A SIMULATION TECHNIQUE FOR DISTRIBUTED SYSTEMS
BASED ON A FORMAL SPECIFICATION BY SDL

W. Fischer, K.P. Sauer, W. Denzel

Unjversity of Stuttgart
Institute of Communications Switching and Data Technics

Seidenstrasse 36, D-7000 Stuttgart 1
Federal Republic of Germany

ABSTRACT

For some basic communications mechanisms within distributed
systems analytical approaches are available for calculating
throughput, transfer times, waiting times and some other
quantities [1,2], but for a large class of problems such
methods do not exist or are not applicable due to the
systems' complexity. System simulation is a common way to
overcome this problem at least to a certain degree.

This paper deals with a simulation technique which works
with a formal description of the system of processes to be
simulated. This description is by means of SDL, the
"Specification and Description Language" recommended by
CCITT [3].

1. INTRODUCTION

In recent years a large amount of work has been done in developping formal
description techniques for the specification of communications protocols which are
the means for communication between processes in distributed systems. The need
for these formal techniques especially for protocols to be standardized is due to
the facts that

o the products of different manufacturers have to interwork according to a
distinct protocol.
o a specification to be recommended has to be checked for formal

correctness.

Besides the correct function of a protocol an essential item is its performance.
Evaluation of performance based on a formal specification can be done by analytic
investigations or by simulation. While mathematical analysis of. protocol
performance dealing with all features specified for example by an FSM [4] is often
too complex, simulation of a completely specified protocol is a very common task.
Until now most simulations are done by translating the formal specification into
any programming or simulation language. The drawbacks of this approach are the
long time needed for implementation and errors occuring by an inprecise

transltation.

The approach described here uses directly a formal specification by the
"Specification and Description Language" (SDL) recommended by CCITT. It has been
implemented as a tool for performance evaluation in the environment of an "SDL
workbench" which s currently developped at the institute. This tool set will
support specification, formal verification and performance evaluation of
protocols. It is clear that by this simulation approach also a certain
verification of the main features of the protocol is achieved, especially some
kinds of errors like Tlivelocks which are difficult to determine by formal
verification, can be detected if the probability for ntering such an error

11-4-1

condition is not too small for it being reached within the simulation.

2. THE LANGUAGE SDL

The Specification and Description Language 1is based on the concept of
communicating processes modelled as extended finite state machines (i.e. FSM with
additional context variables). Initially, SDL has been designed for the
specification of the internal logic processes in SPC switching systems. By some
extensions and a formal definition of the language made in the recent study period
it was made easier to use it for the specification of communications protocols.

An SDL system is a set of blocks. Blocks are connected to each other and to the
environment by channels. Within each block there are one or more processes.
These processes communicate with one another by signals and are assumed to execute

concurrently.

Based on a common SDL model there are currently two concrete syntaxes SDL/GR which
is a graphic form and SDL/PR which is a programming-language-like form. It is
possible to map a system defined by one concrete syntax to another. The SDL
syntax defines the rules for the definition of the items:

System, Block, Channel, Signal, Process, Process graph

Within the scope of this paper we shall concentrate on the definition of process
graphs. A process graph is a graph whose nodes are connected by directed arcs.

The following categories of nodes exist:
State, Input, Task, Output, Decision, Start, Stop, Create request, Procedure Call
Exchange of messages in SDL is achieved by two different approaches:

0 Shared variables (i.e. export and import of values)
o Transfer of signals via channels

For the sake of clearness in this paper we shall use the term "message" instead of
“signal" in contrast to the "continuous signal™.

As the transfer via channels happens asynchronously buffers have to be provided in
front of the processes. The model recommended by CCITT for the use with SDL
defines that each process has only one associated buffer which is served in FIFO
order. An exception from this FIFO order is allowed by the use of the save
symbol. If the next message in the buffer to be served is not listed by the input
nodes but by a save symbol this message will be kept in its place in the buffer
and the next one will be considered. If a message is listed neither in an input
node nor in a save symbol it will be absorbed.

CCITT does not recommend the use of priorities for the messages. As in real
applications priorities are widely used and SDL does not offer mechanisms to deal
with, we found the need to make an appropriate extension to the language. This
priority mechanism is described in detail in [10].

