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Abstract

In time series theory, the prediction of future values
is a widely discussed subject. There are manyfold
methods to derive models from data. One of the
main objectives is to obtain the model parameters.
Some proposals use self adapting techniques like
Neural Networks for the parameters. Most of these
approaches predict one future value of a time series.
Some simulation tasks require models for traffic
sources that are closely related to time series predic-
tion though there exist different requirements. One of
them is that a simulated traffic source should show
the same stochastic behavior as a reference source.
In this paper a procedure is presented that automat-
tcally adapts to a given reference source in the sense
described above.

1 Introduction

General

When dealing with time series or, more generally,
with sequences of data, there are mainly two areas
of interest: the understanding of the underlying sto-
chastic process and the prediction of future data.
For the prediction of future data, a model of the sto-
chastic process has to be built, based on a former
analysis.

The analysis of time series is an extensively devel-
oped area of mathematics. There are many
approaches to model different kinds of sequences of
data. A simple method consists in adapting an
ARMA model (Auto Regressive Moving Average) to
the sequence. This works fine for most sequences
without seasonal effects and trends. For other
sequences, more sophisticated methods are required
([51, 6], [9]). However, many problems need their
own specific solutions ([1], [2], [17]). Most of these
approaches share the following characteristics:
firstly, as much information as possible about the
characteristics of the underlying data is collected
and, secondly, a model that covers the essential fea-
tures is deduced. Most procedures that deal with
forecasting future values predict one (the next)
value based on a set of past values. In this way

these procedures lead to a deterministic behavior of
the model.

All methods mentioned above share one disadvan-
tage: they are inflexible in terms of changing
parameters of the underlying data. These parame-
ter changes have to be taken into account by the
model and increase its complexity very much.

Time series models that are able to deal with chang-
ing parameters should be based on an architecture
that is inherently able to automatically adapt to
these changes. This architecture could be based on a
Neural Network. Until today there are not many
approaches that use a Neural Network (NN) archi-
tecture. Their advantage primarily consists in their
ability to learn a given behavior without the exact
knowledge of the underlying data and without diffi-
cult analysis needed for modelling. One disadvan-
tage is that no detailed and understandable model
of the underlying time series is built. These models
are most often used for prediction ([12], [14], [15],
[16]).

Source modelling is an area where the generation of
future values is frequently used.

Source modelling

In source modelling the generation of deterministic
new values from given data such as forecasting
exchange rates is often of no particular interest. In
contrast to that, a random data sequence is gener-
ated. Every new value is randomly chosen from a
given distribution depending on the state of the
model. The state is sometimes defined by some
recently generated values (like autoregressive mod-
els). Source modelling is frequently used for traffic
generation in the simulation of communication net-
works, in the simulation of manufacturing plants or
in measurement technology. Since this paper con-
centrates on communications all the examples will
relate to this area.

Multiple traffic sources built from the same model
must be statistically independent from each other.
A simple reproduction of measured data from a file
(play back) is not sufficient. A shifted play back
from a file where one traffic sequence starts at one
point and another traffic sequence starts at another



point of the file is not sufficient, too, because of the
strong correlations (especially when the file is short
or when many sources are needed). Even in the case
of very long files problems might occur in large sim-
ulations. This leads to the conclusion that reproduc-
tion from files is inflexible.

Another demand is that the number of events gen-
erated by a traffic source should be randomly choos-
able.

Like in conventional time series analysis ARMA
models can be used for source modelling. There are
some approaches employing Neural Networks but
most of them don’t fulfill all the stated require-
ments for source modelling. In [14], [15] NNs are
used for modelling an ATM cell stream (Asynchro-
nous Transfer Mode) without adding a random com-
ponent. This kind of modelling is sufficiently exact,
but not very useful for simulation.

How can traffic models be obtained? This is a simple
task when only distributions are of interest and no
correlations. Distributions might stem from mea-
surement. The task can become very difficult when
correlations must be taken into account. In this case
an ARMA process might be profitably used, but how
to obtain the model parameters? Another problem is
that ARMA models are normally driven by white
noise with the consequence that negative values are
possible in any case, even if they are not allowed. [4]
shows an example for source modelling using an
ARMA model. Here the parameters are partly esti-
mated from the measured data and partly calcu-
lated via the frequency domain.

Now suppose that the process to obtain a source
model from a given sequence of data is transferred
to a computer with an automatic adaptation of the
source model to the data. This would save time and
manpower needed to analyze the underlying data
and to build a model.

In the following parts of this paper a new method is
presented that adapts a source model to any ran-
dom process or time series. It uses Neural Networks
to learn the stochastic behavior of the underlying
data.

