
An Optimization-Heuristic Approach to Dynamic Optical Bypassing

Frank Feller
Institute of Communication Networks and Computer Engineering (IKR)
Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Email: frank.feller@ikr.uni-stuttgart.de

Abstract
Due to the growing traffic volume, energy consumption is becoming a major concern in transport networks. Dynamic
optical bypassing is one mechanism to reduce both energy consumption and resource requirements. In this paper, we
propose a dynamic optical bypassing algorithm based on simulated annealing. This algorithm is execution-time optimized
in view of periodic network reconfiguration e. g. every 15 minutes. An adjustable reconfiguration penalty assures stable
network operation by limiting circuit set-ups and tear-downs. Evaluating the algorithm in a 15-node reference network, we
obtain good bypass configurations in less than one minute. Moderate reconfiguration penalties efficiently reduce circuit
modifications without affecting energy efficiency.

1 Introduction
While the traffic volume in communication networks grows
exponentially, network operators face an increasing cost
pressure. One important cost component is the energy con-
sumption of network equipment. Traditionally, the energy
consumption of core networks has been considered negligi-
ble compared to other parts of the network. With the sprawl
of optical access technologies (FTTx) providing higher ac-
cess speeds without increasing the energy consumption of
the access network, the situation is changing [1]. Hence,
mechanisms to reduce the energy consumption in the core
are highly desirable.
In addition to the general growth trend, the traffic volume
varies on different time scales. The dominant characteris-
tic is a diurnal profile following human activity [2]. These
variations, with typically only 25 % of the peak load at
night, offer a great potential to save energy by switching
off unused network resources.
The emergence of mega data centers hosting cloud services
and applications is likely to change traffic characteristics at
a scale relevant to core networks. The data centers will ac-
count for a significant share of traffic. Cloud applications
may migrate between data centers, which entails an accord-
ing change of the traffic load in the network. A flexible use
of network node resources for different transmission paths
allows to serve the dynamic traffic with less hardware than
required in case of static network operation, thus allowing
CAPEX savings.
Today’s transport networks are multi-layer networks. They
generally consist of an optical lower layer, which is circuit-
switched at the granularity of wavelengths or fibers, and
electrical upper layers, of which the topmost is often
packet-switched. A typical configuration is IP/MPLS in
the upper layer and wavelength switched optical networks
(WSON) in the lower. Since optical switching is signif-

icantly more energy-efficient than electrical (packet) pro-
cessing, it is advantageous to switch traffic primarily in the
optical layer – provided that the optical circuit is reasonably
utilized. Dynamic optical bypassing describes the dynamic
set-up and tear-down of optical circuits. It allows recon-
figuring a multi-layer network for an energy and resource
efficient operation under varying traffic load.
The reconfiguration of network resources cannot happen in
arbitrarily short time. This is particularly true for the set-
up of optical circuits, which is said to take in the order of
15 to 30 minutes assuming currently deployed technology
(though official numbers are not available). A second rea-
son for limiting the frequency as well as the extent of net-
work reconfigurations is the stability of network operation.
The high reliability of transport networks is attributed to the
traditionally static and thus simple operation mode. While
cost pressure and energy efficiency targets will require a
change of this paradigm, approaches limiting operational
dynamics are likely preferred by network operators.
The limited speed and frequency of network reconfigura-
tions imply that faster traffic fluctuations cannot be ex-
ploited for energy savings. In addition, a prediction of
the traffic load for the respective reaction time is required.
The current technology allows dynamic optical bypassing
only to follow diurnal fluctuations (and other predictable
patterns). On the upside, less frequent reconfigurations al-
low the use of centralized approaches to determine the next
network configuration. At the expense of an increased sig-
naling and processing load, centralized mechanisms usu-
ally find more efficient configurations than distributed ap-
proaches.
In this paper, we present a centralized dynamic optical by-
passing algorithm based on the optimization heuristic of
simulated annealing. This algorithm is designed in view
of on-line application, i. e. it finds a good solution in the



order of minutes rather than a (near-)optimal one in much
more time. Parameters allow adjusting the trade-off be-
tween optical circuits and electrical switching. In addition,
a configurable penalty for setting up or tearing down cir-
cuits constrains the number of such switching operations.
We discuss the effect of these parameters on different met-
rics by applying the algorithm to a reference network.
The remainder of this paper is structured as follows. Sec-
tion 2 shortly addresses related work, while section 3 in-
troduces the background on optimization. In section 4, we
detail our algorithm. Section 5 presents the scenario and
results of a first evaluation of the bypassing algorithm. We
conclude in section 6.