3. THE SDL-WORKBENCH

The simulation tool is part of a software environment for the specification,
formal protocol verification and performance simulation of distributed systems

(Figure 1).
Based on a common internal data structure which is a mapping of the process

graphs, wuse of both syntaxes of SDL is supported by a graphic editor and by an
SDL-Parser. The internal data structure is used by a tool for the formal

11-4-2

verification of protocols based on a reachability analysis by means of the state
perturbation approach [11], and by the tool for performance simulation which is
described in detail in this paper.

SDL/GR SDL/PR

Graphic
Editor

SDL
Parser

Common
Internal Data
Structure
Simulation Verification
Tool Tool
Figure 1

SDL Workbench
4. THE SIMULATION TOOL

The basic idea of this simulation technique is that processes are executed by
interpretation of the SDL process graphs (Figure 2). A time-true simulation
approach is used where events are initiated by tasks and output nodes of the
graphs. (A related approach using a draft version of SDL has been presented by
Gerrand [12] in 1976)

Process . Counters etc.
Graph for Statistics
R / Event List

Process Simulation

Graph Control

Transformation Tables
for Addresses
and Local Variables

Procedures Routing table
for end-to-end

Addressing

derived from the
Process Graphs

Figure 2
The Simulator

11-4-3

WAL AN

Each process with its associated input buffer is represented as a delay-loss unit.
A process graph can be shared by several incarnations of a process, so that
identical process graphs have to be mapped only once. The address information
carried by a message is two-fold:

o The global view uses an end-to-end addressing scheme which has to be
evaluated by each process by means of a routing table.
0 The local view defines immediately the adjacent processes.

Due to the fact that a process graph can be shared, each process has a
transformation table for converting the formal addresses of the graph into real
addresses of the system. A similar transformation is necessary for Tlocal

variables.

Processing time of a process is only represented by tasks and is expressed by its
distribution function F(t). All other actions to be taken are assumed not to
consume time. If processing time for any other event has to be considered a time
consuming task simply can be added. Each node contains the following informations
necessary for its processing:

o TASK: Distribution function for processing time; arithmetic or Tlogic
expression to be evaluated; functions like "TIMER START" and "TIMER STOP"
including parameters

o QUTPUT: Message name; address information; variables for values to be
transported.

o DECISION: Logic expression which can include a branching probability;
jumping distance for false-arc

o STATE: State name

o INPUT: Variables to be transported; enabling predicate

With these definitions we have implemented the following simulation algorithm:
o The nodes of a process graph are executed sequentially.

o If the actual node is a time-consuming TASK the holding time is
determined, added to the actual system time and entered into the
controlling event list with a pointer to the next node. Then the next
event within the event 1list is searched.

o If the actual node is a STATE, according to the priority mechanism the
input buffers of the processes are searched for messages and the
predicates representing the continuous signal are evaluated. If any
message has been found it will be taken out of the buffer and the
associated path of the process graph will be executed. If no message is
present the process is kept in this state and the next event in the event
1ist is searched. Similar action 1is taken for a "true" continuous
signal.

o If the actual node is an OUTPUT, the current process is interrupted and
control of the simulation will follow the message, i.e. execution
changes to the destination process until the next change in system time
(The destination process can either be in a state or in a time-consuming
task). Before the system time changes, the interrupted process will be
resumed and executed further. For resuming the process at the correct
position in the graph, suitable information is pushed onto a stack before
interrupting the process by an output.

o If the actual node is a TASK containing a "TIMER START" statement, the

system time for timeout 1is determined and entered into the event 1ist
including the name of the timer and the destination process. If the task

11-4-4

contains a "TIMER STOP" statement the associated event in the event list
is de]eted

0 A new event found in the event 1ist can either be the end of a holding
time, then execution of the associated process will continue with the
node determined by the event, or it is a timeout; then a message will be
put into the first place in the destination process' input buffer. 1In
this case control will only be passed to that process if it is in a
state.

There are two input sources for the simulator:

o The process graphs represented as a mapping of the graph structure used
by the tool
o The configuration description defining

- the local view of each process

- the routing table for end-to-end addressing

- transformation tables for mapping formal addresses into real
addresses

- the maximum length of each buffer

- parameters like rates, holding times etc.

