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a b s t r a c t

Contention resolution schemes in optical burst switched networks (OBS) as well as
contention avoidance schemes delay burst delivery and change the burst arrival sequence.
The burst arrival sequence usually changes the packet arrival sequence and degrades
the upper layer protocols performance, e.g., the throughput of the transmission control
protocol (TCP).

In this paper, we present and analyze a detailed burst reordering model for two widely
applied burst assembly strategies: time-based and random selection. We apply the IETF
reordering metrics and calculate explicitly three reordering metrics: the reordering ratio,
the reordering extent metric and the TCP relevant metric. These metrics allow estimating
the degree of reordering in a certain network scenario. They estimate the buffer space at the
destination to resolve reordering and quantify the number of duplicate acknowledgements
relevant for investigations on the transmission control protocol.

We show that our model reflects the burst/packet reordering pattern of simulated
OBS networks very well. Applying our model in a network emulation scenario, enables
investigations on real protocol implementations in network emulation environments. It
therefore serves as a substitute for extensive TCP over OBS network simulations with a
focus on burst reordering.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Optical burst switching (OBS, [1]) is a promising new network technology for core and metro networks based on
wavelength division multiplex (WDM). It shows equal resource efficiency as optical packet switching, while it additionally
mitigates the technical limitations of an all-optical network, i.e., optical header processing.

At the edge of an OBS network, the OBS assembly unit aggregates incoming packets based on their destination address
and optionally their service class. Packets of the same aggregate belong to the same burst. At the end of the assembly process,
the assembly unit forwards the burst to the optical transmission unit heading to the destination node on the path with the
least delay. The assembly strategy, i.e., the criteria when to finish the assembly process, may be time-based, size-based or a
combination of both. Vega and Goetz as well as Laevens survey the statistical properties of these assembly strategies in [2,3].

Prior to the actual burst transmission, a control packet heading for the same destination configures the intermediate
nodes along the path to the destination. An offset time between control packet and burst realizes the necessary
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configuration time. Contention occurs if two or more bursts request the same wavelength at the same time. The duration of
contention is in the order of the burst transmission time. In this case, the original OBS discards all but the successful burst.

Contention resolution schemes (cf. survey in [4]) reduce the burst loss probability [5,6]. Besides wavelength conversion,
literature proposes two additional contention resolution schemes: local buffering using fibre delay lines (FDL) and deflecting
routing, i.e., forwarding the burst on an alternative path to the destination. Additionally to contention resolution schemes,
contention avoidance may also reduce the burst loss probability, by e.g., multipath routing [7]. It avoids contention by load
balancing on alternative paths.

Both, contention resolution schemes and themultipath routing schemedelay individual bursts compared to the primarily
planned path. As a result, the burst arrival order may change at the destination. Since each data burst is an aggregate of
multiple packets, out-of-sequence burst delivery also implies a special out-of-sequence packet pattern. Especially, if this
affects packets of the same flow, it influences higher-layer protocol performance.

Out-of-sequence packets especially affect transport protocols [8]. They provide a reliable or unreliable but always an
in-order connection service to applications. The transmission control protocol (TCP, [9]) and the newly developed stream
control transmission protocol (SCTP, [10]) are the most important representatives of transport protocols for a reliable
connection service. In addition, real-time protocols for unreliable transport services, e.g., the real-time transmission protocol
(RTP, [11]) for video and audio services, also suffer from packet reordering [8]. They have to provide mechanisms, e.g., a de-
jitter buffer, to regain original packet sequence or they discard out-of-sequence packets and degrade the service.

TCP is the dominant transport layer protocol on the Internet. The basic TCP congestion control algorithm [9] suffers
frommissing or out-of-sequence packets. The TCP receiver responds to incoming segments with the next expected segment
sequence number. If the next expected segment does not arrive due to packet loss or delay, subsequent segment arrivals
cause the receiver to respond with the missing segment sequence number. The sender refers to every reception of the
same response as a duplicate acknowledgment (dup-ack). Thereby, the sender maintains a dup-ack counter. Exceeding the
dup-ack threshold triggers the fast retransmit algorithm. The sender resends the missing segment and halves its congestion
window, i.e., the amount of data sent as awhole. Consequently, the TCP throughput decreases. Thus, it is important to analyze
the protocol performance of TCP in respect to loss and reordering properties of OBS networks.Modern TCP implementations,
e.g., TCP SACK [12], try to detect and clear reordering in a smooth way to limit the TCP throughput degradation. These
implementations are in an early stage and currently not widely deployed in operating systems.

The impact of burst losses on TCP has been studied extensively in literature [13–16]. These studies investigate an
integrated TCP-over-OBS scenario by simulations or analytics. Their approach requires multi-scale simulations (burst and
packet time scale) as well as a model for both entities (TCP and OBS). Especially the large number of implementation
variations of TCP and OBS make it hard to give general results on the relationship between OBS network characteristics and
TCP throughput. Additionally, each model introduces some error within the simulation or formal description, which may
change the results with respect to real experiences. Consequently, it is more advisable — if possible — to use real protocol
implementations of TCP and to model/simulate the unknown OBS network.

The impact of burst reordering on TCP and other upper layer protocols has not been studied in literature in such detail.
Callegati et al. introduce in [13,17] a burst reordering framework for aWDMnetwork, but their reordering definitionmisses
the exact link between the reordering characteristics and the related TCP mechanisms. In [18], Perelló et al. quantify by
simulation the impact of contention resolution schemes on optical burst reordering and estimated the TCP performance.
They measure the amount of optical burst reordering in the same order of magnitude as the burst loss probability. These
results emphasize the necessity for a detailed investigation on optical burst reordering. Schlosser et al. analyze in [19]
the impact of burst deflection by intensive simulations. They apply an integrative TCP-over-OBS network model including
only a single alternative path. Thus, the results are not representative for a network-wide analysis with a different delay
distribution between source and destination node.

An alternative approach of multi-layer investigations is to separate the OBS layer from the transport protocol layer. In
case of our reordering studies, we choose the following approach. The first step derives the properties of an OBS network by
OBS network simulations. Thereby, the simulations only consider the burst level. The second step abstracts the burst layer
properties, in our case the reordering characteristics. The reordering characteristics may serve as parameters for a modified
network emulation software [20] or [21] and enable investigations on real protocol implementations. A network emulation
showing a certain reordering has been successfully implemented based on [21]. We skip the details on the implementation
as they are out of the scope of this paper.

