

FILST

Architecting Efficient Optical Burst Switching Networks

Christoph Gauger gauger@ikr.uni-stuttgart.de

- Photonic research integration
- Network performance of contention resolution
- Integrated node scalability analysis

COST 279 Final Seminar, July 27-29 2005, Lisbon

e-Photon Institute of Communication Networks and Computer Engineering

ONe State of Communication Networks and Computer Engineering

ONe State of Communication Networks and Computer Engineering

ONe State of Communication Networks and Computer Engineering

COST

e-Phot@n

ONe

Outline

Network QoS analysis

given dimensioning

contention resolution schemes

QoS performance

Node scalability and throughput analysis

2.5 10 40 Gbps

TAS-I TR

HUST

e-Phot@n

ONe

OBS Scenario

- Burst assembly in edge node, variable length bursts
- Out-of-band burst headers
- Tell-and-go transmission

- Bursts stay in optics
- Headers electr. processed
- Just-enough time (JET) reservation scheme

HUST

e-Phot@n

ONe

Contention Resolution

• Wavelength domain – wavelength converters

- all WDM channels on a fiber shared among all bursts
- low burst loss probabilities only for many λs
- ➔ additional mechanism necessary

HIST

e-Phot@n

ONe

Contention Resolution

- Wavelength domain wavelength converters
- Time domain FDL buffers
 - simple fiber delay lines (FDLs) in nodes
 - only discrete delays and no random access functionality
 - FDL operated in WDM

Institute of Communication Networks and Computer Engineering

Evaluation Model

Network dimensioning

- demands from population model
- 10 Gbps line-rate per λ
- tight based on Erlang model

• Burst traffic characteristics

- Poisson arrivals
- exp. burst lengths with mean $h = 10 \ \mu s$
- Full wavelength conversion
- FDL buffer
 - 1, 2, 3, or 4 FDLs
 - each FDL in WDM with 8λ
 - FDL delays multiples of $2h = 20 \ \mu s$

COST266/LION reference n/w CN traffic matrix for year 2004

Institute of Communication Networks and Computer Engineering

Network QoS

• Wavelength conversion alone not attractive

Institute of Communication Networks and Computer Engineering

COST

e-Phot@n

ONe

Network QoS

- Wavelength conversion alone not attractive
- Significant improvement with FDLs possible

Institute of Communication Networks and Computer Engineering

HUST

e-Phot@n

ONe

Network QoS

- Wavelength conversion alone not attractive
- Significant improvement with FDLs possible
- → Multiple FDLs: very low loss probabilities up to medium/high loads

Integrated Evaluation

e-Phot
 ONe

Institute of Communication Networks and Computer Engineering

OBS Node Design

- Granularity determines switching technology and vice versa
- → switching time << mean burst duration</p>

EU 51

e-Phot@n

ONe

Institute of Communication Networks and Computer Engineering

HUSH

e-Phot@n

ONe

Tune-and-Select Architecture (TAS)

ECOC 2002, ITG 2002

- Single-stage switching matrix
- Non-blocking
- Full wavelength conversion
- Multicast capable

Institute of Communication Networks and Computer Engineering

HUST

e-Phot@n

ONe

System Parameters

Impact on performance

- Number of fibers N
- Number of wavelengths per fiber M
- Contention resolution scheme

Impact on signal

- Splitting loss: 1/N, 1/NM
- Noise of SOA and EDFAs
- Crosstalk
- Power loss

HUSH

e-Phot@n

ONe

TAS with FDL Buffers

Performance Improvement

- due to buffering
- TAS-shFDL: multiple FDLs

- → Signal Degradation
- due to increased splitting loss
- due to loss in FDL

Institute of Communication Networks and Computer Engineering

Evaluation Methodology

1. Analysis of signal degradation between two regeneration points

- 4 input/output fibers
- state-of-the-art component parameters
- → maximum number of wavelengths per fiber M_{max} for BER 10⁻²²
- maximum throughput

2. Simulation/Analysis of QoS using M_{max}

- same architecture and functionality
- → max. utilization for tolerable burst loss probability $P_{loss} = 10^{-6}$
- 3. Integration
 - → effective throughput

