. In these
cases the sum of the according possibilities calculated as described above is one. To
distinguish between more than two situations a Multinomial Logistic Regression is
necessary [Men01]. The adapted calculation of all the probabilities for n situations
is given in equation 3.12 which again normalizes the probabilities to a sum of one.

ln P (yi=m)
P (yi=1) = β0m +

n∑
k=1

βmkxik = Zmi (3.12)

The more reference measurements are available the more accurate is the situation
recognition in the end. Several quality criterions such as Nagelkerke R2 [Nag92]
can be used to check the quality of the regression with the learned coefficients by
applying the system to the reference measurements again. This can be used as a
general quality monitoring for situation libraries adapted to individual use cases.
The corresponding quality is a hint for application designers or applications that
automatically adapt situation recognition to reference measurements stating the
need for additional reference information to learn the parameters for the algorithm
more precisely.
The ratings for our meeting example lead to the usage of the difference of a

maximum and minimum measurement and the average of the period of time. The
maximum and minimum values themselves were excluded automatically from the
situation recognition in our example presented in the next chapter.

Adoption to new situations
The logistic regression system has to be adopted and trained with new coefficients
whenever a new sensor is involved or new situations have to be recognized. The
advantage is that an application designer doesn’t have to specify the ranges of values
from measurement results that belong to each new situation. It is only necessary
to assign the sensors to known situations. The disadvantage is that the systems
needs several reference measurements for each new situation to be trained. But
once the reference measurements are available the coefficients can be trained in
short time. For our example of 3 Situations and more than 50000 measurements the
coefficients could be trained in less than 5 seconds on a normal pc. The different
training methods Enter, Forward selection and Backward Selection did not make any
difference in the result. All trained coefficients lead exactly to the same situation
recognition probabilities.

54

3.5 Degradation of high-level context derived from sensor data

To execute the situation recognition on different devices the trained coefficients
could be provided by the nexus platform. This enables a distributed situation
recognition where each sensor’s measurements can be assigned to preconditions of
situations on the device the sensor is attached to. Afterwards only the calculated
probabilities have to be communicated over the network.

55

4 Consistency Model

Inconsistency in the context of the Nexus project can be observed on the context
information layer and on the high level context layer. Inconsistency on the context
information layer is caused by different data providers offering different values for
the same attribute, while on the high level context layer, inconsistencies are caused
by different situation templates for the same situation, which generate different
results. In the first case (Section 4.1), the inconsistencies are used as input for the
reference model, in the latter case (Section 4.2), inconsitencies are used in refining
the situation recognition process.

4.1 Inconsistency on the Context Information Layer

Inconsistency on the context information layer refers to the case that different data
providers can offer the same datum, i.e., provide different values for the same at-
tribute. Examples for such situations are different sensors measuring the same
datum, or buildings in a town which are modelled by different organizations. In
consequence, we have to deal with a finite number of alternative values for the same
attribute. The Augmented World Model (AWM) already has the ability to represent
alternative values, so here we focus on models to measure such inconsistencies.
The model used for measuring consistency heavily depends on the types of the

attributes (more precisely, the types of the attribute parts) and the model used for
representing uncertain values. We have investigated four different domains: The
discrete domain, containing types like integers, booleans or enumeration values,
the continuous domain with pdf containing types like real numbers or positions
with degradation represented by a probability density function (pdf), the continuous
domain without pdf consisting of types with degradation represented as described
in Section 3 and the 3D-domain used for three-dimensional building models.
The model for the first three domains has some basic properties, which have been

identfied as beneficial for applications:

• The consistency is a value from [0, 1] (a pair of values for the generic spatial
domain)

• Identical values have the best consistency (1)

• Contrary values have the worst consistency (0). Contrary values are differing
certain values or uncertain values, which do not overlap.

• There are cases where two uncertain values are neither identical nor contrary.
In this cases, the consistency value is between 0 and 1.

57

4 Consistency Model

The basic design idea of the model is to estimate the probability that the rep-
resentation of one provider does not conflict with the representation of the other
provider.
The properties of the model for the 3D-domain differ a little bit because of the

specialized application domain, but also results in consistency values from [0, 1],
where a larger number means better consistency.
In the following discussion, o, o1, o2, . . . denote objects. Objects are sets of at-

tributes. The A attribute of o1 is denoted by o1.A. Exponents denote representa-
tions of different providers, i.e., o2

1 is the representation of o1 of provider 2.

4.1.1 Discrete Domain

For discrete domains, uncertain values are represented as probability distributions.
Let X be the domain of attribute A and a : X → [0, 1] the probability distribution
of A. The consistency of the A attribute two representations of object o is

c = 1
2

(∑
x∈X

o1.a(x) · sgn(o2.a(x)) +
∑
x∈X

o2.a(x) · sgn(o1.a(x))
)
.

As outlined at the beginning of this chapter, for each provider, the probabilities for
all values are summed up, for which the probability specified by the other provider
is larger than 0 (accomplished using the sgn function).
Table 4.1 shows an example where two data providers offer different values for

an uncertain enumeration-typed color attribute. The numbers in the table are the
probabilities for the colors. The consitency of the values is 0.65.

red green blue
provider 1 0.5 0.5 0
provider 2 0 0.8 0.2

Table 4.1: Example values

4.1.2 Continuous Domain with Pdf

For continuous domains, uncertain values are represented as probability density
functions. Let X be the domain of attribute A and a : X → R+

0 the probability
density function of A. The consistency of the A attribute two representations of
object o is

c = 1
2

(∫
x∈X

o1.a(x) · sgn(o2.a(x))dx+
∫
x∈X

o2.a(x) · sgn(o1.a(x))dx
)
.

In Figure 4.1, two providers specify different probability density functions for a
temperature. In this example, the consistency is 0.7.

58

4.1 Inconsistency on the Context Information Layer

Figure 4.1: Temperature specified by probability density functions

4.1.3 Continuous Domain without Pdf

When positions are given as probability density functions, the definition from Sec-
tion 4.1.2 can be applied. In this section, we present a measure for inconsistency
where positions are represented by sets of areas with probabilities without making
assuptions about the distribution inside the areas (cf. Chapter 3). As a consequence,
the consistency model does a kind of best case / worst case estimation and generates
a pair of consistency values (c = (cl, cu)).

provider 1 provider 2
o.p(A) 0.4 -
o.p(B) 0.6 -
o.p(C) - 0.7
o.p(D) - 0.3

Figure 4.2: Uncertain areas and corresponding probabilities

In Figure 4.2, two providers offer uncertain position information for the object
o. The uncertain position is represented by areas and a probability distribution,
i.e., o.p(A) is the probability that the position of object o is inside area A. For the
probabilities declared as “-”, the provider does not explicitly specify a value, for
calculating the consistency, we treat them as 0.
For calculating the lower bound of the consistency value, for each provider the

probabilities of all areas that are contained in an area specified by the other provider,
are summed up. The two values are added and normalized to the interval [0, 1].

cl = 1
2

 ∑
X|∃Y :X⊆Y ∧o2.p(Y)>0

o1.p(X) +
∑

X|∃Y :X⊆Y ∧o1.p(Y)>0
o2.p(X)

59

4 Consistency Model

The upper bound is calculated similarly by including all overlapping areas.

cu = 1
2

 ∑
X|∃Y :X∩Y 6=∅∧o2.p(Y)>0

o1.p(X) +
∑

X|∃Y :X∩Y 6=∅∧o1.p(Y)>0
o2.p(X)

For the example in Figure 4.2, the consistency is (0.35, 0.8). Table 4.2 shows

some more examples for inconsistent position information and resulting consistency
values.

attribute provider 1 provider 2 consistency
o.p(A) 0.4 0.3 (1,1)
o.p(B) 0.6 0.7
o.p(A) 1 - (0,0)
o.p(B) - 1
o.p(A) 0.4 0.4 (1,1)
o.p(B) 0.6 0.6

o.p(A) 1 - (0,1)

o.p(B) - 1

o.p(A) 1 - (0.5,1)

o.p(B) - 1

o.p(A) 0.4 -
(0.65,1)

o.p(B) - 0.3

o.p(C) 0.6 0.7

Table 4.2: Inconsistent position information and resulting consistency values

4.1.4 3D-Domain

For the evaluation of inconsistencies in multiply represented 3D building models
from different context providers, we proposed the approach described in [Pet09],
which will be illustrated in the following.
The approach aims at the evaluation of inconsistencies between an input model

and a reference model. For every face in the usually higher detailed and accurate
reference model, a local coordinate system is constructed. In the case of horizontal
faces, this is the face’s normal vector and its cross product with the x-axis of the
model coordinate system, complemented to a right-hand-system. For all other faces,

60

4.1 Inconsistency on the Context Information Layer

the z-axis is used instead of the x-axis. Input model faces relevant for the comparison
to the current reference model face are compiled according to their type, where a
distinction between wall and roof faces is made. This set of faces is further downsized
by comparing the normal vectors. However, instead of using an angular threshold,
only faces with opposite direction to the reference face are removed as these are not
likely to represent a building feature similar in both models. The relevant faces are
then projected into the local coordinate system and the intersection of the current
reference face and the projected relevant face is computed. If an intersection polygon
exists, its area is computed. However, faces exceeding a distance threshold with their
mean distance to the reference face are excluded. This is necessary, as for the final
consistency value distance and angular inconsistencies will be merged with the areal
differences. Faces exceeding the distance threshold are nevertheless regarded in the
consistency computation by their missing area.
From the three characteristic values—distance, angle and intersection area—the

consistency value per face is computed as

c = 1
A

∑
i

(
1− di

dmax
− |αi|

)
·Ai

with di being the mean distance and αi the mean angle between face and the ref-
erence face, Ai being the area of the respective input face and A the area of the
reference face. The resulting value in the interval [0, 1] may for example be used to
color the input face (see Figure 4.3).
In order to test the approach, differently detailed data from four sources was used.

Ordered by descending level of detail and accuracy, these sources are: Hand-crafted
models of landmarks from a city model derived from terrestrial data collection;
medium detailed models from airborne photogrammetric data collection; building
models from the same city model, however simplified using the approach by [Kad07];
OpenStreetMap ground plans extruded to 3D block models.
Figure 4.3 depicts the results for the Rosenstein museum models. In the Open-

StreetMap model, the bigger differences in the longer walls in contrast to medium
inconsistencies in the shorter sides reproduce quite well the shift of the complete
building model. In the generalized model, the strongly simplified roof structure
shows the most distinct inconsistency to the reference model, with slight differences
for the atrium and flat roof sides. The city model from airborne data collection,
however, holds high consistency in the main wall planes. As both of these models
are provided by the city surveying office, this is most likely due to the shared data
base and accurately measured ground plans. The slight inconsistencies in the roof
planes stem mainly from differently modeled roof angles, whereas the atrium without
a match in the model from airborne data acquisition is marked clearly visible.
While the fusion of differently detailed 3D building models is a very difficult task,

the minimization of some of the detected inconsistencies is feasible. One example
are ground plan inconsistencies, which may evolve from low quality sensor data (e.g.
OpenStreetMap models) or averaging operations during the generalization process.

61

4 Consistency Model

Figure 4.3: Clockwise: Inconsistencies of OpenStreetMap model, generalized model
and city model from airborne data collection in comparison to the city
model from terrestrial data collection (upper left)

To allow for the adjustment of an input model to the ground plan of a given
reference model, first, the reference model is analyzed and approximating planes
similar to those described in the generalization approach by [Kad07] are computed.
However, using the faces’ areas as weights, these are constructed as the planes with
maximum weight for a set of parallel faces below a given distance threshold. These
planes are further classified according to their adjacency to the ground plan.
The same step is done for the input model, where planes that are connected to

the ground plan are considered moveable. Each of these moveable planes is then
adjusted to the reference plane with the best ratio between reference plane weight
and distance between both planes. In order to adjust the complete 3D building
structure, the remaining non-vertical approximating planes are set in relation to
the aforementioned planes using distance ratios that only consider the x- and y-
coordinates of the intersection points. To avoid topological errors, the slope of
the roof planes has to change during the fitting, which is implemented by strictly
maintaining the height levels of every point.

4.2 Situation Recognition

The Nexus system is designed as an open system where any commercial and non-
commercial provider can “place” context models and situation templates into the
system. A consequence of this could be that several different templates for the
recognition of the same situation may be available in the repository. While this is

62

4.2 Situation Recognition

Figure 4.4: Structure of a meta-template

desirable on the one hand, because thus a more robust and reliable detection is possi-
ble. But on the other hand, non-trivial problems could arise e.g. if several templates
TS = {t1, t2, ..., tn} should actually detect the same situation S, but the templates
are contradictory in their results. To solve this problem we evaluated and adapted
the approach of [HAES08] by expanding our template concept (introduced in Chap-
ter 3.4.2) to an additional new class of templates—the so called meta-template.
This meta-template combines exactly these templates in one operator (the so called
meta-operator) which (should) recognize all the same situation-type S (see figure
4.4). One of the biggest advantages of this method is the exploitation of the existing
template-structure and the implicit integration of consistency in the already existing
confidence value. Another advantage is the automatic adaption of the confidence-
metric of each single template t ∈ TS using an Reward-and-Punishment approach
for refinement of the metric.

Reward-and-Punishment method We differ, accordingly the size of the feedback
signal, between several set of events. Notice that the method can be adjusted due
to the size of the feedback signal by adjust the number of sets. Due to our boolean
feedback signal we define two sets of events S ∈ {O,N}, where O includes all
templates which detect "situation occurs" and N includes all templates which detects
"situation does not occur". Thus we define:

O = {ti, ..., tj} ∈ S
N = {tk, ..., tl} ∈ ¬S

The next fundamental step is to assign each template to one of the set of events.
So we determine first the uncertainty-values (probability P and confidence C) of
each template t ∈ TS as mentioned in chapter 3.4.2 using a simple message-passing-
algorithm. In the next step each template will be assigned to the corresponding
event-set according to a classification function c(t) using a threshold and the previ-

63

4 Consistency Model

ously determined probability-value P(t).

c(t) =
{
t⇒ O , if P (t) > threshold

t⇒ N , else.

Subsequently, a scoring-function for all event-sets is determined as

score(set) =
∑
t∈set P

1+σC(t)(t)
M

.

Where set ∈ {O,N} and σ represents a weighting factor and M stands for a nor-
malization factor.
In the following we determine the set with the highest score—hereafter named

as setwon. According to this result the templates t ∈ setwon are rewarded and the
templates in the other sets are punished.
The reward- and punishment-value for each template is calculated by a simple

∆−Rule, determined by the formula:

∆ = |score(setwon)−max{score(setlose1), ..., score(setloseN)}|

According to this the new confidence-value of each single template t is adapted
by

Cnew(t) =
{
Cold(t) + ∆ , if t ∈ setwon
Cold(t)−∆ , else.

As already mentioned above the confidence-value C and probability-value P of the
whole situation recognition process (i.e. the confidence and probability of the meta-
template C(meta)) is calculated by averaging all single confidence- and probabilities-
values of the templates t ∈ setwon as follows:

C(meta) =
∑
t∈setwon C(t)
|setwon|

...and analogously:

P (meta) =
∑
t∈setwon P (t)
|setwon|

64

5 Trust Model

5.1 Introduction

In context-aware systems users need and highly depend on information, services and
applications provided by various service providers and other users. Unfortunately, it
is seldom possible to verify on our own whether the information received is correct,
whether a service is reliable or whether applications will be useful and run stable.
Instead, we often have to rely on the experiences and expertise of others.
With a reputation system users can share their knowledge and opinions about

other users. The reputation system collects and systematically evaluates the opinions
of all users about the trustworthiness of others. On request it computes the resulting
trust value for the requested entity according to a trust model.
The use of reputation systems has been proposed for various applications, for

example to rate products and product reviews, to validate the trustworthiness of
sellers and buyers in online auctions (e. g., in eBay) and to detect free-riders in
peer-to-peer networks.
However, by relying on recommendations from others we take a certain risk. Al-

though some of the recommendations might be valuable to us, others might be useless
or even misleading and harmful because some recommenders might have malicious
intentions or not the required competence. Thus, we have to find out and to decide
carefully whom we can trust. Unfortunately, we will not always be able to validate
the trustworthiness of everyone providing recommendations on our own either, and
we might want to look at recommendations about the trustworthiness of the rec-
ommenders as well, and so on. Finally, we end up with a complex graph of trust
relations. In order to evaluate the trust graph we have to know which conclusions
we can draw from the statements in the trust graph and how we can compute the
resulting strength of a derived trust relation.
Moreover, the authenticity of all excanged opinion statements should be protected,

e. g., with digital signatures, to prevent manipulations and to make the evaluation
verifiable to the users. Digital signatures are only useful if the users can identify the
signature key holder. If no global trusted public key infrastructure is available, users
can share their knowledge about the ownership of keys in a so-called web of trust
(e. g., the PGP/GnuPG web of trust [ACGW99]) by exchanging digitally signed
identity certificates. However, these authenticity statements are only useful if the
users can verify that the issuer is trustworthy to verify the ownership of public keys.
Trust and authenticity evaluation are thus highly interdependent.
Therefore, this chapter proposes an integrated approach to evaluate uncertain and

possibly conflicting trust and authenticity statements1.

1parts of this chapter have been published in [GHS08], [Gut08] and [Gut09]

65

5 Trust Model

In section 5.2 we present background information on trust and related work. In
section 5.3 we propose a new model for trust and authentication statements and
computation methods. In section 5.7 the new reputation system is finally evaluated
and the advantages of the system in comparison to exisiting approaches are shown.

5.2 Related Work and Fundamentals

5.2.1 Trust, Trustworthiness and Reputation

Before discussing if and how trust can be modeled and formally represented it should
be clarified what the term “trust” might mean in particular. There exists a nearly
unmanageable field of definitions for the term “trust” in literature. Trust has, for
example, been defined as

• “the firm belief in the competence of an entity to act dependably, securely,
and reliably within a specified context.” [GS00]

• “a simplifying strategy that enables individuals to adapt to complex social
environment, and thereby benefit from increased opportunities” [EC95, p. 38].

• “a particular level of the subjective probability with which an agent assesses
that another agent or group of agents will perform a particular action, both
before he can monitor such action (or independently of his capacity ever to be
able to monitor it) and in a context in which it affects his own action.” [Gam88]

In consideration of this pluralism, trust could be defined abstractly as a multi-
relational concept only [GHS08,HS07,HS09]: We say that a truster trusts a trustee
(e. g., a person, an institution or a technical system) in a certain context, if the
truster has confidence in the competence and intention of the trustee and therefore
beliefs that the trustee acts and behaves in an expected way, which does not harm
the truster. We can therefore distinguish two categories of trust:

• Competence trust: Trust in the capability of a person, in an institution or in
the functionality of a machine or a system.

• Intentional trust: Trust in the moral integrity (benevolence) of a person.

The trust relation between truster and trustee can be characterized as follows:

• Symmetry: Trust relations are not symmetric in general, i. e., if A trusts B,
this does not necessarily imply that B trusts A. Thus, trust relations can be
represented as unidirectional relations from the truster to the trustee.

• Transitivity: One can find contradictory opinions in literature about the ques-
tion whether “A trusts B” and “B trusts C” implies “A trusts C”. According
to our position trust is not transitive, because it is very well possible that A
trusts B for performing certain actions, but not for giving recommendations2.

