

Architectures for

Optical Burst Transport Networks

- A View Beyond QoS -

Christoph Gauger gauger@ikr.uni-stuttgart.de

christoph@cgauger.de

HHI-Kolloquium

Berlin, 4. April 2006

INSTITUT FÜR KOMMUNIKATIONSNETZE D RECHNERSYSTEME

e-Photen

Universität Stuttgart

Trends and Motivation

Internet emerged as the global platform for communication

- Sustained traffic growth due to fixed/mobile broadband access • → Migration towards optical metro and core networks
- Highly dynamic and asymmetric traffic profiles → Flexible packet transport
- Next generation networks demand quality of service QoS → Support from transport networks

OBS proposed as long-term IP-over-WDM solution

- Scientific work centers around QoS of OBS-only scenarios Few realization and scalability evaluations
- How to find optimal architectures combining QoS and realization arguments? Missing evolution link to existing wavelength-switched networks
- → How to build burst-switched networks on wavelength-switched networks?

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 2, 5.4.06, HHIPres2.fm

Universität Stuttgart

Outline

Optical burst switching architecture

- Introduction and functional components
- Contention resolution for high QoS
- Integrated evaluation including realization and scalability

· OBS meets wavelength-switching

- Motivations for virtual topology
- Key trade-offs and realizations
- Optical Burst Transport Network (OBTN)
 - Network and node architecture -
 - Performance evaluation

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 3, 5.4.06, HHIPres2.fm

Optical Burst Switching

Optical Burst Switching

OBS Functional Components

Contention Resolution

- very effective as all WDM channels shared among all bursts
- but: low burst loss probabilities only for $\geq 100 \lambda s$
- → additional schemes necessary

Time domain – buffering

- simple fiber delay lines (FDLs) in nodes
- no random access functionality
- FDL operated in WDM
- prioritized reservation of buffered bursts with JET possible

Space domain – deflection/alternative routing

- uses entire network as resource for contention resolution
- additional network load due to detours → positive feedback

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 8, 5.4.06, HHIPres2.fm

FDL Buffer Performance

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 11, 5.4.06, HHIPres2.fn

FDL Buffer Performance

Different buffer configurations with same P yield comparable performance • → select the configuration based on realization arguments

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 12, 5.4.06, HHIPres2.fm

Universität Stuttgart

FDL Buffer Performance

Universität Stuttgart

- Few ports: different buffer configurations with same P yield comparable QoS
 → select the configuration based on realization arguments
- Many ports: QoS depends on buffer configuration
 → further evaluate QoS and realization trade-off

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 13, 5.4.06, HHIPres2.fm

Universität Stuttgart

۵

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 14, 5.4.06, HHIPres2.fm

Integrated Evaluation

Integrated Evaluation

Tune-and-Select Architecture (TAS)

Node Parameters

Impact on performance

- Number of fibers N
- Number of wavelengths per fiber M
- Contention resolution scheme
 - P(

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 17, 5.4.06, HHIPres2.fm

- Splitting loss: 1/N, 1/NM
- Noise of SOA and EDFAs
- Crosstalk

Power loss

Universität Stuttgart

TAS with FDL Buffers

Evaluation Methodology

- 1. Analysis of signal degradation between two regeneration points
 - TAS-shFDL: node-to-node path is critical signal path
 - → maximum number of wavelengths per fiber M_{max}
 - → maximum throughput

Maximum Throughput

- · Maximum throughput always between 2 and 6 Tbps
- Greatest for TAS and smallest for TAS-dFDL
- More FDLs in TAS-shFDL yield smaller nodes

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 20, 5.4.06, HHIPres2.fm

Effective Throughput

- Effective throughput between 1.5 and 4 Tbps
- FDL buffers improve utilization
- · More FDLs lead to better utilization but also to smaller nodes → some TAS-shFDL yield lower effective throughput than TAS

