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ABSTRACT 

The paper deals with problems on the inter­
module communication in SWitching systems with 
distributed and modularized control. Two basic 
scheduling aspects are regarded in the path bet­
ween an output queue of a processor and the input 
queue of another processor, namely intelligent 
polling mechanisms for output queues as well as 
intelligent task dispatching strategies for load 
sharing processors. In both cases, performance 
results are obtained by analytic means for gener­
ic queueing models of state dependent dynamic 
strategies. Comparisons between different simple 
and intelligent strategies referring to, e.g., 
the blocking probability, mean waiting time, con­
trol overhead, and implementation aspects allow 
the choice of the suitable strategy and the di­
mensioning of its parameters under given condi­
tions. 

1. INTRODUCTION 

The control of digital switching systems be­
comes more and more distributed by using a large 
number of microprocessors. Flexibility, extensi­
bility and availability can be obtained by this 
modularization in the control area. On the other 
hand, the problems of intermodule communication 
and the distribution of functions become more 
difficult. 

A generalized model of such a control struc­
ture (see Fig. 1) consists of several functional 
groups of processors, e.g. special peripheral 
processors, signalling processors or universal 
processors for more centralized functions. By 
this, the principle of function sharing is imple­
mented, but within such functional groups of pro­
cessors the principle of load sharing can be used 
to reach flexibility and extensibility. The in­
terprocessor communication usually is realized by 
sending messages into an output queue of the ori­
gin processor, from where they are transferred to 
the input queue of the destination processor by a 
communication system. 

Assuming a centralized communication system, 
e.g. a bus, an effective access protocol is nec­
essary. An often implemented method is some kind 
of polling. In the model this is represented by 
the lower switch. In consequence of the principle 
of function sharing, but also in the case of mo-
mentary overload, intelligent ' scheduling strate­
gies for the outgoing messages can improve the 
performance, e.g. a dynamic state dependent poll­
ing mechanism. Such strategies are shortly con­
sidered in chapter three. 

On the other side, the principle of load 
sharing implies a second scheduling problem, 

namely an intelligent message dispatching mecha­
nism, e.g. a dynamic state dependent load balanc­
ing strategy. This is represented in the model by 
the upper switch. Different strategies are inves­
tigated in detail in chapter two. 

Both mentioned intelligent scheduling stra­
tegies can commonly be implemented, e.g., in a 
centralized communication system control, as the 
bus control in the regarded model. In [1] an in­
tegrated switching system with a control struc­
ture according to Fig. 1 has been presented. The 
performance of the whole system has been investi­
gated there by simulation. Since a -detailed simu­
lation technique of the whole system is not the 
suitable method to investigate many different 
scheduling strategies, this is done in this paper 
by analytic means for generic models of the two 
considered scheduling problems. The results allow 
the choice of the optimal strategy and the dimen­
sioning of its parameters for both cases. So, the 
whole system can be investigated with the chosen 
strategy either by simulation or probably by ana­
lytic approximations, which eventually' can be ap­
plied, because simplifications are allowed, if 
optimal scheduling strategies are used. This 
could be, e.g., the use of an equivalent single 
queue model as a replacement for a multiqueue 
submodel. 
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calls 
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functional group 

of peripheral 
processors 

_------...;:"....,;:i;,:.n.::te::lligen t dispatching 

intelligent scheduling 
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Fig. 1 Generalized queueing model of a modula­
rized switching control 

4.4B-3-1 



ITC 11 Kyoto September 1985 ' 

2. PERFORMANCE OF DISPATCHING STRATEGIES 

2.1 Dispatching Strategies 

Dispatching strategies are taken into consi­
deration, if there exist several processors for a 
set of functions according to the principle of 
load sharing. Simple dispatching strategies are 
regarded here for comparisons with intelligent 
strategies. In the last case, the dispatcher uses 
system state informations for the decision, where 
a message has to be assigned to. Service time 
oriented strategies are neglected here, as in 
general the service times cannot be derived from 
the type of message. Dispatching priorities can 
also be neglected, because load sharing proces­
sors usually are of the same type. 