2it is nevertheless possible to build trust chains under certain conditions (see subsection 5.2.4)

66

5.2 Related Work and Fundamentals

Therefore, the assumption of transitivity (e. g., in [HCD04,KR03]) can lead to
counterintuitive effects.

• Time Variance: Trust may change over time, e. g., increase after successful co-
operations and decrease after periods without interactions. This aspect will
not be discussed further, though.

Trust is inherently related to risk and uncertainty. If everything would be pre-
dictable or perceivable, trust would not be required. The one who has confidence
in someone or something often dares a possible harm: By acting someone exposes
himself to a the risk of being disappointed in his expectations.
Some people claim that “real” trust starts there, where no probability estimation

could be given because of the lack of historical-empirical data. For them, trust should
make a risk calculation dispensable so as to reduce complexity. “Real” trust would
thus become relevant where no probability estimations can be given. However, in the
context of reputation systems the term “trust” is used to refer to a risk estimation
which helps to decide whether or not to choose a risky action. Unfortunately, trust
is often based on a limited amount of experience, incomplete knowledge and ques-
tionable assumptions. Therefore, one should be aware of the degree of uncertainty
of trust values.
If a truster beliefs that he has not enough knowledge about the trustee or that

he is not competent to decide on the trustworthiness of the trustee we talk about
ignorance.
Often you act and you are not aware of the fact, that by acting you do at the same

time trust in something or someone. Trust is often unconscious, is thus a way to
reduce complexity [Luh79] since you are not forced to explicitly control a situation
which would absorb mental capacities and therefore produce extra complexity. If
someone is asked to think about his (possibly unconscious) trust in others, to ver-
balize and to explicitly express his opinion about the trustworthiness of some trustee
(including a trust value as a quantification of the degree of trustworthiness) to others,
we obtain a trust statement. Trust statements make it possible to exchange opinions
with others. If someone is considered trustworthy for issuing truthful and valuable
trust statements (recommendation), then his opinions can be used to broaden one’s
own view, to learn from the experience of others and to come to more reliable trust-
worthiness estimations. Users may also exchange opinions about the trustworthiness
of users for giving recommendations. This type of trust referring to the ability for
giving trustworthy recommendations will be called recommendation trust in the fol-
lowing. To clarify the distinction we will call the direct, not recommending type
of trust functional trust. Note that trust category and trust type are orthogonal
classification dimensions as shown in Figure 5.1.
The idea of issuing and exchanging trust statements leads to the design of repu-

tation systems: Information systems that automatically and systematically gather
trust statements of different issuers, accumulate and amalgamate the different sub-
jective opinions and trust values according to the trustworthiness of their issuers in
order to compute a resulting estimation of the trustworthiness of a given trustee,

67

5 Trust Model

Category Intention, Benevolence Competence
Type
Functional Trust Trustee wants to safely land

the plane (is not a terrorist).
Trustee knows how to safely
land a plane (is a skilled pi-
lot).

Recommendation
Trust

Trustee gives reliable recom-
mendations about whether
others want to safely land
the plane (can discover ter-
rorists).

Trustee gives reliable recom-
mendations about whether
others can safely land a plane
(can recommend skilled pi-
lots).

Figure 5.1: Exemplification of trust types and categories (trust context “landing a
plane”)

Trust values

Reputation System

Reputation
computation

Reputation request

Reputation valueDB

2

3
1

t1, t2, t3, . . . r = f(t1, t2, t3, . . .)

Figure 5.2: Reputation System

which may then serve as basis for decision making (see Figure 5.2). This resulting
opinion contains (in contrast to the previous trust opinions) not only the opinion of
one single individual, but a mixture of opinions of different individuals. To distin-
guish between these different types of opinions we will use the term trust value for the
opinion of one single entity based only on own knowledge and experiences, whereas a
reputation value represents a value computed from the opinions of different entities.
A reputation value computed by a reputation system may serve as a more reliable

basis for taking decisions than the own trust value alone and can thus have an influ-
ence on the decisions taken. However, the fact that someone has a high reputation
should not have a direct influence on trust values, because trust values represent the
own opinion only without influence of the opinions of others. If a truster has only
low trust in a trustee but the trustee turns out to have a high reputation, then we
cannot expect (and it would not be advisable either) that the truster will somehow
“increase his trust” in the trustee (how ever he would do that), but it can be advis-
able for the truster to engage in a risky interaction with the trustee due to the high
reputation value. (If this interaction is successful, then the own positive experience
may lead to an increase of trust, though.) Whether the truster actually does act
according to the recommendation of the reputation system is not predictable, as
he is not obligated to follow this recommendation. Instead, he is free to base his
decision on any mixture of both, his own trust and the computed reputation value.
Reputation systems therefore cannot establish trust between different partners of

68

5.2 Related Work and Fundamentals

interaction, but they can convey interactions by giving the partners a broader and
more reliable basis to estimate the trustworthiness of each other.

5.2.2 Modeling Trust

In order to get reputation systems work, empirical facts and circumstances need
to be numerically (or symbolically) represented, i. e., the strength of trust relations
has to be quantified and measured by an associated trust value. Various different
models to represent and to compute with trust have been proposed [GS00,Mar94,
Mau96,Jøs97,ACGW99,HKL00,KSGM03,Dem04,JIB07,Koh07].
Besides (positive) “trust” there exist also propositions for expressing neutral or

negative opinions. Although definitions have been proposed for “distrust”, “un-
trust”, “mistrust”, the “lack of trust” and “ignorance” (e. g., by Marsh [MD05] and
Grandison [GS00]), there is no clear consensus. One could distinguish the following
forms of negative and neutral opinions: A truster distrusts (or mistrusts) a trustee
if he beliefs that the trustee will not behave as expected, either due to a lack of
competence or due to a malicious intention (e. g., if he beliefs that the trustee will
seek to betray and actively work against him). A truster is said to have no trust in
a trustee if he beliefs that it is neither justifiable to consider the trustee trustworthy
nor to consider him distrustworthy (also called absence of trust).
Simple trust models represent a trust value by a single value, either on a discrete

scale, e. g., by a Boolean value (“trust”, “no trust”) or by a more fine-grained scale
as in PGP/GnuPG [ACGW99] (“untrustworthy”, “marginal trust” and “full trust”),
or on a continuous scale, e. g., as proposed by Maurer [Mau96] (trust values in the
range [0, 1]) or by Marsh [Mar94] (trust values in the range [−1, 1)).
Not all proposed trust models cover the full range of possible trust values. Some

allow to express only positive trust values in the range between “no trust” (repre-
sented by 0) and “full trust” (represented by 1), whereas other offer the possibility
to assign also “distrust” (represented by −1). However, the semantics of the trust
values is sometimes different in the proposed models. Even though reasoning with
distrust requires great care (an enemy of your enemy is not necessarily your friend),
negative trust values may be useful especially in applications, in which the possible
harm of unsuccessful interactions is high.
It is important to allow entities to express uncertainty about their trust opin-

ions and to record this degree of uncertainty. Without this possibility the task of
gathering trust opinions could cause so-called response errors, i. e., people who are
prompted for their opinion about the trustworthiness of a subject but who do not
have a reliable opinion about the trustee in question might give rather speculative
answers. The degree of trustworthiness of the opinions should be taken into account
in the reputation evaluation in order to avoid that valuable reliable opinions get
outvoted by unreliable speculations.
Most approaches allow therefore to express ignorance (e. g., “I can not decide

whether I can trust him”) or the degree of uncertainty (e. g., “I am quite sure that I
can judge his trustworthiness correctly”) of a trust opinion, either by a discrete value

69

5 Trust Model

�
�
�
�
�
�

�
�
�
�
�
�

�����������������
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��

uncertainty ignorance
1

full
distrust

−1 distrust trust

(a)

trust
full

0 plausibility

(b)

be
lie

f

ig
no

ra
nc

e

di
sb

el
ie

f

de
ns

ity

1 0 trust

(c)

1

trust
no

0 1

Figure 5.3: Different possibilities to represent trust values

(e. g., “don’t know” in PGP/GnuPG) or on a continuous, additional reliability scale.
Trust values can be expressed for example by two independent continuous variables
for trustworthiness and reliability, e. g., trust t ∈ [−1, 1] and uncertainty u ∈ [0, 1]
(see Figure 5.3a), or by two continuous values with dependencies, e. g., Dempster-
Shafer [Sha76] and related approaches [SF02] represent trust by an upper and a
lower bound (0 ≤ belief ≤ plausibility ≤ 1), which is equivalent to Jøsang’s opinion
triangle [Jøs97] representing trust values by a belief (b), disbelief (d) and ignorance
value (i) (b, d, i ∈ [0, 1], b + d + i = 1, see Figure 5.3b). Credential Networks and
related models proposed by Haenni [HKL00], Jonczy [JH05] and Kohlas [Koh07] also
model trust values with belief, ignorance and disbelief values. However, trust values
may contain either degrees of belief and ignorance, disbelief and ignorance, or belief
and disbelief, but they cannot contain degrees of belief, disbelief and ignorance at
the same time.
Furthermore, it is also possible to represent trust values as arbitrary discrete

distribution functions [Gut07] (see Figure 5.3c).
An important yet difficult task is to define the semantics of the trust values to

ensure the correct interpretation of the trust statements. This may include

• defining an order relation between trust values (e. g., is “full trust” higher than
“marginal trust”?),

• specifying whether differences between trust values can be meaningfully com-
pared (e. g., is the step between “untrustworthy” and “marginal trust” com-
parable to the step between “marginal trust” and “full trust”?),

• specifying whether the ration between two trust values is meaningful (e. g., is
“0.9” twice as trustworthy as “0.45”?), and finally

• assuring that a certain trust value (e. g., “0.45”) means the same to all users
(e. g., does the trust value represent a probability?).

The choice for an approach to represent reputation values may depend on the re-
quirements and context of the application. However, approaches with the possibility

70

5.2 Related Work and Fundamentals

to represent uncertainty make it easier to avoid counterintuitive effects during the
evaluation of trust relations.
If a truster has no information about a certain trustee, it is reasonable to assign

a trust value corresponding to “ignorance” as default value. If the trust model does
not allow to represent ignorance, the lowest possible trust value is a safe choice to
prevent malicious entities to get rid of bad reputation by changing their identity
(“whitewashing”).

5.2.3 Classification of Reputation Systems

We can distinguish 3 basic types of reputation systems (see Figure 5.4) with different
approaches to calculate reputation values:

• Type A: Flat reputation systems

• Type B: Recursively weighting reputation system

• Type C: Personalized reputation system with trust anchor

Type A

Reputation

trust

Type B Type C

trust

trust
trust

trust

Reputation Reputation

Figure 5.4: Classification of reputation systems

Type A reputation systems (e. g., in eBay) are very simple. The reputation val-
ues are computed from all (or random samples of all) available trust opinions of all
entities. The opinion of each entity has the same weight, i. e., liars have the same in-
fluence on the resulting trust value as honest entities. Note that (without additional
measures) the collected opinions will normally not be representative for the group of
users because the users themselves decide whether or not they want to “participate”
in the “survey”, i. e., to publish trust statements or not. This is especially critical
if a single person can create a high number of (apparently different) entities or user
accounts in a reputation system. In that case a single person can outvote all other
entities by a so-called Sybil-attack.
Type B reputation systems (e. g., the Basic EigenTrust algorithm [KSGM03]) try

to improve the quality of the computed reputation value by increasing the weight of
higher ranked opinions. Reputation values of all entities can therefore be computed
iteratively: The new reputation values of all entities are computed from the opinions
of all other entities weighted by their reputation values of the last iteration. However,

71

5 Trust Model

the group of participating users is still not representative, and it is still possible that
a large group of colluding malicious entities dominates the “public opinion” and
manipulates the computed reputation values.
Type C reputation systems (e. g., as proposed by Maurer [Mau96], Jøsang [JI02]

and Gutscher [Gut07]) aim to resist this kind of attacks. They always start with a
“safe” set of a priori trusted entities (the so-called trust anchor or trust root), which
normally consists of the requester himself. First, only the opinions of the a priori
trusted entities are taken into account. Next, also the opinions of entities which have
been found to be trustworthy in the previous iteration are taken into account, too.
This process is repeated until the opinions of all “reachable” trustworthy entities are
included in the reputation value computation. Note that opinions of untrustworthy
entities are ignored as long as the opinions of the trust anchor entities are correct.
In contrast to the previous reputation systems, Type C reputation systems are
personalized, because requesters with different trust anchors will in general obtain
different reputation values for the same trustee. In the following, we will focus on
Type C as the most advanced type.

5.2.4 Reasoning with Trust Relations

Once the attributes, properties and the quantitative representation of trust values
have been agreed upon, the process of evaluating trust relations has to be defined.
For this purpose, trust models (explicitly or implicitly) define a set of inference rules,
which define whether and which conclusions (new reputation relations) one can draw
from a set of given trust relations. Inference rules define the made assumptions on
the transitivity property of trust relations, but also prerequisites and restrictions
depending on the type and attributes of the involved trust relations as well as on
the associated trust values.
Most trust models assume that trust is not transitive in general, but Instead,

they differentiate between functional and recommendation trust and define via in-
ference rules which trust relations can be combined to trust chains. The trust model
proposed in [Gut07] for example allows to specify for each recommendation trust
relation a limit h for the allowed remaining length of trust chains (recommendation
hops). A recommendation trust relation with h = 1 expresses the belief of the truster
that entities recommended by the trustee are trustworthy in the sense of functional
trust, whereas recommendation trust relations with h = 2 expresses the belief of the
truster that entities recommended by other entities recommended by the trustee are
trustworthy in the sense of functional trust, etc. The following trust derivation rules
define how trust chains can be constructed3:

1. Recommendation trust from A to B with h1 = 1 can be combined with func-
tional trust from B to C to a new functional trust relation from A to C.

3it is assumed that all involved trust relations refer to the same trust context

72

5.2 Related Work and Fundamentals

2. Recommendation trust from A to B with h1 = n + 1 can be combined with
recommendation trust from B to C with h2 = n to a new recommendation
trust relation from A to C with h = n (for n ≥ 1).

These rules would allow to combine trust relations only if the number of recommen-
dation hops matches exactly, which could be seen as an counterintuitive and thus
inappropriate restriction. Therefore, it is possible to make the additional assump-
tion that recommendation trust with a limit of h = n + 1 implies recommendation
trust with a limit of h = n recommendation hops (for n ≥ 1).

5.2.5 Computation of Reputation Values

Once new reputation relations have been derived an associated reputation value has
to be computed. The computation of reputation values in Type A reputation system
is very simple, e. g., the arithmetic mean all trust values is a reasonable choice.
Reputation computation in Type B can be done iteratively. First, initial reputation
values are computed as in Type A reputation systems. Then, new reputation values
for all entities are calculated from the opinions of all entities weighted by their
associated reputation values of the last iteration. This process is repeated and the
reputation values has converged.
In Type C reputation systems the reputation evaluation process starts from the

trust anchor specified by the requester: First, a set of all trust relations issued by
a priori trusted entities is compiled. Then, the trust inference rules are applied
to the relations in this set and all derivable trust relations are added to this set.
The last step is repeated until all inferable trust relations are already contained in
the set. Next, the trust values for the derived statements can be computed. Here,
we distinguish two different classes of reputation value computation approaches,
an operator-based and a probability-theoretical approach: In the operator-based ap-
proach the initial opinions are deterministic, but the inference rules are probabilistic.
In the probability-theoretical approach the initial opinions are probabilistic, but the
inference rules are deterministic.

5.2.5.1 Operator-based Approach

The trust value of the new trust relations is computed by successively combining
all relevant parallel or concatenated trust relations to one single resulting trust
relation (see Figure 5.5). First, all opinions that are not relevant to derive the
requested statement are removed. Next, in each step, two parallel or concatenated
trust relations are replaced by one resulting trust relation. The trust value of the
new relation is computed from the two trust values of the replaced trust relations
by a trust combination operator. This process is repeated until we reach a graph
with one resulting trust relation from the requester to the final trustee.
A simple example with operators from probability theory is shown in Figure 5.5:

Trust values are represented by values in the range t ∈ [0, 1] (thus, no uncertainty
can be expressed). The resulting reputation value for a concatenation of two trust

73

5 Trust Model

A

B

D

C

Step 1 Step 2

D D

Step 3

A A

0.9 0.8

0.7 0.6

0.72

0.42

0.8376

Figure 5.5: Operator-based reputation computation

relations is t = t1t2, the resulting reputation value for parallel relations is t =
1− (1− t1)(1− t2) = t1 + t2 − t1t2.
Corresponding operators for the belief/ignorance/disbelief confidence value repre-

sentation (t = (b, i, d)) have been proposed for example by Dempster-Shafer [Sha76]
and related approaches [SF02] as well as Jøsang [Jøs97].
The following conjunction, disjunction and negation operators have been proposed

by Baldwin [Bal87] and Jøsang [Jøs97]:

tx ∧ ty =

 bxby
ixiy + ixby + bxiy
dx + dy − dxdy

tx ∨ ty =

 bx + by − bxby
ixiy + ixdy + dxiy

dxdy

¬tx =

 dx
ix
bx

The belief value b of a conjunction can be interpreted as the probability that both

input values are belief, d as the probability that at least one input value is disbelief.
The remaining probability mass is assigned to ignorance. The disjunction operator
is constructed accordingly. The negation operator swaps the belief and disbelief
values. From these operators we can derive the corresponding truth tables for the
discrete trust values belief, ignorance and disbelief (see Figure 5.6).

∧ + ∅ −
+ + ∅ −
∅ ∅ ∅ −
− − − −

∨ + ∅ −
+ + + +
∅ + ∅ ∅
− + ∅ −

¬
+ −
∅ ∅
− +

Figure 5.6: Deterministic conjunction, disjunction and negation operators (Baldwin,
Jøsang)

A recommendation operator (⊗) concatenates two trust relations i. e., it combines
a trust relation from an entity EA to an entity EB with trust value tx with a trust

74

5.2 Related Work and Fundamentals

relation from EB to an entity EC with trust value ty to one single trust relation
from EA to EC with trust value tx ⊗ ty (see Figure 5.7).
Jøsang’s recommendation operator [Jøs97] follows the advice of trusted recom-

menders and ignores unknown and distrusted recommenders (ignorance favoring
strategy). The operator and the corresponding truth table are shown in Figure 5.7.