Institute of Communication Networks and Computer Engineering

Maximum Throughput

- Maximum throughput in all architectures between 2 and 6 Tbps
- Greatest for TAS and smallest for TAS-dFDL
- More FDLs in TAS-shFDL yield smaller nodes

e-Photone

HUST

e-Phot@n

ONe

Maximum Throughput

- Maximum throughput in all architectures between 2 and 6 Tbps
- Greatest for TAS and smallest for TAS-dFDL
- More FDLs in TAS-shFDL yield smaller nodes
- Node size exhibits strong dependence on bitrate

Effective Throughput

- Effective throughput between 1.5 and 4 Tbps
- FDL buffers improve utilization
- More FDLs lead to better utilization but also to smaller nodes

Effective Throughput

- Effective throughput between 1.5 and 4 Tbps
- FDL buffers improve utilization
- More FDLs lead to better utilization but also to smaller nodes
 some TAS-shFDL yield lower effective throughput than TAS
- TAS-shFDL with 40 Gbps benefits more (due to absolutely fewer λ s)

Summary and Outlook

QoS in OBS networks

→ contention resolution with FDLs improves utilization

• Node scalability analysis

→ advanced FDL buffers not necessarily improve achievable throughput

• Architecting efficient optical networks

- → optical systems and technology still mostly "analogue"
- → network and node resources and limits have to be considered
- Different node architectures and technologies
- Integarted studies with higher layer studies
 - overall network structure and aggregation hierarchies
 - impact of/on control plane
- Abstraction and integration methodology

Architecting Efficient Optical Burst Switching Networks

Christoph Gauger gauger@ikr.uni-stuttgart.de

Acknowledgments

M. Köhn and J. Scharf of UST-IKR H. Buchta, E. Patzak and J. Saniter of Fraunhofer HHI, Berlin

COST 279 Final Seminar, July 27-29 2005, Lisbon

Technology Parameters

Technology

- Noise and crosstalk considered
- Min. tolerable Q-factor 10 (= BER 10⁻²²)

State-of-the-art component parameters

Node	input output	-16 dBm 0 dBm
EDFA	noise figure max. gain max. power	6 dB 30 dB 19 dBm
SOA	noise figure max. gain max power extinction	11 dB 17 dB 11 dBm 50 dB
Splitter/Comb	excess loss	0.3-3 dB
WDM MUX/ DeMUX	excess loss crosstalk	5 dB -30 dB
λ converter	input power output power	-16 dBm 5 dBm
FDL	loss	0.2 dB/km

Methodology

Institute of Communication Networks and Computer Engineering

HUS

e-Phot

Node Dimensioning and Position

- **Stuttgart** with only degree 2 and small link to Munich dominates
- Leipzig is in core with degree 5, large links to all adjacent cities
 - local resolution with ConvFDL successful
 - ConvFDLDefl even more efficient due to large number of alternatives

COST

e-Phot@n

ONe

Principal Behavior

➔ Principle behavior is the same for both network topologies

Institute of Communication Networks and Computer Engineering

HIBT

e-Phot@n

ONe

Evaluation Methodology

- Number of fibers, bitrate, min. tolerable Q-factor (left)
 - → maximum number of wavelengths M_{max}
 - maximum throughput
- Number of fibers and wavelengths, bitrate, max. tolerable Ploss (right)
 - → utilization for given P_{loss}
 - ➔ effective throughput

Institute of Communication Networks and Computer Engineering

e-Phot

Burst Scheduling

- Huge amount of proposals for optimization
 - rearrangement of bursts, but: additional signalling needed
 - gap minimization
 - window-based algorithms for blocking switching matrices
- Two implementations reported for ms and µs bursts
 - ➤ complexity of JET is not prohibitive

Burst Scheduling

- joint work with Walter Cerroni, University of Bologna
- Offsets lead to reservations spread over time → voids
 → void filling can reduce this negative effects
- No improvement by void filling for offset == 0 or constant
- Significant improvement only for large offset scenarios
 - ➔ offset-based QoS scheme
 - ➔ FDL buffer reservation

Institute of Communication Networks and Computer Engineering