2 Related Work
Finding optimal dynamic optical bypass settings essen-
tially means solving multi-layer network optimization
problems for changing traffic load situations.

2.1 Multi-Layer Network Optimization
Multi-layer network optimization and traffic grooming
have been studied extensively for both static and dynamic
traffic [3, 4]. Such problems comprise the following ques-
tions:

• finding the optimal virtual topology, i. e. the topol-
ogy of the lower layer including bypasses,

• routing the traffic in this virtual topology (i. e. the
routing of the upper layer),

• routing the bypasses into the physical topology (po-
tentially under resource constraints), and

• assigning wavelengths to the connections of the
virtual topology (potentially under continuity con-
straints).

One frequent approach is to integrate several or all of these
questions into the formulation of one optimization prob-
lem. While this is the only way to determine the optimum,
it leads to highly complex problems, which are only practi-
cally solvable for small networks. One counter-measure is
to deal with the questions in an isolated, sequential way. In
addition, researchers can abstract from some of these ques-
tions.
Frequently, exact solutions of the optimization problem are
determined by integer linear program solvers. Alterna-
tively, the authors of [5] use an optimization meta-heuristic,
genetic algorithm. Simulated annealing, another meta-
heuristic, is applied to a related problem in [6].

2.2 Dynamic Network Reconfiguration
There is also an extensive body of literature on the dy-
namic reconfiguration of networks. Authors mostly assume
a global view of the network. For instance, the issue has
been considered for hybrid networks (e. g. optical migra-
tion capable networks with service guarantees (OpMiGua)
[7]). Frequently, the dynamic network configuration prob-

lem is again solved exactly by optimization techniques.
The authors of [8] use this approach to evaluate the ben-
efit of allowing different degrees of flexibility in the two
network layers. Alternatively, heuristics are applied, e. g.
in [9]. In addition, distributed approaches which work on
a local view of the network topology and traffic load (e. g.
[10, 11]) have attracted some interest.

3 Combinatorial Optimization
Finding an optimal network configuration is a combina-
torial optimization problem. This class of optimization
problems is characterized by an enumerable, finite solution
space. One can formulate such problems as integer linear
programs (ILP). Since most of these problems have a high
complexity (they are mostly NP-hard), only small problem
instances allow for an exact solution in a reasonable time.
For problems of practical size, we have to resort to heuristic
approaches.

3.1 Optimization Meta-Heuristics
Optimization meta-heuristics describe procedures to search
the solution space of complex optimization problems in a
randomized way in order to find near-optimal solutions. In
general terms, they derive new candidate solutions (neigh-
bor solutions) from a set of current solutions and determine
their cost. The next set of solutions is selected from all
these solutions depending on the cost. The best solution
encountered during this procedure is retained.
Decisive components of an optimization heuristic are thus
the so-called perturbation strategy to derive new candi-
date solutions and the selection strategy. The perturba-
tion as well as the cost computation is essentially problem-
specific. A meta-heuristic can only provide coarse guide-
lines how to derive neighbor solutions (e. g. from one so-
lution or by combining several ones). It is generally more
specific on the cost-dependent selection strategy. The com-
bination of perturbation and selection shall assure both di-
versification and intensification. The former means cover-
ing distant points in the solution space in order to escape
local optima, whereas the latter designates the search for
the optimum within a restricted neighborhood. More de-
tails on heuristic optimization and several meta-heuristic
algorithms are found e. g. in [12].

