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Abstract—This paper presents a layered framework to measure
the reordering introduced by contention resolution strategies
in OBS networks. In particular, characterization is based on
the reordering metrics proposed by the IETF IPPM WG. The
obtained results are twofold. First, they quantify the impact of
burst reordering on TCP throughput performance. Second, they
give insight into solving burst reordering by well dimensioned
buffers.

I. INTRODUCTION

Optical Burst Switching (OBS, [1]) has emerged as a
promising transport technology for next-generation Internet.
As a matter of fact, OBS networks become a combination
of packet and circuit switched networks, where packets are
firstly aggregated in edge routers and, then, are sent as
bursts along bufferless optical networks. This provides the
benefit from statistical multiplexing in the optical domain,
which allows better adaptation than circuit-switched networks
(OCS) to higher layer dynamics. Besides, it lessens technology
requirements, in comparison with all-optical packet switching
(OPS) networks.

For the sake of efficiency, OBS relies on one-pass resource
reservation. This means that, unlike in OCS networks, data
transmission is not delayed until the reception of the reserva-
tion acknowledgement packet. Conversely, in OBS networks, a
burst is subsequently transmitted after an offset time since the
reservation request control packet was sent. Therefore, there is
no sureness about the proper transmission of the bursts, which
could be lost due to contention at intermediate nodes.

Several contention resolution strategies [2] have been pro-
posed to minimize burst loss probability, namely deflection
routing, Fiber Delay Lines (FDLs) as optical buffers, wave-
length conversion, and even combinations of them. It has been
extensively demonstrated that these strategies succeed in de-
creasing burst blocking probability. Nonetheless, an additional
degree of reordering can be introduced to the network. In fact,
in order burst delivery cannot be guaranteed, as long as the
extra time introduced in the FDLs or in the deflection routes
exceed the burst inter-arrival time (IAT).

Current studies reveal that the majority of Internet traffic is
carried by Transfer Control Protocol (TCP), which provides
applications with reliable data transfer support. Likewise, it is
expected that it will remain dominant in the foreseeable future.
Hence, the understanding of TCP, running on top of next-
generation transport network technologies, undertakes special
significance.

It is widely known the effect of packet loss on TCP. In TCP
Reno [3], the sender of a TCP session is notified of a packet
loss by means of duplicate acknowledgements. In this context,
the TCP fast retransmit algorithm is invoked, whether the
duplicate acknowledgement threshold (DUP-ACK) is reached.
As a result, the missing packet is retransmitted and the sender’s
congestion window is halved, which decreases TCP through-
put significantly. A similar situation occurs whether a packet
becomes reordered. Note that, in the event of reaching the
DUP-ACK threshold, TCP may consider a reordered packet
as lost, even though it is only delayed.

This paper focuses on the viability of OBS as a carrier
technology for TCP. As mentioned earlier, optical bursts can
be dropped or even reordered due to contention resolution.
Whenever a burst is dropped, some or even the completeness
of the contained packets are also lost. Additionally, the re-
ordering introduced at the OBS layer is propagated to higher
layers (e.g., TCP), affecting these ones as well.

Heretofore, the impact of OBS on end-to-end TCP through-
put has been studied in detail. Mainly, previous works focus
on the consequences on TCP of burst loss due to contention,
assuming an integrated TCP/OBS scenario modeled as a
monolithic block [4] [5] [6]. This integration, however, com-
plicates the identification of key parameters at the OBS layer
that become significant in the final TCP performance.

In this work, we follow a layered approach to model
the impact of burst reordering on TCP. Firstly, we quantify
the introduced reordering at the OBS layer under several
contention resolution strategies. With such purposes in mind,
we apply the reordering metrics presented by the IETF in [7],
which provide us extensive information. On the one hand, they
quantify the buffer size, which should be placed at edge nodes,



to solve reordering at the OBS layer. This would permit the
sending of already ordered packets to the IP layer, so that
burst reordering would remain transparent to TCP. On the other
hand, whether reordering is left to the TCP layer, they provide
information about the violation of the DUP-ACK threshold due
to reordering, which allows TCP performance estimation.