EA

tx

EB

ty

EC

tx⊗ty =

 bxby
bxiy + ix + dx

bxdy

t′x ⊗ t′y

t′x
+ ∅ −

t′y

+ + ∅ ∅
∅ ∅ ∅ ∅
− − ∅ ∅

Figure 5.7: Recommendation operator (Jøsang)

A consensus operator (⊕) combines the trust values of two trust relations that refer
to the same proposition. Jøsang [Jøs97], Dempster-Shafer [Sha76] and Yager [Yag87]
have proposed the consensus operators shown in Figure 5.8 (undefined values are in-
dicated by �). Intuitively, the combination with ignorance does not change discrete

tx ⊕ ty = 1
ix+iy−ixiy

 bxiy + ixby
ixiy

dxiy + ixdy

⊕ + ∅ −
+ � + �
∅ + ∅ −
− � − �

tx ⊕ ty = 1
1−bxdy−dxby

 bxby + bxiy + ixby
ixiy

dxdy + dxiy + ixdy

⊕ + ∅ −
+ + + �
∅ + ∅ −
− � − −

tx ⊕ ty =

 bxby + bxiy + ixby
ixiy + bxdy + dxby
dxdy + dxiy + ixdy

⊕ + ∅ −
+ + + ∅
∅ + ∅ −
− ∅ − −

Figure 5.8: Jøsang’s (top), Dempster-Shafer’s (middle) and Yager’s (bottom) con-
sensus operators

trust values, and in the cases of Dempster-Shafer and Yager the combination of two
identical discrete trust values t′ results in t′. The operators differ in their conflict
handling strategy. Dempster-Shafer’s operator is defined only for 1−bxdy−dxby > 0,
i. e., it is undefined for the combinations of belief with disbelief. The probability
mass of undefined combinations is eliminated and b, i and d are re-normalized so
that b + i + d = 1. Jøsang’s operator is defined only for ix + iy − ixiy > 0, i. e., it
is, in addition, undefined for the combinations of two belief values and of two disbe-
lief values, which is counterintuitive as the trust values are identical. Jøsang, too,
performs a re-normalization. These re-normalizations have the effect of completely

75

5 Trust Model

ignoring conflict and can thus lead to counterintuitive effects [Zad84]. Yager’s con-
sensus operator [Yag87] assigns the probability mass of conflicting combinations to
ignorance. This avoids the counterintuitive effects of re-normalizations, but con-
flict is then indistinguishable from ignorance. In security-critical applications, it
can be very important to distinguish these cases and treat them differently. A high
degree of conflict indicates that the trustee misbehaved in the past or that some
recommenders are lying, whereas ignorance indicates merely a lack of information.
Reasoning with distrust requires great care to avoid possibly misleading conclu-

sions. The following constellation is an example for a situation in which it is not
obvious to decide which outcome should be considered the most “reasonable”: An
entity B issues a (positive or negative) trust statement about C. Entity A wants to
find out whether C is trustworthy, although A distrusts B. It would be possible to
ignore statements from untrustworthy entities or to assume the opposite trust value.
In the first case, A might loose possibly useful information, but the strategy is a
safe choice. The second strategy is logically not sound (an enemy of your enemy is
not necessarily your friend) and might produce misleading results, especially if B is
aware of A’s strategy.
The operator-based approach has a major drawback which renders it mostly un-

employable: The successive combination of trust relations is only possible if either
the operators are distributive (which is not true for all non-trivial operators) or if
the graph of trust relations has a special structure, i. e., if it is a so-called directed
series-parallel graph (which is unlikely to happen). A simple example of a graph
that can not be evaluated with operator-based approaches is shown in Figure 5.9.
The proposed workaround [JGK06] to leave out opinions (without any compensa-

tion) is not an acceptable solution, because this can significantly change the result.

5.2.5.2 Probability Theoretical Approach

In the probability-theoretical approach the trust values are interpreted as estimations
for probabilities that the initial opinions have certain discrete confidence vales (e. g.,
full belief, full disbelief, full ignorance). Thus, in contrast to the operator based ap-
proach, the initial opinions are now considered uncertain, whereas the the inference
rules to draw conclusions are considered deterministic.
The computation of the trust value of a requested statement is therefore based

on the evaluation of a random experiment. In the approach proposed by Mau-
rer [Mau96] and Gutscher [Gut07] for example it is assumed that trust values are
expressed by a trust value t ∈ [0, 1], which is interpreted as the probability that the
trust relation is valid. The resulting reputation value is the computed probability
that the requested trust relation is valid, i. e., that it is possible to derive the re-
quested trust relation from an initial starting set, which consists of all initially valid
relations. For n initial trust relations (which can each be valid or invalid) there exist
2n different possible starting sets. For each scenario the inference rules are applied
and it is evaluated whether the desired reputation relation can be derived from the
relations in the starting set. In each successful scenario we calculate the probability

76

5.2 Related Work and Fundamentals

that this scenario will occur from the trust values of the initial trust relations. The
resulting reputation value is the sum of the calculated probabilities of all successful
scenarios.

Example We consider the example shown in Figure 5.9. The trust relations b and
e represent functional trust, the trust relations c and d recommendation trust with
a limit of one hop and the trust relation a recommendation trust with a limit of
two hops. The corresponding trust values are ta, tb, tc, td, te ∈ [0, 1]. We can find
three possibilities (trust paths) to derive a functional reputation relation from A to
D: (a, b), (d, e) or (a, c, e). The table in Figure 5.9 shows for each possible starting
set whether it is possible to derive a reputation relation from A to D as well as the
probability of each successful scenario. The resulting reputation value r is the sum
of the probabilities of all successful combinations: r = (1− ta)(1− tb)(1− tc)tdte +
. . . + tatbtctd(1− te) + tatbtctdte.
This approach can be used to evaluate arbitrary trust graphs and thus avoids the

problem mentioned in subsubsection 5.2.5.1, but usually has a higher computational
complexity4. Similar evaluation algorithms can be applied if the trust model sup-
ports the expression of uncertainty or if trust values are expressed by probability
distributions [Gut07].

e: Functional trust
d: Recom. trust (1 hop)
c: Recom. trust (1 hop)
b: Functional trust
a: Recom. trust (2 hops)

c

C

B

DA

e

ba

d
ta
tb
tc
td
te

a b c d e A→ D Probability
0 0 0 0 0 no -
0 0 0 0 1 no -
0 0 0 1 0 no -
0 0 0 1 1 yes (1− ta)(1− tb)(1− tc)tdte

...
...

...
1 1 1 1 0 yes tatbtctd(1− te)
1 1 1 1 1 yes tatbtctdte

Figure 5.9: Probability theoretical reputation computation

5.2.5.3 Conflicting Opinions

If users can express both positive (supporting) and negative (refuting) opinions, then
the combination of contradictory opinions of different users can lead to conflicts (in
both operator-based and probability theoretical approaches).
The the degree of conflict reflects how strong the issuers of the initial opinions

disagree with each other. The occurrence of conflict does not constitute a problem
by itself, but it must be processed adequately.
In Credential Networks and Subjective Logic the probability mass associated with

conflicting combinations is eliminated and the remaining probability mass is re-
normalized. Zadeh [Zad84] has shown that conflict elimination and re-normalization

4note that there exist more efficient algorithms and approximations, see section 5.6

77

5 Trust Model

approaches (like Dempster’s rule of combination [Sha76]) can produce counter-
intuitive effects.
In the following we therefore propose a new integrated approach to evaluate uncer-

tain and conflicting trust and authenticity statements without eliminating conflict.
This avoids the counter-intuitive effects of re-normalizations.

5.3 Model of Trust and Authenticity Statements

Due to the named drawbacks of other trust models we propose a new model to
represent trust and authenticity statements, trust values, inference rules and a new
approach to evaluate arbitrary networks of trust and authenticity opinions.
An opinion refers to a trust or authenticity statement Hj with an associated trust

value tj . A first-hand opinion is an opinion that is based only on the experience and
knowledge of a single entity (the trustor or issuer) and that is independent of other
opinions. A second-hand opinion is an opinion that is derived from other opinions
and that is thus not independent.
We define trust as “a unidirectional relation between a trustor and a trustee ex-

pressing the strong belief of the trustor that the trustee will behave as expected with
respect to a particular capability within a particular context” [Gut07]. Therefore we
represent the standard form of a trust statement as follows:

Trust(trustor , trustee, r, hmin..hmax) (5.1)

The trustor can be an entity or a key, the trustee an entity, a description or a key
(see Table 5.1). An entity (EA, EB, . . .) can be a person, an organization, a network
node, etc. referred to by a local identifier. To exchange opinions with others users
have to use unique descriptions or public keys to refer to other entities. A description
(DA, DB, . . .) consists of a list of names, identifiers or attributes that uniquely
identifies the described entity. Entities may have several different descriptions. A
public key (KA, KB, . . .) is the public part of an asymmetric key pair. The holder
uses the key pair to sign trust or authenticity statements (certificates). An entity
can use several different key pairs at the same time.

Trust statements
Standard form Internal form

Relation
Trust(EA, EB, r, hmin..hmax) Trust(EA, EB, r, h, l)
Trust(EA,KB, r, hmin..hmax) Trust(EA,KB, r, h, l)
Trust(EA, DB, r, hmin..hmax) Trust(EA, DB, r, h, l)

Certificate Trust(KA,KB, r, hmin..hmax) Trust(KA,KB, r, h, l)
Trust(KA, DB, r, hmin..hmax) Trust(KA, DB, r, h, l)

Table 5.1: Trust statements (relations and certificates)

78

5.4 Trust Values

The capability r refers to an application specific capability (r1, r2, . . .) or to the
capability rPKI, which represents the capability to honestly and carefully verify that
a description uniquely refers to the holder of a particular key pair.
We distinguish different types of trust identified by a different number of rec-

ommendation hops (h): Functional trust expresses the belief that the trustee has
the capability r and is described by h = 0. Recommendation trust for h = 1 hop
expresses the belief that the trustee can recommend someone with capability r, rec-
ommendation trust for h = 2 hops that the trustee can recommend someone who
can recommend someone with capability r, etc. Each standard form trust statement
can specify the desired range of recommendation hops hmin..hmax.
For the evaluation of trust statements we need in addition trust statements in the

slightly different internal form. These trust statements refer not to a range, but to
a single recommendation hop value h ≥ 0 and they have an additional parameter,
the chain length l ≥ 1:

Trust(trustor , trustee, r, h, l) (5.2)

Trust is not transitive in general, but trust statements can be combined in certain
cases to trust chains according to the transitive trust inference rule Equation 5.9
described in subsection 5.5.1. The chain length l of the derived trust statement
refers to the number of first-hand trust statements in the trust chain.
Authenticity statements express the strong belief of the issuer that a description

belongs to an entity, that a public key belongs to an entity or that a description
belongs to the holder of a public key:

Auth(issuer , actor1, actor2) (5.3)

The issuer is an entity or a public key, actor1 and actor2 are entities, descriptions
or public keys. All four possible combinations are listed in Table 5.25.

Authenticity statements

Relation
Auth(EA,KB, EB)
Auth(EA, DB, EB)
Auth(EA,KB, DB)

Certificate Auth(KA,KB, DB)

Table 5.2: Authenticity statements (relations and certificates)

5.4 Trust Values

This section introduces discrete and continuous trust values as well as operators for
reasoning with discrete trust values. Users express their opinions with continuous

5certificates can not contain local identifiers for entities (EA, EB , . . .) because they would be mean-
ingless to other entities

79

5 Trust Model

trust values while the discrete trust values are used internally only for reasoning
with opinions.

5.4.1 Representation of Discrete and Continuous Trust Values

Users can have different and possibly conflicting opinions about trust and authen-
ticity statements. Therefore, we can not definitively decide whether a statement H
is “true” or “false”. We can only evaluate known indications that support or refute
H. It is possible that neither supporting nor refuting or that both supporting and
refuting indications for H are found. Therefore we describe knowledge of support-
ing and refuting indications independently. For each statement H we introduce the
propositions H+ and H− to describe that the reputation system is aware of indica-
tions that imply that H must be true and that H must be false, respectively. We
also introduce the four discrete trust values belief (+), ignorance (∅), disbelief (−)
and conflict (±) to represent the four possible combinations of these propositions
(see Table 5.3). They can be seen as “truth values” of a paraconsistent logic [Gut08].

Propositions Discrete trust value Semantics
{H+} t′ = + (belief) “the indications imply that H must

be true”
{} t′ = ∅ (ignorance) “there are no relevant indications

about H”
{H−} t′ = − (disbelief) “the indications imply that H must

be false”
{H+, H−} t′ = ± (conflict) “the indications imply that H must

be true and that H must be false at
the same time”

Table 5.3: Discrete trust values

As statements can in fact not be both true and false at the same time we can
conclude that first-hand opinions can not have the trust value conflict. However,
if we combine statements of different (disagreeing) entities, it is possible to find
both H+ and H−, i. e., the trust value of derived (second-hand) opinions can be
conflict. Conflict must not be confused with partial support and partial refutation
(ambivalent opinions). An entity that has for example experienced some positive
and some negative interactions can express this opinion with continuous trust values.
Continuous trust values t = (b, i, d, c) with b, i, d, c ∈ [0, 1] and b + i + d + c = 1

express degrees of belief, ignorance, disbelief and conflict. The value b represents the
issuer’s subjective estimation of the probability that there are indications supporting
(but no refuting) H. Similarly, d represents the subjective estimation of the prob-
ability that there are indications refuting (but no supporting) H. c represents the
subjective estimation of the probability that there are both supporting and refuting
indications for H at the same time, and i represents the subjective estimation of

80

5.4 Trust Values

the probability that there are neither supporting nor refuting indications for H. For
the same reason as before, c must be zero in all first-hand opinions, whereas second-
hand opinions can contain conflict. Nevertheless, ambivalent first-hand opinions can
be expressed by continuous trust values with both b > 0 and d > 0. A user that
has made many positive and few negative experiences can choose, for example, a
first-hand trust value with b = 0.7 and d = 0.1 (i. e., t = (0.7, 0.2, 0.1, 0). Thus, in
first-hand statements b can be seen as the lower bound and 1−d as the upper bound
for the estimated subjective probability that H must be true.
The degrees of ignorance and conflict in resulting trust values have different mean-

ings, and applications should handle high degrees of ignorance and conflict differ-
ently: A high degree of ignorance indicates that the reputation system has little
information about the requested statement and suggests searching more relevant
statements, if possible. A high degree of conflict, however, shows that the requested
statement H is controversial. This suggests that the requester should verify whether
the trust and authenticity assignments he made and that cause the conflict are cor-
rect.
Continuous trust value can be condensed to a single, linearized trust value w, if

desired:

w′ = b+Wii+Wdd+Wcc (5.4)
w = max(0,min(w′, 1)) (5.5)

The parameters Wi, Wd and Wc represent weights for the degrees of ignorance,
disbelief and conflict, e. g., Wi = 0.5, Wd = −1 and Wc = 0. They can be chosen
according to the preferences of the application and allow for rather optimistic or
rather pessimistic behavior in the cases of uncertainty and conflict. Then the range
for w is limited to w ∈ [0, 1].

5.4.2 Deterministic Operators

Inference rules (section 5.5) define the logic of reputation systems, i. e., whether
opinions can be combined and how the resulting reputation value depends on the
trust values of the first-hand trust relations. In the following, we propose determinis-
tic operators for conjunction, disjunction, negation, recommendation and consensus
for the formulation of inference rules. As we favor a computation approach with
probabilistic initial view it is sufficient to define these operators for discrete trust
values. In section 5.6, we show how these deterministic operators can be used with
continuous trust values.
To find the truth tables for the discrete trust values we proceed as follows: We

represent the discrete trust values t′x and t′y of the input trust relations (Hx and Hy)
as sets of propositions according to Table 5.3 (e. g., H+

x , H−y). For each operator we
define from which combinations of the input propositions we can infer propositions
for the output reputation value (H+

z , H−z). Finally, we interpret the set of output
propositions as the discrete reputation value t′z of the derived trust statement Hz.

81

5 Trust Model

Interestingly, this approach leads to the same truth tables for the conjunction, dis-
junction and negation operators as Belnap’s paraconsistent four-valued logic [Bel75]
although Belnap derived these operators in a different approach from a bilattice.
Belnap’s logic does not provide recommendation and consensus operators though.

5.4.2.1 Negation Operator

The negation operator computes the reputation value of the opposite of a trust
statement. It is denoted by t′z = ¬t′x and ¬HxHz

. We can conclude that there are
indications supporting Hz if we have indications refuting Hx, and vice versa:

¬Hx

Hz
⇔ H+

x

H−z
,
H−x
H+
z

The truth table of the negation operator is shown in Figure 5.10.

∧ + ∅ − ±
+ + ∅ − ±
∅ ∅ ∅ − −
− − − − −
± ± − − ±

∨ + ∅ − ±
+ + + + +
∅ + ∅ ∅ +
− + ∅ − ±
± + + ± ±

¬
+ −
∅ ∅
− +
± ±

Figure 5.10: Our deterministic conjunction, disjunction and negation operators

5.4.2.2 Conjunction Operator

The conjunction operator for deterministic trust values corresponds to the logical
AND-operation and is denoted by t′z = t′x ∧ t′y. The conjunction of trust statements
in inference rules is denoted accordingly by Hx∧Hy

Hz
. We can conclude that there

are indications supporting Hz if we have supporting indications for both Hx and
Hy. Similarly, we can conclude that there are indications refuting Hz if we have
indications refuting Hx or Hy:

Hx ∧Hy

Hz
⇔

H+
x H+

y

H+
z

,
H−x
H−z

,
H−y

H−z

According to the procedure described in subsection 5.4.2, we can now derive the
truth table of the conjunction operator (see Figure 5.10) from these two statements.
Note that the conjunction of conflict with disbelief results in disbelief because

either H−x or H−y is sufficient to justify H−z . It is interesting that the conjunction
of conflict with ignorance results in disbelief, too. Conflict for t′x combined with
ignorance for t′y for example means that we can justify H+

x and H−x . H−x allows
us to conclude H−z , but H+

x does not allow any conclusion without H+
y , so that we

obtain disbelief. The situation is different in the case of conjunction of conflict with
belief which allows the justification of both H+

z and H−z and thus results in conflict.

82

5.4 Trust Values

5.4.2.3 Disjunction Operator

Similarly, the disjunction operator corresponds to the logical OR-operation and is
denoted by t′z = t′x ∨ t′y. The disjunction of trust statements is denoted accordingly
by Hx∨Hy

Hz
. We can conclude that there are indications supporting Hz if we have

indications supporting Hx or Hy. Similarly, we can conclude that there are refuting
indications for Hz if we have refuting indications for both Hx and Hy:

Hx ∨Hy

Hz
⇔ H+

x

H+
z
,
H+
y

H+
z
,
H−x H−y

H−z

The truth table of the disjunction operator is shown in Figure 5.10. The disjunction
of conflict with ignorance or belief results in belief because either H+

x or H+
y is

sufficient to justify H+
z . It is not possible to justify H−z because this would require

both H−x and H−y . The disjunction of conflict with disbelief allows the justification
of both H+

z and H−z and results thus in conflict.

5.4.2.4 Consensus Operator

The consensus operator is used to combine the trust values of two distinct opinions
(t′x and t′y) that refer to the identical trust statement Hx = Hy = Hz. It calculates
the cumulative reputation value, which is denoted by t′z = t′x⊕ t′y. This combination
of trust statements is denoted by Hx⊕Hy

Hz
, but this is usually not necessary because the

consensus operator is applied implicitly whenever an inference rules allows deriving
an already existing trust statement. The consensus operator is defined as follows:

Hx ⊕Hy

Hz
⇔ H+

x

H+
z
,
H−x
H−z

,
H+
y

H+
z
,
H−y

H−z
(5.6)

We can conclude that there are indications supporting Hz (or refuting Hz) if at
least one opinion has indications supporting Hz (or refuting Hz respectively), i. e.,
it is sufficient to unify the two sets representing the discrete trust values. The truth
table of the consensus operator is shown in Figure 5.11 (left). Combining a trust
value with ignorance or with an identical trust value does not change the trust
value. Mixing belief and disbelief results in conflict. Conflicting trust values remain
conflicting when combined with other trust values.

