
Increasing Packet Sizes to Mitigate Performance Issues
in High-Speed Packet Networks

Frank Feller, Joachim Scharf
Institute of Communication Networks and Computer Engineering (IKR),
Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Email: {frank.feller, joachim.scharf}@ikr.uni-stuttgart.de

Abstract
Emerging packet-switched transport networks face a continuous growth of link bitrates. Without counter-measures, this
translates into a proportional increase of the packet rate and may turn packet processing in network nodes into a bottleneck.
In this paper, we investigate one approach to reduce the processing load for a given line rate: increasing the maximum
size of packets exchanged between end systems. We first present the fundamental mechanisms along with side effects
of increased packet sizes. Then we discuss the dependence of the achievable packet rate reduction on application and
protocol stack. Based on a traffic model from the year 2000 and current measurements, we finally evaluate the reduction
for web traffic and the Internet protocol stack. Results show that today’s web traffic enables higher packet rate reductions
than traffic of 2000. A fourfold packet size increase now allows to cut the packet rate by two thirds.

1 Introduction

New applications and services are driving a continuous
growth of the bandwith demand in transport networks. Ef-
forts to increase link bitrates are therefore undertaken in
research and development, currently targeting 100 Gbps in
the case of Ethernet [1]. Since packetized data has grown
predominant in transport networks in recent years, we are
witnessing a shift from traditional synchronous time divi-
sion multiplex (STDM) systems to packet-switching archi-
tectures such as carrier grade Ethernet solutions.
Without adaptation of the packet format, an increase of the
line rate directly translates into an increase of the packet
rate. This in turn raises the requirements on packet process-
ing network nodes. Accordingly, high-end network nodes
designed for the upcoming transmission speeds in transport
networks will be expensive, if the processing requirements
can be fulfilled at all. Means to reduce the packet process-
ing load relative to the line speed are therefore desirable.
Two complementary approaches allow for such processing
load reduction. First, we can minimize the effort spent
on an individual packet by simplifying protocol mecha-
nisms. According options are mentioned in [2]. Second,
we can increase the amount of data transported per pro-
cessed packet. There are three variants of doing so:

• Aggregation of packets following the same path
through the transport network. This reduces the
load on core nodes which only have to process one
header for the aggregate [3].

• Increasing the minimum size of packets transported
between end systems. This allows to reduce the
worst-case packet rate at the expense of a waste of
transmission capacity. Small data units are padded

with void data.
• Increasing the maximum size of packets transported

between end systems. Thereby, the average packet
rate is reduced. However, the worst-case packet rate
remains unaffected.

Figure 1 visualizes the effect of these variants. In this pa-
per, we focus on the last approach, the increase of the max-
imum packet size. The packet rate reduction achieved by
this means depends on two factors: the application, which
defines the size of transmitted data blocks, and the proto-
cols in charge of enabling the communication. We discuss
these influences and investigate their effect by the example
of web traffic and the Internet protocol stack.
The remainder of this paper is structured as follows. We
present current packet size limits along with principle bene-
fits and drawbacks of their increase in Section 2. Sections 3
and 4 then discuss the influence of protocols and describe
web traffic as the exemplary application in our analysis, re-
spectively. We provide results in Section 5 and conclude
this paper in Section 6.

