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ABSTRACT

The future Broadband Integrated Services Digital Net-
work (B-ISDN) will be based on the Asynchronous
Transfer Mode (ATM) that allows statistical multiplex-
ing of variable bitrate (VBR) sources. Video data will
have a major share in future broadband traffic. In this
paper we investigate in detail the short and long term
statistical properties of video sequences encoded ac-
cording to the MPEG-1 video coding standard. A flex-
ible hierarchical stochastic source mode! will be pre-
sented that can be matched to the properties of any
MPEG encoded video sequence. The model takes
the first and second order statistical properties and
the short and long term correlation characteristics into
account, including long range dependence (LRD) ef-
fects. The performance of an ATM multiplexer fed by
a number of MPEG video sources is evaluated and
used to validate the simulation models.

INTRODUCTION

The Asynchronous Transfer Mode (ATM) has been
standardised for the future Broadband-ISDN (Inte-
grated Services Digital Network). It has to cope with a
vast variety of services with different bitrate and QoS
(Quality of Service) requirements. The ATM princi-
ple is based on the transfer of packets with constant
length allowing statistical multiplexing. But with this,
different connections may influence each other in the
QoS they perceive. The ATM QoS can be expressed
in terms of cell losses, cell delays and cell delay varia-
tions whereof in this paper we will focus on cell losses.

In order to investigate the impact of different traf-
fic sources and associated services on the network,
models are necessary that characterise the statistical
properties and the behavior of the sources and asso-

ciated ATM traffic streams. Thus, the development
of video source models and their validation is essen-
tial for performance analyses. Via the introduction
of video on demand services, conferencing services
and as a main constituent of multimedia applications,
video data will have a major share in future broadband
traffic. Generally, the behavior of a video source and
thus its statistical characteristics depend on the coding
technique, the application and the video contents.

Previous studies on the characterisation of VBR
video sources were based on a variety of coding
techniques [Garr 91, Magl 88, MRSZ 92, NFO 89,
RaSe 90, SSD 93, VPV 88]. But the important statis-
tics and results obtained by these studies have to
be extended for more complex coding techniques
such as MPEG-1 (Motion Pictures Experts Group),
that was standardised by ISO/IEC (Internationat Or-
ganization for Standardization, International Elec-
trotechnical Commission) in 1992 [MPEG 92]. In
[PaZa 92, PaZa 93] the effect of two main parameters
on the video statistics and variable bandwidth alloca-
tion schemes were investigated based on a 3 minute
40 second sequence. Four CCIR601 test video se-
quences, 2000 frames in total, were studied and used
for a multiplexing analysis in [Rein 93].

This paper analyses the properties of VBR (Variable
Bit Rate) MPEG-1 encoded video data and their be-
havior in an ATM environment. A very long sequence
(about 82 minutes) of the movie “Starwars” and a se-
quence of about 24 minutes of “CNN News” were en-
coded using a distributed MPEG-1 software encoder
and frame statistics traces were extracted for different
picture sizes.

The statistical properties of a VBR video data stream
at different time scales depend on various factors. At



the cell level, the packetization process is dominant.
At the picture level, the behavior of the encoder, its
parameters and algorithms are essential. The fluc-
tuations in the amount of information in consecutive
pictures at the scene level are governed by the con-
tents and type of video material independent of the
used coding algorithm. To take all these facts into ac-
count, a flexible hierarchical stochastic source model
for simulation purposes was developed that can pro-
vide different levels of complexity adjustable to the
requirements of the system under investigation. In
[GaWi 94] strong evidence for the presence of long
range dependence (LRD) was found in the VBR video
statistics trace presented in [Garr 91]. The LRD prop-
erty is mainly due to the different complexity of con-
secutive pictures and scenes. These propetties will
be represented in our model at the scene level by the
use of an approximation of discrete fractional Gaus-
sian noise (dfGn) called fast fractional Gaussian noise
(ffGn) [Mand 71]. The characteristics of the MPEG en-
coding algorithm will be modelled at the picture level
by suitable transformations of the scene level random
process.

The remaining of the paper is organized as follows:
First, we will briefly describe the main characteristics
of the MPEG encoding algorithm that will be reflected
in the source model. Then, fractional Gaussian noise
processes and analysis methods to assess their prop-
erties will be described. Next, a hierarchical source
mode! will be introduced and the algorithms that are
used at the different levels will be described. There-
after, the performance of the source model is com-
pared with that of the empirical statistics traces by sim-
ulation of the behavior of a deterministic multiplexer
with finite buffer fed by several VBR video sources.
Finally, the main results will be presented and conclu-
sions will be given.