In our previous work [22–24], we proposed a first model to investigate the burst reordering phenomena analytically.
We assumed a time-based assembly strategy and a discretized general burst delay characteristic to reason about burst
reordering. For this model, we estimated the reordering metrics and focused on the TCP relevant metric to give an estimate
on the TCP throughput.

In this paper, we provide a detailed analysis on the reordering characteristic for two widely applied assembly strategies:
a time-based and a random selection assembly strategy [2]. We approximate the time-based assembly scheme by a constant
burst inter-departure time. This is in general possible as the timeout value is magnitudes larger than the mean packet
inter-arrival time [2]. On every arriving packet, the random selection assembly scheme decides with a certain probability
if the burst is ready to send or not. This results in a geometric distribution of the number of packets per burst and in a
Poisson burst departure process. The random selection assembly scheme provides the technical background for the studies
on OBS network performance and network dimensioning of [25–27]. These studies apply for the network dimensioning
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process the Erlang-B formula, which assumes a Poisson arrival process and may lead to wrong results in case of other traffic
characteristics. Additionally, investigations on burst loss performance also assume a Poisson burst departure process [2].

This paper provides the exact analysis on burst reordering for these two assembly schemes in a general network delay
environment. Thus, our results hold for any network delay distribution for each source/destination pair in an OBS network.
We apply the IETF WG IPPM reordering metrics [28] to quantify the amount of burst reordering. We show that our model
emulates measured reordering metrics of an OBS simulation with contention resolution schemes. For the emulation of
the burst reordering pattern in a network emulation, we formulate an optimization problem to carry out the parameters
for our reordering model. The solution provides the parameters for a network emulation environment showing the same
packet reordering than the measured burst reordering of an OBS network simulation. This setup allows quantifying TCP
performance in a real world scenario using original protocol stacks rather than using extensivemulti-scale simulations with
inaccurate models.

In this paper, we concentrate on burst reordering and assume exactly one packet of a considered packet flow in every
burst of an end-to-end connection. Then the burst reordering characteristic equals the packet reordering characteristic. In
our previous work [18], we prove this as a worst case scenario. We also show in [23], which corresponds to the findings
of Schlosser et al. in [19], that more than one packet of the same flow per burst decreases the negative impact of burst
reordering.

In Section 2, we introduce the IETF reordering metrics. Section 3 introduces our generic reordering model. Section 4
provides our analytic results on both assembly strategies. We compare our analytic results with simulation results of an
OBS network and show the applicability of our model in Section 5. We summarize our work in Section 6.

2. Reordering metrics

This section reviews the IP packet reordering definition and metrics of the IETF WG IPPM [28]. These metrics also hold
for generic packet-switched networks like OBS networks.
Reordering definition:

The definition of reordering requires the source node assigning each packet a sequence number. The sequence number
increasesmonotonically. At the destination node a three tuple (i, s[i], s′[i]) characterizes each packet arrival. Index i indicates
the arrival order at the destination. s[i] denotes its sequence number and s′[i] denotes its expected sequence number. The
previously received packet determines the value of s′[i]. We distinguish two cases:
(1) s[i] < s′[i]: packet i arrives out-of-order.

s′[i] remains unchanged, i.e., s′[i + 1] = s′[i].
(2) s[i] ≥ s′[i]: packet i arrives in order

and s′[i + 1] = s[i] + 1.

Literally, a packet arrives out-of-sequence, if there is one packet with a larger sequence number arriving prior to it. The first
packet arrives in order by definition.
Reordering ratio:

The ratio of reordered packets to the total amount of received packets refers to the reordering ratio. It equals the
probability of an out-of-sequence arrival at the destination.
Reordering extent:

This metric estimates the buffer size needed to restore the packet order at the destination. It equals the number of packet
arrivals between its nominal in-order position and its actual arriving position. Formally, the extent ei for a reordered packet
at arrival position i at the destination is

ei = i − min
j<i

{j : s[j] > s[i]} . (1)

Therein, the nominal in-order position is characterized by the smallest j, where the corresponding sequence number s[j] is
larger than the sequence number of the packet at position i. We name this special burst j as a located burst as it indicates the
first packet out of a sequence of packets, which has a larger sequence number than the test burst.
nr - reordering metric:

This TCP-relevant metric estimates the number of TCP dup-acks. It defines that a nr -reordered packet triggers nr dup-
acks. If there is a set of nr packets directly preceding packet i and s[i] is smaller than the sequence number of each of
these packets, then each of these packets triggers one dup-ack. Formally, packet i is nr -reordered if s[j] > s[i] ∀j ∈

{o : i − nr ≤ o < i, and o ∈ N}.

3. Burst reordering model

In this section, we introduce our burst reordering model and analyze the reordering characteristics of a single packet
flow belonging to one application, e.g., packets of one TCP connection.

Fig. 1 shows two packet flows between two host systems at the network edge (R1a/b and R2a/b). We focus on one packet
flow (R2a–R2b), but our considerations hold for the other packet flow, too. The packets of our flow enter the burst switched
network at an edge node. The ingress assembly unit assembles them together with other packets. The network nodes switch
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Fig. 1. OBS reordering scenario.

Fig. 2. Generic queueing model.

bursts to the next node on the primarily planned shortest path (l0) to the destination edge node. In case of congestion, it
uses a different path (l1). After disassembling the burst at the destination edge node, the packets leave the egress edge node.
We assume a lossless burst network and focus on the burst reordering phenomena.

Fig. 2 depicts the corresponding queuing model. We model every alternative path from source to destination node by
one abstract link. Besides this, l0 represents the primarily planned shortest path with no extra delay. In general, we assume
m, m ∈ N parallel abstract links l1 to lm from source to destination node. Thereby, m is finite as the number of alternative
paths in a network is limited.

The additional delay a burst receives in an FDL or on a deflection path is, in general, predictable. For this reason and for
simplicity in calculation we discretize the additional delay by the basic delay unit ∆ ∈ R+. Each abstract link represents an
integer multiple delay of ∆ from source to destination. A set of an infinite number of servers realize the delay per abstract
link.