(a) packet aggregation

(b) increase of minimum packet size

(c) increase of maximum packet size

Figure 1 Approaches to reduce the packet rate



2 Packet Sizes
When a packet is forwarded through a network, all nodes
on its path have to be able to handle it, with respect to
both its format and its size. Therefore, most packets ob-
served in today’s networks still obey technological limita-
tions and design choices dating back several decades. Eth-
ernet frames, as defined in the early 1980s, are able to carry
up to 1500 bytes of payload data. For compatibility rea-
sons, this limitation has been retained in all subsequent
Ethernet standards. Since most hosts connected to the In-
ternet are locally attached to Ethernet networks, 1500 bytes
has become the de-facto maximum packet size. For the
Internet Protocol (IP), RFC879 from 1983 cites a packet
size of 576 bytes each IP host has to be able to receive [4].
Conversely, no host shall send larger packets unless it has
knowledge that the recipient is able to accept them. Proto-
col implementations not performing such a negotiation still
limit packet sizes to 576 bytes. Together with pure signal-
ing packets of about 40 bytes, these two limits make up the
well-known tri-modal distribution of IP packet sizes [5].
These packet size limitations, however, seem anachronis-
tic given the development of both computing power and
memory sizes over the last quarter century. Home comput-
ers now support multimedia applications handling files of
sizes unthought of a few years ago. Networking technol-
ogy has kept up with this development. For instance, the
IEEE working group 802.3ba [1] is currently addressing
40 Gbps and 100 Gbps transmission for Ethernet, up from
10 Mbps in the early 1980s. Accordingly, the transmission
time of a 1500 byte frame is being reduced from 1.2 ms to
12 ns. This raises the question whether the currently ob-
served packet size limitations are still reasonable.
Parts of the deployed protocols and network equipment do
actually support larger packets. Already in version 4 of
IP (IPv4), the packet size is only limited by the maximum

1 10 100
data block size (normalized to standard packet size)

1

10

100

nu
m

be
r 

of
 p

ac
ke

ts

standard

5-fold

10-fold

maximum
packet
size

Figure 2 Dependency of the number of packets on the
packet size and the transferred data block size

value of the 16 bit length field, i. e. to 65,535 bytes. With
Gigabit Ethernet, equipment vendors started to support so-
called Jumbo Frames, i. e. non-standard Ethernet frames of
generally up to 9000 bytes. They were motivated by the
inability of contemporary end systems to exploit the avail-
able link bitrate and are used in closed scenarios like data
centers. The authors of [6] describe a case where the acti-
vation of Jumbo Frames brought down CPU usage for net-
work transmission from 100 % to 55 % while increasing the
throughput by 50 % on 300 MHz Sun servers.
Although not always feasible, backward compatibility to
the equipment base installed in the field is a major re-
quirement for network standards and protocols. Therefore,
changes of the packet size are difficult to achieve. This,
however, should not rule out the study of potential benefits
of larger packets.

2.1 Benefits of Packet Size Increase
The basic use of a network is to assure data transport be-
tween two or several end points on behalf and request of
some application. This application determines the char-
acteristics of the data blocks it exchanges, including their
size. Since the packets, i. e. the data units transported
through the network, are generally limited in size, appli-
cation data blocks need to be segmented into pieces fitting
into the packets.
The number of packets required for the transfer of one data
block depends on the data block size and the maximum
packet size. The larger the maximum packet size, the less
packets are required. However, if only small data blocks
are exchanged, higher packet size limits cannot provide any
benefit. Figure 2 visualizes these effects. It plots the num-
ber of packets over the data block size for different maxi-
mum packet sizes. For small data blocks, the already low
number of standard-size packets limits the packet count re-
duction obtained from increased packet sizes. The theoret-
ical reduction by factors corresponding to the packet size
increase, i. e. five or ten respectively, can only materialize
for large data blocks.
While the focus of this paper is on packet rate reduction,
we have so far only considered the number of packets for a
certain data transfer. If a given amount of data is transferred
in a time interval, however, the reduction of the number of
packets directly translates into a proportional reduction of
the average packet rate.

2.2 Issues and Limitations
Besides the practical problem of backward compatibil-
ity when introducing extended packet sizes into an exist-
ing network infrastructure, further basic issues have been
brought up in the discussion about Jumbo Frames. They
are summarized e. g. in [7].
One set of issues revolves around timing behavior. Basi-
cally, the time required for the transmission of a packet



