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Network QoS analysis
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OBS Scenario
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Contention Resolution

« Wavelength domain — wavelength converters
- all WDM channels on a fiber shared among all bursts
- low burst loss probabilities only for many is
COSEY .. .
D [ additional mechanism necessary
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Contention Resolution

1 Q FDL buffer
Ne— @

« Wavelength domain — wavelength converters

e Time domain — FDL buffers
- simple fiber delay lines (FDLS) in nodes

CO3ST
”N - only discrete delays and no random access functionality
N

- FDL operated in WDM
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Evaluation Model

Network dimensioning

- demands from population model
- 10 Gbps line-rate per A

- tight based on Erlang model

Burst traffic characteristics
- Poisson arrivals
- exp. burst lengths with mean h =10 us

Full wavelength conversion

FDL buffer

- 1,2,3,0r4 FDLs

- each FDL in WDM with 8A

- FDL delays multiples of 2h = 20 us

COST266/LION reference n/fw CN
traffic matrix for year 2004
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Network QoS
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Network QoS
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Network QoS
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« Wavelength conversion alone not attractive
Significant improvement with FDLs possible
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Integrated Evaluation
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OBS Node Design

Granularity

Switching
Technology

Max. FDL delay

1 10 100 1 10 100 1 10
nano sec MICro sec milli sec

100

o Granularity determines switching technology and vice versa

g 0 switching time << mean burst duration
< P
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Tune-and-Select Architecture (TAS)

Header Processing
+ Controller

=0s

M J N
proposed by H. Buchta, E. Patzak, J. Saniter, HHI
ECOC 2002, ITG 2002

* Single-stage switching matrix
 Non-blocking
COSEY .
P « Full wavelength conversion
<’ « Multicast capable
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System Parameters

Header Processing
+ Controller
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Impact on performance Impact on signal
« Number of fibers N o Splitting loss: 1/N, 1/NM
* Number of wavelengths per fiber M ¢ Noise of SOA and EDFAs
 Contention resolution scheme  Crosstalk
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TAS with FDL Buffers
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Evaluation Methodology
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1. Analysis of signal degradation between two regeneration points
- 4 input/output fibers
- state-of-the-art component parameters
[ maximum number of wavelengths per fiber M5« for BER 10722
[ maximum throughput
2. Simulation/Analysis of QoS using My, ax
- same architecture and functionality
0 max. utilization for tolerable burst loss probability Pj,es = 107
3. Integration
[1 effective throughput

2.

3 3.

1.
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Maximum Throughput
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« Maximum throughput in all architectures between 2 and 6 Tbhps
» Greatest for TAS and smallest for TAS-dFDL
« More FDLs in TAS-shFDL yield smaller nodes
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Maximum Throughput
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10 Gbps 40 Gbps

« Maximum throughput in all architectures between 2 and 6 Tbhps
» Greatest for TAS and smallest for TAS-dFDL

« More FDLs in TAS-shFDL yield smaller nodes

 Node size exhibits strong dependence on bitrate
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Effective Throughput
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« Effective throughput between 1.5 and 4 Tbps
 FDL buffers improve utilization
» More FDLs lead to better utilization but also to smaller nodes
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Effective Throughput
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10 Gbps 40 Gbps

« Effective throughput between 1.5 and 4 Tbps
 FDL buffers improve utilization

» More FDLs lead to better utilization but also to smaller nodes

[0 some TAS-shFDL yield lower effective throughput than TAS
x « TAS-shFDL with 40 Gbps benefits more (due to absolutely fewer As)
2
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Summary and Outlook

e-Phot®n
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QoS in OBS networks
[1 contention resolution with FDLs improves utilization

Node scalability analysis
[1 advanced FDL buffers not necessarily improve achievable throughput

Architecting efficient optical networks
[1 optical systems and technology still mostly "analogue”
[1 network and node resources and limits have to be considered

Different node architectures and technologies
Integarted studies with higher layer studies

- overall network structure and aggregation hierarchies
- Impact of/on control plane

Abstraction and integration methodology
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Technology Parameters
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Technology
Noise and crosstalk considered

Min. tolerable Q-factor 10
(= BER 107%)

State-of-the-art component parameters

Node input -16 dBm
output 0 dBm
EDFA noise figure |6 dB
max. gain 30dB
max. power |19 dBm
SOA noise figure |11 dB
max. gain 17 dB
max power |11 dBm
extinction 50 dB
Splitter/Comb | excess loss | 0.3-3 dB
WDM MUX/ | excessloss |5dB
DeMUX crosstalk -30 dB
A converter input power |-16 dBm
output power | 5 dBm
FDL loss 0.2 dB/km
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University of Stuttgart




Methodology
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Node Dimensioning and Position
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. with only degree 2 and small link to Munich dominates

- local resolution with ConvFDL yields few improvement [ Defl needed
 Leipzigisin core with degree 5, large links to all adjacent cities
x - local resolution with ConvFDL successful
g o

- ConvFDLDefl even more efficient due to large number of alternatives
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Principal Behavior
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[1 Principle behavior is the same for both network topologies
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Evaluation Methodology
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« Number of fibers, bitrate, min. tolerable Q-factor (left)
LI maximum number of wavelengths M2«
1 maximum throughput

 Number of fibers and wavelengths, bitrate, max. tolerable P,55 (right)
(1 utilization for given Pjgss

COST
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Burst Scheduling
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reservation individual
horizon reservations

Reserve a Limited Duration Reserve a Fixed Duration
no void filling, e.g. LAUC, Horizon void filling, e.g. LAUC-VF, JET

« Huge amount of proposals for optimization
- rearrangement of bursts, but: additional signalling needed
- gap minimization
- window-based algorithms for blocking switching matrices
« Two implementations reported for ms and ps bursts
[1 complexity of JET is not prohibitive

Institute of Communication Networks and Computer Engineering University of Stuttgart



Burst Scheduling
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joint work with Walter Cerroni, University of Bologna

o Offsets lead to reservations spread over time [J voids
[1 void filling can reduce this negative effects

 No improvement by void filling for offset == 0 or constant

« Significant improvement only for large offset scenarios

[1 offset-based QoS scheme
[1 FDL buffer reservation
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