The rest of this paper is structured as follows. Section
II overviews the considered contention resolution strategies.
Section III introduces the IETF reordering metrics. Section IV
describes the scenario under study. Then, section V presents
the obtained burst reordering results, whose repercussion on
TCP is discussed on section VI. Finally, section VII concludes
this work.

II. STRATEGIES FOR CONTENTION RESOLUTION IN OBS
NETWORKS

As mentioned before, OBS provides the benefit of statistical
multiplexing directly in the optical domain. Nonetheless, in
order to achieve low burst loss probability, contention resolu-
tion emerges as a key issue in OBS networks. In particular,
contentions occur whenever two or more bursts try to leave
the OBS switch on the same output port at the same time,
which leads to burst loss.

Up to now, several contention resolution strategies have
been proposed in the literature, whose effectiveness has been
extensively demonstrated. This makes widely accepted that fu-
ture OBS transport networks will be enhanced with contention
resolution capabilities. Therefore, for the sake of generality, we
quantify reordering in OBS networks under several contention
resolution strategies. With this aim, as in [8], we deal with
basic strategies and combinations of them.

As basic strategies, we consider Conv, Defl and FDL.
Specifically, Conv assumes that wavelength conversion without
limitations is available at each node. In turn, Defl refers to
deflection routing. In this case, whether contention exists,
the burst is sent to an alternative output fiber of the node,
following the shortest path towards the destination. Finally,
FDL contemplates buffering by means of a single shared
feedback FDL employing WDM.

Departing from the aforementioned strategies, combinations
of them can be also applied. Because the order of application
of each strategy is essential, combined strategies are named
by a concatenation of the former’s acronyms. In this way,
we could have combined strategies like ConvFDL, ConvDefl,
ConvFDLDefl or even ConvDeflFDL. For instance, whether
ConvDeflFDL was used, conversion would be firstly attempted.
If conversion was unavailable, deflection would be subse-
quently tried. If deflection also failed, buffering would be
tried afterwards. If, unfortunately, none of them worked, the
burst would be finally dropped. Note that conversion is always
applied first. This assumption agrees with some previous
works’ results [9] [10].

III. REORDERING METRICS

A complete characterization of reordering becomes note-
worthy, specially when assessing a protocol’s viability over a

given network. With this objective in mind, the IETF IPPM
working group has recently standardized a set of metrics [7]
to characterize reordering effects in generic packet networks
(e.g., OBS networks).

In this section, we introduce some of these metrics, which
have been used in the following sections to provide a broad
view of reordering in the scenario under study.

A. Reordering Ratio

The detection of reordering is done at the destination,
looking at the sequence number s[i] of each packet, where i
numbers the arriving packet order at destination. This sequence
number is set at the source node, following a consecutive
integer sequence. In turn, the destination node maintains a
counter s′[i], which identifies the sequence number of the
following expected packet. Under normal conditions, s′[i] is
equivalent to the sequence number of the last received in
order packet plus 1. When packet i arrives, the packet is
considered as reordered whether s[i] < s′[i]. Conversely,
whether s[i] ≥ s′[i], the packet is considered in order and
s′[i+ 1] = s[i] + 1.

In this context, the reordering ratio quantifies, given a
certain data stream, the ratio of reordered packets. This figure
is easily obtained as the number of reordered packets divided
by the number of received packets. It is noteworthy that, in
case of duplicate packets, only the first copy is considered.

B. Reordering Extent

The reordering extent quantifies the extent to which packets
are reordered. As a main application, it provides information
about the minimal storage (i.e., buffer size) at the receiver,
which would be needed to restore packet order at destination.

Let us suppose that s[1], s[2],..., s[L] is the sequence
of incoming packets’ numbers at destination. Furthermore,
imagine that a given packet i is considered as reordered. This
would mean that a set of indexes j (1 ≤ j < i) exist, which
accomplish s[j] > s[i]. In this scenario, the reordering extent
can be obtained as i− j, for the smallest value of j such that
s[j] > s[i].