- initial states, buffer contents and values of context variables

5. IMPLEMENTATION DETAILS
Application of the tool can be divided into three steps

1. System specification (Process graphs, configuration description)

2. Analysis of the system specification and synthesis of the simulator:
Arithmetic and logic expressions are converted into compilable procedure
definitions. (Experience showed us that interpretation of these
expressions by the simulator itself will bring a large decrease in
performance) These procedures are compiled and linked with the general
routines to generate the simulator.

3. Simulation run

The simulation tool is implemented in PASCAL, so for the sake of simplicity the
syntax of expressions in the process graphs must be PASCAL-1like too (CCITT defines
a CHILL-1ike syntax [6] for these expressions). The implementation of the event
list which contrecls all the time dependent actions 1is by means of a binary
searching tree which for a large number of entries is a good solution instead of a
linear list [5].

6. A CASE STUDY
6.1 The Model

For the demonstration of some features of the system we use a Single-lLink,
Multiple-LAP Protocol (The model has some similarity with the layer 2 of the ISDN
D-channel protocol [7]). While a 1lot of investigations have been done on
performance in the data transfer phase of the HDLC-Procedures [8] and of X.25
Level 3 [9] we shall focus on the procedures for setting up and releasing a

logical link.

Doing this we neglect the mechanisms for error recovery and flow control and
assume a constant length of 1024 bit for data packets and of 48 bit for control
packets (CONN, CONN-ACK, DISCONN and DISCONN-ACK).

The configuration of the simulated system is shown by Figure 3.

11-4-5

A1l buffers are given a maximum length of 10 places.

~o Vs

CONNECT
GENERATOR

11

DATA
GENERATOR

T

5

CONNEC
GENERATOQ

LAP T\,
/_1‘ CHANNEL

BA

.

MUX

MUX

_{:EI}* CHANNEL]
AB

H1 -

—{111

DATA
GENERATOR

Figure 3

System configuration

The process diagrams of some processes are shown in Figures 4a,b.

.......

~MUX8 DISC >—MuxB

DATA >-=MUX B

Figure 4a

Channel AB (Priority control in front of the channel)

11-4-6

I ;::{——

LAP

B,1

ACTIVE

[

I

DATA \ DATA i CONN. "\ DISC
GEN_> rea. | MUX A‘> DATA | GEN. 7 rea.
I [
DF: CONST. DF: CONST. OF: CONST. DF: CONST,
T= 0,5ms T=5ms T= Sms T=05ms
CONN > —MUX A DATA D>—MUXA [ACTIVE DISC >—=MUX A
WAIT

CONN. ACK Drg\cl&cx

™
PRIO=1

CONN ACK T DISC ACK
HUX A "2 PRIO= 2 PRIO=1 | MUXA—}PR!O:Z
[

I
STOP T1 CONN D-+MUXA sTOP T1 oisC >-’MUXA
[I | -
OF: CONST .
o START T1 & et START T1
_CONN DISC N\ CONN. [wWaIT
GEN. | CONN. ACK. CONE /7 GeN. \DISC_ACK

Figure 4b
LAP A

A connection between two corresponding LAPs is initiated by a connection generator
associated with each LAP on the left hand side of Figure 3. The arrival process
of these connections is determined by holding time T, and idle time T,, both
negative exponentially distributed. The arrival process of the data transferred
across the link is produced by a data generator associated with each LAP on each
side of the 1link and is assumed to be Poisson with arrival rate A,. As for the
sake of simplicity in the data transfer phase flow control mechan?sms are not

implemented we have to deal with blocking effects when buffers are full. So
To

overcome this problem we applied the commonly used principle of timeout and

retransmission (Timer T1).

We have assumed different processing times (in LAP and MUX) for control and data
packets (control: 0.5ms, data: 5ms) and have used transmission speeds of 16 and
64 kbit/s as used in the D-channel protocol of the ISDN. For obtaining minimum
setup times the CONN and CONN-ACK packets are given higher priority than the DATA
packets and the DISCONN and DISCONN-ACK packets. This can be achieved at two
places in the system:

In front of the MUX
In front of the channel

1.
2.

Both possibilities have been investigated.

11-4-7

6.2 Results

The main results we are interested in are the call setup time and the mean buffer
length in front of the channel depending on the maximum number of LAPs, their
holding- and idle times and the offered data load at each LAP.

We found that for constant channel load the number of LAPs has nearly no impact on
the results, what seems obvious when the relation between control load and data
load is taken into account.