⊕ + ∅ − ±
+ + + ± ±
∅ + ∅ − ±
− ± − − ±
± ± ± ± ±

t′x ⊗ t′y
t′x

+ ∅ − ±

t′y

+ + ∅ ∅ +
∅ ∅ ∅ ∅ ∅
− − ∅ ∅ −
± ± ∅ ∅ ±

� + ∅ − ±
+ + ∅ − ±
∅ ∅ ∅ ∅ ∅
− − ∅ ∅ −
± ± ∅ − ±

Figure 5.11: Consensus, recommendation and authentication operator truth tables

83

5 Trust Model

5.4.2.5 Recommendation Operator

The recommendation operator (⊗) is used to concatenate two trust statements or a
trust with an authenticity statement. It is reasonable for a user to adopt the opinions
of trustworthy entities. However, it is not reasonable (it is in fact even dangerous)
to assume that untrustworthy (malicious or incompetent) entities always tell the
opposite of the truth. Instead, opinions of untrustworthy entities should be ignored.
Therefore, we do not draw any conclusions from H−x . The operator is thus defined
as follows:

Hx ⊗Hy

Hz
⇔

H+
x H+

y

H+
z

,
H+
x H−y

H−z
(5.7)

This reads as follows: Hz follows from a combination of Hx and Hy with the rec-
ommendation operator. If there are supporting indications for Hx and for Hy, then
infer H+

z . If there are supporting indications for Hx and refuting indications for Hy,
then infer H−z . Figure 5.11 (middle) shows the corresponding “truth table”.

5.4.2.6 Authentication Operator

The authentication operator (�) is used to reason with two authenticity relations
between entities, descriptions and public keys:

Hx �Hy

Hz
⇔

H+
x H+

y

H+
z

,
H+
x H−y

H−z
,
H−x H+

y

H−z
(5.8)

The operator definition can be understood as follows: Assume Hx and Hy represent
statements like “A and B belong together” and “B and C belong together”, respec-
tively. If we have supporting indications for both statements, then this supports
that A and C belong together (Hz). If we have indications that A and B belong
together but that B does not belong to C, then we conclude that A does not belong
to C either. If neither A belongs to B nor does B belong to C, then we can draw no
conclusion about A and C. Figure 5.11 (right) shows the corresponding truth table.

5.4.2.7 Properties of the Deterministic Operators

The conjunction, disjunction and negation operators are identical to Belnap’s op-
erators [Bel75]. Therefore the standard classical properties hold, i. e., involution
(¬(¬H) = H), commutativity (H1∧H2 = H2∧H1, H1∨H2 = H2∨H1), associativ-
ity ((H1∧H2)∧H3 = H1∧(H2∧H3), (H1∨H2)∨H3 = H1∨(H2∨H3)), distributivity
(H1 ∧ (H2 ∨H3) = (H1 ∧H2)∨ (H1 ∧H3), H1 ∨ (H2 ∧H3) = (H1 ∨H2)∧ (H1 ∨H3))
and the De Morgan laws (¬(H1 ∧H2) = ¬H1 ∨ ¬H2, ¬(H1 ∨H2) = ¬H1 ∧ ¬H2).
Moreover we find that consensus and authentication are commutative (H1⊕H2 =

H2 ⊕H1, H1 �H2 = H2 �H1), consensus, recommendation and authentication are
associative ((H1⊕H2)⊕H3 = H1⊕ (H2⊕H3), (H1⊗H2)⊗H3 = H1⊗ (H2⊗H3),
(H1 � H2) � H3 = H1 � (H2 � H3)), and that all operators are distributive over

84

5.5 Inference Rules

consensus (¬(H1 ⊕H2) = ¬H1 ⊕ ¬H2, H1 ∧ (H2 ⊕H3) = (H1 ∧H2) ⊕ (H1 ∧H3),
H1∨ (H2⊕H3) = (H1∨H2)⊕ (H1∨H3), H1⊗ (H2⊕H3) = (H1⊗H2)⊕ (H1⊗H3),
(H1⊕H2)⊗H3 = (H1⊗H3)⊕(H2⊗H3), H1�(H2⊕H3) = (H1�H2)⊕(H1�H3)).
The distributivity property ensures that the resulting reputation value does not

depend on the order in which the inference rules are applied. This is very important
to ensure consistency in trust graphs with loops and intersecting trust paths.

5.5 Inference Rules

The inference rules specify which conclusions the reputation system can draw from
a set of given trust and authenticity propositions.

5.5.1 Transitive Trust Inference Rule

This inference rule describes the transitivity property of trust statements. It defines
in which cases two trust statements for the same capability r can be combined with
the recommendation operator in order to derive a new trust statement from the
trustor of the first statement (A) to the trustee of the second statement (C). The
trustor A can be an entity (EA) or a public key (KA). The second statement can be
a trust statement or a trust certificate, i. e., B can be an entity (EB) or a public key
(KB). The final trustee C can be an entity (EC), a public key (KC) or a description
(DC).

Trust(A,B, r, h+ l2, l1)⊗ Trust(B,C, r, h, l2)
Trust(A,C, r, h, l1 + l2) (5.9)

This inference rule differs from other proposed transitive trust inference rules in that
it allows the combination of trust statements only if the number of recommendation
hops matches: The number of recommendation hops of the first statement must
equal the sum of the recommendation hops plus the chain length of the second
statement. The chain length of the resulting statement is the sum of the chain
lengths of the input statements. This ensures that the recommendation hop value
of the trust statements decreases by one throughout the chain of first-hand trust
relations (e. g., h = 2, h = 1, h = 0).
The example in Figure 5.12 illustrates the inference rule. The transitive

trust inference rule allows to combine H+
1 = Trust+(EA, EB, r, 2, 1) with H+

2 =
Trust+(EB, EC , r, 1, 1) to H+

4 = Trust+(EA, EC , r, 1, 2) and then H+
4 with H−3 =

Trust−(EC , ED, r, 0, 1) to H−5 = Trust−(EA, ED, r, 0, 3).

5.5.2 Trust in Entities, Keys and Descriptions

A number of simple rules allow to infer from trust assigned to an entity to trust
assigned to the holder of a key and to trust assigned to an entity identified by a
description, and vice versa. If an entity is trustworthy, then the holder of a key that

85

5 Trust Model

h = 0, l = 1h = 2, l = 1 h = 1, l = 1
H+

1 H+
2 H−

3

EA EB EC ED

h = 1, l = 2
EA EC

EA ED

H−
5

h = 0, l = 3

H+
4

Figure 5.12: Example for application of the transitive trust inference rule

belongs to this entity is trustworthy, too, and vice versa:

Auth(EA,KC , EC)⊗ Trust(EA, EC , r, h, l)
Trust(EA,KC , r, h, l)

(5.10)

Auth(EA,KC , EC)⊗ Trust(EA,KC , r, h, l)
Trust(EA, EC , r, h, l)

(5.11)

If an entity is trustworthy, then the entity identified by a description that belongs
to this entity is trustworthy, too, and vice versa:

Auth(EA, DC , EC)⊗ Trust(EA, EC , r, h, l)
Trust(EA, DC , r, h, l)

(5.12)

Auth(EA, DC , EC)⊗ Trust(EA, DC , r, h, l)
Trust(EA, EC , r, h, l)

(5.13)

If the holder of a key is trustworthy, then the entity identified by a description
that belongs to this key holder is trustworthy, too, and vice versa. This applies to
trust relations and trust certificates:

Auth(EA,KC , DC)⊗ Trust(EA,KC , r, h, l)
Trust(EA, DC , r, h, l)

(5.14)

Auth(EA,KC , DC)⊗ Trust(EA, DC , r, h, l)
Trust(EA,KC , r, h, l)

(5.15)

Auth(KA,KC , DC)⊗ Trust(KA,KC , r, h, l)
Trust(KA, DC , r, h, l)

(5.16)

Auth(KA,KC , DC)⊗ Trust(KA, DC , r, h, l)
Trust(KA,KC , r, h, l)

(5.17)

86

5.6 Trust Value Computation

5.5.3 Local Authenticity Inference Rule

If an entity EA has partial knowledge about whether an entity EB is the holder of a
key KB, whether a description DB refers to the entity EB or whether the descrip-
tion DB refers to the holder of the key KB, then it can draw further conclusions
about the trust values of the authenticity statements between EB, KB and DB. If
the trust values of two corresponding authenticity relations are known, then the
trust value of the third authenticity relation can be derived with the authentication
operator:

Auth(EA,KC , DC)�Auth(EA,KC , EC)
Auth(EA, DC , EC) (5.18)

Auth(EA,KC , DC)�Auth(EA, DC , EC)
Auth(EA,KC , EC) (5.19)

Auth(EA,KC , EC)�Auth(EA, DC , EC)
Auth(EA,KC , DC) (5.20)

5.5.4 Authenticity Inference with Authenticity Confirmation

If a trustor (EA or KA) trusts a trustee (EB or KB) to issue only correct authentic-
ity relations or identity certificates (property rPKI), then the trustor can conclude
that authenticity relations or identity certificates of the trustee are correct:

Trust(EA, EB, rPKI, 0, l)⊗Auth(EB,KC , DC)
Auth(EA,KC , DC) (5.21)

Trust(EA,KB, rPKI, 0, l)⊗Auth(KB,KC , DC)
Auth(EA,KC , DC) (5.22)

Trust(KA,KB, rPKI, 0, l)⊗Auth(KB,KC , DC)
Auth(KA,KC , DC) (5.23)

5.5.5 Uniqueness Conditions

Two further conclusions can be drawn from the condition that each public key has
only one holder and that each description refers to only one entity. If A knows that
EB is the holder of KB, then it can infer that all other entities are not the holder
of KB. Similarly, if A knows that EB has the description DB, then it can infer that
all other entities do not have the description DB (A can be an entity or a key).

Auth+(A,KB, EB)
Auth−(A,KB, Ej)

,
Auth+(A,DB, EB)
Auth−(A,DB, Ej)

∀Ej 6= EB (5.24)

5.6 Trust Value Computation

The reputation system collects all issued first-hand trust and authenticity opinions
Hj with associated continuous trust value tj (with cj = 0). Users can then send

87

5 Trust Model

requests in the form of a standard form trust statement or an authenticity statement
to the reputation system. The reputation system then processes all collected opin-
ions. It applies the inference rules to derive trust and authenticity statements and
it computes the resulting continuous trust value t0 of the requested statement H0
from the trust values of the relevant first-hand statements. As the components of
the continuous first-hand trust values (b, i and d) represent probabilities, we define
the resulting trust value by a random experiment and propose different algorithms
for the computation of the resulting trust value.

5.6.1 Probabilistic Model for the Trust Value Computation

The components of the computed resulting trust value t0 = (b0, i0, d0, c0) for H0
are computed from the combination of all available first-hand opinions with the
inference rules under the assumption that the trust values of the opinions of the
requestor are correct. In short, b0 is the computed lower bound for the probability
that the combination of the available first-hand opinions leads to the conclusion that
H0 must be true (but not that H0 must be false). Similarly, d0 is the computed lower
bound for the probability that the combination of the available first-hand opinions
leads to the conclusion that H0 must be false (but not that H0 must be true).
The degree of conflict c0 is the computed probability that the combination of the
first-hand opinions leads to the contradicting conclusion that H0 must be both true
and false at the same time. The degree of ignorance is the remaining probability
i0 = 1− b0 − d0 − c0.
The following description of a random experiment provides a more detailed def-

inition for t0: We assume that the reputation system has collected J first-hand
opinions, i. e., the statements Hj (j = 1, 2, . . . J) with associated continuous trust
values tj = (bj , ij , dj , 0). For each first-hand statement Hj choose a discrete confi-
dence value t′j from {+,∅,−} according to the weights bj , ij and dj , i. e., choose
t′j = + with probability bj , t′j = ∅ with probability ij and t′j = − with probability
dj . Statements with the discrete trust value ignorance don’t contribute knowledge
and can be discarded6. Each remaining first-hand statement Hj with associated
discrete trust value t′j corresponds to a set of first-hand propositions according to
Table 5.3.
The inference rules always operate on trust propositions in the internal rep-

resentation. We therefore have to replace each standard-form trust statement
Trust(A,B, r, hmin..hmax) by a list of single-hop trust statements in internal form
with chain length l = 1: Trust(A,B, r, hmin, l), Trust(A,B, r, hmin + 1, l), . . . ,
Trust(A,B, r, hmax, l). The internal trust statements inherit their assigned dis-
crete trust value from the standard-form trust statement. Next, we apply all
inference rules (see section 5.5) to derive all (positive and negative) deducible
propositions from the set of all known first-hand propositions and all already de-
rived propositions. To get back to trust statements in standard form we conclude

6this optimization does not change the resulting trust value, the resulting continuous trust value
t0 nevertheless contains the correct degree of ignorance

88

5.6 Trust Value Computation

H+
0 = Trust+(A,B, r, hmin..hmax) if we have been able to derive a proposition

H+
0,h = Trust+(A,B, r, h, l) with hmin ≤ h ≤ hmax. Similarly, we conclude H−0

if we have been able to derive a proposition H−0,h.
To obtain the resulting continuous trust value of a requested trust or authenticity

statement we compute the probability that the random experiment leads to a set of
first-hand propositions from which we can derive positive and negative propositions
for the requested statement H0. The components of the resulting trust value t0 =
(b0, i0, d0, c0) are defined as follows: b0 is the probability that H+

0 (but not H−0) can
be derived and d0 is the probability that H−0 (but not H+

0) can be derived. The
probability that neither H+

0 nor H−0 can be derived is i0, and c0 is the probability
that both H+

0 and H−0 can be derived.
In contrast to other trust models (e. g., [Jøs97,HKL00,JH05,Koh07]) we propose

not to eliminate the degree of conflict, not only to avoid counter-intuitive effects of
re-normalizations but also because it provides valuable information to the requesting
user or application (see subsection 5.4.1).

5.6.2 Approximation and Exact Computation Algorithms

This section presents different possibilities to implement the computation of an
approximation or of the exact value of the resulting continuous confidence value
t0 according to subsection 5.6.1. All exact algorithms return the same resulting
trust value t0, but differ in computation time. The result of the approximation gets
arbitrarily close to the exact result if the number of iterations is sufficiently large.
To keep the computation time small we recommend for all algorithms to pre-

compute all possible paths: We first set up a “superposition” of possible first-hand
propositions. For each statement Hj with continuous trust value tj = (bj , ij , dj , 0)
we select H+

j if bj > 0 and we select (possibly in addition) H−j if dj > 0. Then
we translate all trust propositions into the internal form, apply all inference rules
and record the dependencies, i. e., we trace which sets of first-hand propositions
(premises) allow to derive which conclusions. Each set of first-hand propositions
that allows to (directly or indirectly) derive the positive requested proposition H+

0
is called a positive path for H0, each set that allows to derive the negative proposi-
tion H−0 a negative path for H0. Next, we select the set of positive paths and the
set of negative paths for H0 and minimize these paths, i. e., we remove all paths
that contain at least one other path in the set. We finally obtain the set of min-
imal positive paths A+ = {a+

1 , a
+
2 , . . . a

+
k+} and the set of minimal negative paths

A− = {a−1 , a
−
2 , . . . a

−
k−}.

5.6.2.1 Approximation with Monte-Carlo Simulation

An obvious approach to determine an approximation for the resulting trust value
is to run the described random experiment N times and to count in how many
experiments the selected set of first-hand propositions contains at least one positive
(but no negative) path (nb), no paths (ni), at least one negative (but no positive)

89

5 Trust Model

path (nd) or both positive and negative paths (nc). The approximation for the
confidence value is t̄0 = 1

N (nb, ni, nd, nc). The choice of N allows to adjust the
trade-off between precision and computation time.

5.6.2.2 Possible Worlds Algorithm

An simple algorithm to compute the exact value is to go through the list of all pos-
sible combinations of first-hand propositions (so-called possible worlds), to compute
the probability of each of those possible worlds and to check for each world whether
the set of first-hand propositions of this world contains the minimal paths. The sum
of all probabilities of all worlds that contain at least one positive and at least one
negative path is c0, b0 is the sum of probabilities of all worlds that contain at least
one positive, but no negative path, and d0 the sum of probabilities of all worlds
that contain at least one negative, but no positive path. The degree of ignorance is
i0 = 1− b0 − d0 − c0.

5.6.2.3 Trust Example 1: Simple Trust Chain with Possible Worlds Algorithm

H1

EA

H2

EB EC

j Hj bj ij dj
1 Trust(EA, EB, r1, 1) 0.5 0.15 0.35
2 Trust(EB, EC , r1, 0) 0.7 0.1 0.2

H1,1 H2,0 Probability H0
H+

1,1 H+
2,0 b1b2 H+

0
H+

1,1 b1i2
H+

1,1 H−2,0 b1d2 H−0
H+

2,0 i1b2
i1i2

H−2,0 i1d2
H−1,1 H+

2,0 d1b2
H−1,1 d1i2
H−1,1 H−2,0 d1d2

Figure 5.13: Scenario and possible worlds table of the Trust Example 1

The example scenario in Figure 5.13 (left) consists of two trust statements: H1 is
a recommendation trust statement for one recommendation hop (h = 1), and H2 is
a functional trust statement (h = 0). EA wants to compute the resulting functional
trustworthiness of EC (H0 = Trust(EA, EC , r1, 0)).
First, the trust statements in standard form have to be replaced by corresponding

trust statements in internal form: H1 by H1,1 = Trust(EA, EB, r1, 1, 1) and H2 by
H2,0 = Trust(EB, EC , r1, 0, 1). Both refer to the same property r1, it is therefore pos-
sible to combineH1,1 andH2,0 with the transitive trust inference rule Equation 5.9 to
the new functional trust statement H0,0 = Trust(EA, EC , r1, 0, 2): H+

1,1, H
+
2,0 ` H

+
0,0

(H+
1,1 and H+

2,0 allow to drive H+
0,0) and H+

1,1, H
−
2,0 ` H

−
0,0. Thus, there is only one

positive path a+
1 = {H+

1,1, H
+
2,0} and one negative path a−1 = {H+

1,1, H
−
2,0} for H0,0

and thus for H0.

90

5.6 Trust Value Computation

Figure 5.13 (right) shows all possible combinations of the first-hand propositions,
the probability that this world occurs and the propositions that can be derived in
this world. There are no worlds in which both H+

0 and H−0 can be derived, thus
c0 = 0. H+

0 can be derived only in the first world, therefore b0 = b1b2. Similarly,
H−0 can be derived only in the third world, therefore d0 = b1d2. The degree of
ignorance is the remaining probability mass i0 = 1− b0 − d0 − c0. With the values
in Figure 5.13 we obtain t0 = (0.35, 0.55, 0.1, 0).

5.6.2.4 Grouped Possible Worlds Algorithm

The possible worlds algorithm can be improved by subdividing the set of relevant
first-hand statements into as few groups g1, . . . gu as possible. Two statements, Hj

and Hm, belong to the same group if and only if the following condition holds for
each positive, negative and conflicting path: If the path contains a proposition for
Hj (H+

j or H−j), then it must also contain a proposition for Hm (H+
m or H−m).