Figure 3 Impact of packet size and line rate on transfer times

over a link grows with the packet size. Network nodes fol-
lowing the wide-spread store and forward principle only
relay a packet to the next link after having received it com-
pletely. Therefore, data transported in large packets experi-
ences longer transmission delays than data segmented into
smaller packets. Figure 3 details this effect by the example
of the transmission of two data blocks (shaded lightly and
darkly) from a sender over one intermediate node to a re-
ceiver under various conditions. On the left, small packets
are used, and the intermediate node can already forward the
first packet while receiving the second one. In the middle,
large packets are used. Due to the need to receive the entire
packet before forwarding it, the transmission time grows.
While applications exchanging large blocks of data may
tolerate such delays, the effect is particularly problematic
for real-time applications competing with bulk data trans-
fers for transmission resources. For illustration, the darker
packet in Figure 3 shall belong to a real-time application
and be queued for transfer while the first bulk data packet
is sent. Since it has higher priority, it is transferred imme-
diately after this packet in the left-hand-side case. If large
packet sizes are authorized and preemption is not possible,
the real-time packet has to wait for the completion of the
bulk transfer and suffers a considerably longer delay (Fig-
ure 3, center). The delay variation experienced by both
bulk data and real-time applications is similarly subject to
adverse effects from packet size enlargement.
The delay penalties, however, have to be considered in the
context of the line rate. As shown on the right hand side of
Figure 3, the transmission of small packets on an accord-
ingly slower link takes as much time as the transmission
of large packets on the fast one. Consequently, delay is-
sues are negligible when the packet size increase coincides
with an increase of the link rate. Conversely, we have to
watch out for the timing performance on bottleneck links.
Since the packet size increase has an end-to-end scope, ac-
cess links are likely bottlenecks. Nevertheless, the general
trend of bandwidth growth is also present in access net-

works, promising to mitigate the issue.
Bit errors potentially corrupting packets during transmis-
sion are another concern. They necessitate error detection
and correction, which is often deployed in layer 2. Such
mechanisms need adaption to larger packets for two rea-
sons. First, larger data units run a higher risk of being cor-
rupted. Second, detection and correction capabilities of er-
ror protection codes deteriorate with increasing amounts of
secured data. For instance, the cyclic redundancy code pro-
tecting Ethernet frames loses its ability to securely detect
three bit errors when applied to more than 11,450 bytes of
data. In addition, if packet corruption triggers retransmis-
sion, larger packet sizes increase the amount of data to be
resent.
Finally, the maximum packet sizes supported throughout a
network may vary. Such heterogeneous environments re-
quire mechanisms to cope with the diversity without gen-
erally resorting to the smallest common packet size. On
the one hand, the maximum supported packet size could be
determined for each path by means of appropriate proto-
col mechanisms. On the other hand, segmentation and re-
assembly functions could be provided within the network
in order to adapt packet sizes at the edges of sections al-
lowing only smaller packets.
While the previously discussed limitations have to be taken
into account for an overall evaluation of the approach of in-
creasing packet sizes, they need to be considered in relation
to the potential benefits. In the remainder of this paper, we
focus on the latter.

3 Protocol Functions
The transport of data through a network requires a set of
mechanisms which are implemented by different protocols.
For instance, the segmentation of data blocks into packets
described in Section 2.1 is actually performed by a protocol
instance. Further protocol mechanisms also influence the
packet rate. In the first subsection, we describe the general
functionality of a protocol layer. We then discuss the real-



ization of these mechanisms in the Internet protocol stack
in Section 3.2 and finally outline the assumptions underly-
ing our evaluation in Section 3.3.

3.1 Protocol Layer Mechanisms
In a layered network architecture, functionality is dis-
tributed among several protocol layers. While each layer
actually fulfills distinct tasks, we are able to abstract from
these functions in a general network model [8]. A protocol
layer is then characterized by a set of generic mechanisms.
Figure 4 shows the basic functionality. Layer N+1 hands
a Protocol Data Unit (PDU) containing both signaling in-
formation and payload data from higher layers to layer N.
Layer N may process this data, which is now called Ser-
vice Data Unit (SDU). It then complements the SDU with
Protocol Control Information (PCI), i. e. signaling data, in
order to form a layer N PDU. This PDU is finally handed
down to layer N–1 for transmission.
In addition to such PDUs carrying data from higher lay-
ers, layer N may create pure signaling PDUs (i. e. PDUs
only containing PCI) if required by a protocol mechanism.
Besides, protocol layers providing reliable communication
may have to resend PDUs in response to packet losses.
The size of the PDUs a protocol layer can hand down to
lower layers may be limited. If the (N+1)-PDU, together
with the N-PCI, exceeds the maximum size of N-PDUs
layer N–1 accepts, segmentation is required. Layer N then
has to segment the N-SDU, such that the resulting pieces
(together with the N-PCI) respect the size limitation of
layer N–1. Figure 5 depicts this mechanism. The decrease
of the number of N-PDUs by increasing their maximum
size is visualized in Figures 6a and 6b. Figure 6c shows
how small (N+1)-PDUs prevent the decrease.