Under these circumstances a good measure to relate the results to is the carried
load of a channel which in this case can be determined with a first order
approximation as

Yo = MLap *Ap * Top
nLAP‘ Mean number of active LAPs
Ap: Arrival rate of data packets

T Transmission delay for data packets in the channel

DD*
Figure 5 shows the obtained results, the mean call setup times and the mean
lengths of the buffer in front of the channel for the two different transmission
speeds. Included are the 95% confidence intervals.

5 25
® 16 kbit/s $ 16 kbit/s
% 6Lkbit/s , X 6L kbit/s
4]

_t
-
2
2 1 § 4“4 /
A/ .]
3 A z 2/
=1 X QLCasez 3 05 1 / Case 2
S ’/éﬁﬁ/ o -
b % offL”’/// N _43622629
S ; e ' = ¢ ' : "
0 02 04 06 08 1 0 0.2 0.4 06 08 1
CHANNEL LOAD CHANNEL LOAD
Figure 5
Results

Case 1: Priority control in front of MUX
Case 2: Priority control in front of the channel

The rapid increase of the call setup time above the channel load of 0.4 is due to
the Toss of signalling packets and timeout recovery.

11-4-8

With the parameters used within this study the bottleneck of the system is
represented by the channel. Performance improvements have easily been achieved by
using the applied mechanism in front of the channel.

7. SUMMARY

We have presented a simulation tool for distributed systems which uses a
specification by SDL, a language widely used for the specification of logic
processes in switching systems and of communications protocols by the
telecommunications industry, the standardization committees, and the PTT
administrations,

This tool has been developped at the University of Stuttgart, Institute of
Communications Switching and Data Technics and will be imbedded into an
"SDL-workbench" used for the specification, verification and performance
evaluation of distributed systems.

The main advantages of this approach are the short time needed for the
implementation of a model and the detailed mapping of the real system into the
simulated system. Additionally, a certain amount of errors occured in the formal
specification can be detected.

The simulation method of process graph interpretation has been demonstrated and
the simulation of a Single-Link, Multiple-LAP Protocol has been used as a case
study.

8. ACKNOWLEDGEMENTS

We wish to thank Prof. P. Kuehn for supporting this work, and A. Dettling for
carefully drawing the figures.

9. REFERENCES

[1] T. Raith, H.L. Truong: Analysis of HDLC Normal Response Mode with Full
Duplex Transmission - A new Calculation Method and Simulation.
Proceedings 10th ITC, Montreal, Canada, paper 3.4-2 (1983)

[2] G. Fayolle, E. Gelenbe, G. Pujolle: An Analytic Evaluation of the
‘ Performance of the "Send and Wait" Protocol. IEEE Transactions on
Communications, Vol. COM-26, No. 3, March 1978

[3] CCITT: Recommendations Z.101 to Z.104. Red Book, Geneva 1985

[4] H. Rudin: From Formal Protocol Specification Towards Automated
Performance Prediction. in "Protocol Specification, Testing and
Verification, III" (North Holland), 1983

J.H. Kingston: Analysis of Tree Algorithms for the Simulation Event
List. Acta Informatica, Vol. 22, Fasc. 1, 1985

[
o
-

[6] CCITT: Recommendation Z.200. Red Book, Geneva, 1985
[7] CCITT: Recommendations 1.440 and I1.441. Red Book, Geneva, 1985
[8] E.-H. Goeldner, H.L. Truong: A Simulation Study of HDLC-ABM with

Selective and Nonselective Reject. Proceedings 10th ITC, Montreal,
Canada, Paper 3.4-5 (1983)

11-4-9

[9]

(10]

(11]

[12]

W. Dieterle: A Simulation Study of CCITT X.25: Throughput Classes and
Window Flow Control. Proceedings 10th ITC, Montreal, Canada, Paper 3.3-6

(1983):

W. Fischer, K.P. Sauer, W. Denzel: A Simulation Technique for
Communications Protocols Based on a Formal Specification by SDL. in
"Protocol Specification, Verification and Testing, V" (North Holland),

1985

C.H. West: General Technique for Communications Protocol Validation.
IBM J. Res. Develop., Vol. 22, No. 4, July 1978

P. Gerrand: Applications of Processing State Transition Diagrams to
Traffic Engineering. Proceedings 8th ITC, Melbourne, Australia, Paper

313 (1976)

11-4-10