VBR MPEG ENCODED VIDEO

The MPEG-1 video coding standard uses a combi-
nation of intra- and interframe coding because of the
conflicting requirements of random access and highly
efficient compression. The color difference signals of
the digitized input signal are subsampled with respect
to the luminance by 4:1:1 to match the sensitivity of
the human visual system. The use of motion compen-
sation allows to exploit temporal redundancy in the

video sequence. Spatial and perceptual redundancy
reduction is achieved via Discrete Cosine Transform
(DCT) coding on 8 x 8 pixel blocks and quantization
of the DCT coefficients. After the quantization two-
dimensional run-length coding is used to encode the
quantized DCT coefficients.

Bi-directional
Interpolation

Prediction

Figure 1: Temporal picture pattern (N =
3)

Three main picture types are defined. Intra coded
pictures (I-pictures) are coded without reference to
other pictures. Predictive coded pictures (P-pictures)
are coded more efficiently using motion compensated
prediction from a past |- or P-picture. Bidirectionally-
predictive coded pictures (B-pictures) provide the
highest degree of compression using past and future |-
or P-pictures as a reference for motion compensation
[MPEG 92]. The three picture types are organized in
a so called group of pictures (GOP) defined by the
distance N between I-pictures and the distance M
between P-pictures. The GOP structure we used is
IBBPBBPBB with N = 9 and M = 3 (Figure 1).

To investigate the behavior and statistical properties
of MPEG encoded video data and as a basis for the
parametrisation of our model, we encoded a very long
sequence of the movie ‘Starwars’ and a sequence of
‘CNN News’ using a distributed encoding environment
based on the Berkeley MPEG-1 encoder version 1.1.
The picture size was set to 640 x 480 pixel at a pic-
ture rate of 25 Hz. The sequence lengths of the statis-
tics traces containing the number of bits necessary to
encode the pictures are 123574 and 36664 pictures,
respectively. The basic statistical properties of the
traces are listed in Table 1.



[ Picture type [[ Minimum [bif] | Maximum [bif [ Mean [bif] | Coefficient of variation

Starwars
I 44520 387656 1.82-10° 0.24
P 14352 394920 1.03-10°% 0.33
B 2720 144048 4.41-10% 0.32
All 2720 394920 7.25 - 10% 0.72
CNN News
I 40480 514432 2.37-10° 0.26
P 9152 471048 1.04-10° 0.43
B 936 191072 3.89 - 10% 0.42
All 936 514432 7.51-10% 0.94

Table 1: Picture size statistics

The raw material for the ‘Starwars’ statistics trace was
taken from a laser disk, whereas the ‘CNN News’ se-
quence was recorded from the cable television net-
work with a VCR. Since the cable television signal
contains more noise than that of the laser disk, the
overall bitrate of the ‘CNN News’ trace is higher and
the coefficients of variation are larger compared to
those of the ‘Starwars’ trace.

FRACTIONAL GAUSSIAN NOISE
PROCESSES AND LONG RANGE
DEPENDENCE

It has been discovered [GaWi 94] that in discrete time
series {X:}, t = 1,2,...,n, of consecutive picture
sizes in VBR video traces even observations a long
time span apart are significantly dependent. This is
in contrast to the common assumption in time series
modelling that observations a long time span apart
are nearly independent. This statistical property is
called long range dependence (LRD), “persistence” or
the “Hurst effect”. It was first discovered in natural
time series like river levels and precipitation records
in hydrology by H. E. Hurst [Hurs 51] and is quanti-
fied via the Hurst parameter H, 0 < H < 1. For-
mally, persistence can be characterised in several
ways [Hosk 84, Cox 84

1. by a correlation function that decays hyperboli-
cally as the lag increases, i.e. the sum of the cor-
relation coefficients tends to infinity as the num-
ber of considered lags tends to infinity.

2. by a variance of the aggregated process

Xt(m) = (Xtm—m+1 + ..+ Xtm)/m

that behaves corresponding to

VAR [Xt(’”)] ~ m~@-2H)VAR[X,].

3. by aspectral density function (periodogram) I, x
that increases without limit as the frequency
tends to zero.