Each burst follows independently one of these abstract links randomly. This reflects the probability to follow an FDL
or a deflection path. In the figure, this corresponds to the initial splitting process. This assumption is reasonable as the
time of congestion lies in the order of the burst transmission time, while the burst inter-arrival time is usually larger.
Consequently, subsequent bursts find a different resource occupation state at the node and independence of burst switching
can be assumed.

Summarizing, a 3-tuple (k, pk, k ∆), 0 ≤ pk, 0 ≤ k ≤ m characterizes each abstract link lk: k is the link number; pk is
the probability to follow lk and k ∆ is the burst delay as an integer multiple of the basic delay unit ∆. Further the law of total
probability holds:

∑m
k=0 pk = 1.

Fig. 3 depicts the general reordering scenario for one selected burst, i.e., a test burst. For clarity, it shows the possible
delays of the test burst only. These considerations also hold for any other burst. The arrow line indicates the relative change
of the position in the burst series at the destination if the burst follows an abstract link. We distinguish three kinds of bursts:

(1) the test burst for which we evaluate the reordering metrics. Without loss of generality, its sequence number s is s = 0.
The sequence number is also an identifier of each burst.

(2) Bursts departing later but arriving earlier than the test burst because of the delay of the test burst (gray).
(3) Bursts departing and arriving earlier than the test burst and bursts departing and arriving later than the delayed test

burst (white).
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Fig. 3. Generic reordering model.

4. Burst reordering analysis

In this section, we derive the burst reorder metrics of Section 2 for two different burst departure processes. First, we
consider a time-based assembly scheme with an approximate constant inter-arrival time. Second, we consider a random
selection assembly scheme with a burst departure process showing Poisson characteristics.

4.1. Time-based assembly strategy

The burst departure process of a time-based assembly strategy shows a constant inter-departure time ∆ if the packet
arrival rate is sufficiently large [2]. We express the network delay by integer multiples of the inter-departure time as delays
smaller than the inter-departure time would not cause any reordering. We identify the bursts by their sequence number s.
As the burst delay is proportional to the constant inter-arrival time ∆, we abbreviate a delay of d ∆ time units by d bursts.
The next three sections calculate the reordering metrics of Section 2.

4.1.1. Burst reordering probability
According to Section 2, the test burst arrives out-of-sequence if the following condition holds: At the destination there

is at least one burst arrival with sequence number s > 0 prior to the test burst. Consequently, the reordering probability is
a joint probability that the test burst follows an abstract link i > 0 (a) and that there is at least one burst arrival with larger
sequence number than zero before the test burst (b). Condition (a) assumes an arbitrary burst delay of dt . In this situation,
there are dt candidate bursts, which may accomplish condition (b).

We derive the probability of (b) by the complementary probability, that none of the dt bursts arrives earlier than the test
burst. The random variable of the test burst delay is Dt . The random variable of a burst arrival before the test burst is B. Then
the probability that the candidate burst j, 0 < j ≤ dt does not accomplish condition (b) is P(B = 0 | Dt = dt , J = j) =∑m

k=dt−j+1 pk. The sum of probabilities represents all possible abstract links, which lead to a later arrival than the test burst.
This sum considers the probabilities of the abstract link delays as well as the location of the burst j.

The joint probability that none of the candidate bursts accomplishes condition (b) at the same time is P(B = 0 | Dt =

dt) =
∏dt

j=1 P(B = 0 | Dt = dt , J = j). The product consists of a joint probability all bursts for a later arrival than the test
burst. If P(B = 0 | Dt = dt) does not accomplish condition (b) (as all dt bursts arrive later than the test burst), then due to
the law of total probability the complementary probability does. The reordering probability results in

P =

m−
dt=1

pdt (1 − P(B = 0 | Dt = dt)) =

m−
dt=1

pdt


1 −

dt∏
j=1

m−
k=dt−j+1

pk


. (2)

The outer sum considers all possible abstract links of the test burst with the corresponding probability. Within the brackets,
the complementary distribution considers the joint probability of no burst arrival before the test burst.

The reordering probability equals the reordering ratio, which denotes the ratio of packets arriving out-of-sequence.

4.1.2. Reordering extent metric
In this section, we calculate the probability density function (pdf) of the reordering extent. The extent equals the number

of burst arrivals between the located burst and the test burst. According to the definition in Section 2, the located burst has
the smallest sequence number greater than the test burst arriving prior to the test burst.

According to this definition, the sequence number of the test burst is s = f where 0 < f ≤ dt . The located burst may
also follow an abstract link of length dl, where the delay obeys the following inequality as the located burst always arrives
before the test burst: 0 ≤ dl < dt + f . The bursts with sequence number 0 < s < f and the bursts with sequence number
f + 1 < s ≤ f + dl in the case of a delayed located burst, arrive earlier than the located burst.
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Fig. 4. Time-based assembly strategy.

Fig. 4 depicts this scenario for a test burst delay of dt = 8 and the located burst f = 3, which is delayed by dl = 2. Note,
that we extend the actual delay in the figure to denote the order of the burst arrivals in case two bursts arrive after the same
burst. If f = 3 becomes the located burst, it has to satisfy the condition of a located burst according to Section 2. In this
example, the bursts with sequence numbers 1 and 2 as well as 4 and 5 need to arrive later then burst 3. The first two bursts
because of their smaller sequence number and the second two bursts because of the condition of the smallest burst index
with a larger sequence number than the test burst.

For evaluation, we need to distinguish these different cases. Therefore, we define three different random events. The
figure also shows these random events:

• random event F applies to the located burst only,
• random event E applies to bursts arriving later than the located burst and prior to the test burst and thus define the

extent,
• random event B applies to bursts, which have to arrive later than the located burst due to the necessary condition of the

located burst.

According to these random events we classify the bursts with respect to their sequence number (cf. Fig. 4).

s < 0 bursts with sequence number smaller than 0 may arrive later than the located
burst and thus contribute to the extent. Event E applies.

0 < s < f for bursts with sequence number smaller than f but larger than zero, both events E

and B apply. These bursts may contribute to the extent but overall they arrive
later than the located burst f , due to the condition of the located burst.

f < s ≤ f + dl if the located burst f is delayed, too, the events E and B apply for the bursts
between the located burst and the test burst.

f + dl < s ≤ dt bursts which originally arrive later than the located burst but prior to the test burst
contribute to the extent. Event E applies.

The next sections concentrate on the derivation of the probabilities of these events.

4.1.2.1. Random event E. Bursts with sequence number s ≤ dt contribute to the extent if they arrive later than the located
burst and prior to the test burst.