3.2 Internet Protocol Stack
Since web traffic is carried over the Internet protocol stack,
we need to consider the according protocols from the net-
working layer up to the application layer in more detail.

For our analysis, we can reduce Medium Access Control
(MAC) layer functionality to providing transport of data
containers of a certain size. Further MAC protocol mecha-
nisms can thus be disregarded. Since the application layer
protocol is addressed in Section 4, the remaining relevant
protocols are the Internet Protocol (IP, [9]) and the Trans-
mission Control Protocol (TCP, [10]).
Both TCP and IP add PCI to the payload data. Head-
ers of each of these protocols range between 20 bytes and
60 bytes in size, depending on optional fields. Another
commonality of these protocols is the ability to segment
SDUs, though with different focus. IP has to respect
MAC layer frame size limitations and accordingly frag-
ments larger packets if required. TCP, in contrast, has been
designed for the transmission of continuous data streams,
i. e. the SDUs TCP receives may be very large. Hence, the
segmentation of data into pieces of the Maximum Segment
Size (MSS) is part of the basic TCP functions. Since seg-
mentation on several protocol layers is inefficient, the MSS
is generally chosen such that the Maximum Transmission
Unit (MTU), i. e. the MSS plus TCP and IP headers, does
not exceed the MAC layer frame size.
A problem arises when the frame size limit varies along
the transmission path and thus the appropriate MTU is not
known to the sender. In 1990, the IETF defined a Path
MTU Discovery mechanism [11]. It relies on sending un-
segmentable packets and reducing their size in response to
error messages. However, this mechanism does not work
reliably as error messages are often filtered.
Further features provided by TCP include flow control and
reliable communication. Thereto, the protocol uses con-
nections requiring three signaling packets for setup and
four packets for teardown. Essentially, TCP flow control
limits the number of packets sent in a time window. There-
fore, the use of larger packets likely turns its behavior more
aggressive. A detailed study of this implication is up to fu-
ture work.
Reliable data transmission is achieved by retransmission of

(a) segmentation into smaller PDUs

(b) segmentation into larger PDUs

(c) small (N+1)-PDU limits use of large N-PDU sizes

Figure 4 Layer network model Figure 5 Segmentation Figure 6 Effects of different PDU sizes



lost packets. In order to detect packet losses, TCP acknowl-
edges the reception of packets to the sender. This is either
accomplished by means of separate signaling packets, or
by including signaling information into data packets. The
latter, referred to as piggybacking, requires data to be trans-
mitted to the initial sender at the time the acknowledgment
has to be sent. Therefore, separate acknowledgment pack-
ets (ACKs) are frequent. Figure 7 presents TCP signaling
in an exemplary transaction. Depending on the TCP imple-
mentation, an ACK may be sent for one or several received
packets. For our analysis, however, the important observa-
tion is that the number of ACKs is roughly proportional to
the number of data packets.

3.3 Assumptions for Evaluation
For our analysis, we modeled the influence of TCP and IP
as follows. The headers of both protocols combined make
up 40 bytes, i. e. there are no optional fields. TCP connec-
tions incur an overhead of seven packets, three for setup,
four for teardown. For each block of transmitted payload
data, we send an ACK for the first data packet, and after-
wards one for every second data packet. All signaling is
done by extra packets, i. e. there is no piggybacking. Fi-
nally, we focus on the error-free case, i. e. no packet losses
and retransmissions occur.

4 Web Traffic Description
As pointed out in Section 2.1, the size of the data blocks ex-
changed by the application limits the packet rate reduction
obtained through packet size increase. Therefore, we intro-
duce the principle mechanisms of the Hypertext Transfer
Protocol (HTTP, [12]), the application layer protocol car-
rying web traffic, in the following. We then discuss the two
data sources underlying our evaluation: a statistical model
of the static web of the 20th century in Section 4.2, and our
own measurements of today’s web traffic in Section 4.3.