4. by the rescaled adjusted range R(t, s), that be-
haves like n, H > 0.5 instead of n%3 charac-
teristic for short memory processes.

Since the periodogram analysis and the rescaled ad-
justed range (R/S) analysis will be used in the se-
quel to estimate the LRD presentin VBR MPEG video
sequences and evaluate their Hurst parameter H,
the basic equations defining these quantities will be
given next. Then, the equations defining fast frac-
tional Gaussian noise, an approximation of discrete
fractional Gaussian noise will be given (adopted from
[MaWa 69a] and [Mand 71]).

Periodogram Analysis

The empirical periodogram of a stationary time se-
ries, given a sample of n observations, {Xt}, t =
i,2,...,n , can be computed using the fast Fourier
transform. First, a centered time series {Yt} with
E[V;] = O is derived from { X, } by

V,=X:—~E[X;] for t=1,...,n (1



with
1 n
E[X)] =~ Z X, .
t=1

The discrete Fourier transform of the time series {Y }
fort = 1,...,nis defined by

(rlwp) = ) nYye 7 (2)

t=1

over the discrete set of frequencies

_ enk

wp == k=0,%1,...,%[n/2].

To calculate the discrete Fourier transform, the fast
Fourier transform algorithm can be used. The pe-
riodogram (unbiased estimate of the nonnormalized
spectral density function) of the centered time series
{Y;} is defined as

[y (wi) - (3)

I = e
n’Y(wk) 27Tn
The use of the centered data {Y; } does not affect the
asymptotic sampling properties of the periodogram for
wi # 0anditis In x(wk) = Iny(wi) whereas for
wr =0itis I,y (wk) = 0, but In’x(wk) = %E[Xt].

Rescaled Adjusted Range Analysis

A profound discussion of the application of the
rescaled adjusted range to evaluate the LRD prop-
erties of a time series {X.}, called R/S analysis, is
given in [MaWa 69a, part 2] and [MaWa 69b]. It is
based on the rescaled adjusted range statistics orig-
inally introduced in [Hurs 51]. Here we only want to
state its definition and explain its application to esti-
mate the Hurst parameter H of a time series.

Given X*(t) = ! _, X(u) and an integer s, the
expression

= max

X, [X*(t ) — X*(t) —

-0 ) - X°0)] -
— min
0<uss

Sl - X)) @

X*(t+u) — X*(t) -

is called the sample sequential range of X (¢) for the
lag s. The sequential variance 52(t, s) is defined by

S2(t,s) = (5)
. s {X(t+u)—l[X*(t+s)—X*(t)] 2.
S 1 S

Finally, the rescaled adjusted range statistic is defined
as R(t,s)/S(t,s). Hurst showed empirically, that for
many naturally occurring time series the expectation
of R(t, s)/S(t, s) follows a power law [Hurs 51], i.e.,

E [R(t,s)/S(t,s)] = s as (6)

§— 00,

with 0.5 < H < 1 whereas it was shown in-
dependently by Hurst and Feller [Hurs 51, Fell 51]
that for a purely random normal process it is
E [R(t,s)/S(t,s)] = 4/(s7/2) for large s.

A practical implementation of the R/S analysis to es-
timate the Hurst parameter H of an empirical time
series trace of length n is proposed in [WaMa 70].
The time series trace is partitioned into a number of
subsequences. Now the rescaled adjusted range is
calculated for all subsequences (different ¢) and all
possible s that are equally spaced in a logarithmic
scale. In a ‘pox diagram’ all points defining the rela-
tion log(R(t, s)/S(t, s)) versus log(s) are plotted. A
line is fitted through all these points for sg < s < n
by the method of least squares. sp has to be eval-
uated subjectively to delete nonlinear relations of
log(R(t,s)/S(t,s)) versus log(s) for small values of
s resulting from the short term correlation structure of
the trace. The slope of the fitted line is an estimate of
the Hurst parameter H.



Fractional Gaussian Noises

In [GaWi 94] and [Hosk 84] ARIMA processes, gener-
alised by fractional differencing, are used to generate
persistent time series. The major drawback of the al-
gorithm to generate these processes is that each sam-
ple depends on every previous sample, thus the gen-
eration of n samples requires o(n?) computation time.
This renders simulations more difficult. Thus, in our
studies we used an implementation of a fast fractional
Gaussian noise (ffGn) process to generate persistent
time series. ffGn processes are an approximation of
discrete fractional Gaussian noise (dfGn) processes,
that still exhibit the desired LRD property over a cer-
tain time interval, but are far simpler to use for sim-
ulation purposes. These processes and their proper-
ties are discussed in detail in [MaWa 69a, part 3] and
[Mand 71]. In the following we will repeat the basic
equations defining the dfGn and ffGn processes.