Automatic source identification

The advantage of automatic source identification is
a gain in productivity and saving of money since
computational power is much cheaper than man
power today. The disadvantage is the reduced possi-
bility of interpretation of the generated source
model. Only very few topological parameters have
to be estimated from the data. All random processes
that are weakly stationary and that have some sea-
sonal effects can be modelled. Trends can be mod-
elled only if they are very slow.
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Figure 1: Principle of source model

Figure 1 shows one principle of this approach. Sup-
pose that the content of the box named "source
model" is already adapted to the data. The scalar
value x, is the output value of the modelled traffic
source. N time delayed output values form the input
vector i,

(1)

The shift register forms a memory for the past. The
vector i, is fed into the "source model," the output
of which is the newly generated value. This output
is fed back to the shift register, delayed by one step.
So the number generating loop is closed.

i = (Ko s Xgmgs ooor X)) -

Figure 1 provides a more detailed view. The source
model is now divided into two parts, the distribu-
tion prediction (DP) and the random number gener-
ation (RNG). The RNG simply draws a new number
according to the distribution at its input. The gen-
eral inverse-transform method is used as RNG algo-
rithm, see [10]. For every input vector the DP block
computes the distribution the next output value is
drawn from.

In Section 2 the components of the distribution pre-
diction including the learning process are described.
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Figure 3: Principle of distribution prediction

Section 3 adds some examples of time series that
are learned and predicted by applying the new
source model.

2 Distribution Prediction

At first the scenario shown in Figure 3 is examined.
N values of a time series preceding the current
value x, are fed to a black box named "distribution
prediction." Inside this box the prediction for the
distribution of the actual value is computed. For
each vector i, at the input there is a distinct distri-
bution at the output.

The actual value x, and the input vector i, are now
treated as one (N+1)-dimensional vector
X, = (X, 1) with a (N+1)-dimensional distribu-
tion function

F(Xk’ Xk—l’ - Xk_N)= (2)
PIX, <xp o0 X NS XNt
and density function
f(Xk, Xk—l’ ey xk-—N) =
N (3)
F(Xp - X Zn)
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Without loss of generality k is now set to 0 for sim-
plicity. Then the density function becomes

f(Xgy X_ps ovor X)) -

For distribution prediction the conditional distribu-
tion of x,, for distinct values of the input vector i, is
needed. To obtain this the N-dimensional space that
belongs to the input vector is quantized into M dis-
crete vectors

(4)

This task is carried out by a vector quantizer (VQ).

i=1,..,.M
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Each vector p; points to the center of a region I, of
RN In these regions the density function of x,, (3)

is approximated by the function fl(xo) The umon
of all regions I, forms the N-dimensional space RN

The approximation in region I, is defined by the
mean value of density (3) in this region:

fi(xo) =

1
Vol() J~~-ff(xo, ty, ..., ty)dt; . dty
I

i

(5)

where
Vol(I)) = j,,‘Jdtlu.dtN (6)
1.

1

This leads to the following error inside region I
(the error measure is the squared difference

between f(...) and fi(...)):
E =
_J; U I sz(xo, ty, ..o ty)dty . .dtN]de -

1

“Vol(L) - inz(xo)dxo
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To compute the total error that results from quanti-
zation some features of the vector quantizer need to
be known. This VQ adapts to the x, in a way that
all regions I; are equally probable for the given time
series. The algorithm used is partly taken from lit-
erature and is described in detail in [3]. The result-
ing total error is:

M
= in (8)
i=1
E; decreases for an increasing number M of

regions.
The approximated density fi(xo) is obtained from
the given time series, too. A new Neural Network
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Figure 5: Prediction with VQ and DA’s

algorithm was investigated that is able to form a
distribution when a sequence of data is offered to it.
This algorithm is presented in the next subsection.

Figures 4 and 5 show the connection between vector
quantizer and distribution approximation (DA).
Whenever an input vector falls into a region of the
VQ, the corresponding DA is chosen for learning or
prediction. In other words, the VQ is responsible to
detect all correlations, the DA’s are responsible for
representing distributions.

Figure 4 shows the learning case. The actual value
X, 18 needed here as input for the actual DA to
adapt the distribution. In the case of prediction
(Figure 5), when learning is completed, one DA is
chosen by the VQ for prediction of x, .

Distribution adaptation

Figure 6 shows how the distribution adaptation
module works. A time series that obeys to a distinct
distribution is given. Minimum and maximum val-
ues are not known a priori. The algorithm inside
the black box shall form an approximation of the
distribution of the given data. The values of the
time series are fed to the input of the adaptation
module. The density function at the output is repre-
sented by a piecewise constant function, see Figure
7.