The following dispatching mechanisms are 
considered: 

Strategy 1: Random dispatching, according to as­
signment probabilities (e.g. equally distrib­
uted) • 

Strategy 2: Ordinary cyclic dispatching. 

Strategy 3: Fully dynamic (state dependent) dis­
patching, that means "join the shortest queue" 
strategy. In case of equality of shortest 
queue lengths the dispatching follows, e.g., 
a) strategy 1, equally distributed, or 
b) strategy 1, but deterministically to, e.g., 

the first of the shortest queues, or 
c) strategy 2, cyclically, e.g. relative to 

the last assignment. 

Strategy 4: Partially dynamic (state dependent) 
dispatching, that means according to, e.g., 
strategy 1, equally distributed among those 
queues, whose queue length is below a given 
threshold, and if all queue lengths exceed the 
threshold the dispatching follows, ·e.g., 
a) strategy 1, equally distributed, or 
b) strategy 3a. 

Strategy 5: Dispatching with 
that means according to, 
equally distributed. But if 
is full, one second attempt 
according to 

second attempt, 
e.g., strategy 1, 

the selected queue 
is possible, e.g., 

a) strategy 1, equally distributed among all 
other queues, or 

b) strategy 1, equally distributed among those 
queues which are not full, or 

c) strategy 3a. 

Strategy 1 is regarded, because its analy.sis 
is very simple, but in practice it is not so easy 
to implement as strategy 2. The intelligent stra­
tegy 3 is the optimal strategy referring to 
blocking and waiting time, but its implementation 
is difficult and the control overhead is high, 
because the dispatcher has to know the whole sys­
tem state at any time. Therefore, strategy 4 and 
strategy 5 are considered, where the dispatcher 
not so often needs so much of the system state as 
in strategy 3. The implementation is easier than 
for strategy 3, especially for strategy 5. 

2.2 Basic Queueing Model 

Fig. 2 shows the generic queueing model for 
the investigations of dispatching strategies. A 
message arriving with rate A is assigned to one 
of g queues according to the special dispatching 
strategy. It gets blocked with probability B, if 
it cannot ' be assigned to the queue or the queues, 
which were defined by the dispatching strategy. A 

given queue i has s. waiting places and the 
appropriate server ha§ the serving rate E. • The 
arrival and service process must be of Mafkovian 
type (M), that a state space analysis for the in­
telligent strategies can be applied. This re­
striction is indeed not too bad for applications 
in switching controls. This has been shown in the 
detailed simulation study of a sWitching system 
in [1]. Measurements taken at various points in 
the model have shown that traffic streams can be 
described by coefficients of variation for the 
interevent time between 0.9 and 1.1 in most 
cases. 

M 

Fig. 2 Basic model for dispatching strategies 

2.3 Solution Method 

2.3.1 The State Space 

The solution of strategy 1 can be reduced to 
the solution of a M/M/1-s delay-loss system with 
arrival rate A. = Pi' A, where p. is the dispatch­
ing probabilit9, e.g. p. = 1/~ for equally dis­
tributed random dispatchiag. The characteristic 
values can be obtained, e.g., from tables [2]. 

The investigation of strategy 2 can pe re­
duced to the solution of an E /M/1-s delay-loss 
system with Erlang-g arrival gprocess and rate 
Ai = A/g as above. The characteristic values can 
easily be obtained by a recursiv~ solution of an 
appropriate two-dimensional state space. 

For all other intelligent strategies state 
spaces have to be set up with the appropriate 
state transition rates. For all these cases a 
state X must be at least a g-dimensional vector, 
where X = (x 1,x2 , ••• ,x. , ••• ,x); x. represents 
the momentary queue leagth of gqueue

1
i, including 

the server. Strategies with cyclic components 
must have states of one more dimension for the 
cycle number. 

Fig. 3 shows a simple example of the state 
space for two queues, each with three waiting 
places and for the dynamic strategy 3. Each state 
is represented by the vector! = (x 1,x2). In case 
of equality of the queue lengths, messages are 
assigned to queue 1 with the probability PI and 
to queue 2 with P2 = I-PI. For strategy 3a PI and 
P2 have a value of 0.5 and for strategy 3b PI is 
1.0 and P2 is O. 