The main property of a continuous Brownian motion
random process (Bachelier process, Wiener process)
B(t) is that, for every € > 0, the sequence of incre-
ments B(t+¢)—B(t) with t aninteger multiple of eis a
sequence of independent Gaussian random variables
with zero mean and variance equalto e. The fractional
Brownian motion random process By (t) is deduced
from the continuous Brownian motion random process

by

Bu(t) — By (0) =
0
— /— [(t _ u)H—O.5 = (_U)H—-O.S] dB(’lL) +

+ /Ot(t — )75 dB(u) . 7

This function By (t) — B (0) exists if and only if
0 < H < 1. For H = 0.5 fractional Brownian mo-
tion reduces to ordinary Brownian motion, so it can be
regarded as a generalisation of the latter. The incre-
ments By (t) — Bu(t — €) with t an integer multiple
of € constitute a stationary random process. The se-
quence of values By (t) = Bg(t) — Bu(t—1)is
called ‘discrete-time fractional Gaussian noise’ and is
deduced from continuous Brownian motion by

i
Bat)= [ Kut-wdBw) @
with the ‘kernel function’ K i (u) given by
uff—08 0O<u<
Ky(u) = { uH-05 _ (u— 1)H—O.5 1<
(9

For H = 0.5, By (t) reduces to a discrete-time Gaus-
sian white noise with ¢ = 1. The autocorrelation co-
efficient r [BH(t),BH(t)(S)} is calculated for s > 0
(r [Bu(t), Bu(t)®] = 1) according to

T [BH(t)7BH(t)($)] =

= % [(s+ 1)2H —262H 4 (5 — 1)2H] (10)

From equation (10) it can be seen that dfGn exhibits
the desired hyperbolically decaying autocorrelation
coefficient required for an LRD process, but it is de-
fined via an integral that is not very much suited for
simulation purposes on a computer. Therefore fiGn,
an approximation of dfGn, that only needs o(n) com-
putation time to generate a time series of n observa-
tions will be introduced next (adopted from [Mand 71]).
Basically, the ff{Gn process X ;(¢, H) consists of a fi-
nite sum of Markov-Gauss processes approximating
the autocorrelation function of the dfGn process. In
the following we will restrict ourselves to fiGn with zero
mean and unit variance, since this will be the basis of
the VBR MPEG source model that will be presented
later. The ffGn process is constructed as the sum of
a low frequency term X;(¢, H) and a high frequency
term X, (¢, H), i.e.

Xsi(t,H)=Xi(t, H) + Xn(t, H) . (11)

Besides the parameters ¢t and H two additional con-
venience parameters are required, the base B and
the quality Q. As B — 1 and Q — oo the approx-
imation of the dfGn autocorrelation coefficient by the
low frequency term will improve. The low frequency
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term is defined as the weighted sum of N(n) inde-
pendent Markov-Gauss processes X (t, x| MG) with
zero mean, unit variance and covariance 7y,

N(n)
Xi(t,H) =Y WiX(t,r| MG) .
k=1

(12)

The weight factors W, are determined by

H(2H —1) (B'"# - BH~T)
2 _ —2k{(1—H)
Wi I'(3—2H) B

(13)

and the lag-1 covariance is given by

—RB-k

(14)

rE=¢

The number of Markov-Gauss processes N (n) de-
pends on the desired length . of the time series and
the convenience parameters B and @) and is calcu-
lated according to

N(n) = [In(Qn)/In(B)] , (15)

where [z] denotes the smallest integer larger than
z. The Markov-Gauss processes X (t,7x| MG) are
defined by

; X(t,’l‘k‘MG) =
Gr(1) t=1
= rkX(t-—'i,'I’kI]WG)‘l- t> 1 (16)

+sgri(1 — T%) Gr(t)

video source model

with Gr(t), k = 1,...,N(n) being sequences of
Gaussian variables of zero mean and unit variance
(discrete-time white Gaussian noises).