C. n-Reordering Ratio

Finally, the n-reordering ratio is intended to provide infor-
mation about the impact of reordering on TCP. Formally, a
received packet with sequence number s[i] is considered as
n-reordered whether i− j ≤ n < i ∧ s[j] > s[i].

In other words, an n-reordered packet is a reordered packet
which causes n DUP-ACK to TCP. Note that, this metric
could be useful to quantify the percentage of reordered packets
which would trigger TCP fast retransmit procedures. Indeed,
by setting n = 3, we would obtain the percentage of reordered
packets, which trigger fast retransmit in TCP Reno [3]. As a
further application, this metric can be helpful for matching the
duplicate ACK threshold for a given path, so that unnecessary
retransmissions are avoided.



Fig. 1. Scenario under study Fig. 2. Burst loss probability Fig. 3. Burst reordering ratio

IV. SCENARIO UNDER STUDY

In this section, we introduce the scenario over which re-
ordering has been evaluated. In particular, we consider the
16-node COST 266 reference network (Fig. 1), where link
resources are dimensioned according to a static traffic demand
matrix. This matrix is obtained from a 2006 European popula-
tion model, with a total demand of 9.9 Tbps, which coresponds
to 990 Erlang for 10 Gbps line rates. Herein, wavelength
capacity is distributed in the network, such that shortest path
routing leads to equal blocking probabilities on all links (i.e.,
dimensioning according to the Erlang model [11] [12]).

In an OBS network, burst loss stems from the limited
number of transponders at each node. In order to distin-
guish different network load situations, we overdimension
the number of transponders by a given factor (denoted as
overdimensioning factor in the figures).

The burst departure process follows a Poisson process,
while the burst length is exponentially distributed with mean
100 kbit. The mean burst inter-arrival time is determined by
the network load. The number of add/drop ports in OBS nodes
is unlimited, and the delay for burst control packet processing
is compensated by a short extra FDL of appropriate length at
the input of the node. With contention resolution purposes,
we assume one FDL per node, with a certain number of
wavelengths. These wavelengths are shared as the number of
wavelength converters per node is unlimited. If all wavelength
are occupied the burst is discarded. For structured analysis,
the fiber length on all links is 200 km, equal to a propagation
delay of 1 ms.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the strategies
Conv, ConvFDL, ConvDefl, ConvFDLDefl and ConvDeflFDL
in an OBS scenario. With this aim, we focus not only on
burst loss probability, but also on introduced reordering, which
harms TCP performance as well. First of all, we compare,
for each contention resolution strategy, burst loss probabil-
ity improvements against introduced reordering. Then, we
investigate the possibility to solve reordering at the OBS
layer. Finally, we conclude on the 3-reordering ratio at the
OBS layer. With reordering quantification purposes, we place

reordering meters between each demand’s source-destination
pair and we provide global network statistics.

In our studies we assume, for cost reasons, 8 wavelengths in
the FDLs. Moreover, to avoid unnecessary load to the network,
we limit the number of deflections to 1. Previous works
demonstrate that the improvements due to further deflections
are marginal [8], as long as a reasonable amount of flexibility
is allowed in the network. The results have been obtained using
the event-driven simulation library IKRSimlib [13].

A. Burst Loss Probability vs. Reordering Ratio

In Fig. 2, we depict the behavior of each considered strategy
in terms of burst loss probability. Besides, Fig. 3 quantifies the
reordering ratio introduced by each one. Note that, Conv has
not been included in Fig. 3. When applying this strategy, all
bursts travel along the same path and no buffering is used.
Therefore, no reordering is introduced.

Looking at Fig. 3, it can be seen that, for high and medium
loads, ConvDeflFDL introduces the highest reordering, fol-
lowed by ConvFDLDefl,ConvDefl and ConvFDL. However,
towards low loads, all strategies behave similarly in terms of
reordering ratio. Observing now Fig. 2, it can be distinguished
that, for high loads, the performance of all the strategies
which use deflection routing (i.e., ConvDefl, ConvFDLDefl
and ConvDeflFDL) is poor, as they overload an already highly
loaded network. Nonetheless, towards lower loads, deflection
(alone or combined) decrease burst loss probability rapidly, as
enough network resources become available.