4.1 HTTP Features
Initially, the web consisted of static Hypertext Markup
Language (HTML, [13]) documents interconnected by hy-
perlinks. Each HTML document described the text and
structure of a web page, and the hyperlinks served to nav-
igate between such pages. An HTML document could ref-
erence files defining objects embedded in the page, e. g.
images. For increased flexibility, this mechanism has been
extended to compose web pages of several HTML docu-
ments.
The basic purpose of the HTTP protocol is the retrieval of
HTML documents and other web objects. It thereto centers
on a request–response model: A client, e. g. a web browser,
sends an HTTP request specifying the desired object by
means of a Uniform Resource Locator (URL) to the (web)
server. Besides basic requests for some resource, further
request types exist. For instance, post requests allow to up-

Figure 7 Exemplary HTTP transaction over TCP

load data entered in a web form. The HTTP response sent
by the server contains a status code and, in case of a suc-
cessful request, the demanded object. Otherwise, the sta-
tus code specifies the error. Figure 7 outlines a successful
HTTP transaction embedded in a TCP connection.
Since web pages often contain considerable numbers of
embedded objects, their retrieval requires many HTTP
transactions. Establishing a TCP connection for each re-
quest is not desired due to setup delays and initially low
data rates. Therefore, HTTP’s connection keep-alive op-
tion allows client and server to negotiate the reuse of an
established connection for subsequent transactions. Con-
nections are finally torn down when a timer expires, after a
certain number of transactions, or when the client would
otherwise exceed a maximum number of active connec-
tions. The mechanism is widely used today. Nonetheless,
clients do establish small numbers of parallel connections
to the same server to speed up retrieval.
Request pipelining is a further optimization of HTTP. It al-
lows a client to send a number of requests back to back.
The server then returns the responses in a single block, too.
Compared to connection keep-alive where a further request
is only sent after the completion of the previous transac-
tion, pipelining reduces the impact of propagation delays.
Unlike the former, it is of little practical importance since
unsupported by wide-spread browser implementations or
deactivated by default. We therefore disregard pipelining
in our analysis.
Caching proxy servers located at the gateway connecting a
local area network to the Internet are a means of reducing
HTTP traffic. They receive all HTTP requests from the lo-
cal clients and initially forward them to the respective orig-
inal web servers. By caching the responses while relaying
them back to the requesting clients, the proxies are able to
directly answer subsequent requests for the same objects.
Thereby, they shorten response times for the clients and
reduce Internet traffic. The ability of proxies to log infor-
mation on the served requests is of interest for our study.
Running HTTP over Transport Layer Security (TLS, [14])



protected connections enables the exchange of sensitive in-
formation. This mechanism, referred to as HTTP Secured
(HTTPS), relies on a trust relation between the client/user
and the web server – and on end-to-end encryption. A
proxy therefore has to relay HTTPS packets between client
and server without processing or inspecting them. Thereto,
it has to establish a forwarding relation, which is initiated
by the client. The proxy is thus unable to log details on the
data exchange within the HTTPS connection.
In recent years, the web itself has been evolving from the
static web outlined above to more dynamic mechanisms
like Asynchronous Javascript And XML (AJAX, [15]).
Previously, the web browser retrieved the main HTML doc-
ument upon user interaction and afterwards all embedded
objects. With AJAX, in contrast, the browser only trans-
fers the frame HTML document and a piece of Javascript,
which issues subsequent HTTP requests. The script code
can dynamically determine the required objects and con-
tinue with transfers in the background after the currently
required parts of the page are retrieved. Thereby, it may
provide for better responsiveness of web sites and improve
user experience. The deployment of AJAX has changed
HTTP traffic characteristics [16]. Another recent observa-
tion is that objects embedded in one web page have to be
retrieved from a number of different servers.