The high frequency term generally may be a Markov-
Gauss process to ensure that the ffGn process has
unit variance and a lag-1 correlation of 22H~1 — 1
corresponding to the lag-1 correlation of the dfGn. In
our case it is sufficient to use a simple Gauss pro-
cess that guarantees that the ffGn process has unit
variance, since the MPEG encoding algorithm heavily
influences the short term correlation of the VBR MPEG
video data stream, thus it is not necessary to exactly
reproduce the lag-1 correlation of the dfGn process.
So the high frequency term X (t, H) is calculated
according to

Xh(taH): \ﬂ - 4(1 —

where G(t) is a sequence of Gaussian variables of
zero mean and unit variance.

pH-1

e 00 (17

MODELLING

Within this section we will introduce the general struc-
ture of the hierarchical VBR MPEG video source
model and a simple model of an ATM multiplexer fed
by a number of such video sources. The algorithms
and transformations used at its different levels will be
presented and the analysis methods described in the
previous section will be applied to extract the neces-
sary parameters from the empirical statistics traces.

Hierarchical VBR MPEG Video Source Model

Figure 2 shows the general hierarchical structure of
the VBR MPEG video source model. It comprises
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three building blocks representing the behaviour of
the source at the scene level, the picture (burst) level
and at the cell level. Models describing the encoded
video data generally have to take into account the pic-
ture size distribution function and the autocorrelation
function that are depending on the encoder charac-
teristics and the contents of consecutive pictures. In
our model we want to separate the impact of the video
contents on the picture sizes from that of the MPEG
encoder.

Within the scene activity generation component, the
long term fluctuation of the information contents in
the video material is characterized. This fluctuation
results from object movement, panning and zoom-
ing of the camera and scene changes. The picture
size generation component specifies the impact of the
MPEG coding algorithm on the compressicn rate that
is achieved on consecutive pictures. Finally, the pack-
etization component describes how the coded pictures
are packetized into ATM cells and sent to the ATM net-
work.

Cell Level It is assumed that consecutive pictures
are completely coded and then packetized into ATM
cells. The additional data added by the GOP and video
sequence layer is neglected in our model, since it will
not change the general behavior of the video data
stream. The ATM cells of a picture are transmitted
suitably paced over the picture duration T' = 40 ms.
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Picture Level Since the picture sizes are heavily
dominated by the GOP structure, the I-, P-, and B-
pictures are modelled separately and the picture types
are chosen according to the cyclic GOP pattern.

Figures 3 and 4 show the complementary distribution
functions of the picture sizes of the ‘Starwars’ and
‘CNN News' statistics traces separately for the |-, P-
and B-pictures. As can be seen in both cases, the
picture sizes, especially for P- and B-pictures, can be
modelled very well by log normal distribution functions
fitted by their mean and variance to the experimental
data. However, the probability for large I-pictures is
somewhat overestimated. The log normal PDF f;(y)
is given by

fily) = S N _1(ny—EL2)?

W= eNaziy P2 varizl |
(18)

with mean E[Y] = eE[Z]“L!”z[_Zl and variance

Var[V] = e(EIZI+Vartz)) (Valzl _ 1) where E[Z]
and Var[Z] are the mean and variance of the under-
lying normal PDF.

X5(t) is a sequence of Gaussian variables with zero
mean and unit variance, that will be the output of a
ffGn process (see section on scene level below) or a
sequence of i.i.d. Gaussian random variables. Let
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X;, i € {I,P,B} be the random variable for the
I-, P-, and B-picture sizes with E[X;] and Var[X|]
their means and variances as given in table 1. Then,
the log normally distributed picture sizes X (t) can be
calculated after

X(t) =
Var[X;]
exp {\/In (1 + ELX.E

+ InE[X;] - -12—In <1 +

>X4ﬂ+

Var [Xz]
19
H&fﬂ’()

where i € {I, P, B} has to be chosen in compliance
with the picture type that the GOP structure prescribes
for the picture at time £.