In the preparation step we construct for each group a list of all relevant com-
binations of propositions of the statements in the group. This list contains all
combinations that contain exactly one proposition (i. e., either H+

j or H−j)7 for each
statement and that is identical to the corresponding section of at least one (positive
or negative) path. An additional element of this list consists of an empty set. It
represents all remaining possible combinations of propositions, i. e., all combinations
that contain neither H+

j nor H−j for at least one statement Hj of the group. We
can subsume these combinations because the have the same effect on the derivabil-
ity of propositions of H0. For each element of the list we compute the probability
that this combination will occur (within the group) from the continuous trust val-
ues of the statements. The probability associated with the empty set is the sum of
the probabilities of the contained combinations of propositions (i. e., the remaining
probability). Thus, the sum of all probabilities is one.
Next, in the main step, we go through all possible worlds. Each world consists of

one possible combination of these prepared proposition-combinations of the groups,
i. e., for each groups we select one proposition-combination from the prepared list
of the group. We multiply the precomputed probabilities of the chosen proposition-
combinations to obtain the resulting probability of the world. Finally, we compute
b0, i0, d0 and c0 just as in the possible worlds algorithm.

5.6.2.5 Trust Example 2: Parallel Trust Chain with Grouped Possible Worlds
Algorithm

The scenario in Figure 5.14 consists of two parallel trust chains from EA to
ED. EA requests the trust value for the resulting functional trustworthiness of
ED (H0 = Trust(EA, ED, r1, 0)). The trust statements in standard form are re-
placed by statements in internal form: H1 by H1,1 = Trust(EA, EB, r1, 1, 1), H2
by H2,0 = Trust(EB, ED, r1, 0, 1), H3 by H3,1 = Trust(EA, EC , r1, 1, 1) and H4

7no combination can contain both H+
j and H−

j because cj = 0

91

5 Trust Model

EA ED

EB

EC

H1 H2

H3 H4

j Hj bj ij dj
1 Trust(EA, EB, r1, 1) 0.8 0.15 0.05
2 Trust(EB, ED, r1, 0) 0.7 0.1 0.2
3 Trust(EA, EC , r1, 1) 0.9 0.1 0
4 Trust(EC , ED, r1, 0) 0.8 0.1 0.1

Figure 5.14: Scenario of the Trust Example 2

by H4,0 = Trust(EC , ED, r1, 0, 1). We can combine H1,1 with H2,0 and H3,1
with H4,0 with the transitive trust inference rule Equation 5.9. We obtain two
positive paths A+ = {{H+

1,1, H
+
2,0}, {H

+
3,1, H

+
4,0}} and two negative paths A− =

{{H+
1,1, H

−
2,0}, {H

+
3,1, H

−
4,0}}. Propositions for H1,1 and H2,0 appear always together

in paths, the same holds for H3,1 and H4,0. Therefore we can divide the statements
into two groups g1 = {H1,1, H2,0} and g2 = {H3,1, H4,0}.
In the preparation step we set up a list for each group that contains all relevant

possible combinations of the propositions and their probabilities (see Table 5.4). For
each group we find three relevant combinations: one combination supports a positive
path and one a negative path. The third entry with the empty set represents the
remaining combinations.

Propositions g1 Probability
{H+

1,1, H
+
2,0} b1b2

{H+
1,1, H

−
2,0} b1d2

{} 1− b1b2 − b1d2

Propositions g2 Probability
{H+

3,1, H
+
4,0} b3b4

{H+
3,1, H

−
4,0} b3d4

{} 1− b3b4 − b3d4

Table 5.4: Preparation step for the groups in the Trust Example 2

g1 g2 Probability H0
{H+

1,1, H
+
2,0} {H+

3,1, H
+
4,0} b1b2b3b4 H+

0
{H+

1,1, H
+
2,0} {H+

3,1, H
−
4,0} b1b2b3d4 H+

0 , H
−
0

{H+
1,1, H

+
2,0} {} b1b2(1− b3b4 − b3d4) H+

0
{H+

1,1, H
−
2,0} {H+

3,1, H
+
4,0} b1d2b3b4 H+

0 , H
−
0

{H+
1,1, H

−
2,0} {H+

3,1, H
−
4,0} b1d2b3d4 H−0

{H+
1,1, H

−
2,0} {} b1d2(1− b3b4 − b3d4) H−0

{} {H+
3,1, H

+
4,0} (1− b1b2 − b1d2)b3b4 H+

0
{} {H+

3,1, H
−
4,0} (1− b1b2 − b1d2)b3d4 H−0

{} {} (1− b1b2 − b1d2)(1− b3b4 − b3d4)

Table 5.5: Trust value computation in the Trust Example 2

92

5.6 Trust Value Computation

To compute the resulting trust value t0 for H0 we set up Table 5.5 with all 3 ·3 = 9
possible combinations of the entries in the lists (possible worlds), the probabilities
of each world and the derivable propositions for H0. Then we add the probabilities
and obtain b0 = b1b2b3b4 +b1b2(1−b3b4−b3d4)+(1−b1b2−b1d2)b3b4, i0 = (1−b1b2−
b1d2)(1− b3b4 − b3d4), d0 = b1d2b3d4 + b1d2(1− b3b4 − b3d4) + (1− b1b2 − b1d2)b3d4
and c0 = b1b2b3d4 + b1d2b3b4. With the values in Figure 5.14 we obtain t0 =
(0.7112, 0.0532, 0.07, 0.1656).

5.6.2.6 Computation with Inclusion-exclusion Formula

This algorithm computes the exact resulting trust value directly from the minimal
positive and negative paths for H0. In addition, we need the set of minimal conflict-
ing paths. Therefore we set up all possible combinations consisting of one positive
and one negative path (a±x = a+

y ∪ a−z with y = 1, . . . k+, z = 1, . . . k−), minimize
the set and obtain A± = {a±1 , a

±
2 , . . . a

±
k±} (with k± ≤ k+k−). A useful optimization

is to eliminate all paths that contain both H+
j and H−j (because cj = 0).

First, we compute the degree of conflict c0 from the trust values of the first-hand
statements in the set of minimal paths with the inclusion-exclusion-formula (I(A)):
c0 is the probability that a possible world chosen according to subsection 5.6.1
will contain at least one conflicting path. Thus, we add the probabilities of all
minimal paths, subtract the probabilities of all unions of two minimal paths, add
the probabilities of all unions of three minimal paths, etc.:

c0 =I(A±) =
k±∑
n=1

(−1)n+1 ∑
1≤j1<···<jn≤k±

P (a±j1 ∪ · · · ∪ a
±
jn

)

=
k±∑
j1=1

P (a±j1)−
∑

1≤j1<j2≤k±

P (a±j1 ∪ a
±
j2

) + · · ·+ (−1)k±+1P (a±1 ∪ · · · ∪ a
±
k±)

(5.25)

P (a) denotes the probability that path a is contained in the set of first-hand propo-
sitions of a chosen possible world:

P (a) =
∏

j:H+
j ∈a or H−

j ∈a

pj with pj =

0 if H+

j ∈ a,H
−
j ∈ a

bj if H+
j ∈ a,H

−
j 6∈ a

dj if H+
j 6∈ a,H

−
j ∈ a

(5.26)

We obtain b0+c0 with the inclusion-exclusion formula applied to the minimal positive
paths, thus b0 = I(A+) − c0. Similarly, the degree of disbelief is d0 = I(A−) − c0
and finally we obtain i0 = 1− b0 − d0 − c0.

5.6.2.7 Trust Example 3: Authenticity Verification with Inclusion-Exclusion
Formula

Figure 5.15 shows an example scenario consisting of the first-hand statements H1,
. . .H6 with associated confidence values. Entity EA wants to know whether entity

93

5 Trust Model

ED is the holder of the key KD and therefore requests the resulting trust value for
H0 = Auth(EA,KD, ED).

KC

H4

DD

H6

H5

KB

H1

H3

EA

ED

H2
KD

j Hj bj ij dj
1 Trust(EA,KB, rPKI, 0..1) 0.95 0.05 0
2 Trust(EA,KC , rPKI, 0) 0.85 0.15 0
3 Trust(KB,KC , rPKI, 0) 0.9 0.1 0
4 Auth(KB,KD, DD) 0.7 0.2 0.1
5 Auth(KC ,KD, DD) 0.8 0.2 0
6 Auth(EA, DD, ED) 1 0 0

Figure 5.15: Scenario of the Trust Example 3

Proposition Inference rule Origin
H+

1,0 = Trust+(EA,KB, rPKI, 0, 1) - from H1
H+

1,1 = Trust+(EA,KB, rPKI, 1, 1) - from H1
H+

2,0 = Trust+(EA,KC , rPKI, 0, 1) - from H2
H+

3,0 = Trust+(KB,KC , rPKI, 0, 1) - from H3
H+

4 = Auth+(KB,KD, DD) - from H4
H−4 = Auth−(KB,KD, DD) - from H4
H+

5 = Auth+(KC ,KD, DD) - from H5
H+

6 = Auth+(EA, DD, ED) - from H6
H+

7 = Trust+(EA,KC , rPKI, 0, 2) Equation 5.9 H+
1,1, H

+
3,0 ` H

+
7

H+
8 = Auth+(EA,KD, DD) Equation 5.22 H+

1,0, H
+
4 ` H

+
8 ; H+

2,0, H
+
5 `

H+
8 ; H+

7 , H
+
5 ` H

+
8

H−8 = Auth−(EA,KD, DD) Equation 5.22 H+
1,0, H

−
4 ` H

−
8

H+
0 = Auth+(EA,KD, ED) Equation 5.19 H+

6 , H
+
8 ` H

+
0

H−0 = Auth−(EA,KD, ED) Equation 5.19 H+
6 , H

−
8 ` H

−
0

Table 5.6: Propositions and applied inference rules in the Trust Example 3

First, we transform the trust statements from standard form into the inter-
nal form: H1 is transformed into H1,0 = Trust(EA,KB, rPKI, 0, 1) and H1,1 =
Trust(EA,KB, rPKI, 1, 1), H2 into H2,0 = Trust(EA,KC , rPKI, 0, 1), etc. Then we
create the set of propositions that represents a superposition of all possible worlds
according to the trust values of the statements (see Table 5.6, H+

1,0, . . .H+
6).

Next, we apply the inference rules to the proposition of this set (including the

94

5.7 Evaluation of the Proposed Trust Model

already derived propositions). The remaining rows of Table 5.6 list the derived
propositions as well as the used inference rules and the premises. The transitive
trust inference rule Equation 5.9 allows for example to derive the new proposition
H+

7 = Trust+(EA,KC , rPKI, 0, 2) fromH+
1,1 andH

+
3,0. Then the minimal positive and

negative paths can be determined. We find the three positive paths {H+
1 , H

+
4 , H

+
6 },

{H+
2 , H

+
5 , H

+
6 } and {H

+
1 , H

+
3 , H

+
5 , H

+
6 } and one negative path {H+

1 , H
−
4 , H

+
6 }. We

can thus construct the set of minimal conflicting paths: {H+
1 , H

+
2 , H

−
4 , H

+
5 , H

+
6 },

{H+
1 , H

+
3 , H

−
4 , H

+
5 , H

+
6 } and {H

+
1 , H

+
4 , H

−
4 , H

+
6 }. The last path can be eliminated

since c4 = 0.
Next we compute the degrees of conflict, belief and disbelief with the inclusion-

exclusion formula: c0 = b1b2d4b5b6 + b1b3d4b5b6 − b1b2b3d4b5b6 = 0.07486, b0 =
b1b4b6 + b2b5b6 + b1b3b5b6− b1b2b4b5b6− b1b3b4b5b6− b1b2b3b5b6 + b1b2b3b4b5b6− c0 =
0.92358− c0 = 0.84872 and d0 = b1d4b6 − c0 = 0.095− c0 = 0.02014. The degree of
ignorance is i0 = 1− b0 − d0 − c0 = 0.05628. Thus, the resulting trust value for H0
is t0 = (0.84872, 0.05628, 0.02014, 0.07486).

5.7 Evaluation of the Proposed Trust Model

5.7.1 Computation Time of the Proposed Computation Algorithms

Computation time is a very (although not the most) important issue for reputation
systems. The computation time to find the minimal paths appears to be uncritical
because it is possible to check the inference rules efficiently and because the paths
can be computed incrementally and in advance. Furthermore, the paths usually
remain unchanged when the trust values of existing opinions are updated.
The number of possible worlds to consider in the possible worlds algorithm in-

creases exponentially with the number of relevant first-hand statements. It is there-
fore applicable if the number of relevant statements is small. It is important to
emphasize that the computation time depends only on the number of relevant state-
ments or paths, not on the total number. It is sufficient to consider only statements
that are issued by the requester or by authentic entities or keys that have been found
to be trustworthy. Moreover, we can ignore all statements that are not part of a
valid path, i. e., that do not contribute to answer the trust or authenticity request.
Furthermore, most trust chains will not be longer than two or three statements.
Therefore, the number of relevant statements or paths will usually be reasonably
small. Although a trust and authenticity network similar to the PGP/GnuPG web
of trust [ACGW99] can contain more than 100 000 trust and authenticity statements,
the number of statements that are directly or indirectly (via valid paths) related to
the requester will probably be below 100, and the number of statements that are
part of valid paths from the requester to the requested statement is likely to be not
higher than 10 or 20 in typical scenarios.
The number of possible worlds in the grouped possible worlds algorithm increases

exponentially with the number of groups. Thus, the computation time can be re-
duced significantly if the statements can be grouped. Even large scenarios can be

95

5 Trust Model

trusteetrustor

Figure 5.16: Scenario of the simple chain example

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30

co
m

pu
ta

tio
n

tim
e

[m
s]

number of entities

Pos. worlds
Gr. pos. worlds

Incl.-excl.

Figure 5.17: Computation time in the simple chain example

evaluated efficiently as long as the relevant statements can be subdivided into a
small number of groups. In the inclusion-exclusion algorithm the number of sum-
mands increases exponentially with the number of relevant paths. This algorithm
is therefore well suited for all scenarios with a small number of paths, even if the
number of statements is large.
We illustrate the influence of the scenario (i. e., the number of relevant state-

ments, paths and groups) on the computation time of the algorithms on two ex-
amples8. The scenarios are constructed in order to emphasize the large influence
on the computation time and are not meant to be representative examples. For
simplicity the scenarios consist only of trust statements between entities and refer
to the same capability r. All trust values contain degrees of belief, ignorance and
disbelief (b > 0, i > 0, d > 0).
The scenario with e entities in Figure 5.16 consists of a simple chain and e−1 trust

statements with h = 0..e recommendation hops. The possible worlds algorithm has
8implementation in Java 1.6; measurements on Intel Pentium M with 1.73 GHz

96

5.7 Evaluation of the Proposed Trust Model

trustor trustee

Figure 5.18: Scenario of the full mesh example

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12

co
m

pu
ta

tio
n

tim
e

[m
s]

number of entities

Pos. worlds
Gr. pos. worlds

Incl.-excl.

Figure 5.19: Computation time in the full mesh example

to evaluate 3e−1 worlds. The scenario contains one positive and one negative path,
therefore the inclusion-exclusion algorithm has to compute only two summands. The
grouped possible world algorithm creates one group with three possible proposition-
combinations: the positive path leads to belief, the negative path to disbelief, all
other combinations lead to ignorance. It thus has to evaluate only three worlds.
The diagram in Figure 5.17 shows that the computation time of the possible world
algorithm increases exponentially with the number of trust statements, whereas
the computation time of the other algorithms increases linearly and thus remains
insignificant even for long trust chains.
The scenario in Figure 5.18 is a full mesh. All entities trust each other for h = 0..1

hops. The number of relevant statements is 2e−3, the number of positive and nega-
tive paths is e−1 and the number of conflicting paths is (e−1)(e−2). Thus, the com-
putation time of the possible worlds algorithm increases slower than of the inclusion-

97

5 Trust Model

exclusion algorithm because the number of conflicting paths increases faster than
the number of relevant statements (Figure 5.19). The grouped possible worlds al-
gorithm subdivides the statements into e − 1 groups, which reduces the number of
possible worlds from 32e−3 to 3e−1 worlds. Therefore the computation time remains
acceptable for a larger number of entities than with the other algorithms.
The computation time heavily depends on the scenario. It is therefore difficult

to give a general recommendation for one of the algorithms. It is possible that
one algorithm outperforms an other by orders of magnitude in one scenario, but is
much slower in an other scenario. The presented results and measurements in other
scenarios suggest that the grouped possible worlds algorithm is in most scenarios the
fastest (or at least close to the fastest) algorithm. However, further investigations
are necessary.
An estimation for the computation time of the algorithms can be computed from

the number of relevant statements, paths and groups. If the expected computation
of all exact algorithms exceeds an acceptable limit, then a Monte-Carlo simulation
can be used to compute an approximation. The number of iterations can be chosen
according to the required accuracy and the acceptable computation time.

5.7.2 Comparison with Other Trust Models

The model of Maurer [Mau96] does not allow to express degrees of disbelief. There-
fore, conflict can never occur. In all scenarios in which Maurer’s model can be applied
it produces the same resulting trust values as our model. Subjective Logic [Jøs97]
can only be applied if the network is a directed series-parallel graph (e. g., Trust
Examples 1 and 2, but not Trust Example 3). Credential Networks [JH05] can be
applied only if at least one component of the trust value (bj , ij or dj) of each first-
hand trust value is zero. Subjective Logic and Credential Networks produce the
same results as our model in all cases in which the models and their computation
approaches can be applied and in which no conflict occurs (e. g., in the Trust Ex-
ample 1). If conflicts are possible (e. g., in the Trust Examples 2 and 3), then the
results generally differ from the results of our model because these models eliminate
the probability mass associated with conflict.
Our model can thus be seen as an extension of Maurer’s model, Subjective Logic

and Credential Networks that overcomes the mentioned restrictions (b > 0, i > 0 and
d > 0 is possible, no restriction to directed series-parallel graphs). However, we do
not eliminate the degree of conflict, because this can cause counter-intuitive effects:
Consider Trust Example 2 (subsubsection 5.6.2.5). If we choose t1 = t2 = t3 = t4 =
(1, 0, 0, 0) (full trust), then the resulting trust value is t0 = (1, 0, 0, 0), too (in all
models). If t4 changes to t4 = (0.01, 0, 0.99, 0) (almost complete distrust), then the
resulting trust value in our model changes to t0 = (0.01, 0, 0, 0.99), which shows EA
that the trustworthiness of ED is now highly disputed. However, in Subjective Logic
and Credential Networks the resulting trust value does not change. This gives EA
the wrong impression that there are no trustworthy entities who distrust ED.

98

5.8 Reliability of Context Information

5.7.3 Trade-offs and Limitations

It is important to be aware of the fact that all models for trust and authenticity
relations make more or less intuitive assumptions and more or less extensive simpli-
fications in order to keep the computational complexity on an acceptable level. The
decision for an appropriate reputation system certainly depends on the intended
application and is often a trade-off between precision and accuracy on the one hand
and performance and practicability on the other hand. Simple trust models may be
fast and easy to implement, but oversimplified models cannot capture and reflect
all relevant properties of trust relations appropriately and they therefore suffer from
undesirable and counterintuitive effects. With more advanced models that describe
the properties of and relations between trust and authenticity statments more de-
tailed and that process the opinions in a more sophisticated manner, it is possible
to largely avoid counterintuitive effects, but this usually results in a significantly
higher compuatational complexity.
There are numerous simple trust models, but there seems to be a lack of more

advanced trust and authentication models (see subsection 5.7.2). Therefore our
primary concern was to develop a precise model that provides intuitive results. Our
model is nevertheless practicabel because the computation time can be kept low by
using the approximative Monte-Carlo method (subsubsection 5.6.2.1) for complex
trust and authentication networks instead of the exact algorithms.
One should also be aware of the fact that reputation systems can only operate

on the basis of the information that is accessible to the system, i. e., the explicitly
formulated trust and authenticity opinions. These will usually be incomplete and
often outdated because users have only limited time and motivation to keep their
opinion on the trustworthiness of others up to date. The computed reputation values
are thus always subject to uncertainty and should therefore be used with care.
There exist several inherent limitations for reputations systems for which it is dif-

ficult or impossible to find purely technical solutions: The issued trust statements
usually have to be available to other users of the system. This leads to a privacy
dilemma, because they hereby disclose very sensitive information about their per-
sonal relationships (by disclosing whom they trust and distrust) and likings. This
disclosure may even lead to the effect that users give not honest but rather socially
desirable ratings or act for other reasons (e. g., revenge) in a strategic manner. More-
over, the disclosure of trust statements could affect the interpersonal relationships
of the involved users. Assigning a low trust values to someone could be interpreted
as a first sign of distrust and actually damage or destroy sensitive trust relations.