The majority of studies coincide that, in a realistic OBS
scenario, burst blocking probabilities should range from 10−3

to 10−6. Fig. 3 shows that, in this operating range, all strategies
introduce the same reordering to the network. However, notice
in Fig. 2 that, ConvDeflFDL provides the best performance
regarding burst loss probability. Therefore, this leads to the
conclusion that, this strategy may provide the best compromise
between burst loss and introduced reordering.

B. Reordering Extent Quantification

In this subsection, we analyze the possibility to restore burst
order directly at the OBS layer. Then, already ordered packets
could be sent to the IP layer, so that burst reordering would



Fig. 4. Reordering Extent Fig. 5. 3-Reordering burst ratio (relative) Fig. 6. 3-Reordering burst ratio (absolute)

remain transparent to TCP. With these purposes, a possible
solution is the placement of buffers, on a per flow basis, at
OBS edge nodes. Such buffers would store incoming out-of-
order bursts, waiting for the expected one to be received. In
this context, the reordering extent metric provides information
about the mean extent to which bursts are reordered. Therefore,
this gives an idea of these buffers’ size.

Fig. 4 shows the mean reordering extent for each strategy
under consideration. As can be seen, deflection routing tech-
nique introduces large extents, in the order of one thousand.
In fact, deflected bursts transverse at least one more hop than
those going through the direct path. This accounts for an
additional propagation delay of 1 ms, which is two orders of
magnitude greater than the mean burst transfer time (10 µs
in our scenario). Conversely, the use of buffering, like in
ConvFDL, introduces relatively low extents (as can be seen,
lower than 10). Therefore, by means of relatively low buffering
capacities, these strategies would enable the restoration of the
burst order directly at the OBS layer.

It is noteworthy that, towards low loads, the introduced
extent by combined strategies tend to the former’s one (e.g.,
towards low loads, ConvDeflFDL tends to ConvDefl). This is
due to the fact that, in a low loaded network, contentions can
be solved in the first attempt in most situations.

C. 3-Reordering Ratio Evaluation

Until now, we have quantified, for each contention reso-
lution strategy under consideration, the reordering ratio and
introduced reordering extent. While the former provides a gen-
eral view of what happens in the network, the latter evaluates
the possibility to restore order directly in the OBS layer. On
the one hand, such information provides understanding about
the origins of reordering, and evaluates specific solutions to
restore it (as seen in previous subsection). However, on the
other hand, these metrics do not illustrate the direct implication
of reordering on TCP. In this subsection, we quantify the n-
Reordering ratio metric. Specifically, as in TCP Reno, we
consider n = 3.

Fig. 5 shows the relative 3-Reordering burst ratio, un-
derstood as the ratio of reordered bursts, which become 3-
Reordered or more. As seen, 3-Reordering ratio increases

along with the overdimensioning factor. This could be due
to several reasons. For low loads, deflected bursts have more
possibilities to succeed, which would increase 3-Reordering
ratio. Moreover, for higher loads, since more reordering exists,
this could decrease 3-reordering. For instance, let us assume
a reordered burst. It may happen, that the following ones
become also reordered, which could cause this one not to
be 3-reordered. Further looking at Fig. 5, it can be seen
how buffering technique introduces less 3-Reordering ratio
than deflection. Particularly, it can be seen how ConvFDL
outperforms all the remainder strategies. In fact, all these
remainder strategies involve deflection routing technique.

In order to allow a better illustration of 3-Reordering in the
network, we provide absolute 3-Reordering results. Specifi-
cally, Fig. 6 depicts the ratio of received packets, which be-
come 3-Reordered or more (i.e., absolute 3-Reordering ratio).
As can be seen, absolute values present a behavior inline with
the reordering packet ratio. For high loads, differences between
the strategies can be appreciated, outperforming ConvFDL the
remainder ones. However, towards lower loads, in a more
realistic OBS scenario, all strategies behave equally.