3.2 Simulated Annealing
Simulated Annealing [13] is a meta-heuristic inspired by
the annealing process in solid-state physics. It iteratively
modifies one candidate solution. Solutions of lower cost
are always accepted as new candidate solution, whereas
more expensive solutions are accepted with a probability
that decreases with the temperature of the annealing pro-
cess. This shifts the weight from diversification to intensi-
fication in the course of the process. Figure 1 illustrates this
iterative search in the multi-dimensional solution space.
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Figure 1 Illustration: iterative search of the solution space

Simulated annealing is known to find good results in rel-
atively short time [12, 14].
The simulated annealing procedure is governed by the
cooling schedule. It defines the initial temperature, the tem-
perature length (number of iterations per temperature step),
the cooling ratio (reduction of the temperature value per
step), and the frozen state, i. e. the termination condition.
All these parameters need to be tuned for the respective
optimization problem.
The current temperature T defines the probability PA to
accept a solution of higher cost. In accordance with the
physical analogon, the probability is obtained by

PA = e
Cacc−Ccand

T (1)

where Cacc is the cost of the currently accepted solution
(the starting point of the last perturbation) and Ccand is the
cost of the newly derived solution. The initial temperature
Tinit shall provide for an initial acceptance ratio of 90 % to
99 % (including lower-cost candidate solutions). The tem-
perature reduction upon each annealing step may for in-
stance be linear or geometric, i. e.

Ti = Ti−1 − ∆T or (2)
Ti = Ti−1 · α (3)

where α is less than but close to 1. The latter has the ad-
vantage that the number of cooling steps does not need to
be pre-defined.
Regarding the remaining parameters, the simplest approach
is a fixed temperature length and a termination after a fixed
number of cooling steps. Alternatively, the termination can
be conditioned on the recent success in finding improved
solutions. Section 4.3 gives more details on the simulated
annealing procedure in its application to the dynamic by-
passing problem.

4 Dynamic Bypassing Algorithm
We propose a dynamic optical bypassing algorithm based
on simulated annealing. It is intended to be used for peri-
odic adaptation of the network configuration to changing
traffic demands. In accordance with technological limi-
tations of the setup speed of optical circuits, we envis-
age reconfiguration intervals in the order of 15 to 30 min-
utes. Hence, one major design goal is the applicability in

this scenario, i. e. convergence to reasonably good network
configurations within minutes. For this reason, we restrict
the optimization to the bypass setting, while the traffic de-
mands are routed deterministically along fixed geographi-
cal paths (on which they use available bypasses).
In the following sections, we discuss some assumptions
on resources and network nodes, specify the optimization
problem, and detail the optimization procedure.

4.1 Model Assumptions
The current version of our algorithm assumes unlim-
ited hardware resources (optical transponders and packet-
switching capacity) in all nodes. This allows evaluating
different parameterizations of the algorithm with respect to
the required hardware resources by simulation. The hard-
ware resource overhead required to set up new circuits be-
fore tearing down previous ones (make before break ) is
currently disregarded. For application in practice, the al-
gorithm will need to consider resource constraints. In the
simplest case, this is possible by disallowing (i. e. skipping)
solutions which do not match the constraints.
Our primary optimization criterion is the energy consump-
tion of the respective network configuration. We describe
the energy consumption by the number of optical circuits
and the amount of transit traffic in the upper network layer.
We thus account for the resource assignment in the gran-
ularity of circuits in the optical layer. While we currently
assume a fixed cost per optical circuit, the algorithm is eas-
ily extendable with a circuit-length dependent cost compo-
nent accounting for amplification and signal regeneration.
In the electrical layer, we assume that the energy consump-
tion scales linearly with the load. While this is arguably not
the case for current network equipment, frequency scaling
mechanisms and sleep modes implemented in state-of-the-
art general purpose processors suggest that future energy-
optimized network nodes will show such a behavior. While
minimizing the energy consumption, the algorithm shall
limit the number of switching operations (set-ups and tear-
downs of optical circuits) in order to assure stable network
operation. We therefore include a reconfiguration penalty
into the cost function.
With these assumptions, we may reduce the general multi-
layer optimization problem to the first two items of sec-
tion 2.1: the definition of the virtual topology (i. e. the by-
pass setting) and the routing of traffic demands (which is
done deterministically). We abstract from the questions
of bypass routing and wavelength assignment, which are
pointless in case of infinite resources.

4.2 Optimization Problem Description
In order to apply a meta-heuristic, we do not need a mathe-
matical formulation of the optimization problem. Problem
instances and candidate solutions are rather represented by
software objects comprising the information detailed in the



following.