In practical applications there are normally 
more than two queues with some more waiting 
places and therefore some hundred or thousand of 
states. Furthermore, the multi-dimensional state 
spaces can no more be described in a graphical 
manner. Thus, a special software tool has been 
implemented, which allows on the one side a sim­
plified interactive input of states and transi-
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tions for smaller but complicated state spaces 
or, on the other side, the definition of great 
state spaces by an algorithmic description of the 
transitions. The program produces the conditional 
state transition probabilities for arrivals as 
well as directly the system of linear state °equa­
tions for the statistical balance. Then the state 
probabilities can be solved by an iterative 
Gauss-Seidel algorithm. Out of these state proba­
bilities and the state transition probabilities, 
characteristic mean values of the dispatching 
strategies can be calculated as follows. 

Fig. 3 Example of a state space for dispatching 
strategy 3 

2.3.2 The Characteristic Values 

The equations in this paragraph can be ap­
plied for state dependent dispatching strategies, 
as the strategies 3, 4 and 5. Thereby the follow­
ing assumptions are made: 

g 
n. 
~ 

x 
p(X) 
P.(X) 
~-

number of queues, 
number of waiting places of queue i, in­
cluding the server (n i = si+1), 
state (xl'x2 , ••• ,x ), 
state probabilitygof the state X, 
conditional state transition probability 
for the transition from state X to state 
(x1,x2,···,xi +1, ••• ,xg ). -

The following characteristic values can be 
calculated for every subsystem i and some of them 
also as global values for the whole system: 

Probability, that an arriving customer is as­
signed to queue i: 

Arrival rate at queue i: 

\ = qi' A (2 ) 

Blocking probability at queue i conditioned 
that a call is assigned to queue i and total 
blocking probability, i.e. the probability 
that an arriving call is rejected: 

(3a) 

B 
g 

E qiBi 
i=1 

- (3b) 

Mean load of server i and total mean load of 
the whole system: 

y. 1 - E p(!) 
~ 

!lxi=O 
(4a) 

g 
y E y. 

i o=1 ~ 
(4b) 

Mean queue length of queue i and total ° mean 
number of waiting customers in the whole sys­
tem: 

(Sa) 

g 
Q = E Q. 

i=1 ~ 
(sb) 

Mean waiting time (with respect to all arri­
vals in queue i) and global mean waiting time 
for an arriving call at the system: 

w1 i = Qi / \. 

w1 = Q / A 

(6a) 

(6b) 

Waiting probability in 
ting probability for 
the system: 

queue i and global wai­
an arriving customer at 

w. 1/q.· E P(!)·Pi (!) (7a) 
~ ~ XIO<X. <no - ~ ~ 

g 
W E q(Wi (7b) 

i=1 

Mean waiting time (with respect to the waiting 
arrivals in queue i) and global mean waiting 
time for ' a waiting customer in the whole sys­
tem: 

tw i = w1 i / Wi 
tw = w1 / W 

Probability, that queue ~ ~s 

old xi = z and probability, 
found at threshold x. = z 

Pth i[z] E 
Xlx.=z - ~ 

g 

~ 

p(!) 

E qi" Pth 
i=1 

2.4 Implementation Aspects 

(8a) 

(8b) 

found at thresh­
that any queue is 

(9a) 

(9b) , 

Regarding the state dependent strategies and 
assuming a centralized dispatcher, a certain 
amount of system state information has to go back 
from the system to the dispatcher, dependent on 
the strategy. Fig. 4 shows a model, which de­
scribes this fact. Messages arriving with rate A, 
have to be assigned to one of the queues, that 
means, they have to pass a dispatching service 
phase with service time td. Informations of the 
system state or its changes or blocking informa­
tions are sent back from the system or, respec­
tively, from the ports of the queues through the 
communication system, e.g. a bus, to the dis­
patcher with rate A, as far as they are needed 
for the dispatchingUstrategy. These informations 
are assumed to pass an update service phase with 
service time tu in the dispatcher. So, the ne-
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cessary mean utilization of the dispatcher for a 
given strategy can be estimated by t 'A + td' A, 
and the additional overhead load forUthg communi­
cation system is determined by A 'h , where h is 
the transfer time for a message o¥ the communica­
tion system. As A is a function of the used 
strategy and its imp1~mentation, in the following 
the minimal necessary rate A is used as a com­
parison measure for the contrg1 overhead of a 
dispatching strategy. A is assumed to include 
informations on b10cking,Ubecause losses usually 
are not allowed in switching controls. 