The probability of a burst with sequence number s arriving later than the located burst and prior to the test burst depends
on three different properties:

• its location S,
• the delay of the test burst Dt ,
• the located burst F and its possible delay Dl.

We denote the probability for a burst with sequence number s arriving later than the located burst but prior to the test
burst as P(B = 1 | S = s,Dt = dt , F = f ,Dl = dl). Herein, the random variable B represents the burst arrival (B = 1) prior
to the test burst and after the located burst, otherwise B = 0. Due to space limitations, we abbreviate this probability by
p1s(dt , f , dl). It evaluates in (3) the sums of probabilities, where each sum represents the probability to arrive later than the
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located burst but prior to the test burst.

p1s(dt , f , dl) =



dt−s−
κ=f−s

pκ , if s < 0 and dl = 0;

dt−s−1−
κ=f−s

pκ , if 0 < s < f and dl = 0;

p0 +

dt−s−1−
κ=1

pκ , if f < s ≤ dt and dl = 0;

dt−s−
κ=f+dl+1−s

pκ , if s < 0 and dl ≠ 0;

dt−s−1−
κ=f+dl+1−s

pκ , if 0 < s ≤ f + dl and dl ≠ 0;

p0 +

dt−s−1−
κ=1

pκ , if f + dl < s ≤ dt and dl ≠ 0;

0, otherwise.

(3)

For instance, in Fig. 4, we consider the burst with sequence number s = −1. The probability that this burst arrives after
the located burst f = 3, which follows ldl (dl = 2) is p7 + p8. If burst s = −1 follows link l6, it arrives prior to the located
burst. If burst s = −1 follows link l9, it arrives later than the test burst.

4.1.2.2. Random event B. Random event B applies to bursts with s > 0, which originally arrive prior to the located burst.
These bursts must not arrive prior to the located burst as a necessary condition of the located burst. We apply the law of
total probability and calculate the probability of event B by its complementary P(B) = 1 − P(B̄).

Thereby, P(B̄) denotes the probability of a burst arrival for a specific burst prior to the located burst. This probability
depends on the origin location S of the burst and the located burst F and its delay Dl. Q (B = 1 | S = s, F = f ,Dl = dl)
denotes this probability. The random variable B indicates the burst arrival prior to the located burst. We abbreviate this
probability by q1s(f , dl). In (4) we derive the probabilities q1s(f , dl) for all bursts, which apply random event B.

q1s(f , dl) =


1 −

f−s−1−
κ=0

pκ , if 1 ≤ s < f and dl = 0;

1 −

f+dl−s−
κ=0

pκ , if 1 ≤ s ≤ f + dl and dl ≠ 0 and s ≠ f

1, otherwise.

(4)

This again results in sums of probabilities indicating a non-arrival before the test burst.

4.1.2.3. Conditional random eventsB andE. EventB is a necessary condition for the bursts with a smaller sequence number
than the located burst. These bursts also apply event E as depicted in Fig. 4. This results in a conditional probability for these
bursts contributing to the extent. The probability that these bursts contribute to the extent (eventE) is conditioned by event
B. We calculate this conditional probability:

P(E|B) =
P(B, E)

P(B)
=

P(E)

P(B)
=

P(E)

1 − P(B̄)
. (5)

The joint probability P(B, E) is equal to the probability P(E) as event E includes random event B as well. With the previous
expressions p1s(dt , f , dl) from (3) and q1s(f , dl) from (4) we get the conditional probability:

p∗

1s(dt , f , dl) =
p1s(dt , f , dl)
q1s(f , dl)

. (6)

4.1.2.4. Random event F. Each of the bursts with sequence number s in 0 < s ≤ dt may serve as the located burst. The
sequence number of the located burst is f . The located burst receives a delay of dl with probability pdl . The necessary
condition for the located burst is the arrival of bursts with sequence number 0 < s < f later than the located burst f .
This necessary probability depends on the position/sequence number F and the delay Dl of the located burst. The necessary
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condition for the located burst is:

P(F | F = f ,Dl = dl) =

dl+f∏
s=1

Q (B = 1|S = s, F = f ,Dl = dl)

=

dl+f∏
s=1

q1s(f , dl). (7)

This joint probability requires a later arrival of bursts, which depart earlier than the located burst. It considers all bursts with
sequence numbers between 1 and the sequence number of the located burst plus its delay.

4.1.2.5. Reordering extent. With the above probability distributions for the different random events, we calculate the
reordering extent distribution.

We denote P(E = e | Dt = dt , F = f ,Dl = dl) the probability of E burst arrivals between the located burst and the test
burst. Therein, the conditions are the delay of the test burst Dt , a located burst at position F with a delay Dl.

The next step considers the probability of every potential burst to contribute to the extent. The burst arrivals prior to the
test burst and after the located burst are independent of each other. The composite of the number of burst arrivals forming
the extent is a joint probability experiment. The discrete convolution of all bursts leads to the estimated probability of above.
For the calculation of the convolution, we apply the probability generating function (GF).

We denote P(B = 1|S = s,Dt = dt , F = f ,Dl = dl) the probability that burst s contributes to the extent. The probability
generating function for this distribution becomes:

Gs,dt ,f ,dl(z) =

1−
i=0

pis(dt , f , dl) z i

=


p0s(dt , f , dl) + p∗

1s(dt , f , dl)z, if 0 < s ≤ f + dl
p0s(dt , f , dl) + p1s(dt , f , dl)z, otherwise. (8)

The GF of the distribution of burst arrivals after the located burst and prior the test burst is determined by the product
of the GFs of all bursts arriving prior to the test burst.

Gdt ,f ,dl(z) =

dt∏
s=f+dl−m

Gs,dt ,f ,dl(z). (9)

We derive the corresponding probability distribution function P(E = e | Dt = dt , F = f ,Dl = dl) by the derivation of the
GF of the joint experiment:

P(E = e | Dt = dt , F = f ,Dl = dl) =
1
e!

∂e

∂ze
Gdt ,f ,dl(z)


z=0

. (10)

The computational effort of the product in (9) and the derivation in (10) is relaxed by two less expensive steps. In (10)
the eth derivation gives us the eth coefficient of the polynomial Gdt ,f ,dl(z). We calculate this coefficient in (9) by applying
the Cauchy product.