4.2.1 Problem Instance
An instance of the bypass optimization problem consists
of the basic network topology, the demand matrix, and the
previous setting of active circuits:

• The basic topology is the physical topology of the
lower network layer. It is defined as a graph with di-
rected, weighted edges, where the edge weight rep-
resents the cost for routing traffic along this edge.
Note that this cost is not considered for the opti-
mization but only to solve the initial routing prob-
lem.

• The demand matrix defines the (directed) traffic
rates between each pair of nodes. These rates give
the aggregate of all connections and traffic flows
entering and leaving the network at the respective
nodes.

• The previous network configuration specifies the
number of (directed) optical circuits existing be-
tween each pair of nodes prior to the current re-
configuration step. These circuits either span sin-
gle hops in the basic topology, or they represent by-
passes. This information is required to evaluate the
reconfiguration penalty.

4.2.2 Candidate Solution
A solution to the bypass optimization problem is essen-
tially defined by a set of directed edges representing the
bypasses. Further data is not required since traffic rout-
ing is done deterministically. We do however retain some
additional information established during cost computation
in order to facilitate the evaluation of the reconfiguration
penalty based on a previous solution.

4.3 Optimization Procedure
This section details the central simulated-annealing based
optimization algorithm along with the major problem-
specific components.
Figure 2 gives an abstract view of the optimization algo-
rithm. First, the current temperature T and the accepted
solution Sacc along with its cost Cacc are initialized. The
same applies to the variables for the best encountered so-
lution Sbest and Cbest, respectively. Section 4.3.2 describes
the cost computation. As initial solution Sinit, we select the
previous bypass setting. This approach is justified by the
objective of limiting reconfigurations. Nevertheless, apply-
ing this initial solution might require switching operations
in case the traffic demand has changed since the last recon-
figuration.
In the main loop of the algorithm, a candidate solution
Scand is derived from Sacc (cf. section 4.3.1) and its cost
Ccand is computed. Then we first adjust the counter NnoImpr
of consecutive iterations without improvement of Cacc. If

NTi ++

Scand := PERTURBATE(Sacc)

Ccand := COST(Scand)

T := Tinit

NTi := 0

Sbest := Sacc := Sinit

Cbest := Cacc := COST(Sinit)

NnoImpr := 0

yes

noaccept Scand?

yes

Sacc := Scand

Cacc := Ccand

yes
Ccand < Cbest

Sbest := Scand

Cbest := Ccand

no

yes

no

NTi = LT

T := T  * α 

NTi := 0

yes

no

NnoImpr = LnoImpr

NnoImpr ++

Ccand < Cacc

NnoImpr := 0

no

Figure 2 Problem-adapted simulated annealing algorithm

Ccand ≤ Cacc or a random number drawn from a uniform
distribution between 0 and 1 is less than PA according to
equation (1), we set Scand as the new accepted solution Sacc.
If also Ccand < Cbest, we additionally set it as the best en-
countered solution Sbest.
If a fixed number of iterations at the current temperature
(temperature length LT) is reached, we reduce the temper-
ature according to equation (3). At this point, we integrated
an optional self-tuning mechanism not shown in figure 2: If
the fraction of accepted candidates during the first LT itera-
tions is lower than a threshold, it increases the temperature.
The normal annealing procedure then starts from this in-
creased temperature.
We terminate the algorithm if CnoImpr = LnoImpr, i. e. the



last LnoImpr candidate solutions did not improve the cost
Cacc of the accepted solution. These solutions were ei-
ther rejected or probabilistically accepted despite higher
cost. The latter likely results in a subsequent improvement.
Hence, not finding any improvement is a good indication
that the algorithm has converged to a (local) optimum that
it is unlikely to leave.

4.3.1 Perturbation
The perturbation algorithm is supposed to derive a neigh-
bor solution, i. e. a solution with minor modifications. With
equal probability, our algorithm either randomly removes
one bypass from the candidate solution, or it adds one uni-
directional bypass between a random pair of nodes (which
are not connected by a link of the basic topology or an ex-
isting bypass). For simplicity, we opted for this approach
rather than a more fine-grained one which additionally ex-
tends or reduces the length of existing bypasses. Our ap-
proach also better reflects the vicinity of configurations if a
make-before-break principle is applied.