central dispatcher 

system state 
information 

Fig. 4 Model for state dependent dispatching 
control 

In the following some implementation methods 
and the appropriate rates Au are given: 

Strategy 1 and 2: Normally no system state in­
formation is necessary, but to avoid losses, 
for each blocked message one back message con­
tributes to ~ • Hence, it follows: 

u 
(10) 

Strategy 3: As the arr~v~ng messages directly 
reach the dispatcher, only one information is 
necessary for each termination of a service 
phase in the system, to allow the dispatcher 
to reconstruct the system state. Therefore, 
the minimal necessary rate Au is: 

u 

g 
Y • E £i = A·(1 - B) 

i=1 
(11 ) 

Strategy 4: For each arrival, one information is 
necessary, whether the threshold th is 
reached, and for each termination of a service 
phase in the system, one information is neces­
sary, whether the queue length falls below the 
threshold the Hence, it follows: 

Au = A'Pth[th-1] + A·(1 - B)'Pth[th] (12) 

Strategy S: Each arrival at a full queue causes 
at the first attempt one blocking message. A 
queue is found full with the probability 
Pfull = pth[z=ni ]· For the second attempt, the 

strategies Sa, band c must be distinguished: 

a) If the second attempt is blocked, one more 
blocking message is necessary. Hence, it 
follows: 

\ = A'(Pfull + B) (l3a) 

b) After the first attempt, from each queue, 
which is not full, one information is ne-

c) 

cessary. Therefore, we have: 

~ = A·Pfull·(1 + g·(1 - Pfull)) (l3b) 

But the impementation method of strategy 4 
can also be applied here with th = n

i 
• 

After the first attempt, from each other 
queue one information is necessary, that 
means g messages all over. Thus, it fol­
lows: 

(l3c) 

2.S Results 

All considered strategies have been investi­
gated in numerous parameter studies. Some typical 
examples of the obtained results are presented in 
the following. 

First, the differences between the strate­
gies should be illustrated by the global blocking 
probability B, the global mean waiting time t, 
and the waiting probability W versus the offer~d 
load, defined by p = AI L £i' In the second exam­
ple, the influence of the number of queues on the 
blocking probability B will be shown. Finally, 
the control overhead rate A , as defined in sec­
tion 2.4., is demonstrated fgr different strate­
gies. 

Fig. S shows the blocking probability B for 
a system with g = 4 queues, each with s. = 6 wai­
ting places. The strategies 1,2,3, Sa a~d Sb are 
considered. The dynamic strategy 3 is the best, 
while the random strategy 1 is the worst case. 
Thereby, strategy 3a and 3b have exactly the same 
results for the global characteristic values. In 
all investigated parameter s~udies, the blocking 
probability of the cyclic strategy 2 lies approx­
imately in the middle between strategies 1 and 3 
in logarithmic scale. Furthermore, two examples 
for strategy S, namely Sa and Sb, are also shown 
in the diagram. The curves for different thresh­
olds of the queue length of strategy 4, which are 
not included in the diagram, are located in the 
range between strategies 1 and 3, where every 
blocking level can be achieved through ' a proper 
choice of the thresholds. 
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~ 

e 1E-1 

~ 
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ID 
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Fig. 5 
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Offered Load (p) 
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Blocking probability versus offered load 
for dispatching strategies 

4.4B-3-4 



ITC 11 Kyoto September 1985 

Regarding the mean waiting time tw of the 
waiting customers for the same system, Fig. 6, 
the areas of normal load and overload must be se­
parated. In the normal load range, strategy 3 is 
already the best, strategy 1 is the worst case, 
and strategy 2 lies between them. In the overload 
situation, the waiting time for strategy 3 is 
longer, because the throughput is higher in this 
case. Referring to the waiting time, the strate­
gies 4 and S do ~ot work very well, because in­
telligent dispatching is only active in the high 
load range. The examples of strategies Sa and Sb 
demonstrate this fact. 