The reordering extent pdf considers every combination of the test burst delay Dt , the location of the located burst F and
its delay Dl. Together they form a triple sum:

P(E = e) =

m−
dt=1

dt−
f=1

(dt−f−1)+−
dl=0

pdt pdlP(F | F = f ,Dl = dl)P(E = e − 1 | Dt = dt , F = f ,Dl = dl). (11)

The outer sum represents the possible delay Dt of the test burst. Themiddle sum represents the position of the located burst
F . The inner sum represents the delay Dl of the located burst. The three sums enclose a product of four factors. The first
factor denotes the delay probability of the test burst. The second factor denotes the delay probability of the located burst.
The third factor represents the conditional probability of the located burst (7). The last factor quantifies the probability of
e−1 burst arrivals between the located burst and the test burst (10). The located burst itself accounts to the overall extent e.

4.1.3. nr -reordering metric
In this section, we derive the complementary cumulative distribution function (ccdf) of the nr -reordering metric. The

test burst arrives nr -reordered at the destination if there are at least nr subsequent burst arrivals with s > 0 prior to the test
burst.

From this definition we derive two conditions: (a) the test burst receives an extra delay and (b) the sequence of nr burst
arrivals with s > 0 at the destination excludes any arrival of bursts with sequence number s < 0.

The first burst of this sequence is the located burst with sequence number f . The located burst f receives a delay of dl. We
denote the probability of nr −1 burst arrivals between the located burst and the test burst Ps>0(B = nr −1 | Dt = dt , F = f ,
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Fig. 5. Random selection assembly, Poisson splitting process form = 2.

Dl = dl). Note that only bursts with s > 0 contribute to the nr -metric. We denote the probability of no burst arrivals with
sequence number s < 0 between the located burst and the test burst Ps<0(B = 0 | Dt = dt , F = f ,Dl = dl).

The probability that a burstwith sequence number s arrives later than the located burst but prior to the test burst depends
on its location S, the delay of the test burst Dt , the located burst F and its delay Dl. (3) gives the individual probability.
Applying (8)–(10), we derive both probabilities Ps<0 and Ps>0.

Ps<0(B = 0 | Dt = dt , F = f ,Dl = dl) = Gs<0,dt ,f ,dl(0) (12)

Gs<0,dt ,f ,dl(z) =

−1∏
s=f+dl−m

Gs,dt ,f ,dl(z) (13)

Ps>0(B = nr − 1 | Dt = dt , F = f ,Dl = dl) =
∂nr−1

∂znr−1

Gs>0,dt ,f ,dl(z)
(nr − 1)!


z=0

(14)

Gs>0,dt ,f ,dl(z) =

dt∏
s=1

Gs,dt ,f ,dl(z). (15)

(12) gives the probability of no burst arrival between the located burst and the test burst for bursts with sequence numbers
s < 0 and (14) gives the probability of exactly nr − 1 burst arrivals with a larger sequence number than the test burst
between itself and the located burst.

Putting both results together, leads to the ccdf of the nr -reordering metric of (16). The structure is similar to (11) except
of the dependence on the sequence number of the burst arrivals.

P(Nr ≥ nr) =

m−
dt=1

dt−
f=1

(dt−f−1)+−
dl=0

pdt pdlPs>0(B = nr − 1 | Dt = dt , F = f ,Dl = dl)

× Ps<0(B = 0 | Dt = dt , F = f ,Dl = dl). (16)

4.2. Random selection assembly strategy

In this section, we derive the reordering metrics for the random selection assembly strategy resulting in a Poisson
departure process. The next paragraphs determine some general properties of the reordering model with focus on the
Poisson process. Then, the following sections derive explicitly the reordering metrics. We apply the same reordering model
than for constant inter-arrival times of the previous section.

In Fig. 5, we depict the point process of the burst departure process. On the first time axis, we show the origin burst
departure process with the test burst s = 0. The random variable of the departure time is T . The probability distribution
function of this inter-departure time is f (t) = λ exp (−λ t), with mean rate λ = 1/E [T ].
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On the second time axis, we show the burst arrival process of bursts following the abstract link l0. Each of the remaining
time axis depict the point process of bursts following abstract links l1 and l2 respectively. The superposition of abstract links
l0 · · · l2 leads to the experienced arrival order at the destination in the bottom time axis.

Joining an abstract link lj with probability pj forms a random splitting process. As a result, the burst inter-arrival times
Tj on link lj are also negative exponentially distributed [29] and form a Poisson process. Consequently, the inter-departure
time distribution for link lj becomes fj(t) = λj exp


−λj t


, where λj = pjλ.

On the time axis of the arrival process, we define two points in time (cf. Fig. 5). The first one, the origin, corresponds to
the arrival of the test burst s = 0 at the destination. The second one is an arbitrary point in time t, t > 0. The sequence
numbers of bursts departing before the test burst are s < 0, while the sequence number of bursts departing after the test
burst are s > 0.

We divide the interval [0, t] on the arrival axis as well as on the abstract links lj into two intervals [0, τ ) and [τ , t]. We
calculate the probability distribution function of the random number Xj of burst arrivals on link lj in the time interval [τ , t].

Bursts originally departing in the interval [τ − j∆, t − j∆] arrive in the interval [τ , t] if they follow link lj. The pdf of the
number of the number of burst arrivals in [τ , t] follows a Poisson distribution:

p[τ ,t]
xj,λj

=
(λj(t − τ))xj

xj!
exp


−λj(t − τ)


. (17)

At the destination, the bursts on the individual abstract links are superposed together. We denote J as the set of
abstract links superposing the bursts at the destination. The superposition of burst arrivals within the interval [τ , t] forms
a compound experiment, where the random variable of burst arrivals is a sum of random variables X =

∑
j∈J Xj.

The probability distribution function of X is the result of the discrete convolution of the probability density functions of
all Xj. For the convolution, we apply the probability generating function on Xj. The GF of p[τ ,t]

xj,λj
and for compound arrival are:

G[τ ,t]
j (z) =

∞−
i=0

p[τ ,t]
i,λj

z i G[τ ,t](z) =

∏
j∈J

G[τ ,t]
j (z). (18)

The derivation of the GF identifies the probability density function p[τ ,t]
x of the random variable X of the compound

experiment:

p[τ ,t]
x =

1
x!