4.3.2 Demand Routing and Cost Computation
We determine the cost of a candidate solution in five steps.
First, the demands are routed deterministically into the net-
work. Thereby, we determine the traffic load on each link
and the amount of transit traffic (in the upper layer) across
all nodes (Rtransit) as continuous rate values. Geographi-
cally, the demands follow their shortest path in the basic
topology (which depends on the edge weights). Along this
path, they use the combination of bypasses which results
in the least number of hops (i. e. nodes where electrical
processing is necessary). If there are several combinations
with this minimal hop count, an arbitrary one is chosen.
Second, we compute the required number of optical circuits
on each link and in total (Ncircuits) from the traffic load. In
order to assure a minimum connectivity in the network, we
assume at least one active circuit on each link of the basic
topology (even if it carries no traffic).
Third, we determine the required number of transponders
at each node from the number of circuits it terminates. This
step is not required for the actual optimization but to finally
evaluate the hardware requirements.
Fourth, we establish the number Nswitching of circuit set-
ups and tear-downs by comparing the number of circuits
between each node pair with the previous configuration.
Finally, we compute the total cost of the solution as the
weighted sum of the total number of circuits, the amount
of transit traffic and the number of switching operations:

Csolution = ccircuit ·Ncircuits + cprocessing ·Rtransit

+creconfig ·Nswitching (4)

where ccircuit is the energetic cost of one optical circuit,
cprocessing is the energetic cost per traffic unit of switching

traffic electrically (in one node), and creconfig is the recon-
figuration penalty per circuit set-up or tear-down. For the
latter, the sensible value range is 0 ≤ creconfig < ccircuit,
since larger values would favor maintaining unused circuits
and thus contradict the idea of dynamic bypassing. We sug-
gest setting the ratio of ccircuit and cprocessing according to the
relation of the actual energy consumption on the two net-
work layers, which depends on the respective technology.
In the upper layer, for instance, IP routing would consume
more energy than MPLS label switching.

5 Evaluation
For a first evaluation of our dynamic bypassing algorithm,
we implemented an event-driven simulation tool based on
the Java edition of the IKR Simulation Library [15]. In
order to be able to control the statistical outcome of the
optimization heuristic, we chose deterministic, periodically
varying traffic demands.
In the following, we first present the simulation scenario.
We then address the speed of convergence and the quality
of the results depending on the parameters of the simulated
annealing algorithm. We finally shed light on the perfor-
mance of our bypassing scheme in terms of energy effi-
ciency and network stability by evaluating metrics similar
to [11].

5.1 Scenario
5.1.1 Network Topology

We base the evaluations on the Atlanta reference network
available from SNDLib [16]. Figure 3 depicts its topology.
It consists of 15 nodes and 22 bi-directional links, leaving
room for 166 directed bypasses. We route the traffic along
the geographically shortest paths, which also have the min-
imal number of hops.

5.1.2 Traffic Demands

We apply a complete and uniform demand matrix, i. e. the
directed demand values between all 210 ordered pairs of
distinct nodes are identical at a given time. These demand
values follow a sinusoidal day profile, where the minimum
demand is 25 % of the peak value. Since we assume that
the network is reconfigured every 15 minutes, we extract
96 equidistant samples from the demand curve.
In the following, we specify demand and traffic values rel-
ative to the capacity of one circuit (in circuit equivalents).
The performance of dynamic bypassing essentially de-
pends on the ratio between the traffic demands and the cir-
cuit granularity. In order to investigate this effect, we scale
the demand profiles such that their peak value varies be-
tween 0.1 and 2 circuit equivalents. We refer to the scaled
demand curves by this peak value.



Figure 3 Atlanta network topology
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Figure 4 Cost of best solutions for de-
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Figure 5 Optimization execution time
for demands of 0.2 circuit equivalents

