# Evaluation of Centralized Solution Methods for the Dynamic Optical Bypassing Problem

### **ONDM 2013, Brest, France**

Frank Feller frank.feller@ikr.uni-stuttgart.de 2013-04-17

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Andreas Kirstädter



### Outline

#### **Motivation**

Load-Dependent Resource Operation in Core Networks

**Centralized Dynamic Optical Bypassing** 

- reconfiguration scheme
- optimization problem
- solution methods

#### **Evaluation**

Conclusion

### **Motivation: Trends in Transport Networks**

#### **Traffic Evolution**

#### 8.0 T 2.8 T 2.6 T 2.4 T 2.

exponential growth of traffic volume

#### **Access Technology Evolution**

energy-efficient optical access technologies

→ power consumption in the core gains importance

#### significant diurnal traffic variations



#### $\rightarrow$ energy savings in the core by dynamic resource operation desired

© 2013 Universität Stuttgart • IKR

F. Feller – Centralized Dynamic Optical Bypassing Solution Methods

### **Load-Dependent Core Network Resource Operation**

#### Scenario: Multilayer Network (e.g. IP/MPLS over WSON)



#### **Dynamic Resource Operation**

- activation / deactivation of optical circuits
  - along with line cards and transponders consuming largest share of energy
  - switching times in the **order of minutes** due to interaction with fibre amplifiers
- power scaling in **packet processors** 
  - enabled by sleep modes for parallel structures and frequency scaling
  - $\rightarrow$  energy consumption scales closely with traffic load

#### $\rightarrow$ network reconfiguration to realize energy savings

© 2013 Universität Stuttgart • IKR F. Feller – Centralized Dynamic Optical Bypassing Solution Methods

## **Dynamic Optical Bypassing**

#### Inspiration

Distributed reconfiguration scheme

- start with circuits according to physical topology
- offload transit traffic to bypass circuits
  → additional links in virtual topology

#### **Centralized Approach**

- focus on virtual topology
  - $\rightarrow$  define **bypass link** configuration
- traffic routing adheres to idea of *offloading* 
  - $\rightarrow$  use shortcuts along given path



### **Centralized Dynamic Optical Bypassing Problem**

#### **Optimization Problem**

#### find the best virtual topology

- ... while routing traffic only over nodes on a predefined path
- ... such that the total energy consumption is minimal

#### Additional objective for reconfiguration

limited number of circuit modifications

 $\rightarrow$  factored into cost function

#### **Cost Function**

- $\alpha$   $\times$  number of active optical circuits
- +  $\beta$  × amount of electronically switched transit traffic
- +  $\gamma$   $\times$  number of newly established or torn-down circuits



predefined path

disallowed path

allowed alternative path

bypass link

physical link

#### **Mixed Integer Linear Program**

- multi-commodity flow problem formulation
- optimizes
  - circuit configuration
  - traffic splitting and routing onto alternative bypass combinations



#### **Mixed Integer Linear Program**

- multi-commodity flow problem formulation
- optimizes
  - circuit configuration
  - traffic splitting and routing onto alternative bypass combinations



#### **Optimization Meta-Heuristic** (Simulated Annealing)

- optimizes virtual topology
- routes traffic onto shortest path (combination of admissible virtual links) without splitting

#### **Mixed Integer Linear Program**

- multi-commodity flow problem formulation
- optimizes
  - circuit configuration
  - traffic splitting and routing onto alternative bypass combinations



#### **Optimization Meta-Heuristic** (Simulated Annealing)

- optimizes virtual topology
- routes traffic onto shortest path (combination of admissible virtual links) without splitting
- optional post-processing step to re-route traffic in order to avoid lowly utilized circuits

#### **Mixed Integer Linear Program**

- multi-commodity flow problem formulation
- optimizes
  - circuit configuration
  - traffic splitting and routing onto alternative bypass combinations



10

#### **Optimization Meta-Heuristic** (Simulated Annealing)

- optimizes virtual topology
- routes traffic onto shortest path (combination of admissible virtual links) without splitting
- optional post-processing step to re-route traffic in order to avoid lowly utilized circuits

#### **Greedy Heuristic**

- starts from full-mesh virtual topology and one-hop traffic routing
- iterates over all bypass links to re-route traffic if more energy-efficient

### **Evaluation by Simulation**

#### **Assumptions**

- maximum traffic demands in next interval are known
- reconfiguration every 15 minutes •
- no resource limitations

#### **Scenario**

- Géant reference network topology from SNDLib (http://sndlib.zib.de) 22 nodes, 36 links, 462 traffic demands
- 10 working days out of measurement-based • demand trace

#### **Baseline Case**

static bypassing

- fixed virtual topology and fixed traffic routes
- load-dependent resource operation





#### **Energy Consumption Metrics**



- energetic cost of switching transit traffic is small compared to operation of circuits
- all dynamic optical bypassing solution methods perform similarly
- dynamic bypassing reduces energy consumption by 20% to 35% over static bypassing

 $\alpha = 1.0$  $\beta = 1.0$  $\gamma = 0.5$ 

#### **Reconfiguration Metric**



• for  $\gamma = 0$ , similar result for all dynamic optical bypassing solution methods

 $\begin{array}{l} \alpha = 1.0 \\ \beta = 1.0 \\ \gamma = 0..0.5 \end{array}$ 

#### **Reconfiguration Metric**



- for  $\gamma = 0$ , similar result for all dynamic optical bypassing solution methods
- positive reconfiguration penalty ( $\gamma > 0$ ) reduces circuit changes (by 25% to 50%)
  - effect differs between the solution methods
  - level of static bypassing (with dynamic circuit operation) is achievable

 $\alpha = 1.0$   $\beta = 1.0$  $\gamma = 0..0.5$ 

14

#### **Reconfiguration Metric**



- for  $\gamma = 0$ , similar result for all dynamic optical bypassing solution methods
- positive reconfiguration penalty ( $\gamma > 0$ ) reduces circuit changes (by 25% to 50%)
  - effect differs between the solution methods
  - level of static bypassing (with dynamic circuit operation) is achievable

 $\alpha = 1.0$   $\beta = 1.0$  $\gamma = 0..0.5$ 

### Conclusion

#### **Centralized Dynamic Optical Bypassing**

- a multi-layer network reconfiguration problem
  - adapting virtual topology and circuit configuration to varying traffic load
  - restricting traffic routing to nodes of a predefined path
- three solution methods investigated
- evaluation results
  - all methods provide solutions of similar quality
  - reconfiguration penalty significantly reduces number of circuits established and torn down without significant effect on energy consumption
  - dynamic bypassing reduces load-dependent energy consumption by 20% to 35% compared to dynamic resource operation with static virtual topology and fixed traffic routing

#### **Future Work**

- extension of dynamic optical bypassing problem and solution methods
  - include light-path routing for circuit realization
  - consider resource constraints in dimensioned network
- refinement of dynamic resource operation and energy consumption model
- comparison with different network reconfiguration schemes

16