Scene Level A physical explanation for the LRD
property exhibited by VBR video traces {X:}
arises from the fluctuations in the short term mean
5—171 :2:,4 X;, 1 < t1 < tp < n, caused by object
or camera movement and scene changes [Pott 76]
present over a wide range of time scales. Thus the
use of a stochastic process exhibiting the LRD prop-
erty having a single parameter H is a very effective
way to model the intensity of the fluctuations in the in-
formation contents of consecutive pictures. The Hurst
parameter H is estimated from the experimental VBR

MPEG video traces using the R/S analysis.
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Figure 6: R/S analysis of the straightened out
‘Starwars’ VBR MPEG video trace

Figure 5 shows the ‘pox diagram’, i.e. the logarithm
of the rescaled adjusted range versus the logarithm of
the lag in pictures, for the ‘Starwars’ picture sizes that
exhibit a very long transient up to about a fag of 100
pictures. This is due to the presence of strong cyclic
componentsin the picture size sequence thatare intro-
duced by the GOP pattern of the MPEG encoding al-
gorithm. The length of the transient coincides with the
mean scene length of about 4 seconds that we found
evaluating 25 minutes of the movie. To straighten out
the periodic effects of the MPEG encoding algorithm,
the inverse of equation 19 can be used on the empiri-
cal data to get a sample trace of the supposedly under-
lying random process. The R/S analysis of the ‘Star-
wars' trace straightened out is depicted in Figure 6.
A least squares regression applied to the original and
on the straightened data yields in both cases a Hurst
parameter of H = 0.86 since the asymptotic R/S in-
tensity of dependence is unchanged by the addition
of pure sine waves [MaWa 69b] but transient effects
are introduced. The Hurst parameter of our ‘Starwars’
MPEG time series is in good agreement with a Hurst
parameter H = 0.88 that we found for a ‘Starwars’
motion JPEG time series and H = 0.83 reported in
[GaWi 94]. Forthe ‘CNN News' trace we encountered
a Hurst parameter of about H = 0.90." The higher
hurst parameter may result from very sudden changes
in the scene activity level switching between head and
shoulder scenes and coverage paits.

A discrete fractional Gaussian noise with the appropri-
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ate Hurst parameter is very well suited to capture the
temporal behaviour of the straightened VBR MPEG
video time series. The very good match of the autocor-
relation coefficients of the straightened ‘Starwars’ time
series and the corresponding dfGn process (equa-
tion 10), even for pictures more than a minute apart,
is illustrated in Figure 7. The impact of the LRD scene
activity generation process on the correlation structure
at the picture level compared to the use of a sequence
of independent Gaussian variables is characterized in
Figure 8. The autocorrelation structure of the ‘Star-
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Figure 8: Autocorrelation coefficient of the ‘Star-
wars’ picture size sequence

wars’ time series has a decaying component in addi-
tion to the periodic constituent imposed by the cyclic
GOP structure. Without the LRD process only the
periodic constituent is captured [Enss 94]. The dfGn
process adds the necessary slowly decaying compo-
nent to the autocorrelation coefficient of the model.

A summary of the properties of the ‘Starwars’ time se-
ries in the frequency-domain is given in Figure 9 by
its power spectral density (periodogram). For low fre-
quencies the frequency spectrum has the form of a
power law of the form w; ® characteristic for LRD pro-
cesses. The four outstanding frequencies correspond
to period lengths of 2.25, 3.00, 4.50 and 9.00 pictures.
These are the base frequencies that shape the cyclic
GOP pattern. The conformity of the power spectral
density of the experimental time series with that of our
two level model based on an f{Gn process and a cyclic
nonlinear transform on its output verifies the validity of
this approach in the frequency domain.

Multiplexer Model

In otder to investigate the feasibility and efficiency of
the transmission of VBR video traffic in future ATM
systems, understanding the behavior of a multiplexer
and its performance is essential. The ATM statistical
multiplexer is modelled as a queue with deterministic
service time D, a maximum queue size of S cells and
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a link capacity of C Mbit/s that is fed by ng MPEG
ATM video sources (Figure 10).

MULTIPLEXER PERFORMANCE

In this section we want to evaluate the quality of the
VBR MPEG video source model and investigate the
multiplexing behavior of a number of such sources
in terms of cell losses using the multiplexer model
presented above. The use of the ffGn scene activ-
ity model adds considerable complexity to the overall
source model compared to the use of a sequence of
i.i.d. random variables. Therefore, it has to be ap-
praised when the more complex ffGn model is nec-
essary and in what cases a simplified model of the
picture and cell level is sufficient. In the following it
is assumed that the 53 byte ATM cells have a video
payload of 47 bytes. All simulation results are given
with 95% confidence intervals based on 10 very long
simulation part tests. Although, due to the LRD prop-
erty of the video data, these part tests are not com-
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Figure 11: Cell loss probability of a single video
source in a multiplexer with small buffer
(C = 2.12Mbit/s, load 0.939, 95% c. i.)

pletely independent, they were chosen so long that
the remaining correlation is very small. For that rea-
son the confidence intervals are not exact in a rigorous
mathematical sense but give a relative bound on the
accuracy of the results.