∂x

∂zx
G[τ ,t](z)


z=0

. (19)

The derivation of the reordering metrics, especially, the nr -reordering metric requires the distinction of the bursts
according to their sequence number.

In the observed interval [τ , t], bursts may arrive with sequence number s > 0 and s < 0 dependent on the abstract link
lj and the size of the interval [τ − j∆, t − j∆]. We distinguish three cases:
(1) If 0 < τ − j∆ ∧ 0 < t − j∆ bursts with sequence number s < 0 do not arrive in the interval [τ , t].
(2) If 0 > τ − j∆ ∧ 0 < t − j∆ bursts with sequence number s < 0 as well as with s > 0 arrive in the interval [τ , t].
(3) If 0 > τ − j∆ ∧ 0 > t − j∆ bursts with sequence number s > 0 do not arrive in the interval [τ , t].

For bursts with s < 0, we assume Lj bursts, for bursts with s > 0, we assume Kj bursts in [τ , t]. The pdfs of Lj and Kj for
the previous three cases are

p[τ ,t]
Lj,λj,s<0 =


p[τ ,t]
Lj,λj

, if τ − j∆ < 0 ∧ t − j∆ < 0

p[τ−j∆,0]
Lj,λj

, if τ − j∆ < 0 ∧ t − j∆ > 0

0, otherwise

(20)

p[τ ,t]
Kj,λj,s>0 =


p[τ ,t]
Kj,λj

, if τ − j∆ > 0 ∧ t − j∆ > 0

p[0,t−j∆]

Kj,λj
, if τ − j∆ < 0 ∧ t − j∆ > 0

0, otherwise.

(21)

The different alternatives take into account the abstract link number and the position of τ and t . As a result, they modify
the interval and apply (17).

Applying the method of the pdf for the compound event of multiple branches of set J for s > 0 and s < 0, we get p[τ ,t]
L,s<0

and p[τ ,t]
K ,s>0, the pdf of the number of burst arrivals within [τ , t] for bursts with s < 0 and s > 0.

p[τ ,t]
L,s<0 =

1
L!

∂L

∂zL
G[τ ,t]
s<0 (z)


z=0

=
1
L!

∂L

∂zL

∏
j∈J


∞−
i=0

p[τ ,t]
i,λj,s<0z

i


z=0

(22)

p[τ ,t]
K ,s>0 =

1
K !

∂K

∂zK
G[τ ,t]
s>0 (z)


z=0

=
1
K !

∂K

∂zK

∏
j∈J


∞−
i=0

p[τ ,t]
i,λj,s>0z

i


z=0

. (23)



S. Gunreben / Performance Evaluation 68 (2011) 237–255 247

In the next sections, we apply the previous results to determine the introduced reordering metrics.

4.2.1. Burst reordering probability
The probability of an out-of-sequence arrival is the compound probability to follow link ldt (with probability pdt ) and

the probability of at least one burst arrival in the interval [0, dt∆]. We derive the latter probability by the complementary
probability of no burst arrival and apply (23):

P =

m−
dt=1

pdt

1 − p[0,dt∆]

0,s>0


. (24)

In (23) the set J of considered links lj is J = {o : 0 ≤ o < dt}. Bursts with s > 0 on links with a larger delay than dt∆ do not
arrive within [0, t]. As we requested the 0th derivative of (23) we simplify (24):

P =

m−
dt=1

pdt


1 −

dt−1∏
j=0

p[0,(dt−j)∆]

0,λj


=

m−
dt=1

pdt


1 −

dt−1∏
j=0

exp

−λj∆(dt − j)



=

m−
dt=1

pdt


1 − exp


−λ∆

dt−1−
j=0

pj(dt − j)


. (25)

4.2.2. Reordering extent metric
In this section,we calculate the pdf of the reordering extentmetric. According to the extentmetric definition,we calculate

the reordering extent in three steps: (a) identify the located burst with the smallest j as defined in (1). (b) Count the number
of burst arrivals between the located burst and the test burst.

The delay of the test burst is a necessary condition of (a). Without loss of generality, we assume the test burst following
link ldt receiving a delay of dt∆. The located burst follows abstract link ldl , 0 ≤ dl < dt , and arrives at τ = dl∆ + t . t is
the time between the departure of the located burst and the departure of the test burst. Consequently, the co-domain of τ
is t + dl∆ ≤ τ ≤ dt∆. The probability of a burst arrival at τ is a compound probability of a burst departing at t and the
probability to follow link ldl : P(B = 1 | Dl = dl, t ≤ T < t + dt), with B indicating a burst arrival.

The second part of this joint probability results in the instantaneous termination rate λ = 1/E [T ].

P(B = 1 | Dl = dl, t ≤ T < t + dt) = pdl
P(t ≤ T ≤ t + dt)

dt
dt (26)

lim
dt→0

P(t ≤ T ≤ t + dt)
dt

= lim
dt→0

1 − e−λ dt

dt
= λ. (27)

The necessary condition of (a) restricts any burst arrival in [0, τ ] with sequence numbers smaller than the located burst,
i.e., bursts departed in (0, t). These bursts must not follow abstract link lj with j < t/∆ + dl as they would arrive earlier to
the located burst. The probability of this restriction again is a compound probability applying (23) with no burst arrival on
the abstract links lj with j ∈ {o : 0 ≤ o ≤ ĵ = ⌊t/∆ + dl⌋}.

Ps>0(B = 0 | 0 < T < τ) = p[0,τ ]

0,s>0 =

ĵ∏
j=0

p[0,τ−j∆]

0,λj,s>0 . (28)

In the interval [τ , dt∆], an arbitrary number of burst arrivals form the extent value. This is a compound probability based
on the probability distribution function p[τ ,t]

xj,λj
(cf. (17)) of each abstract link j.

We apply (18) with J = {o : 0 ≤ o ≤ m} for the required number of e− 1 arrivals in the considered interval. The located
burst completes the extent value to e:

P(B = e − 1 | τ < T ≤ dt∆) = p[τ ,t]
e−1 =

1
(e − 1)!

∂e−1

∂ze−1
G[τ ,dt∆](z)


z=0

. (29)

The compound of these necessary three conditions leads to the probability distribution function of the extent. We
consider each possible delay of the test burst and of the located burst. We consider the located burst at every possible
point in time t . We apply (26), (28), (29) and receive the probability distribution function of the burst extent metric.