5.8 Reliability of Context Information

Trust always refers to entities (i. e., users, provider, . . .), not to context information
or data, because data cannot “behave as expected”.
It is nevertheless useful to define a quality metric for context information that

describe to which degree a user can rely on the context information. We use the

99

5 Trust Model

term reliability to refer to the property of context information to be reliable in the
sense that the context information is correct, i. e., that the referenced objects exist
in the real world, that it describes the referenced objects truthfully within the limits
of the indicated accuracy of the information.
All users of the system may issue statements with their (subjective) opinion about

the reliability of any piece of context information in the system. A reliablility state-
ment may refer to

• the value of an attribute of an object,

• to an object as a whole or

• to an context information provider.

A reliability statement may refer to an object as a whole for example if the user
beliefs that the object does not exist at all in the real world or that is is composed of
attributes that do not belong to the same object. A reliability statement may refer
to an context information provider it the user beliefs that all objects issued by this
provider are unreliable. Users can digitally sign their issued reliability statments
in order to protect the authenticity of their ratings. If a user has issued several
reliablility statements (e. g., one reliability statement for the attribute and an other
for the provider), then it is reasonable to choose the most specific reliability value
(i. e., the reliability value for the attribute, or, if not available, the value for the
object).
Reliability is expressed by a real number v ∈ [0, 1], where v = 0 represents com-

pletely unreliable information and v = 1 completely reliable information. Reliabli-
tity values 0 < v < 1 represent a subjective estimation of the issuing user for the
probability that the referenced context information is correct in the above sense.
Different users may have different opinions about the reliablity of a given context

information oik of the data provider i. The opinion of the user j about the reliability
of the attribute P of a context information oik of the data provider i is expressed by
vj(oik.P). A component of a context-aware system can compute a resulting reliability
value v(oik.P) for a given attribute of a context information oik.P using different
strategies. It can for example

• choose the reliablity value v(oik.P) = vj(oik.P) of the user j with the highest
linearized trust value wj , or

• compute the average reliablitity value weighted with the linearized trust values
of the issuers v(oik.P) =

∑
j
wjvj(oik.P)∑

j
wj

.

The resulting reliability value can be used to separate reliable from unreliable
information, e. g., to decide whether to use or discard a piece of information when
processing a query or to choose the most likely information from set of conflicting
alternatives.

100

5.9 Summary

5.9 Summary

We presented a detailed model to represent trust and authenticity statements as
well as trust values and we proposed an integrated approach to reason with these
statements and to compute resulting trust values. The model distinguishes clearly
between entities, descriptions and keys, allows multiple keys and descriptions per
entity, distinguishes between functional and recommendation trust and allows to
specify ranges of recommendation hops in trust statements. Trust values allow to
express degrees of belief, ignorance and disbelief. The system is able to reason with
conflicting opinions because the presented inference rules are based on a paraconsis-
tent logic. The computation of the resulting trust values is based on a probability
theoretical model in order to produce consistent results. In conflict-free scenarios
our model is consistent with the Model of Maurer, Subjective Logic and Credential
Networks, but overcomes several restrictions of these models. In conflicting scenarios
we do not eliminate the degree of conflict in order to avoid counter-intuitive effects
caused by re-normalizations. Furthermore we proposed different algorithms to im-
plement the trust value computation. Although the computation time increases
exponentially with the number of relevant statements, groups or paths it can be
expected that an acceptable computation time can be reached in the majority of
realistic scenarios. In the other cases, we propose to compute an approximation
with Monte-Carlo simulations. The computed resulting trust values can be used to
merge the ratings of different users about the reliability of context information and
context information providers.

101

6 Reference Model

Until now, we have presented Degradation, Consistency, and Trust as separate issues
with regard to the Quality of Context information (QoC). However, there are a num-
ber of interdependencies between them, as we will discuss in the following Section.
Based on this discussion, we are presenting an integrated, quality-aware processing
model for queries on context information. The processing model incorporates the
mechanisms for all three aspects of Quality of Context, which we presented in the
previous chapters.

6.1 Interdependencies between Uncertainty, Consistency, and Trust

An integrated, quality-aware query processing for context data requires an under-
standing of the relationship between the different aspects Degradation, Consistency,
and Trust. For example, take the position information for an object O8, e.g., a
bus, which is available from two providers, S1 and S2. From this example, Fig-
ure 6.1 shows the following interdependencies between Degradation, Consistency,
and Trust:

• Uncertainty: The two independent providers, S1 and S2 have (uncertain) po-
sition information for the object O8, the bus, in their model. Due to different
sensors, different update protocols, etc., the two providers have slightly dif-
ferent values for the position – (3.4, 4.2) as opposed to (3.3, 4.1) – as well as
different uncertainties attached to the values – ±5m and ±4m. Individually,
each piece of (uncertain or degraded) information from the two providers can
be correct in regard to the real world, i.e., the actual position of the bus.

• Consistency: When a piece of information (with knowledge about the uncer-
tainty) is available from several different providers, such as S1 and S2 in the
example, the information from the different providers can be inconsistent. For
example, if each provider states that an object is within a certain area, but
the two areas do not overlap, one or both must be wrong, i.e., the information
of the two is inconsistent. Whether information about the same phenomenon
from several sources is consistent depends on whether the different uncertain
information can be correct at the same time as well as the probability for both
being correct.

• Trust/Reliability: Individual providers can have incorrect and therefore unreli-
able information. There are a number of reasons for this: inexpensive and thus
inaccurate sensors provide incorrect data, update protocols prioritize energy
saving over the accuracy of the data, or even a malicious provider. Entities

103

6 Reference Model

S1 S2

Reliability Reliability

DegradationDegradation Consistency±5m ±4m

77% 59%

92%

X trusts Y

Y considers position
information by
S1 more reliable

Position of O8
at 12:43 is
(3.4, 4.2)

Position of O8
at 12:43 is
(3.3, 4.1)

Figure 6.1: Interdependencies between Degradation, Consistency, and Trust

can thus make statements about the reliability of individual providers or pieces
of information. For example, if one provider regularly offers incorrect infor-
mation, the users would sooner or later doubt the reliability of this particular
provider’ information. This is independent from the uncertainty of the infor-
mation as well as from the consistency between several providers. However,
not every users can necessarily judge the reliability of a provider. Therefore,
a user can trust other users’ judgements about the reliability, creating a web
of trust, which is used to propagate the reliability information of individual
providers.

Based on these interdependencies, the following Section proposes a processing
model, which incorporates these aspects of Quality of Context (QoC) into the Nexus
system.

6.2 Integrated Quality-Aware Processing Model

Applications that process sensed data or integrate data from different independent
data providers need to handle data with varying quality. To these applications it is
crucial to measure data quality. Moreover, a measurement of quality can be benefi-
cial for both applications and data providers. Applications can use it to exclude data
that does not satisfy user needs and data providers could incorporate the quality
of the provided data into their pricing policies. Often the quality of data hints at

104

6.2 Integrated Quality-Aware Processing Model

FN FN

App

FN

Federation
Layer

Application
Layer

Context
Information

Layer

App

FN

CP

FN

CP

App

FN

Figure 6.2: Architecture of the Nexus system [LCG+09a]

the costs of providing the data. It might be more expensive in terms of energy to
provide an accurate, up-to-date data value of a sensor than an imprecise, possibly
outdated value. Especially context-aware applications running on resource-limited
mobile devices often have to trade quality against resource-consumption. These
context-aware applications are the focus of the Nexus project.
A lot of research has been done on the subject of data quality. In most cases

a metric of a certain quality aspect like uncertainty is used to define quality. In
the context of the Nexus project, we have investigated three different aspects of
quality: uncertainty, inconsistency and reliability. In this section we integrate all
three aspects of quality into a single processing model.
This section is organized as follows. Section 6.2.1 introduces the Nexus middleware

and motivates the choice of the three quality aspects. We introduce operators used
for formulating queries and an example scenario in Section 6.2.3. In Section 6.2.4,
we explain the reasons for integrating the three quality aspects and present and
evaluate a suitable processing model.

6.2.1 The Nexus System

In the Nexus project [LCG+09a], we provide a framework for managing global con-
text models in an open platform, where a multitude of context data providers can
integrate and share their context models. Due to the global characteristics and the
high number of different context providers, our system is based on a distributed and
scalable architecture.
We depict a simplified three-layer architecture of our system in Figure 6.2. The

bottom layer, i.e., the context information layer, consists of context data providers
(CP) offering context information from various sources ranging from static informa-
tion to sensor values. Thereby, different context providers may provide data with
different levels of detail. In addition, this data can be based on different kinds of
sensors. These two characteristics are the reason to specify the uncertainty of the
data. Moreover, the fact that several context providers may provide data on the
same phenomenon is the reason to specify the inconsistency of this data. Finally,
in this open system, information about the trust in context providers is essential

105

6 Reference Model

to estimate the value of the provided data. We explain the details of these three
aspects of quality in Section 6.2.2.
The middle layer, i.e., the federation layer, is the platform for processing queries

on the data provided by the context information layer. Thereby, the federation nodes
(FN) on this layer provide the abstraction of a single data source to the applications
(App) in the application layer. Processing of data quality is done based on the
currently available data at the different providers. This processing is not influenced
by limitations through network characteristics, e.g., interpolation mechanisms are
incorporated to cope with high network delay.

6.2.2 Three Aspects of Quality of Data

In the following discussion, o, o1, o2, . . . denote objects. Objects are sets of attributes.
The P attribute of o1 is denoted by o1.P . Here, we only regard attributes (called
P) with scalar values, representing not only, e.g., temperature or other sensor mea-
surement values, but also – as in the following discussion – position values in a
one dimensional space. This is primarily for simplicity, but, depending on the data
model, can also practically be used, e.g., for representing positions of cars on a
highway [dAG05].
Different data providers can manage the same object. We call the data providers

1, 2, . . . , and o2
1.P denotes the position of object o1 according to provider 2.

Here we assume that data providers specify a normal PDF for uncertain positions,
however, due to the way we handle data of not fully reliable providers when fusing
the quality aspects, we want to be able to express that, with some probability, we
are not sure or do not know the value.

Definition An uncertain position P is represented by a special PDF p : R →
R+

0 with 0 ≤
∫∞
−∞ p(x) dx ≤ 1. With the probability 1 −

∫∞
−∞ p(x) dx, the value is

unknown (NULL).

Besides representing uncertain positions, we also require a means for measuring
how uncertain a position is. For this, we adopt the concept of differential entropy
from [SW69], which was already used for measuring quality of data in [CKP03]. To
be able to use this definition, we restrict the position PDF to have a lower bound l
and upper bound u, with

p(x)
{
> 0, l ≤ x ≤ u
= 0, otherwise .

Definition u(P) = −
∫ u
l p(x) log2 p(x) dx is the uncertainty of position P .

This definition restricts the form of the PDF and may not be adequate for cases
where the probability for the value being NULL is greater than 0, however, as shown
in Section 6.2.4, we only apply this definition to values directly retrieved from data
providers, where these limitations are reasonable.

106

6.2 Integrated Quality-Aware Processing Model

Figure 6.3: Extending the possible worlds model to support uncertainty

For measuring the consistency c(P1, P2) of two positions P1 and P2, we use the
consitency metrics presented in Section 4.1.
The users and providers can have different opinions about the reliability of the

provided context information and about the trustworthiness of other users and
providers. It is therefore not possible to compute objective, global values for the
trustworthiness of a user and the reliability of a context information object. In-
stead, these values are computed from the subjective point of view of the requesting
user as described in chapter 5. The value v(oik.P) ∈ [0, 1] refers to the resulting re-
liability value of the attribute P of a context information object ok of data provider
i from the point of view of the requesting user.

6.2.3 Query Processing

We use the possible worlds approach [BGMP92,ABS+06,BSH+08,CCX08] as basis
for the query processing, but need to be able to represent uncertainty, so we have to
extend the model to support an infinite number of possible worlds. This is subject
to ongoing research, but for queries with simple selection predicates, the approach
shown in Figure 6.3 is reasonable. In addition to enumerate a finite number of
possible worlds (boxes in Figure 6.3), we allow uncertain attributes in a possible
world (grey circles representing positions), so that a possible world in our model
can represent an infinite number of exact possible worlds (shown in the bottom part
of Fig. 6.3). In contrast to the original possible world model, we need to adapt
operators for our approach. Figure 6.3 shows a range query, which only a part of
the o1s represented by PW1 fulfills, so the result of applying the query to PW1 is
an empty possible world (PW3), and a possible world with a modified position for
o1 (PW2).
The Nexus system is not only able to simply retrieve objects, but can also process

more complex queries. It provides a set of generic operators, which is similar to the
relational algebra. The precise definition of the complete set is beyond the scope of
this paper, but we briefly describe the operators used in the example scenario. Note
that these operators only handle uncertainty, we explain in Section 6.2.4, why this
is sufficient.

Selection σpred : The selection operator is equivalent to the selection operator of
the relational algebra. It takes a list of objects as input and outputs a list

107

6 Reference Model

Figure 6.4: Example scenario: PDFs of the positions of o1 and o2

containing all objects from the input list, which fulfill the predicate pred. When
applied to uncertain data, objects fulfill the predicate with some probability,
and objects are included in the result list with this probability, i.e., σ can
create several alternative results (possible worlds) and is an entity-based non-
aggregate operator according to the classification in [CKP03]. As previously
explained, it may be necessary to modify uncertain attribute values. NULL
values are handled as in SQL: When pred evaluates to unknown, the object is
not included in the result.

Sorting sortexpr : The sorting operator sorts a list of objects. expr is an expression
based on attributes of an object. It is evaluated for each object in turn, and
the objects are sorted according to the results. Like the selection operator,
sorting can create several alternative results when applied to uncertain data.
The probability of a result list is determined by the probability that evaluating
expr in sequence on all objects of this list results in a sorted list. Sorting is an
entity-based aggregate operator.

Fetch fetchn: The fetch operator just cuts a list of objects to the first n objects.
It does not evaluate attributes like the other two operators do, thus does not
require an adaption to handle uncertain data. We use the fetch operator in
conjunction with sorting to implement a nearest neighbor query.

6.2.3.1 Example Scenario

Fig. 6.4 shows the example scenario. Two providers 1 and 2 store two objects o1
and o2. For o2, each provider offers a representation, these two representations are
different.
The uncertainties of the positions are u(o1

1.P) = u(o1
2.P) = 0, u(o2

2.P) = 1, the
consistency of o2.P is c(o1

2.P, o
2
2.P) = 0.75. We want to answer the query, which

of the objects located between the positions 1 and 3 is closest to position 0, more
formally

fetch1(sortdist(0,o.P)(σ1≤o.P≤3[o1, o2])) .

dist calculates the distance between its arguments. As in this scenario, the first
argument is the position 0, the result has the same PDF as the second argument.

108

6.2 Integrated Quality-Aware Processing Model

Figure 6.5: Measuring the quality of the query result

As explained above, it may be necessary to adapt the PDF for the position during
selection. For a selection of the form σl≤P≤u, we do this the by narrowing the range,
where the PDF is > 0, to the interval [l, u] and multiplying the resulting function
with a constant factor, so that the integral equals to 1:

p′(x) =

p(x)∫ u

l
p(x) dx

, l ≤ x ≤ u

0, otherwise

For evaluating sort, we must calculate the probability that a distance D2 is greater
than an other distance D1. When D1 and D2 are represented by two PDFs d1 and
d2, the probability for D2 > D1 is1∫ ∞

−∞

∫ ∞
x1

d1(x1)d2(x2) dx2 dx1 . (6.1)

In the given scenario, we cannot be sure if o1 actually fulfills the selection predi-
cate, and – according to the data of provider 2 – there is a chance that o2 is closer
to 0 than o1. Obviously, the probability for o1 to be closer to 0 is much higher than
for o2. However, the probability for o1 to fulfill the selection predicate is only 0.5,
so we expect the probability for o2 being the result of the query to be only a little
bit above 0.5.

6.2.4 Processing Model

In Section 6.2.2, we presented approaches for representing and measuring uncer-
tainty, inconsistency and trust on the data provider level. To be able to process
complex queries like the one presented in the previous section, we need to address
two additional questions: how to account for the quality aspects during the process-
ing of queries and how to measure the quality of the final result set.
The straightforward attempt to solve the first problem would be to define sepa-

rately for each operator, how each quality aspect is handled. When, e.g., the selec-
tion operator is applied to an uncertain attribute, the uncertainty selection operator

1d1(x1)d2(x2) is the combined PDF for D1 and D2. To derive the probability for D2 > D1, we
need to integrate over the area where x2 > x1.

109

6 Reference Model

reputation
system

authenticity
opinions

trust and
linearize

weight

tj
wj

reliability opinions vj(oik.p)

v(oik.p)

Figure 6.6: Processing model (data providers, trust and reliability)

Figure 6.7: Processing model (data fusion and query processing)

would be invoked, and for an inconsistent attribute the inconsistency selection oper-
ator. However, this approach cannot handle information that is both uncertain and
inconsistent, like o2.P in Figure 6.4. Therefore, we need a more integrated concept,
which can deal with all three quality aspects simultaneously.
To measure the quality of result sets, in some cases, it is possible to directly apply

the definitions presented in Section 6.2.2 to query results. When an object with
an uncertain position is present in a result set, the uncertainty model can be used
to represent its position. Likewise, the inconsistency model can be used when two
different values for the same attribute of an object are in the result set. However,
when only one value qualifies for the result set, the inconsistency information gets
lost. To use the trust and reliability model, the reliability value of the provider can
be assigned to each attribute he provides to the result. However, in more complex
situations, these definitions are not suitable. Figure 6.5 shows on the left hand side
a situation where we are not sure if the answer to the query How many objects are
located inside the dashed square? is 0 or 1. This should somehow be reflected by the
result’s quality, but is unclear if this is uncertainty or inconsistency, because exactly
the same result can be caused by uncertainty (top) or by inconsistency (bottom).
On the right hand side, we have the same situation with a slightly shifted square
for the query. In this case, we can be sure that the result of the query is 1, so the
quality of the result should be optimal, although the data used for answering the
query is uncertain or inconsistent.