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 21, 5.4.06, HHIPres2.fm

Outline

Optical burst switching architecture

- Introduction and functional components
- Contention resolution for high QoS
- Integrated evaluation including realization and scalability

· OBS meets wavelength-switching

- Motivations for virtual topology Key trade-offs and realizations
- Optical Burst Transport Network (OBTN)

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 22, 5.4.06, HHIPres2.fm

- Network and node architecture
- Performance evaluation

Wavelength Switching Transports packets in lightpaths Two-way signaling based on ASON, GMPLS, "lambda grid" 06, HHI Kolloquium - C. M. Gauger, Slide 23, 5.4.06, HHIPres2.fm Universität Stuttgart

Universität Stuttgart

Wavelength Switching

OBS meets Wavelength Switching

OBS meets Wavelength Switching

Optical burst switching (OBS)
 Fine-grain statistical multiplexing

λ grid 🗙

Universität Stuttgart

- Wavelength switching
 - Coarse-grain provisioning and recovery

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 25, 5.4.06, HHIPres2.fm

- Mature technology \rightarrow inexpensive bandwidth
- OBS is often proposed to replace wavelength-switched core networks
 But: lambda grids are well-suited for core transport networks
 - But: high aggregation does not require fine-granular statistical multiplexing

Optical burst switching (OBS)
 Fine-grain statistical multiplexing

Wavelength switching

- Coarse-grain provisioning and recovery
 Mature technology → inexpensive bandwidth
- OBS is often proposed to replace wavelength-switched core networks
 - But: lambda grids are well-suited for core transport networks
 - But: high aggregation does not require fine-granular statistical multiplexing

Intelligent combination instead of rapid replacement

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 26, 5.4.06, HHIPres2.fm

Universität Stuttgart

<image>

 Motivations for Virtual Topology
 Motivations for Virtual Topology

 Image: Construction of Virtual Construction Constructin Constructin Construction Construction Construction Constructio

Universität Stuttgart

- Cost of switching dominates cost of transport
- Reduction of node size becomes a primary concern
- ➡ Bypass intermediate nodes to reduce transit traffic

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 29, 5.4.06, HHIPres2.fm

Virtual Topology Trade-offs

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 30, 5.4.06, HHIPres2.fm

Virtual Topology Trade-offs

Virtual Topology Trade-offs

Outline

Optical burst switching architecture

- Introduction and functional components
- Contention resolution for high QoS
- -Integrated evaluation including realization and scalability

OBS meets wavelength-switching

- Motivations for virtual topology
- Key trade-offs and realizations -
- Optical Burst Transport Network (OBTN)
 - Network and node architecture -
 - Performance evaluation

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 33, 5.4.06, HHIPres2.fm

Optical Burst Transport Network (OBTN)

Optical Burst Transport Network (OBTN)

Optical Burst Transport Network (OBTN)

Optical Burst Transport Network (OBTN)

Optical Burst Transport Network (OBTN)

Universität Stuttgart

- 1. Direct lightpaths as virtual links
- 2. Constrained alternate routing along fiber links of primary route → Resolves contention without route length variation

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 37, 5.4.06, HHIPres2.fm

- 1. Lightpaths as multi-hop virtual links
- 2. Constrained alternate routing along fiber links of primary route
- 3. Shared overflow capacity compensates for traffic on alternate routes
- ightarrow Improves statistical multiplexing as aggregated on few single-hop virtual links

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 38, 5.4.06, HHIPres2.fm

Optical Burst Transport Network (OBTN)

- 1. Lightpaths as multi-hop virtual links
- 2. Constrained alternate routing along fiber links of primary route
- 3. Shared overflow capacity compensates for traffic on alternate routes
- 4. Effective contention resolution
 - → Achieves high QoS and utilization