P(E = e) =

m−
dt=1

pdt
dt−1−
dl=0

∫ (dt−dl)∆

0
P(B = 0 | 0 < T < τ)

× P(B = 1 | t ≤ T < t + dt)P(B = e − 1 | τ < T < dt∆). (30)
Within the integral, the first factor denotes the probability of the condition of the located burst with no burst arrival before
it. The second factor gives the probability of the located burst arrival exactly at time t , while the last factor determines the
probability for the required burst arrivals in the interval between located burst and test burst. With help of (29) and (28),
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we simplify the extent probability to:

P(E = e) =

m−
dt=1

pdt
dt−1−
dl=0

pdlλ
∫ (dt−dl)∆

0
p[0,τ ]

0,s>0p
[τ ,t]
e−1 dt. (31)

4.2.3. nr -reordering metric
The nr -reordering metric requires after the located burst consecutive arrivals of bursts with sequence numbers larger

than the sequence number of the test burst. Again, we assume the located burst at τ . We also assume a test burst delay
of dt∆.

The ccdf of the nr -reorderingmetric is a joint probability of two conditions: (a) arrival of the located burst at τ , (b) arrival
of nr −1 bursts with appropriate sequence number in the interval [τ , dt∆]. Condition (b) forbids any burst arrival in [τ , dt∆]

with sequence number s < 0.
From the previous section, the probability of (a) is P(B = 1 | t ≤ T ≤ t + dt). We derive the probability of (b) by the

probability GF of the compound probability of the number of arrivals. We apply (23) for the bursts with s > 0 and (22) for
the bursts with s < 0:

Ps>0(B = nr − 1 | τ < T ≤ dt∆) = p[τ ,dt∆]

nr−1,s>0 (32)

Ps<0(B = 0 | τ < T ≤ dt∆) = p[τ ,dt∆]

0,s<0 . (33)
Similar to (30), the overall ccdf of the nr -reordering metric becomes:

P(Nr ≥ nr) =

m−
dt=1

pdt
dt−1−
dl=0

∫ dt∆

0
Ps<0(B = 0 | τ < T ≤ dt∆)

× P(B = 1 | t ≤ T ≤ t + dt)Ps>0(B = nr − 1 | τ < T ≤ dt∆). (34)
Applying (29) and (28) leads to the more compact version:

P(Nr ≥ nr) =

m−
dt=1

pdt
dt−1−
dl=0

λpdl

∫ dt∆

0
p[τ ,dt∆]

nr−1,s>0p
[τ ,dt∆]

0,s<0 dt. (35)

5. Results

In this section, we first illustrate the reordering metrics of selected parameterizations of the model and second show its
applicability onOBS network simulations. Thereby,we determine theOBS reordering characteristic for the parameterization
of our model.

5.1. Numerical results

We show some illustrative results to visualize the burst reordering metrics. We parameterize our model by
• the probability of delay p, which corresponds to the complementary probability to follow l0,
• the number of abstract linksm and
• the delay distribution among them abstract links.

For comprehensive studies, we distinguished three different delay distributions:
• geometric distribution pi = q (1 − q)i−1 with q = 1 − (1 − p)1/m,
• linear distribution pi = 2 ip/(m2

+ m) and
• complementary linear distribution pi = 2 (m − i + 1)p/(m2

+ m).

The geometrically distributed delaymay correspond to FDLs along a path. The linearly distributed delaymay correspond to a
deflection scenario, where long paths are likely, while the complementary linear distribution may correspond to a scenario
where long paths are unlikely.

In Fig. 6, we depict the amount of out-of-sequence bursts in relation to the delay probability p. We depict the probability
for both assembly strategies.m = 5 andm = 15 abstract links distribute the delay geometrically. The amount of reordering
is higher in case of more abstract links, although the probability of delay is the same. The chance for an out-of-sequence
arrival is higher, if there are more alternative paths to follow. We recognize a bell shaped curve, which starts at zero but did
not reach zero at the other end due to the different delays on the abstract links.

In Fig. 7, we illustrate the burst extent pdf for the time-based assembly scheme with p = 0.1 and m = 5 for our three
delay distributions. The three options show different behaviour. The linear distribution is straight decreasing as smaller
extent values are more likely than larger ones. The complement linear distribution is bell-shaped as its maximum is moved
towards larger extent values. The geometric distribution start between both distributions and decreases only slightly until
its knee at e = 5.
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Fig. 6. Reordering probabilitym = 5,m = 15, geometric delay distribution.

Fig. 7. Extent pdf, m = 5, p = 0.1, time-based assembly.

In Fig. 8, we illustrate the burst extent pdf for the random selection based assembly scheme with equivalent parameters.
The earlier observations also apply in this scenario, but in a less extreme way. The three graphs are close together and show
a smaller extent probability for small e. In case of e > 5 the random selection assembly strategy shows a larger extent value
than the time-based assembly strategy.

In Figs. 9 and 10,weplotted the ccdf of the nr -reorderingmetric for both assembly strategies. In case of a linear distributed
delay we expect the largest amount of nr -reordering. Is the delay complementarily linear distributedwe expect the smallest
amount of nr -reordering. For small values of nr the ccdf of the time-based assembly strategy in all cases is larger than for a
random selection assembly. For larger nr this property swaps.

5.2. Application of the reordering model

This section shows the applicability of our reorderingmodel on simulations on optical burst switched networks regarding
the burst reordering phenomena. In our earlier work [18], we quantified burst reordering in an OBS network simulation.
The paper presents the average values on burst reordering extent and on the burst nr -reordering metric and pointed out
metrics required for TCP throughput estimation. Here, we present the reordering extent distribution and the nr -reordering
distribution and show that our model abstracts the end-to-end reordering properties well.

We consider OBS network simulations, which provide the reordering metrics of certain end-to-end connections for
a certain burst traffic. The experienced out-of-sequence pattern is the result of an unknown network delay distribution.
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Fig. 8. Extent pdf, m = 5, p = 0.1, random selection assembly.

Fig. 9. nr -reordering ccdf,m = 5, p = 0.1, time-based assembly.

The reordering model is able to emulate this out-of-sequence pattern but requires a network delay distribution. The aim
of the next sections is to provide the methodology to obtain the parameters for the network delay distribution on a given
out-of-sequence pattern.