All results will be given for the ‘Starwars’ data. For
the ‘CNN News’ data we obtained very similar results
where for the same load more cell losses were en-
countered due to the higher Hurst parameter and the
larger variance of the picture sizes.

Figures 11 and 12 depict the cell loss probability en-
countered by a single VBR MPEG video source in a
multiplexer depending on the buffer size. The output
link of the multiplexer has a transmission capacity of
C = 2.12 Mbit/s and the source generates a relative
load of approximately 0.939. The load of the multi-
plexer was set pretty high so that the results for all
the simulations could be obtained by a current engi-
neering workstation in reasonable time. If the load is
lower, the basic behavior of the system stays the same
but fewer cell losses will occur. As long as the buffer
of the multiplexer can hold less than about 100 cells,
a simple mode! without taking the scene activity level
into accountis in very good agreement with the results
obtained with the ‘Starwars’ time series. If the buffer
is made larger, the simple model underestimates the
cell losses by several orders of magnitude, whereas
the ffGn model captures the behavior of the empirical
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Figure 12: Cell loss probability of a single video
source in a multiplexer with large buffer
(C = 2.12Mbit/s, load 0.939, 95% ¢. i.)
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Figure 13: Cell loss probability of 40 video sources
in a multiplexer with smalf buffer (C
88Mbit/s, load 0.909, 95% c. i.)

‘Starwars’ time series very well since the LRD property
becomes more and more dominant causing a partic-
ularly slow decay of the cell loss probability for large
buffers.

The cell loss probabilities encountered by 40 VBR
MPEG video sources in a multiplexer are illustrated in
Figures 13 and 14. The transmission capacity of the
multiplexeris C = 88 Mbit/s and the load imposed by
the 40 sources is about 0.909. Since the cyclic GOP
pattern of the MPEG encoding algorithm has a strong
impact on the coded picture sizes the phase relation
among the 40 sources is essential for the overall cell
loss rate. Therefore the point of time, where the dif-
ferent video sequences start, was chosen randomly
within the period of the GOP pattern that is in our case
within 360 ms. For small buffers the well known be-
havior resulting from cell and burst (picture) level fluc-
tuations in the cell arrivals is encountered [KTB 90]. It
can be approximated by an M/D/1/S queueing system
and a fluid flow approximation [Enss 94]. For large
buffers the LRD impact becomes more and more im-
portant slowing down the decay of the cell loss rate
with increasing buffer size. The ffGn models capture
this effect. Again, the simple model, not modelling the
LRD property, will underestimate the cell losses for
large buffers. However, compared to the ‘Starwars’
time series, the models should generally somewhat
overestimate the losses since the probability for large
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Figure 14: Cell loss probability of 40 video sources
in a multiplexer with large buffer (C =
88Mbit/s, load 0.909, 95% c. i.)

I-pictures is overestimated by the fitted log normal dis-
tribution function.

CONCLUSION

We have investigated the statistical properties of dif-
ferent VBR MPEG video time series. A three level
source model, based on a discrete fractional Gaussian
noise process and log normal distribution functions for
the I-, P-, and B-picture sizes, was presented that cap-
tures the essential properties of the encoded video
data at the different time scales. The scene level be-
havior is captured by a single parameter H, the Hurst
parameter. The picture level behavior is represented
by the means and variances of the picture sizes of
the I-, P, and B-pictures. Further, the multiplexing be-
havior of a number of VBR MPEG video sources was
studied. The results of the simulation model includ-
ing the LRD properties of the video data were found
to be in good agreement with simulations driven by
the ‘Starwars’ and ‘CNN News' statistics traces over a
wide range of buffer sizes.

Generally, the complexity necessary to mode! VBR
MPEG encoded video data depends on the ability of
the system under investigationto memorise partof the
data stream. The performance of technical systems
with little memory is little affected by the long term
properties of the video data, whereas systems with



large memories have to cope with these long term
properties. So video source models for studying sys-
tems with little memory may be far simpler than for
systems with large memory. Still an open issue and
a topic of further research is the analytical treatment
of a multiplexer fed by a number of sources exhibiting
LRD properties.
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