Usually, a distribution is measured by dividing the
whole interesting region into small regions of equal
width. The local density inside these regions is cal-
culated from the frequency. The approach presented
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Figure 6: Principle of distribution adaptation
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here has two advantages compared to normal distri-
bution measurement: firstly, there is no a priori
knowledge needed concerning the minimum and
maximum values of the time series, the algorithm
adapts automatically to them. Secondly, the regions
are not of equal width and are adapted in order to
obtain an optimal split. To achieve a high approxi-
mation quality the density function is approximated
finer where it is high and coarser where it is low.
This is achieved by equal probable regions. The
region probability is approximated by the frequency
f, of each region. Figure 7 shows a sample approxi-
mation function with L regions. The values w;
denote the width of the regions and d; the densities,
respectively. The correspondence between width,
density and region probability is f; = d;- w; foriin
1..L.

The algorithm is implemented as a non supervised
Neural Network with L computing elements. There
are no other inputs than the events from the time
series for learning. The structure of the NN and the
learning rule are described in more detail in [3]. In
the recall phase, which is needed for distribution
prediction, the output of the trained NN is used as
the approximation of a density function.

3 Source Modelling - Examples

In this section some examples of modelling traffic
sources are presented. The comparison between the
original time series (reference) and the modelled
time series is done by calculating the correlogram
for both of them.

Markov modulated poisson process -
MMPP

The first example is a MMPP process (Markov Mod-
ulated Poisson Process) with two states. The MMPP
is a frequently used traffic model in telecommunica-
tions and represents a source with two activity
states. Figure 8 shows a state-transition diagram.
The process switches between the two states with
probabilities 1-p, and 1-p,, respectively. The
expectation of event values in the states are m; and

m,. The parameters for the example are
Pr = P2 = 0.8, m; = 0.1 and m, = 15.
density
d;
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Figure 7: Example of approximated distribution
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Figure 8: MMPP with 2 states

For distribution prediction N=5 VQ inputs and M=2
VQ units were used, thus having 2 distinct distribu-
tions approximated. =10 segments were used for
the approximation of each distribution. Figure 9
shows the resulting distribution functions of the
approximation. Note that the mean values of the
two curves are equal to the expectation mentioned
above.

The correlograms in Figure 10 differ to a slight
extent, because only two distribution approxima-
tion units have been used in this example.

Second order moving average process
- MA(2)

The reference data for this test was produced from
Ve = §+0©-¢,_, with © = 0.2 and & being white
noise with mean 0 and variance 1.

The parameters of the source model are: N=3,
M=25, L=10.
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Figure 11: Correlogram

In Figure 11 the good correspondence of the auto-
correlations can be seen.

MPEG coded video frames

This example is a real world case. A MPEG coded
video sequence from the movie "Star Wars" is used.
The sequence consists of the amount of data per
video frame after compression.

Figure 12 shows the sequence generated by the
MPEG scheme in principle. The large frames are so-
called I-frames and comprise a whole picture. The
medium-sized frames are P-frames, the small
frames B-frames. The sequence I-B-B-P-B-B-P-B-
B- is repeated cyclically and is defined by the MPEG
parameters (more detailed information can be
found in [8]). The size of the I-, B-, and P-frames is
distributed according to the underlying video
scenes. Due to this cyclical behavior the correlo-
gram of MPEG-coded video data has a characteris-
tic form as shown in Figure 13.

Figure 14 shows the resulting distribution approxi-
mations that are learned by the VQ and the DA’s
during the adaptation process (parameters N=9,
M=15, L=10). It can be seen that there are different
groups of distributions. Each group represents a dif-
ferent frame type (I, B or P) and the occurrence of
the different distribution types obeys the same rule
than the I-B-P-sequence above.

In Figure 13 it can be seen that the model fits the
reference quite well. Figure 14 shows the set of 15
distribution functions belonging to this experiment.

I I
I, B, P: frame types

frame size

t
Figure 12: MPEG frames e
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In this figure the distribution groups belonging to
different frame types are marked.

4 Summary

In this paper a new algorithm is presented that
identifies arbitrary time series that may contain
seasonalities and slow trends. It consists of a vector
quantizer that reduces the complexity of the input
data and a special Neural Network type that is able
to learn distributions.

The model parameters for both the vector quantizer
and the Neural Network are automatically derived
by the learning process if an adequate topology is
chosen.

Some examples demonstrate the usability of the
methed.

A more detailed description including a perfor-
mance analysis of the presented approach and the
algorithms can be found in [3].
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