5.1.3 Algorithm Parameters
The parameters required by the algorithm are the cost fac-
tors and the cooling schedule. Since only the ratios of the
three cost factors are of interest, we normalize ccircuit = 1.
We chose the energetic cost of switching one circuit equiv-
alent in the upper layer to be equal to the cost of one circuit:
cprocessing = ccircuit. Considering one traffic flow, this means
that the break-even point for using a circuit bypassing one
node is only reached if this bypass circuit is fully utilized.
However, if further traffic also uses one basic topology link,
setting up a one-node bypass is worthwhile as soon as the
traffic on this link exceeds one circuit equivalent.
We vary the reconfiguration penalty within its sensible
range in order to investigate its effect. We consider values
of creconfig = 0, 0.25, 0.5, 0.75.
For simulated annealing, the appropriate initial temperature
strongly depends on the cost difference of two neighbor so-
lutions, and thus on the network topology, traffic demands,
and cost parameters. For the considered scenario, a value of
Tinit = 2.0 proved to meet a target initial acceptance ratio
of 0.8 in the majority of cases. We enforce this initial ac-
ceptance ratio by enabling the self-tuning mechanism. The
cooling factor is set to α = 0.95. We determine the tem-
perature length and the iteration count for the termination
condition experimentally in section 5.2. For the subsequent
study, we choose LT = 1000 and LnoImpr = 2000.

5.2 Optimization Performance
In order to investigate the impact of the cooling schedule
parameters on the optimization performance and execution
time, we solve the same problem instance with different
parameter settings. In addition, we need to account for the
statistical variations of the outcome due to the stochastic
solution procedure. For this, we repeat the optimization
120 times with a differently seeded random number gener-
ator for each parameter set.
We discuss the results for the Atlanta network and a uni-
form demand value of 0.2 circuit equivalents. Figure 4

plots the cost of the found solution over the tempera-
ture length LT for different termination condition values
LnoImpr. The three groups of curves give the minimum,
mean, and maximum of the 120 optimization runs per pa-
rameter set. All plots exhibit a trend of decreasing im-
provement with increasing temperature length. The differ-
ent LnoImpr values do not produce a clear trend, except for
a slight improvement of the mean and a partial improve-
ment of the maximum when moving from 1000 to 2000.
The extremal values lie within a corridor of ±3 % of the
mean. Since optimization runs with a much slower cool-
ing schedule did not find a solution of a cost below 113.6
(which is very close to the minima of figure 4), we suspect
that this is the global optimum. Under this assumption, the
mean cost values of figure 4 deviate less than 5 % from op-
timality, and the worst-case observation less than 8 %. We
consider these margins sufficient for an execution-time op-
timized algorithm.
Figure 5 gives the execution time of a single-threaded im-
plementation of the algorithm on a state-of-the-art server
CPU depending on the cooling schedule. Again, mini-
mum, mean, and maximum of the 120 runs per parameter
set are given. All plots show an approximately linear in-
crease with the temperature length LT, which is plausible
if we assume that the termination condition effectively de-
pends on the temperature. The increase of the execution
time with LnoImpr is also plausible.
To select the temperature length, we have to trade off the
quality of the solution against the execution time. We
identify LT = 1000 as a good compromise and choose
LnoImpr = 2000. With these parameters, the algorithm con-
verges in less than 50 seconds, which is more than suffi-
cient given the assumed network reconfiguration interval.

5.3 Bypassing Effects
In the following, we discuss the effect of our bypassing al-
gorithm on the energy consumption and the reconfiguration
effort assuming the diurnal traffic pattern. We control for
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the statistical variations of the optimization results by aver-
aging over ten day periods.
As baseline, we also consider: (i ) a static bypassing
scheme with a bypass configuration optimized for the peak
load; (ii ) hop-by-hop routing in the basic topology without
any bypasses. Both use fixed topologies, but the number of
circuits per link is dynamically adapted to the traffic load.

5.3.1 Number of Active Optical Circuits

Figure 6 plots the average number of active circuits in the
network over the peak demand. For very low load, all
curves converge to the minimal 44 circuits of the basic
topology. For hop-by-hop routing, the number of circuits
increases approximately linearly with the load.
As expected, all bypassing schemes show a slower in-
crease. Their curves exhibit a trend to saturate as the
peak demand approaches 1 circuit equivalent, and increase
more strongly for demands exceeding 1, before saturating
again. The static bypassing curve, which essentially corre-
sponds to the maximum number of circuits of the dynamic
schemes for peak demands up to 1, suggests an explana-
tion: As soon as the uniform demand value exceeds 0.5 cir-
cuit equivalents, the most efficient configuration is a full
mesh of circuits (which requires 210 circuits in the Atlanta
network). In this case, a circuit cannot carry two demands
entirely, thus any link confronted with more than one de-
mand would need at least two circuits. Due to the addi-
tional cost of processing in the upper layer, establishing a
circuit for each demand is then more efficient.
The increase of the mean number of circuits for the dy-
namic bypassing schemes for peak demands above 0.5 es-
sentially reflects the increasing share of time the actual de-
mand is greater than 0.5 and the full mesh persists. If the
demand exceeds 1, a second circuit is required on all links
of the full mesh (since we do not split demands). Again,
the time share of this condition governs the mean number
of circuits. Since it also adapts the number of circuits per
link in the full-mesh topology, the static bypassing scheme