110

6.2 Integrated Quality-Aware Processing Model

To address these two problems, we are investigating the approach depicted in
Figures 6.6 and 6.7. The main idea is to combine the three aspects before the actual
query processing takes place, and define query processing and the result’s quality
based on the possible worlds model. In the following, we discuss reasons for choosing
this approach.
Viewed from the perspective of query processing, uncertainty and inconsistency

describe similar phenomena – there exist several alternatives for one value. In the
case of uncertainty, the number of alternatives is possibly infinite, whereas in the case
of inconsistency, a finite number of alternatives exist. In that sense, uncertainty is a
generalization of inconsistency and both can be expressed by an uncertainty model.
When expressing inconsistency as uncertainty, we basically add all PDFs for an

attribute. Thereby we have to weight the individual PDFs of the data providers, in
the most simple case with the reciprocal of the number of data providers. In our
case, however, we can refine the weighting using the trust and reliability values, so
that PDFs from reliable data providers gain a higher weight than those from less
reliable ones. This meets the supposable expectation of users that information of
reliable data providers is more likely to be true.
In more detail, the approach consists of the following steps:

1. Applications or users may want to specify minimum requirements for certainty,
consistency and reliability for the data used for processing the query. Three
additional selections are performed before the actual query is processed which
result in a subset of the original data set, that fulfills the quality constraints.
Note that the selection of sufficiently reliable data providers has to be done
before evaluating the consistency constraint, otherwise, unreliable providers
would be able to force the removal of attributes from the subset by providing
incorrect representations of the attribute, thus decreasing the consistency.

2. The three quality aspects are combined based on the uncertainty model by
fusing the different representations. Typically, inconsistency is incorporated
by averaging the representations, reliability by weighting them. Different ap-
plications may require different fusion algorithms, so we provide a way for the
application to specify the algorithm to use.

3. The calculation of the quality of the query’s result is still an open issue, but
using some extension of an entropy based approach seems to be promising. It
is not necessary to use an additional selection here, the application itself can
decide whether the quality of the result is sufficient or not and discard the
result in the latter case.

We have developed two different general fusion algorithms. The first one is highly
scalable, but has the potential drawback of generatiing high probabilities for NULL
values. When the providers 1, . . . , n provide values for the position of an object o,

111

6 Reference Model

the resulting position is caculated as

o.p(x) = 1
n

n∑
i=1

v(oi.p)(oi.p(x)) .

Note that
∫∞
−∞ o.p(x) dx may be smaller than 1 (cf. Section 6.2.2).

The second algorithm reduces the probability of NULL values, but its complexity
grows exponentially with the number of data providers. For sake of simplicity, we
show the definition for two data providers 1 and 2:

o.p(x) = v(o1.p) · v(o2.p)∫∞
−∞ o

1.p(x) · o2.p(x)dx · o
1.p(x) · o2.p(x)

+ v(o1.p) · (1− v(o2.p)) · o1.p(x)
+ (1− v(o1.p)) · v(o2.p) · o2.p(x)

When
∫∞
−∞ o

1.p(x) · o2.p(x)dx = 0, we omit the first summand.
An additional benefit of this approach is that the combined data quality model is

closely related to models typically used in the literature, which allows us to define
the semantics of our operators based on well understood concepts.

6.2.5 Revisiting the Example Scenario

In this section, we describe how the query in Section 6.2.3.1 is processed using our
processing model. We use the notation [o1, . . . , on]p for a result list generated with
probability p.
For the first example, all objects of all data providers are considered fully reliable,

i.e., v(o1
1.p) = v(o1

2.p) = v(o2
2.p) = 1 and we do not use restrictions on certainty,

consistency and reliability. Thus, fusing the data of the two providers results in
o1 = o1

1 and o2 with

o2.p(x) =

0.25, 1 ≤ x < 2
0.75, 2 ≤ x ≤ 3
0, otherwise

.

Figure 6.8 shows the intermediate results after each operator of the query and the
final result. σ does not modify o2, because its position lies completely inside the
requested area, o1, however, becomes o′1 with

o′1.p(x) =
{

2, 1 ≤ x ≤ 1.5
0, otherwise .

o′1 is closer to 0 than o2 with a probability of 15
16 according to (6.1). The probability

of o2 being the final result of the query is a little bit higher than 0.5 as expected in
Section 6.2.3.1.

112

6.2 Integrated Quality-Aware Processing Model

σ [o′1, o2] 1
2����

HHHj

[o2] 1
2

?
sort [o′1, o2] 15

32

?

[o2, o
′
1] 1

32
[o2] 1

2HHHj
����

fetch [o′1] 15
32

[o2] 17
32

Figure 6.8: Processing the query (v(o1
1.p) = v(o1

2.p) = v(o2
2.p) = 1)

σ [o′1, o′2] 3
16����

HHHj

[o′1] 1
16

?

[o′2] 9
16

?

[] 3
16

?
sort [o′1, o′2] 33

192XXXXXXz

[o′2, o′1] 3
192XXXXXXz

[o′1] 1
16������9

[o′2] 9
16������9

[] 3
16

?
fetch [o′1] 45

192
[o′2] 111

192
[] 3

16

Figure 6.9: Processing the query (v(o1
1.p) = v(o1

2.p) = 0.5, v(o2
2.p) = 1)

For the second example, shown in Figure 6.9, we use the reliability values v(o1
1.p) =

v(o1
2.p) = 0.5 and v(o2

2.p) = 1. This results in the following situation after fusing
the data:

o1.p(x) =
{

0.5, 0.5 ≤ x ≤ 1.5
0, otherwise o2.p(x) =

0.25, 1 ≤ x < 2
0.5, 2 ≤ x ≤ 3
0, otherwise

.

Because we do not have full confidence in the reliability of provider 1, o1.P is NULL
with probability 0.5 and o2.P with probability 0.25. o1 fulfills the selection predicate
with a probability of 0.25, o2 with a probability of 0.75, so the selection also modifies
o2.p:

o′1.p(x) =
{

2, 1 ≤ x ≤ 1.5
0, otherwise o′2.p(x) =

1
3 , 1 ≤ x < 2
2
3 , 2 ≤ x ≤ 3
0, otherwise

.

Equation (6.1) yields 11
12 for the probability of o′1 being closer to 0 than o′2.

113

7 Conclusions

This report presented an overview of the developed reference model for Quality of
Context Information (QoC). QoC comprises numerous aspects, such as the accuracy
of sensed data, transmission and update protocols, consistency between data from
several providers, or the trust placed into the information from individual providers.
Our QoC reference model enables a federated context management system such
as Nexus to incorporate QoC in an integrated manner, from the sensors to the
applications. The model was introduced in five main parts: Abstract framework for
quality aspects, Degradation model, Consistency model, Trust model and Integrated
QoC-aware processing model.

Abstract framework for quality aspects: We distinguish three abstraction levels of
context information (sensor information, observable context, and high-level context).
To satisfy all requirements, our proposed abstract framework distinguishes three
fundamental quality aspects: degradation, consistency, and trust. Each of these
aspects has to be modeled along the layers of the system: low level sensor data,
context information layer and high level context. This leads to the presented 3x3
framework of quality aspects which are only at the first glance rather independent.
Degradation model: We proposed an integrated approach how to cope with phys-

ical limitations of sensors and the corresponding sensing inaccuracies, imprecision,
etc.—from the raw sensor data via observable context to high-level context. More-
over, for applications, we presented QoC-aware interfaces for querying context in-
formation. One main aspect in a large-scale context-aware systems is the need for
a generic model for position information. We discussed the requirements for a suit-
able model including an uncertainty-aware query interface. Our survey showed that
existing technology-specific uncertainty models can be considered as partial spatial
distribution functions (psdf). We proposed an extended query interface for position
information by extending common query types with information on the position un-
certainty. This approach can be extended to scalar types as well as data with three
or more dimensions. For high level contexts we presented surveys and requirements
for degradation models in situation detection.
Consistency model: Inconsistency in large-scale context-aware systems can be

caused by different data providers offering different values for the same attribute.
The basic design idea of our consistency model is to estimate the probability that
the representation of one provider does not conflict with the representation of the
other provider. Our model depends on the types of the attributes and distinguishes
between four domains: discrete domain, continuous domain with and without pdf
and the 3D-domain. For each domain inconsistency can be observed on the context
information layer and on the high-level context layer.

115

7 Conclusions

Trust model: With an open context-management platform such as Nexus, trust-
worthiness of context providers is an important issue. For this reason we propose
a comprehensive approach for assessing the reliability and trustworthiness of each
provider. Our detailed model represents trust and authenticity statements as well as
trust values. These values allow to express degrees of belief, ignorance and disbelief.
The computation of the resulting trust is based on a probability theoretical model.
Integrated QoC-aware processing model: We proposed a universal QoC-aware pro-

cessing model for queries for context information of arbitrary applications. This
model incorporates the specific models for degradation, consistency, and trust and
the dependencies between these aspects.

In the future, we are looking to extend our work for other types of context informa-
tion. This comprises three main parts: 1) an extension to degraded image data and
the higher level context derived from it; 2) the handling of degraded trajectories,
either from sensor inaccuracies or artificially introduced uncertainties for privacy
reasons; 3) a description of the quality of partial models, especially focusing on the
completeness of the model with regard to the real world.

116

Bibliography

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth,
Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A sys-
tem for data, uncertainty, and lineage. In Umeshwar Dayal, Kyu-Young
Whang, David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L.
Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, VLDB, pages
1151–1154. ACM, 2006.

[ACGW99] John Michael Ashley, Matthew Copeland, Joergen Grahn, and David A.
Wheeler. The GNU Privacy Handbook. The Free Software Foundation,
1999.

[AFGS08] D. Akca, M. Freeman, A. Gruen, and I. Sargent. Quality assessment of
3D building data by 3D surface matching. In 21th ISPRS Congress. In-
ternational Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, vol. XXXVII, part B2, pages 771–777, Bei-
jing, China, July 2008.

[Bac96] Johann Bacher. Clusteranalyse, Anwendungsorientierte Einführung.
Oldenbourg, 2nd edition, 1996. in German.

[Bal87] J. F. Baldwin. Evidential Support Logic Programming. Fuzzy Sets
Systems, 24(1):1–26, 1987.

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A sur-
vey on context-aware systems. International Journal of Ad Hoc and
Ubiquitous Computing (IJAHUC), 2(4):263–277, June 2007.

[Bel75] Nuel D. Belnap. A Useful Four-valued Logic. In Modern Uses of Multi-
valued Logic, pages 8–37, 1975.

[BGMP92] Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The manage-
ment of probabilistic data. IEEE Trans. Knowl. Data Eng., 4(5):487–
502, 1992.

[BKZ+08] Ruben Benkmann, Uwe-Philipp Käppeler, Oliver Zweigle, Reinhard
Lafrenz, and Paul Levi. Resolving Inconsistencies using Multi-agent
Sensor Systems. In Luis Seabra Lopez, Filipe Silva, and Vitor Santos,
editors, Proceedings of the 8th Conference on Autonomous Robot Sys-
tems and Competition: Robotica 08, pages 93–98, Aveiro, April 2008.
Universidade de Aveiro.

117

Bibliography

[BKZ+09] Ruben Benkmann, Uwe-Philipp Käppeler, Oliver Zweigle, Reinhard
Lafrenz, and Paul Levi. Resolving Inconsistencies Using Multi-Agent
Sensor Systems. Robotica, 03/09(76):22–27, November 2009.

[BMK+00] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. EasyLiving:
Technologies for intelligent environments. Lecture notes in computer
science, pages 12–29, 2000.

[BP00] Paramvir Bahl and Venkata N. Padmanabhan. Radar: An in-building
rf-based user location and tracking system. In Proc. of 19th INFOCOM,
pages 775–784, March 2000.

[BSH+08] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin Theobald,
and Jennifer Widom. Databases with uncertainty and lineage. VLDB
J., 17(2):243–264, 2008.

[Bun94] WL Buntine. Operations for learning with graphical models. Arxiv
preprint cs/9412102, 1994.

[CCX08] Reynold Cheng, Jinchuan Chen, and Xike Xie. Cleaning uncertain data
with quality guarantees. PVLDB, 1(1):722–735, 2008.

[CFJ04] H. Chen, T. Finin, and A. Joshi. An ontology for context-aware per-
vasive computing environments. The Knowledge Engineering Review,
18(03):197–207, 2004.

[CG96] Anthony G. Cohn and Nicholas M. Gotts. The ‘egg-yolk’ representation
of regions with indeterminate boundaries. In Proceedings GISDATA
Specialist Meeting on Spatial Objects with Undetermined Boundaries,
pages 171–187, 1996.

[CKP03] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Eval-
uating probabilistic queries over imprecise data. In Alon Y. Halevy,
Zachary G. Ives, and AnHai Doan, editors, SIGMOD Conference, pages
551–562. ACM, 2003.

[CKP04] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Querying
imprecise data in moving object environments. IEEE Trans. on Know.
and Data Eng., 16(9):1112–1127, September 2004.

[DA00] Anind K. Dey and Gregory D. Abowd. Towards a better understanding
of context and context-awareness. In Proc. of CHI 2000 Workshop on
the What, Who, Where, When and How of Context-Awareness, The
Hague, Netherlands, April 2000.

[dAG05] Victor Teixeira de Almeida and Ralf Hartmut Güting. Supporting un-
certainty in moving objects in network databases. In Cyrus Shahabi
and Omar Boucelma, editors, GIS, pages 31–40. ACM, 2005.

118

Bibliography

[Dem04] Robert Demolombe. Reasoning About Trust: A Formal Logical Frame-
work. In Proceedings of the Second International Conference of Trust
Management (iTrust 2004), pages 291–303, 2004.

[Die91] C. F. Dietrich. Uncertainty, Calibration and Probability: The Statistics
of Scientific and Industrial Measurement. Adam Hilger, 2nd edition,
1991.

[DKN+06] Dominique Dudkowski, Uwe-Philipp Käppeler, Daniela Nicklas,
Thomas Schwarz, Oliver Siemoneit, Steffen Volz, Klaus Wiegerling, and
Oliver Zweigle. Konsistenz in Nexus. Technical Report 2006/11, Uni-
versität Stuttgart: SFB 627 (Nexus: Umgebungsmodelle für mobile
kontextbezogene Systeme), März 2006.

[DKW87] J. De Kleer and B.C. Williams. Diagnosing multiple faults. ARTIFI-
CIAL INTELLIG., 32(1):97–130, 1987.

[DLR+77] A.P. Dempster, N.M. Laird, D.B. Rubin, et al. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 39(1):1–38, 1977.

[EC95] Timothy C. Earle and George T. Cvetkovich. Social Trust. Toward a
Cosmopolitan Society. Praeger/Greenwood, Westport, 1995.

[Edw90] D. Edwards. Hierarchical interaction models. Journal of the Royal
Statistical Society. Series B (Methodological), 52(1):3–20, 1990.

[FC04] Patrick Fahy and Siobhán Clarke. Cass - middleware for mobile context-
aware applications. In Workshop on Context Awareness at MobiSys
2004, Boston, MA, USA, June 2004.

[FHL+03] Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and Gaetano Bor-
riello. Bayesian filtering for location estimation. IEEE Per. Comp.,
2(3):24–33, July 2003.

[fMuG95] Internationales Büro für Maß und Gewicht. Guide to the expression of
uncertainty in measurement, din 01319. ISO/BIPM-Leitfaden, 1995.

[För92] W. Förstner. Robust Computer Vision: Quality of Vision Algorithms,
chapter Uncertainty of geometric entities, pages 30–44. Wichmann Ver-
lag, Karlsruhe, Germany, 1992.

[Fre92] Christian Freksa. Using orientation information for qualitative spatial
reasoning. In A. U. Frank, I. Campari, and U. Formentini, editors,
International Conference on Theories and Methodes of Spatio-Temporal
Reasoning in Geographic Space, volume 639, pages 114–124, Pisa, Italy,
1992. Springer.

119

Bibliography

[FS08] M. Freeman and I. Sargent. Quantifying and visualising the uncertainty
in 3D building model walls using terrestrial lidar data. In Proceedings
of the Remote Sensing and Photogrammetry Society Conference 2008
‘Measuring change in the Earth system’, Exeter, UK, September 2008.

[Gam88] Diego Gambetta. Can We Trust Trust?, pages 213–237. Basil Blackwell,
1988. Reprinted in electronic edition from Dept. of Sociology, University
of Oxford, Chapter 13.

[GHS08] Andreas Gutscher, Jessica Heesen, and Oliver Siemoneit. Possibili-
ties and Limitations of Modeling Trust and Reputation. In Manuel
Möller, Thomas Roth-Berghofer, and Wolfgang Neuser, editors, Pro-
ceedings of the Fifth International Workshop on Philosophy and Infor-
matics WSPI 2008, volume 332 of CEUR Workshop Proceedings. CEUR-
WS.org, April 2008.

[Gle01] Michael Glemser. Zur Berücksichtigung der geometrischen Objektun-
sicherheit in der Geoinformatik. Deutsche Geodätische Kommission,
Reihe C, Nr. 539, München, 2001.

[GPZ04] T. Gu, H.K. Pung, and DQ Zhang. A bayesian approach for dealing with
uncertain contexts. Advances in Pervasive Computing, pages 136–144,
2004.

[GS00] Tyrone Grandison and Morris Sloman. A Survey of Trust in Internet
Application. IEEE Communications Surveys & Tutorials, 3(4):2–16,
2000.

[GS05] Ralf Hartmut Güting and Markus Schneider. Moving Objects Databases.
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2005.

[Gut07] Andreas Gutscher. A Trust Model for an Open, Decentralized Reputa-
tion System. In Proceedings of the Joint iTrust and PST Conferences on
Privacy Trust Management and Security (IFIPTM 2007), pages 285–
300, 2007.

[Gut08] Andreas Gutscher. Reasoning with Uncertain and Conflicting Opinions
in Open Reputation Systems. In Proceedings of the Fourth International
Workshop on Security and Trust Management (STM 2008), 2008.

[Gut09] Andreas Gutscher. A Method to Evaluate Uncertain and Conflicting
Trust and Authenticity Statements. In Proceedings of the 1st Interna-
tional Workshop on Managing Insider Security Threats (MIST 2009),
pages 62–82, 2009.

[Haa96] Norbert Haala. Gebäuderekonstruktion durch Kombination von Bild-
und Höhendaten. Deutsche Geodätische Kommission, Reihe C, Nr. 460,
München, 1996.

120

Bibliography

[HAES08] M.A. Hossain, P.K. Atrey, and A. El Saddik. Learning Multi-Sensor
Confidence using Difference of Opinions. In IEEE Intl. Instrumentation
& Measurement Technology Conf, 2008.

[HB01] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiqui-
tous computing. Computer, 34(8):57–66, August 2001.

[HCD04] Farookh Khadeer Hussain, Elizabeth Chang, and Tharam S. Dillon.
Classification of trust in Peer-to-Peer (P2P) communication. Computer
Systems: Science & Engineering, 19(2), 2004.

[HH94] Andy Harter and Andy Hopper. A distributed location system for the
active office. IEEE Network, 8(1):62–70, January 1994.

[HIMB05] Karen Henricksen, Jadwiga Indulska, Ted McFadden, and Sasitharan
Balasubramaniam. Middleware for distributed context-aware systems.
In Proceedings of the OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE, pages 846–863, Agia Napa, Cyprus, Oc-
tober 2005.

[HIR02] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context
information in pervasive computing systems. Lecture notes in computer
science, pages 167–180, 2002.

[HKBE07] Andreas Hub, Stefan Kombrink, Klaus Bosse, and Thomas Ertl. Tania
– a tactile-acoustical navigation and information assistant for the 2007
csun conference. In Proc. of 22nd CSUN, Los Angeles, CA, USA, March
2007.