In general, we apply the reordering model and the related reordering functions of the model showing constant inter-
arrival times (cf. Section 4.1) independent of the original burst arrival characteristic. The reason lies in the out-of-sequence
pattern for constant inter-arrival times. In [30], we proved that the reorderingmetric reach its maximum for constant inter-
arrival times. Consequently, the model for constant inter-arrival times serves as an upper limit of the experienced out-of-
sequence pattern.

5.2.1. Parameter estimation of the reordering model
The probability distribution function of the reordering extent and the nr -reordering metric is discrete, non-linear and in

an open form (cf. (11), (16), (31) and (35)). Additionally, these functions map an m + 1-dimensional input vector (network
delay distribution) onto an n dimensional output vector (reordering metric) and shows highly non-linear operations.
Abstracting these functions by f leads to the following generic equation:

y⃗ = f (x⃗), where x⃗ is a probability vector. (36)

Therein, y⃗ represents either the pdf of the reordering extent or the ccdf of the nr -reordering metric according to the
model. x⃗ represents in either case the network delay distribution. If the vector degrades to a scalar, the equation and the
function realize the reordering probability.
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Fig. 10. nr -reordering ccdf,m = 5, p = 0.1, random selection assembly.

A correct representation of the experienced reordering in an OBS network requires the configuration of the network
delay parameter x⃗. This leads to the inversion of the reordering functions x⃗ = f −1(y⃗′), which is analytically very hard.

A pragmatic approach is to reformulate this problem to a constraint based optimization problem using the original
functions for the reordering metrics. If y⃗′ denotes the estimated reordering vector, then (37) depicts the non-linear
optimization problem with one single constraint:

min
x⃗

‖y⃗′ − f (x⃗)‖ where ‖a⃗‖ =

−
i

a2i

2 =

−
xi +

−
|xi|.

(37)

The original multi-dimensional function of (37) becomes a scalar function by applying the norm on the resulting vector. This
maps an n-dimensional vector onto a 1-dimension scalar, which realizes an additional non-linearity. The second equation
formulates the constraint x⃗ being a probability vector.

For these kinds of problems solvers exist. The Optimization Toolbox of Matlab [31] provides one of these solvers. The
name of the applied solver is fmincon, which tries to find a minimum of a constrained nonlinear multivariable function.
The solver applies the active set algorithm, which the following literature describes in depth: [32–35]. We apply this Matlab
solver to determine the network delay distribution (abstract links) to experience the same reordering pattern than in an
OBS end-to-end connection. We skip the details of the applied algorithm as they are out of the scope of this paper.

5.2.2. Simulation parameter
This section provides the background on the simulation environment, which provides the measurement data of the OBS

burst reorder pattern. We use the OBS network simulation of [36], which bases on the event-driven simulation library
SimLib [37].

The network model represents the 16-node COST 266 reference network (cf. Fig. 11) with equidistant nodes and
link delays of 1 ms. The traffic matrix is population based and offers 9.9 Tbps to the network. The network has been
dimensioned for the total of 9.9 Tbps and equivalent blocking probabilities on all links. We also consider different load
scenarios represented by the parameter α. It reflects an over-provisioning factor, where α ≥ 1. For load variations, instead
of decreasing the network traffic, we increase the network resources as described in [36]. In case of contention, 32 FDLs
per node may avoid a burst loss. The burst departure process follows a Poisson process representing the random selection
assembly strategy. Here,we consider the contention resolution scheme includingwavelength conversion and FDL (ConvFDL)
in the given order as described in [18].

We selected five arbitrary node pairs and showed the compliance of our model with the simulation results for an FDL
scenario. The presented results are examples only, our model holds for any other node pairs, too. The solver of the previous
section found the parameters of the model.

The Figs. 12–14 show the reordering extent metric for selected end-to-end connections of the reference network. The
solver estimated the network delay distribution with the abstract link probabilities. In each of the figures, the results
from the solver are compared to the simulation results. The figures show that the results from the solver match the
simulation results very well in the core of the distribution. At the border on the left and to the right of each distribution the
results differ slightly. In Fig. 12, these difference only occur at the far right of the distribution. There, the large confidence
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Fig. 11. COST 266 reference network with 16 nodes.

Fig. 12. Lyon–Milan, α = 1.0, reordering extent.

Fig. 13. Zagreb–Vienna, α = 1.2, reordering extent.

intervals indicate, that these extent values occur rarely. For further analysis of any protocols in an network emulation
environment this may have only a small impact. Figs. 12 and 13 show the extent pdf in relative values (the extent pdf
of all reordered bursts), while Fig. 14 shows the distribution in absolute values for all bursts.
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Fig. 14. Paris–Rome, α = 1.35, reordering extent.

Fig. 15. Amsterdam–Lyon, α = 1.35, nr -reordering.

Figs. 15 and 16 show the results for the ccdf of the nr -reorderingmetric of two end-to-end connections. The observations
are similar to those given above. Analytics and simulationsmatch quitewell. For large values at the far end of the distribution,
the values differ but lie within the confidence intervals of the simulation. The figure depicts the ccdf of the absolute values,
showing also the reordering probability at the point nr = 0 of the x-axis.

6. Conclusion

Weproposed and analyzed a burst reorderingmodel for two commonly applied burst assembly schemes. The time-based
assembly strategies with a constant burst inter-departure time and the random selection assembly strategy with a negative
exponentially distributed inter-departure time.We derived the threemost important IETF reorderingmetrics. Thesemetrics
allow the dimensioning of the required OBS buffer capacity to resolve reordering and allow an estimation on the expected
TCP throughput performance. We derived these metrics for an optical burst switching scenario and made no assumptions
on the network delay distribution.

Ourmodel enables a structured analysis on optical burst reordering. Investigations applying our reorderingmodel cover a
broader anddeeper scope of burst reordering than an integrated network simulation is able to provide. A properly configured
model substitutes optical network simulations on burst reordering. We showed its applicability exemplarily on selected
links of a representative OBS network scenario. We found that our model reflects the network characteristics on burst
reordering very well. The burst extent metric and the nr -reordering metric both fit the simulation results.
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Fig. 16. Paris–Rome, α = 1.50, nr -reordering.

These results enable the parameterization of a network emulation environment creating the same reordering pattern as
experienced in OBS network simulations. This network emulation setup is able to investigate real protocol implementations
in presences of reordering, without modelling complex protocols. The parameters of the network emulation only require
single layer OBS studies, which reduces the time for simulation and evaluation.
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