performs similarly to the dynamic schemes. This effect is
partly due to the uniformity of the demand matrix.
Reconfiguration penalties of creconfig ≤ 0.5 have little ef-
fect on the mean number of circuits. creconfig = 0.75 results
in a higher number of circuits, particularly in an interval
around a peak demand of 1. While the penalty cannot pre-
vent the establishment of circuits when the demands rise,
it does hinder their tear-down when demands shrink. Con-
sequently, the full-mesh configuration persists for longer
periods of time. For peak demands greater than 1, the full
mesh turns permanent (hence the convergence to the static
bypassing scheme).
The dashed curve finally gives the peak number of circuits
for dynamic bypassing with creconfig = 0.5. It gives a good
approximation of required hardware resources in terms of
transponders. Obviously, uniform demands exceeding 1
circuit double the number of transponders. An interest-
ing effect is observed for peak demands below 0.5: Due to
varying bypass configurations, more transponders may be
required than for static bypassing. However, considering
resource restrictions in our algorithm would likely elimi-
nate this effect.

5.3.2 Amount of Transit Traffic

Figure 7 gives the time average of the amount of transit
traffic switched in the upper layer in all nodes. Initially,
this amount increases with the load, and it does so in a con-
tinued manner for hop-by-hop routing. For the bypassing
schemes, the increasing establishment of bypass circuits
inverts this trend. For static bypassing, the transit traffic
drops to zero for peak demands above 0.5. This confirms
the interpretation that a full mesh of circuits is established.
For a peak demand of 2 (i. e. diurnal demand variations be-
tween 0.5 and 2), this condition applies to all bypassing
schemes. Reciprocally to the number of circuits, the tran-
sit traffic decreases with increasing creconfig (due to different
scales of the ordinates, the effect appears disproportionate
in figures 6 and 7).



5.3.3 Number of Switching Operations
Figure 8 plots the mean number of switching operations
in the network per network reconfiguration event (i. e. per
re-optimization every 15 minutes) over the load. It clearly
shows the benefit of a non-zero reconfiguration penalty for
network stability. Further increasing a positive creconfig still
has some effect, but at a much lower scale.
Static bypassing incurs switching operations if the peak
load exceeds 1 circuit. These operations occur when the
time-dependent demands rise above or fall below 1, and
a second circuit is established or torn down on all links.
Hence, the moderate mean value of 4.4 switching opera-
tions conceals the simultaneous modification of 210 cir-
cuits. However, this synchronization is an artifact of the
demand uniformity. Due to the large number of circuits it
involves, hop-by-hop routing incurs more switching opera-
tions than most bypassing schemes for high load.

6 Conclusion
In this paper, we proposed a dynamic optical bypassing al-
gorithm based on simulated annealing. In view of periodic
network reconfiguration in the order of 15 minutes, the al-
gorithm is designed to minimize execution time while pro-
viding reasonably efficient bypass settings.
We evaluated this algorithm on a 15-node reference net-
work. It produced good network configurations (presum-
ably within 8 % of optimality) in convergence times below
50 seconds. In addition, we showed that setting a recon-
figuration penalty effectively reduces the number of circuit
set-ups and tear-downs without significant impact on the
energy consumption.
In the considered scenario of uniform demands, dynamic
bypassing did however not significantly outperform a static
bypassing scheme with load-dependent adaptation of op-
tical circuits. Future work should therefore investigate the
benefit of using the dynamic bypassing algorithm for more
realistic traffic demands. In addition, the scalability of the
bypassing algorithm for larger network topologies needs to
be analyzed. Moreover, the deterministic demand routing
strategy of the algorithm could be extended. For instance,
traffic could be rerouted to avoid lowly utilized additional
circuits on bypass links. In addition, a restricted form of
demand routing optimization could be included into the op-
timization procedure.
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