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 39, 5.4.06, HHIPres2.fm

OBTN Node View

Unified Modeling of Architectures

05-2006, HHI Kolloquium - C. M. Gauger, Slide 41, 5.4.06, HHIPres2.fm

Universität Stuttgart

Universität Stuttgart

Performance Evaluation

- European reference topology as core network 16 nodes
 - 23 links in physical topology
- · Optical MANs abstracted as traffic sources
- Traffic
 - Population-based demand model, approx. 10 Tbps - Poisson arrivals
 - Exponential burst transmission time, mean h = 10µs
- FDL buffer
 - Single FDL using WDM with 32 wavelengths - Delay of 4 mean burst transmission times

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 42, 5.4.06, HHIPres2.fm

Universität Stuttgart

QoS Comparison

BoCS requires much higher overprovisioning than OBS

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 43, 5.4.06, HHIPres2.fm

QoS Comparison

- BoCS requires much higher overprovisioning than OBS
 OBTN in between BoCS and OBS
 - β: shared overflow capacity allocation is very effective

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 44, 5.4.06, HHIPres2.fm

QoS Comparison

Universität Stuttgart

Universität Stuttgart

Universität Stuttgart

٠

- BoCS requires much higher overprovisioning than OBS
 OBTN in between BoCS and OBS
- β: shared overflow capacity allocation is very effective
- ➡ Further resource studies for defined QoS criteria

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 45, 5.4.06, HHIPres2.fm

Number of Switch Ports

OBTN requires fewest number of ports – trunk and overall
 Small β already effective → few shared overflow capacity

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 46, 5.4.06, HHIPres2.fm

Number of Switch Ports

- OBTN requires fewest number of ports trunk and overall
- Small β already effective → few shared overflow capacity
 Robust regarding QoS criterion: 10⁻⁴ → 10⁻⁵

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 47, 5.4.06, HHIPres2.fm

Node and Network Resources

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 48, 5.4.06, HHIPres2.fm

Node and Network Resources

Alternative OBTN Virtual Topologies

um - C. M. Gauger, Slide 50, 5,4,06, HHIPres2 fm

Alternative OBTN Virtual Topologies

Alternative virtual topology desig

Path length-based
Demand-based
Combined

Universität Stuttgart

Universität Stuttgart

➡ Less densely-meshed virtual topologies in OBTN feasible

- slightly less fiber hops
- slightly more switch ports

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 51, 5.4.06, HHIPres2.fm

Conclusions

(c) IKR 2005-2006 HHI Kollog

- FDL buffers effectively resolve contention
 → Low burst loss probability at high channel utilization
- Additional ports to be considered in integrated evaluation of scalability
 → Buffer has significant impact regarding signal degradation
 - \rightarrow Few or no improvement regarding the maximum effective throughput
- · Motivations and key trade-offs for burst transport with virtual topology
- Optical Burst Transport Network (OBTN) architecture introduced
- · Unified resource modeling of OBS, BoCS, and OBTN
- Performance and resource evaluation for OBTN
 → Yields overall high quality of service
 - \rightarrow Reduces switch ports with limited penalty in network capacity compared to OBS
- Overall reduction of resource requirements

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 52, 5.4.06, HHIPres2.fm

Universität Stuttgart

Universität Stuttgart

MMUNIKATIONSNE1

Integrated performance and technology analysis

- Broader application in projects
- Provide simplified models for non-experts

Further OBTN modeling and evaluation

- Optimal virtual topology design
- Extend resource studies to technological scalability analyses
- Control plane issues
- Migration scenarios for OBS: performance, technology, control, business .

Research on photonic networks and systems: We should

- ... narrow the gap between technology, systems, networks, and applications
- ... also build the stuff, lots of activities in Asia
- ... watch the research networks community

(c) IKR 2005-2006, HHI Kolloquium - C. M. Gauger, Slide 53, 5.4.06, HHIPres2.fm

Architectures for

Optical Burst Transport Networks - A View Beyond QoS -

Christoph Gauger gauger@ikr.uni-stuttgart.de christoph@cgauger.de

> HHI-Kolloquium Berlin, 4. April 2006