4.2 Static Web Model

We based the first part of our evaluation on an extensive
statistical model of web traffic providing distribution func-
tions for both timing and transfer size metrics [17]. It has
been derived from packet level traces collected in Novem-
ber 2000.
The information essential for our analysis is the size of
HTTP requests and responses, along with the number of
TCP connections to determine the overhead. According to
the model, almost every request fits into a single 1500 byte
packet. For simplicity, we thus assume that requests are
made up of only one packet regardless of the allowed
packet size. The average number of response packets has
been computed from the response size distribution under
the assumption that all but the last packet fully exploit the
maximum packet size.
Unfortunately, the model does not give any indication
about TCP connections. We therefore assume that all em-
bedded objects are transferred within the same TCP con-
nection as the main document. Therewith, we obtain an
average of 5.29 transactions per connection.
Due to its age, the traffic model bases on measurements of
the former static web. Thus, it is unclear to what extend it
still covers today’s traffic patterns. We therefore performed
new measurements of HTTP traffic and derived its charac-
teristics.

4.3 Proxy Log File Evaluation
Basically, we are interested in a description of web traffic
occurring between clients and web servers. Directly mea-
suring at a client or server, however, would limit both the
amount of retrievable data and its generalizability. More
representative data could be extracted from packet-level
traces collected within the network. Though, the recon-
struction of HTTP transactions from such traces is a com-
plex task. Proxy servers handling requests from different
clients to different web servers see a similar diversity of
traffic and are able to log summaries of HTTP transactions.
We therefore referred to information provided by proxies.
We obtained anonymized log files collected at a dormi-
tory network during two weeks in January/February 2009.
After removing entries referring to erroneous, non-HTTP,
or HTTPS connection requests, we computed the average
number of response packets from the HTTP response sizes
provided in the log file. Since the request sizes are not part
of the log, we again assumed a single packet per request.
In principle, the logged information allows to trace TCP
connections. Being established between clients and the
proxy server, however, these connections do not describe
normal client–server behavior. For instance, objects from
different origin servers may be transferred through one con-
nection. We therefore estimated the number of TCP con-
nections by means of a time-out based heuristic. We as-
sumed that all successive requests issued from one client
to one server are served within the same connection. This
connection times out when no further request is sent in a
specified period of time. Thus, we do not allow parallel
connections between one client–server pair.
We applied two different time-out values. The first one, 3 s,
shall limit connections to transfers of single web pages and
thus permit a comparison with the statistical model where
we made the same assumption. The second one, 120 s, is
a realistic value derived from observation of actual web
servers and browsers. It allows TCP connections to span
several web page transfers.

5 Results
Based on the HTTP response size distributions of the sta-
tistical traffic model and the proxy log files according to
Sections 4.2 and 4.3 respectively, we first computed the
average number of packets required to transmit the HTTP
response depending on the MTU. Under the assumptions
stated in these sections and in Section 3.3, we therefrom de-
duced the average number of packets needed for the entire
HTTP transaction in three scenarios: the static web of the
year 2000, and today’s web with 3 s and 120 s time-outs. In
addition to the response packets, the transaction thus com-
prises the HTTP request along with TCP connection signal-
ing and ACKs. Technically, we therewith compute packet
counts. The reduction ratios we obtain, however, equally
apply to packet rates (cf. Section 2.1).



0 2.5 5 7.5 10 12.5 15 17.5 20
MTU [1000 bytes]

0

10

20

30

40

50

60

av
er

ag
e 

nu
m

be
r 

of
 p

ac
ke

ts

transaction

 response
w/o ACKs

model
2000

measurement
2009

15
00

 b
yt

es

90
00

 b
yt

es

18
.0

00
 b

yt
es

Figure 8 Packets required for HTTP transaction resp.
HTTP response with TCP connections only spanning one
page transfer, over MTU size

0 2.5 5 7.5 10 12.5 15 17.5 20
MTU [1000 bytes]

0

10

20

30

40

50

60

av
er

ag
e 

nu
m

be
r 

of
 p

ac
ke

ts

transaction

 response
w/o ACKs

time-out
120 s

time-out
3 s

15
00

 b
yt

es

90
00

 b
yt

es

18
.0

00
 b

yt
es

Figure 9 Packets required for HTTP transaction resp.
HTTP response according to proxy log measurements,
over MTU size