VI. IMPACT OF BURST REORDERING ON TCP
PERFORMANCE

In this section, we quantify the impact of burst reordering
on final TCP throughput. Taking into account the already
measured 3-Reordering ratio at the burst layer, we derive
a worst case situation for 3-Reordering packet ratio. Then,
considering both burst reordering and burst loss pernicious
effects, we provide a new figure of merit, called PFR, which
quantifies the probability to invoke fast retransmit algorithm in
TCP Reno. Finally, as the key point of this work, we estimate
the theoretical TCP throughput over the scenario under study,
which allows us to conclude on its viability.

A. Worst Case Scenario for 3-Reordering Packet Ratio

As seen before, 3-Reordering ratio has been quantified at
the OBS layer. These results, a priori, do not hold for 3-
Reordering packet ratio, as multiple packets (or no packets)
may be contained in each burst. However, it is noticeable that,
due to the n-Reordering definition, only the first packet of an



n-Reordered burst would be also considered as n-Reordered.
Intuitively, this leads to think that an upper bound for the
n-Reordering packet ratio is given when exactly 1 packet per
TCP flow is contained in each burst. We propose the following
analysis to verify our hypothesis.

Let P (Nr ≥ nr) denote the Complementary Cumulative
Distribution Function (CCDF) of a burst to become at least nr-
Reordered. As shown in [14], if there are exactly np packets
of the same TCP flow in each burst, the probability of a packet
to be at least nr-Reordered is

P (N∗r ≥ nr) =
1
np
P (Nr ≥

⌈
nr

np

⌉
), np, nrεN. (1)

On the other hand, if there is only one packet of the same
TCP flow in nb bursts, the probability of a burst to be at least
nr-Reordered is

P (N∗r ≥ nr) = P (Nr ≥ nb nr), nb, nrεN. (2)

Looking at (2), note that, due to the non strictly monotone
behavior of the CCDF, the upper bound for P (N∗r ≥ nr) is
given when nb = 1 (i.e., exactly one packet per burst) . This
agrees with our assumption. Let us focus now on (1). Here,
particularizing for np = 1, we have that P (N∗r ≥ nr) =
P (Nr ≥ nr). Therefore, to ensure the worst case assumption,
the following inequation must hold:

P (Nr ≥ nr) ≥
1
np
P (Nr ≥

⌈
nr

np

⌉
), np, nrεN. (3)

With demonstration purposes, we have obtained the CCDF
of the n-Reordering ratio for each strategy under study. Indeed,
we observe how, for nr = 3 and npεN , the gathered results
accomplish inequation (3). This shows that we truly contem-
plate the worst case scenario for the 3-Reordering ratio.

B. TCP Throughput Estimation

The aforementioned analysis allows us to estimate a worst
case for the final TCP throughput, in the case that it would run
over the network under study. With such purposes, according
to the conclusion above, we assume that 1 packet per TCP
flow is contained in each burst. Moreover, we consider that,
in the case of contention, a burst is dropped. Thus, packet loss
probability PL equals to burst loss probability PB .

In the case that the receiver does not use selective acknowl-
edgements, and the sender uses the basic congestion control
presented in [3], reordering has the same effect as packet
loss. In fact, reordered packets which exceed the DUP-ACK
threshold also trigger the fast retransmit algorithm (i.e., as
if they would have been lost). Therefore, the probability to
invoke fast retransmit algorithm can be stated as

PFR = P (N∗r ≥ nr) + PL. (4)

In Fig. 7, we depict the upper bound for PFR for a
DUP-ACK threshold set to 3. In particular, it is obtained as

Fig. 7. Probability to trigger TCP fast retransmit
(worst case scenario)

PFR = P (Nr ≥ 3)+PB , using the results presented in Fig. 2
and Fig. 6. As seen, for high loads, Conv and ConvFDL lead
to better results, due to the lower reordering they introduce.
However, for lower loads, all combined strategies provide
similar performance. This is due to the fact that, along this
range, 3 reordering ratio dominates in front of PL. The fact
that Conv alone provides substantially worse performance,
demonstrates the need for additional contention resolution in
OBS networks.

