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Photonic Research Integration
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Photonic Research Integration
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Photonic Research Integration
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Outline

M

given dimensioning QoS performance

Network QoS analysis

contention resolution 
schemes

Node scalability and throughput analysis
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node design
with different
functionalities

maximum/effective 
throughput

maximum node size
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OBS Scenario

...

OBS network

core node

control-channel

data-channels
OBS link

edge node

...
...

• Burst assembly in edge node,
variable length bursts

• Out-of-band burst headers
• Tell-and-go transmission

• Bursts stay in optics
• Headers electr. processed
• Just-enough time (JET)

reservation scheme 
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Contention Resolution

• Wavelength domain – wavelength converters
- all WDM channels on a fiber shared among all bursts
- low burst loss probabilities only for many λs
➔ additional mechanism necessary
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Contention Resolution
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FDL buffer

…

• Wavelength domain – wavelength converters
• Time domain – FDL buffers

- simple fiber delay lines (FDLs) in nodes
- only discrete delays and no random access functionality
- FDL operated in WDM



Institute of Communication Networks and Computer Engineering University of Stuttgart

• Network dimensioning
- demands from population model
- 10 Gbps line-rate per λ
- tight based on Erlang model

• Burst traffic characteristics
- Poisson arrivals
- exp. burst lengths with mean h = 10 µs

• Full wavelength conversion
• FDL buffer

- 1, 2, 3, or 4 FDLs
- each FDL in WDM with 8λ
- FDL delays multiples of 2h = 20 µs

Evaluation Model

COST266/LION reference n/w CN
traffic matrix for year 2004
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• Wavelength conversion alone not attractive

Network QoS
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Network QoS
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• Wavelength conversion alone not attractive
• Significant improvement with FDLs possible
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Network QoS
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• Wavelength conversion alone not attractive
• Significant improvement with FDLs possible
➔ Multiple FDLs: very low loss probabilities up to medium/high loads
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Integrated Evaluation
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OBS Node Design

Switching
Technology

1 100 1 10 100 1 10 100
nano sec micro sec milli sec

10

SOAs
MEMS

TWCs

second
1 10 100

Granularity burstpacket dynamic circuit

Max. FDL delay

• Granularity determines switching technology and vice versa 
➔ switching time << mean burst duration
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Tune-and-Select Architecture (TAS)
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proposed by H. Buchta, E. Patzak, J. Saniter, HHI
ECOC 2002, ITG 2002

• Single-stage switching matrix
• Non-blocking
• Full wavelength conversion
• Multicast capable
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System Parameters
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Impact on performance 
• Number of fibers N
• Number of wavelengths per fiber M
• Contention resolution scheme

Impact on signal
• Splitting loss: 1/N, 1/NM
• Noise of SOA and EDFAs
• Crosstalk
• Power loss
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TAS with FDL Buffers
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dedicated FDLs: TAS-dFDL shared FDL buffer: TAS-shFDL

➔ Performance Improvement
- due to buffering
- TAS-shFDL: multiple FDLs

➔ Signal Degradation 
- due to increased splitting loss
- due to loss in FDL
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Evaluation Methodology

1. Analysis of signal degradation between two regeneration points
- 4 input/output fibers
- state-of-the-art component parameters
➔ maximum number of wavelengths per fiber Mmax for BER 10-22

➔ maximum throughput
2. Simulation/Analysis of QoS using Mmax 

- same architecture and functionality
➔ max. utilization for tolerable burst loss probability Ploss = 10-6

3. Integration
➔ effective throughput

3.
1.

2.
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• Maximum throughput in all architectures between 2 and 6 Tbps
• Greatest for TAS and smallest for TAS-dFDL
• More FDLs in TAS-shFDL yield smaller nodes
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• Maximum throughput in all architectures between 2 and 6 Tbps
• Greatest for TAS and smallest for TAS-dFDL
• More FDLs in TAS-shFDL yield smaller nodes
• Node size exhibits strong dependence on bitrate
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Effective Throughput
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• Effective throughput between 1.5 and 4 Tbps
• FDL buffers improve utilization
• More FDLs lead to better utilization but also to smaller nodes
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Effective Throughput
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• Effective throughput between 1.5 and 4 Tbps
• FDL buffers improve utilization
• More FDLs lead to better utilization but also to smaller nodes

➔ some TAS-shFDL yield lower effective throughput than TAS
• TAS-shFDL with 40 Gbps benefits more (due to absolutely fewer λs)
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• QoS in OBS networks
➔ contention resolution with FDLs improves utilization

• Node scalability analysis
➔ advanced FDL buffers not necessarily improve achievable throughput

• Architecting efficient optical networks
➔ optical systems and technology still mostly "analogue"
➔ network and node resources and limits have to be considered

• Different node architectures and technologies
• Integarted studies with higher layer studies 

- overall network structure and aggregation hierarchies
- impact of/on control plane 

• Abstraction and integration methodology

Summary and Outlook
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Technology Parameters

Technology 
• Noise and crosstalk considered
• Min. tolerable Q-factor 10 

(= BER 10-22)

State-of-the-art component parameters

Node input 
output 

-16 dBm
0 dBm

EDFA noise figure
max. gain
max. power

6 dB
30 dB
19 dBm

SOA noise figure
max. gain
max power
extinction 

11 dB
17 dB
11 dBm
50 dB

Splitter/Comb excess loss 0.3-3 dB

WDM MUX/
DeMUX

excess loss
crosstalk

5 dB
-30 dB

λ converter input power
output power

-16 dBm
5 dBm

FDL loss 0.2 dB/km
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(1/N) (1/N*M) (1/N) (1/N*M)

TAS Node 1 TAS Node 2

3R 3R

Methodology
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Node Dimensioning and Position
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• Stuttgart with only degree 2 and small link to Munich dominates
- local resolution with ConvFDL yields few improvement ➔  Defl needed

• Leipzig is in core with degree 5, large links to all adjacent cities
- local resolution with ConvFDL successful
- ConvFDLDefl even more efficient due to large number of alternatives
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Principal Behavior

➔ Principle behavior is the same for both network topologies
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• Number of fibers, bitrate, min. tolerable Q-factor (left)
➔ maximum number of wavelengths Mmax
➔ maximum throughput

• Number of fibers and wavelengths, bitrate, max. tolerable Ploss (right)
➔ utilization for given Ploss
➔ effective throughput

Evaluation Methodology
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Burst Scheduling

t

reservation 
horizon

t

individual 
reservations

Reserve a Limited Duration 
no void filling, e.g. LAUC, Horizon

Reserve a Fixed Duration
void filling, e.g. LAUC-VF, JET

• Huge amount of proposals for optimization
- rearrangement of bursts, but: additional signalling needed
- gap minimization
- window-based algorithms for blocking switching matrices

• Two implementations reported for ms and µs bursts
➔ complexity of JET is not prohibitive 
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Burst Scheduling
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joint work with Walter Cerroni, University of Bologna

• Offsets lead to reservations spread over time ➔  voids
➔ void filling can reduce this negative effects

• No improvement by void filling for offset == 0 or constant
• Significant improvement only for large offset scenarios

➔ offset-based QoS scheme
➔ FDL buffer reservation