[HKL00] Rolf Haenni, Jürg Kohlas, and Norbert Lehmann. Probabilistic Argu-
mentation Systems, volume 5 (Algorithms for Uncertainty and Defea-
sible Reasoning) of Handbook of Defeasible Reasoning and Uncertainty
Management Systems, pages 221–288. Springer, 2000.

[HKN+05] Nicola Hönle, Uwe-Philipp Käppeler, Daniela Nicklas, Thomas Schwarz,
and Matthias Großmann. Benefits of integrating meta data into a con-
text model. In PerCom Workshops, pages 25–29, 2005.

[HL04] David W. Hosmer and Stanley Lemeshow. Applied Logistic Regression:
Textbook and Solutions Manual. Wiley-IEEE, 2nd edition, 2004.

[Hou94] A. Hou. A theory of measurement in diagnosis from first principles.
Artificial Intelligence, 65(2):281–328, 1994.

[HS07] Christoph Hubig and Oliver Siemoneit. Vertrauen und Glaubwürdigkeit
in der Unternehmenskommunikation. In Ansgar Piwinger, Man-
fred; Zerfaß, editor, Handbuch Unternehmenskommunikation. Gabler,
2007.

121

Bibliography

[HS09] Christoph Hubig and Oliver Siemoneit. Vertrauen und Glaubwürdigkeit
als kommunikationspolitische Ziele erfolgreicher IR. In Manfred Pi-
winger, editor, Praxishandbuch Investor Relations. Gabler, 2009.

[HSP+03] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonharts-
berger, Josef Altmann, and Werner Retschitzegger. Context-awareness
on mobile devices – the hydrogen approach. In Proceedings of the 36th
Hawaii International Conference on System Sciences (HICSS 2003),
pages 10–19, January 2003.

[JGK06] Audun Jøsang, Elizabeth Gray, and Michael Kinateder. Simplification
and Analysis of Transitive Trust Networks. In Web Intelligence and
Agent Systems Journal, pages 139–161, 2006.

[JH05] Jacek Jonczy and Rolf Haenni. Credential Networks: a General Model
for Distributed Trust and Authenticity Management. In PST, pages
101–112, 2005.

[JI02] Audun Jøsang and Roslan Ismail. The beta reputation system. In
Proceedings of the 15th Bled Conference on Electronic Commerce, 2002.

[JIB07] Audun Jøsang, Roslan Ismail, and Colin Boyd. A Survey of Trust and
Reputation Systems for Online Service Provision. In Decision Support
Systems, 2007.

[Jøs97] Audun Jøsang. Artificial Reasoning with Subjective Logic. In Proceed-
ings of the Second Australian Workshop on Commonsense Reasoning,
1997.

[JP95] R. Jirouśek and S. Přeučil. On the effective implementation of the iter-
ative proportional fitting procedure. Computational Statistics & Data
Analysis, 19(2):189, 1995.

[Kad07] Martin Kada. Scale-dependent simplification of 3d building models
based on cell decomposition and primitive instancing. In Stephan
Winter, Matt Duckham, Lars Kulik, and Benjamin Kuipers, editors,
COSIT, volume 4736 of Lecture Notes in Computer Science, pages 222–
237. Springer, 2007.

[Käp08] Uwe-Philipp Käppeler. Modellierung der Degradierung von skalaren
Sensordaten in ContextServer und SensorContextServer. Technical Re-
port 2008/01, Universität Stuttgart: SFB 627 (Nexus: Umgebungsmod-
elle für mobile kontextbezogene Systeme), Oktober 2008.

[Käp09] Uwe-Philipp Käppeler. Metriken für Qualitätskennzahlen zur De-
gradierung von skalaren Sensordaten. Technical Report 2009/02, Uni-
versität Stuttgart: SFB 627 (Nexus: Umgebungsmodelle für mobile
kontextbezogene Systeme), November 2009.

122

Bibliography

[KBZ+08] Uwe-Philipp Käppeler, Ruben Benkmann, Oliver Zweigle, Reinhard
Lafrenz, and Paul Levi. Resolving Inconsistencies in Shared Context
Models using Multiagent Systems. In Rüdiger Dillmann and Wolfram
Burgard, editors, Proceedings of the 10th International Conference on
Intelligent Autonomous Systems IAS-10, pages 93–98, Baden Baden,
July 2008. Springer-Verlag.

[KGS+09] Uwe-Philipp Käppeler, Andreas Gerhardt, Christian Schieberle,
Matthias Wiselka, Kai Häussermann, Oliver Zweigle, and Paul Levi.
Reliable Situation Recognition based on Noise Levels. In K. Duncan
and C. A. Brebbia, editors, Proceedings of the First International Con-
ference on Disaster Management and Human Health Risk, volume 110
of WIT Transactions on the Built Environment, pages 127–137, New
Forest, UK, September 2009. WIT Press.

[KMK+03] Panu Korpipää, Jani Mäntyjärvi, Juha Kela, Heikki Keränen, and Esko-
Juhani Malm. Managing context information in mobile devices. IEEE
Pervasive Computing, 2(3):42–51, July 2003.

[Koh07] Reto Kohlas. Decentralized Trust Evaluation and Public-Key Authenti-
cation. PhD thesis, Universität Bern, 2007.

[KR95] R.E. Kass and A.E. Raftery. Bayes factors and model uncertainty.
Journal of the American Statistical Association, 90(773):95, 1995.

[KR03] Michael Kinateder and Kurt Rothermel. Architecture and Algorithms
for a Distributed Reputation System. In Proceedings of the First Inter-
national Conference on Trust Management (iTrust 2003), volume 2692
of LNCS, pages 1–16, 2003.

[KSGM03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The EigenTrust Algorithm for Reputation Management in P2P Net-
works. In Proceedings of the 12th International Conference on World
Wide Web, pages 640–651, 2003.

[Lau95] S.L. Lauritzen. The EM algorithm for graphical association models with
missing data. The University of Aalborg, Institute for Electronic Sys-
tems, Department of Mathematics and Computer Science, 1995.

[LCG+09a] Ralph Lange, Nazario Cipriani, Lars Geiger, Matthias Großmann, Har-
ald Weinschrott, Andreas Brodt, Matthias Wieland, Stamatia Rizou,
and Kurt Rothermel. Making the world wide space happen: New chal-
lenges for the Nexus context platform. In PerCom Workshops. IEEE
Computer Society, 2009. (to appear).

[LCG+09b] Ralph Lange, Nazario Cipriani, Lars Geiger, Matthias Großmann, Har-
ald Weinschrott, Andreas Brodt, Matthias Wieland, Stamatia Rizou,

123

Bibliography

and Kurt Rothermel. Making the world wide space happen: New chal-
lenges for the nexus context platform. In Proc. of 7th PerCom, pages
300–303, Galveston, TX, USA, March 2009.

[LDR08] Ralph Lange, Frank Dürr, and Kurt Rothermel. Online trajectory data
reduction using connection-preserving dead reckoning. In Proc. of 5th
MobiQuitous, Dublin, Ireland, July 2008.

[LFDR09] Ralph Lange, Tobias Farrell, Frank Dürr, and Kurt Rothermel. Remote
real-time trajectory simplification. In Proc. of 7th PerCom, Galveston,
TX, USA, March 2009.

[LR01] Alexander Leonhardi and Kurt Rothermel. A comparison of protocols
for updating location information. Cluster Computing: The Journal
of Networks, Software Tools and Applications, 4(4):355–367, October
2001.

[Luh79] Niklas Luhmann. Trust: A Mechanism for the Reduction of Social
Complexity. In Trust and Power: Two Works by Niklas Luhmann.
Wiley and Sons, 1979.

[Mar94] Stephen Paul Marsh. Formalising Trust as a Computational Concept.
PhD thesis, Department of Mathematics and Computer Science, Uni-
versity of Stirling, 1994.

[Mau96] Ueli Maurer. Modelling a Public-Key Infrastructure. In E. Bertino, edi-
tor, Proc. 1996 European Symposium on Research in Computer Security
(ESORICS’ 96), volume 1146 of Lecture Notes in Computer Science,
pages 325–350. Springer-Verlag, 1996.

[MD05] Stephen Marsh and Mark R. Dibben. Trust, Untrust, Distrust and
Mistrust – An Exploration of the Dark(er) Side. In Peter Herrmann,
Valérie Issarny, and Simon Shiu, editors, Proceedings of Third iTrust In-
ternational Conference (iTrust 2005), Paris, France, May 23-26, 2005,
volume 3477, pages 17–33. Springer, May 2005.

[Men01] Scott William Menard. Applied Logistic Regression Analysis. Sage Pub-
lications, Inc, 2nd edition, October 2001.

[Mie03] Andrea Miene. Räumlich-zeitliche Analyse von dynamischen Szenen.
PhD thesis, Universität Bremen, 2003.

[MKT08] Muhammad Atif Mehmood, Lars Kulik, and Egemen Tanin. Au-
tonomous navigation of mobile agents using rfid-enabled space parti-
tions. In Proc. of 16th ACM GIS, Irvine, CA, USA, November 2008.

124

Bibliography

[MLD99] J.W. Myers, K.B. Laskey, and K.A. DeJong. Learning bayesian net-
works from incomplete data using evolutionary algorithms. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, vol-
ume 1, pages 458–465. Citeseer, 1999.

[MRF04] R. Mayrhofer, H. Radi, and A. Ferscha. Recognizing and predicting con-
text by learning from user behavior. Radiomatics: Journal of Commu-
nication Engineering, special issue on Advances in Mobile Multimedia,
1(1):30–42, 2004.

[MYCD] S. McKeever, J. Ye, L. Coyle, and S. Dobson. A context quality model to
support transparent reasoning with uncertain context. Proc of QuaConn
Stuttgart.

[Nag92] Nico J. D. Nagelkerke. Maximum Likelihood Estimation of Functional
Relationships (Lecture Notes in Statistics). Springer Verlag, January
1992.

[Nat02] National Marine Electronics Association. Nmea 0183 v 3.01. standard,
January 2002.

[Nea92] RM Neal. Connectionist learning of belief networks. Artificial intelli-
gence, 56(1):71–113, 1992.

[NGS+01] Daniela Nicklas, Matthias Großmann, Thomas Schwarz, Steffen Volz,
and Bernhard Mitschang. A model-based, open architecture for mobile,
spatially aware applications. In Christian S. Jensen, Markus Schneider,
Bernhard Seeger, and Vassilis J. Tsotras, editors, Proceedings of the 7th
International Symposium on Spatial and Temporal Databases: SSTD
2001; Redondo Beach, CA, USA, July 12-15, 2001, volume 2121 of
Lecture Notes in Computer Science, pages 117–135. Springer-Verlag,
Juli 2001.

[OA00] Robert J. Orr and Gregory D. Abowd. The smart floor: A mechanism
for natural user identification and tracking. In Extended Abstracts on
Human factors in Computing Systems (CHI 2000), pages 275–276, The
Hague, The Netherlands, April 2000.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[Pet09] Michael Peter. Presentation and evaluation of inconsistencies in multi-
ply represented 3d building models. In Kurt Rothermel, Dieter Fritsch,
Wolfgang Blochinger, and Frank Dürr, editors, QuaCon, volume 5786
of Lecture Notes in Computer Science, pages 156–163. Springer, 2009.

125

Bibliography

[PJ99] Dieter Pfoser and Christian S. Jensen. Capturing the uncertainty of
moving-object representations. In Proc. of 6th SSD, pages 111–131,
Hong Kong, China, July 1999.

[PL03] S. Padó and M. Lapata. Constructing semantic space models from
parsed corpora. In Proceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL, volume 3, 2003.

[PS05] Alejandro Pauly and Markus Schneider. Topological predicates between
vague spatial objects. In Proc. of 9th SSTD, pages 418–432, Angra dos
Reis, Brazil, August 2005.

[RAMC04] A. Ranganathan, J. Al-Muhtadi, and R.H. Campbell. Reasoning about
uncertain contexts in pervasive computing environments. IEEE Perva-
sive Computing, pages 62–70, 2004.

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[RM96] S. Ramachandran and R.J. Mooney. Revising Bayesian network pa-
rameters using backpropagation. In International Conference on Neural
Networks: Plenary, Panel and Special Sessions, page 82. Citeseer, 1996.

[Rot07] Jörg Roth. Inferring position knowledge from location predicates. In
Proc. of 3rd LoCA, pages 245–262, Oberpfaffenhofen, Germany, Septem-
ber 2007.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. There
is more to context than location. Computers & Graphics Journal,
23(6):893–902, December 1999.

[SBGP04] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka
Priyantha. Tracking moving devices with the cricket location system.
In Proc. of 2nd MobiSys, pages 190–202, June 2004.

[Sch08] Markus Schneider. Handbook of Research on Fuzzy Information Pro-
cessing in Databases, chapter Fuzzy Spatial Data Types for Spatial Un-
certainty Management in Databases, pages 490–515. May 2008.

[SF02] Kari Sentz and Scott Ferson. Combination of Evidence in Dempster-
Shafer Theory, 2002.

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton Univ. Press,
1976.

[SHF07] I. Sargent, J. Harding, and M. Freeman. Data quality in 3D: Gauging
quality measures from users’ requirements. In 5th International Sym-
posium on Spatial Data Quality, Enschede, The Netherlands, 2007.

126

Bibliography

[SJJ96] L.K. Saul, T. Jaakkola, and M.I. Jordan. Mean field theory for sigmoid
belief networks. Journal of artificial intelligence research, 4(4):61–76,
1996.

[SW69] Claude E. Shannon and Warren Weaver. The mathematical theory of
communication. The University of Illinois Press, fourth edition, 1969.

[Tan93] M.A. Tanner. Tools for statistical inference. Springer New York, 1993.

[Tim02] Heiko Timm. Fuzzy-Clusteranalyse: Methoden zur Exploration von
Daten mit fehlenden Werten sowie klassifizierten Daten. PhD thesis,
Otto-von-Guericke-Universität Magdeburg, 6 2002.

[TLS01] F. Tian, Y. Lu, and C. Shi. Learning Bayesian networks with hidden
variables using the combination of EM and evolutionary algorithms.
Lecture notes in computer science, pages 568–574, 2001.

[TWZC02] Goce Trajcevski, Ouri Wolfson, Fengli Zhang, and Sam Chamberlain.
The geometry of uncertainty in moving objects databases. In Proc. of
8th EDBT, volume 2287 of Lecture Notes in Computer Science, pages
233–250, March 2002.

[UN08] United States Department of Defense and Navstar GPS. Global Po-
sitioning System Standard Positioning Service Performance Standard.
4th edition, September 2008.

[vJP05] Alminas Čivilis, Christian S. Jensen, and Stardas Pakalnis. Tech-
niques for efficient road-network-based tracking of moving objects. IEEE
Trans. on Know. and Data Eng., 17(5):698–712, May 2005.

[WDC+04] Xiaohang Wang, Jin Song Dong, ChungYau Chin, Sanka, Ravipriya
Hettiarachchi, and Daqing Zhang. Semantic space: An infrastructure
for smart spaces. IEEE Pervasive Computing, 3(3):32–39, July 2004.

[WZGP04] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung. Ontology based con-
text modeling and reasoning using OWL. In Proceedings of the second
IEEE annual conference on pervasive computing and communications
workshops, volume 18. IEEE Computer Society Washington, DC, USA,
2004.

[Yag87] Ronald R. Yager. On the Dempster-Shafer Framework and New Com-
bination Rules. Information Sciences, 41(2):93–137, 1987.

[YM03] Xingbo Yu and Sharad Mehrotra. Capturing uncertainty in spatial
queries over imprecise data. In Proc. of 14th DEXA, pages 192–201,
Prague, Czech Republic, September 2003.

[Zad84] Lotfi A. Zadeh. Review of Books: A Mathematical Theory of Evidence.
The AI Magazine, 5(3):81–83, 1984.

127

Bibliography

[ZHKL09] Oliver Zweigle, Kai Häussermann, Uwe-Philipp Käppeler, and Paul
Levi. Extended TA Algorithm for adapting a Situation Ontology. In
Proceedings of the FIRA RoboWorld Congress, Progress in Robotics,
volume 44 of Communications in Computer and Information Science,
pages 364–371, Incheon, Korea, August 2009. Springer Verlag.

[ZKLL06] Oliver Zweigle, Uwe-Philipp Käppeler, Reinhard Lafrenz, and Paul
Levi. Situation recognition for reactive agent behavior. In Artificial
Intelligence and Soft Computing, Palma de Mallorca, August 2006.
IASTED.

128

	1 Introduction
	2 Overview to Reference Model
	2.1 Requirements and Challenges
	2.2 Abstraction Layers of Context Information
	2.3 Quality Aspects of Context Information
	2.4 Abstract Framework for Quality of Context

	3 Degradation Model
	3.1 Universal Model for the Quality of Sensor Data
	3.1.1 Modeling Quality of Sensor Data
	3.1.2 Reliable updates for information in environmental models using sensors

	3.2 Generic Uncertainty Model for Position Information
	3.2.1 Introduction
	3.2.2 Survey of Uncertainty Models
	3.2.3 Mathematical Generalization for Time-dependent Point Data
	3.2.4 Uncertainty-aware Query Interface for Position Information
	3.2.5 Related Work
	3.2.6 Summary

	3.3 Uncertainty Model for 3D Geodata
	3.4 Uncertainty-Aware Situation Detection with Bayesian Networks
	3.4.1 Introduction
	3.4.2 Situation Template Model
	3.4.3 Parameter-Adaption
	3.4.4 Summary

	3.5 Degradation of high-level context derived from sensor data

	4 Consistency Model
	4.1 Inconsistency on the Context Information Layer
	4.1.1 Discrete Domain
	4.1.2 Continuous Domain with Pdf
	4.1.3 Continuous Domain without Pdf
	4.1.4 3D-Domain

	4.2 Situation Recognition

	5 Trust Model
	5.1 Introduction
	5.2 Related Work and Fundamentals
	5.2.1 Trust, Trustworthiness and Reputation
	5.2.2 Modeling Trust
	5.2.3 Classification of Reputation Systems
	5.2.4 Reasoning with Trust Relations
	5.2.5 Computation of Reputation Values

	5.3 Model of Trust and Authenticity Statements
	5.4 Trust Values
	5.4.1 Representation of Discrete and Continuous Trust Values
	5.4.2 Deterministic Operators

	5.5 Inference Rules
	5.5.1 Transitive Trust Inference Rule
	5.5.2 Trust in Entities, Keys and Descriptions
	5.5.3 Local Authenticity Inference Rule
	5.5.4 Authenticity Inference with Authenticity Confirmation
	5.5.5 Uniqueness Conditions

	5.6 Trust Value Computation
	5.6.1 Probabilistic Model for the Trust Value Computation
	5.6.2 Approximation and Exact Computation Algorithms

	5.7 Evaluation of the Proposed Trust Model
	5.7.1 Computation Time of the Proposed Computation Algorithms
	5.7.2 Comparison with Other Trust Models
	5.7.3 Trade-offs and Limitations

	5.8 Reliability of Context Information
	5.9 Summary

	6 Reference Model
	6.1 Interdependencies between Uncertainty, Consistency, and Trust
	6.2 Integrated Quality-Aware Processing Model
	6.2.1 The Nexus System
	6.2.2 Three Aspects of Quality of Data
	6.2.3 Query Processing
	6.2.4 Processing Model
	6.2.5 Revisiting the Example Scenario

	7 Conclusions
	Bibliography