Figure 8 compares the results for the statistical model with
the measurements for the 3 s time-out. It plots the average
number of packets required for HTTP responses and com-
plete transactions over the MTU. All curves exhibit a satu-
ration effect: As more and more requests can be served by
a single response packet, the packet count reduction with
increasing MTU is limited. While the responses actually
converge towards one packet, the transaction curves ap-
proach higher limits due to the MTU-independent overhead
of HTTP requests and TCP connection signaling. This
overhead is slightly more important for the proxy measure-
ments where on average, only 4.39 requests were served
per TCP connection, compared to 5.29 for the statistical
model.
The response sizes show a more significant difference be-
tween the static web of the year 2000 and today’s traf-
fic. The average size grew from 12,074 bytes in 2000
to 32,198 bytes today. This results in considerably more
moderate-sized packets being required to transfer an HTTP
response of 2009, which in turn enables higher packet
count reduction ratios. An increase of the MTU from state-
of-the-art 1500 bytes to Jumbo Frame inspired 9000 bytes
and further to 18,000 bytes yields response packet reduc-
tions of 80.7 % and 88.4 % respectively for today’s traffic.
For the static web model, we obtain somewhat smaller val-
ues, namely 76.0 % and 82.9 %. The MTU-independent
part of the packet overhead limits the gain for transactions.
The cited MTU increases only yield packet count reduc-
tions of 72.1 % and 78.9 % respectively for HTTP transac-
tions of 2009. For the web traffic model of 2000, we ob-
tain 59.1 % and 64.4 %. The adverse effect of the signaling
overhead on the packet count reduction is thus significant,
but not dramatic.
Since an MTU increase has negative side effects (cf. Sec-

tion 2.2), arbitrarily large packets are generally not desir-
able. MTU sizes rather have to be subject to a trade-off
between the packet rate reduction and timing or packet cor-
ruption penalties. The characteristics of the packet counts
in Figure 8 give first indications of reasonable target MTU
sizes, since moderate packet size increases already account
for the lion’s share of packet reduction. For the statistical
static web model, an MTU of 4000 bytes seems to be rea-
sonable, yielding a 44.8 % reduction of transaction pack-
ets over a 1500 byte MTU. For the larger web objects of
2009, an MTU of 6000 bytes appears appropriate and re-
duces transaction packets by 65.1 %.
The plots in Figure 9 detail the findings of the proxy log
analysis. They contrast the packet count curves for HTTP
responses and transactions assuming a 3 s time-out (already
present in Figure 8) with the results for a connection time-
out of 120 s. Since the time-out only influences the number
of connections and thus the mean signaling overhead per
transaction, the response curves are identical. The differ-
ence in the number of packets per HTTP transaction is not
dramatic, either. Although the average number of trans-
actions per TCP connections increases to 10.7 with 120 s
time-outs, the per-transaction overhead is thereby only re-
duced by approximately one packet. For the reasonable tar-
get MTU size of 6000 bytes, we thus obtain a packet count
reduction of 66.8 % compared to an MTU of 1500 bytes.

6 Conclusion
In this paper, we first discussed benefits and drawbacks of
an increase of the maximum packet size. We then detailed
the impact of protocol mechanisms on the packet rate re-
duction achievable by this means, for both a general ar-
chitecture and the Internet protocol stack. The description



of web traffic and the HTTP protocol finally prepared the
ground for the results of our analysis of the packet count –
and therewith the packet rate – reduction for this applica-
tion.
For current web traffic, a moderate increase of the MTU by
a factor of four, from widely used 1500 bytes to 6000 bytes,
would reduce the packet rate by 66.8 %. Further important
packet rate reductions would require a disproportionate in-
crease of the MTU and thus aggravate issues like timing
performance and packet loss probability. The reduction is
bounded at 87.5 % obtained for unlimited packet sizes.
The feasible packet rate reduction grows with the size of
transferred data blocks. The comparison of the web traffic
model of the year 2000 with current measurements exhibits
a trend of increasing web object sizes. We can thus ex-
pect moderately higher gains for future web traffic. Signif-
icant packet rate reductions are more likely to be achieved
for future, e. g. multimedia, applications transferring large
blocks of data.
Further research is required in two areas in order to com-
prehensively assess the approach to reduce the packet rate
by increasing packet sizes. First, the investigation has to
be extended to a range of additional applications including
file transfer, peer-to-peer file sharing, and video streaming.
This will finally allow to determine the gross benefit for a
realistic traffic mix. Second, side effects of larger packets
like timing penalties and cross-layer interactions need to
be studied and quantified. Combined, these studies will en-
able an overall evaluation of the approach. In addition, the
migration to extended packet sizes is an open issue, since
all network devices including end systems as well as appli-
cations need to be adapted to support large packets.
Packet rate reductions of several orders of magnitude, how-
ever, will hardly be achieved by solely increasing the MTU.
To this end, aggregation of packets at the edge of the trans-
port network is more promising. The concatenation of
packets (including signaling messages) from several ap-
plications and end systems has larger potential to reduce
the number of transmitted data units than the enlargement
of packets of individual application instances. The higher
packet rate reduction, however, comes at the cost of com-
plex network nodes performing aggregation and disaggre-
gation at the network’s edge.