Up to now, several analysis have been proposed in the
literature to model the steady state throughput of a TCP
connection. Among them, Mathis et al. [15] described the
behavior of TCP by a simple model, which considered only
the congestion avoidance phase of TCP. Alternatively, Padhye
et al. [16] developed a more accurate model, considering
both congestion avoidance and retransmissions caused by time
out. In particular, the authors concluded that the theoretical
throughput of a TCP session can be approximated as

BTCP '

min

Wmax
RTT ,

MSS

RTT
√

2bp
3 +T0 min

(
1,3
√

3bp
8

)
p(1+32p2)

 (5)

where Wmax is the maximum receiver advertised window
(typically 64 kB), RTT is the round trip time in seconds,
MSS is the maximum segment size (typically 1460 bytes in
Ethernet), T0 is the mean duration of a TCP retransmission
timeout (typically 1 s, as specified in [17]), b is the number of
TCP segments an ACK refers to (typically b = 2 if delayed
ACK [18]) and, finally, p is the total packet loss probability
along the path (PFR since, in this scenario, 3-Reordering has
the same effect as packet loss). Fig. 8 illustrates, for different
RTT values, the theoretical TCP throughput according to this
model. Mainly, it depicts BTCP and the limitation due to the
receiver limitation window, both function of p. In this way,
given a certain p, the theoretical TCP throughput will be the
minimum of both curves.

As mentioned earlier, OBS networks are usually dimen-
sioned to achieve burst loss probabilities ranging from 10−3



Fig. 8. Theoretic TCP throughput (bits/s) according
to the model proposed in Padhye et al. [16]

to 10−6. Looking at Fig. 7, a network dimensioned to achieve
these values (as seen in Fig. 2, overdimensioning the network
by 1.25 - 1.35) would experience PFR values from 10−2 to
10−3, depending on the strategy used. Observing now Fig.
8, we find that, for these p values, the performance of TCP
is highly affected by the reordering introduced at the OBS
layer. In fact, to assure the proper performance of TCP, p
should be lower than 10−3, so that the limiting factor would
be the receiver advertised window, rather than the reordering
introduced in the network.

This demonstrates that reordering should be also considered
when dimensioning an OBS network for TCP traffic. As seen,
its impact on TCP is much more significant than PL in the
range of operation of typical OBS networks. Moreover, as
far as TCP performance is concerned, almost all combined
contention resolution strategies under study behave similarly.
Although we mentioned earlier that ConvDeflFDL may out-
perform the remainder, such improvements are hidden by the
fact that 3-Reordering dominates in front of PL.

VII. CONCLUDING REMARKS

In this paper, we propose a layered framework to quantify
the impact of burst reordering on TCP performance. First of
all, we measure the reordering introduced by several con-
tention resolution strategies. With such purposes in mind, we
use the packet reorder metrics proposed by the IETF.

Two different approaches to tackle reordering in an OBS
scenario have been highlighted and subsequently evaluated.
On the one hand, reordering can be solved directly at the OBS
layer, by means of well dimensioned buffers. On the other
hand, reordering can be left to higher layers, expecting this
one to be solved by them.

For the former strategy, we quantify the size of the buffers
which should be placed at OBS edge nodes on a per flow
basis. Following this line, we find that deflection routing pro-
hibits this solution, since the introduced extents are extremely
high. Conversely, we demonstrate that buffering introduces
significantly lower extents, which would, a priori, enable this
strategy. For the latter strategy, we focus on its impact on
final TCP Reno performance. We propose a new figure of

merit, named PFR, which considers not only the pernicious
effects from packet loss, but also the ones from caused by
reordering. This allows us to conclude, based on the model
proposed by Padhye et al., that the usual OBS operating range
fits no more. On the contrary, network should be dimensioned
taking into account not only burst loss probability, but also
burst reordering introduced by contention resolution.

Further work would address the comparison of both strate-
gies from the network planning point of view. This work
would study which solution is more cost effective: the resource
overdimensioning required for the proper performance of TCP
or the placement of buffers in OBS edge nodes, making in this
way reordering transparent to TCP.
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