Acknowledgments
The authors would like to thank Martin Köhn for valuable
discussions.
The work presented in this paper was partly funded within
the 100GET project 100G ARP by the German Bun-
desministerium für Bildung und Forschung under contract
No. 01BP0768.

References
[1] IEEE Computer Society. P802.3ba: IEEE Stan-

dard for Local and Metropolitan Area Networks–
Carrier Sense Multiple Access with Collision De-
tection (CSMA/CD) Access Method and Physical
Layer Specifications - Amendment: Media Access
Control Parameters, Physical Layers and Manage-
ment Parameters for 40 Gb/s and 100 Gb/s Opera-
tion, 2008.

[2] S. Hauger, T. Wild, A. Mutter, A. Kirstädter, K. Kar-
ras, R. Ohlendorf, F. Feller, and J. Scharf. Packet
processing at 100 Gbps and beyond—challenges and
perspectives. In Proceedings of the 10. ITG Sympo-
sium on Photonic Networks, Leipzig, May 2009.

[3] A. Mutter, M. Köhn, and M. Sund. A generic 10
Gbps assembly edge node and testbed for frame
switching networks. In Conference on Testbeds
and Research Infrastructures for the Development
of Networks and Communities (TridentCom2009),
2009. (Accepted for publication).

[4] J. Postel. TCP maximum segment size and related
topics. RFC 879, IETF, November 1983.

[5] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and S.C. Diot. Packet-
level traffic measurements from the Sprint IP back-
bone. Network, IEEE, 17(6):6–16, Nov.-Dec. 2003.

[6] Alteon Networks. Extended frame sizes for next
generation Ethernets. Technical report, Alteon Net-
works, 1999.

[7] Chelsio Communications. Ethernet Jumbo Frames –
the good, the bad, the ugly. Technical report, Chelsio
Communications.

[8] ITU. Rec. X.200: Information technology – Open
Systems Interconnection – Basic Reference Model:
The basic model, 1994.

[9] J. Postel. Internet Protocol. RFC 791, IETF, Septem-
ber 1981.

[10] J. Postel. Transmission Control Protocol. RFC 793,
IETF, September 1981.

[11] J. C. Mogul and S. E. Deering. Path MTU discovery.
RFC 1191, IETF, November 1990.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Mas-
inter, P. Leach, and T. Berners-Lee. Hypertext Trans-
fer Protocol – HTTP/1.1. RFC 2616, IETF, June
1999.

[13] D. Connolly and L. Masinter. The ’text/html’ Media
Type. RFC 2854, IETF, June 2000.

[14] T. Dierks and E. Rescorla. The Transport Layer Se-
curity (TLS) Protocol Version 1.2. RFC 5246, IETF,
August 2008.

[15] N. C. Zakas, J. McPeak, and J. Fawcett. Professional
AJAX. Wiley, 2006.

[16] F. Schneider, S. Agarwal, T. Alpcan, and A. Feld-
mann. The New Web: Characterizing AJAX Traf-
fic, volume 4979/2008 of Lecture Notes in Computer
Science, pages 31–40. Springer Berlin / Heidelberg,
2008.

[17] J. W. Färber. Modellierung von IP-basiertem
Paketverkehr ausgewählter interaktiver Dienste. Dis-
sertation, University of Stuttgart, Stuttgart, 2007.