To get an idea of the mean waiting time of 
all arriving customers, the waiting probability W 
is shown in Fig. 7 for the same system. Due to 
the higher blocking probability in the overload 
case, the waiting probability decreases in this 
range. 

The effect, that the cyclic strategy 2 is 
quite better than the random strategy was al-
ready shown in other context in [7]. 

I 
Q.) 

E 
i= 
01 
C 

:;:; 
'0 
::: 
c 
0 
Q.) 

~ 

Fig. 6 

~ 
:0 
o 

6.0 

4.0 

2.0 

0.0 
0.0 

~ Si = 6 

0 .5 1.0 
Offered Load (p) 

1.5 

Waiting time versus offered load for 
dispatching strategies 

1.0 

rg-:4l 
~ 

.g 0.5 
a: 

Fig. 7 

0.0 
0.0 0.5 1.0 

Offered Load (P) 
1.5 

Waiting probability versus offered load 
for dispatching strategies 

Summarizing all obtained results, the fol­
lowing statements can be given. The tendencies 
are approximately independent of the number of 
waiting places, that means, that the differences 
between the strategies remain relatively constant 
with increasing number of waiting places, al­
though, of course, the blocking probability de­
creases and the waiting time increases. On the 
other hand, the difference between the strategies 
increases with the number of queues, but constant 
offered load per queue. This effect is the g~ea­

ter the more intelligent the strategies are, 
since the probability that an arriving customer 
finds a free place is the greater the more queues 
there are disposable for the dispatching strate­
gy. This fact is demonstrated for the blocking 
probability B of the strategies 1, 2 and 3 in 
Fig. 8 for a system with Si = 2 waiting places 
for each queue and constant offered load of 
p = O.S. Strategy 1 n~turally is independent of 
the number of queues, strategy 2 gets better and 
for strategy 3 the blocking probability decreases 
almost exponentially. 

e 
~ 
:0 
o 
.0 
o ... 
a. 
01 
c 
:.i 
u 
o 
m 

1 EO 

1E-1 
~----~-------+-------+------~------; 

~ 
~ 

1E-5~----~----~----~~----~----~ 

1 2 3 4 5 6 
Number of Queues (g) 

Fig. 8 Blocking probability versus number of 
queues for dispatching strategies 
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Fig. 9 
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Overhead rate versus offered load for 
dispatching strategies 

4.4B-3-5 



ITC 11 Kyoto September 1985 

Finally, the control overhead rate A will 
I be discussed, which is shown in Fig. 9. uIn the 

normal load range, strategy 3 is the worst case, 
but A remains saturated at a relatively small 
leveluin the overload case, whereas the other 
strategies increase rapidly in the overload 
range. The non-intelligent strategies 1 and 2 
naturally are the best strategies under the over­
head aspect. For strategy 5b two curves are 
shown. The dashed curve stands for the applica­
tion according to equation (13b), while the bold 
curve stands for the application according to 
equation (12), which also can profitably be im­
plemented here. 

3. PERFORMANCE OF POLLING STRATEGIES 

3.1 Polling Strategies 

As in chapter 2 for dispatching strategies, 
some corresponding polling mechanisms can be con­
sidered. Here, also many subcases could be re­
garded, but this is ommitted in the following 
list of examples, since the results do not differ 
significantly: 

Strategy 1: Random polling, according to sched­
uling probabilities (e.g. equally distribu­
ted). 

Strategy 2: Ordinary cyclic polling. 

Strategy 3: Fully dynamic (state dependent) 
polling, that means, that the longest queue is 
the next queue being served. 

Strategy 4: Partially dynamic (state dependent) 
polling, that means according to, e.g., stra­
tegy 1, ,if the queue lengths are below a given 
threshold. But if a queue exceeds this thresh­
old, the appropriate queue is the next queue 
being served. 

Strategy 5: Like strategy 4, but with an hyster­
esis ,range of the queue length instead of one 
fixed threshold. 

3.2 Basic Queueing Model 

Fig. 10 shows the generic queueing model for 
the investigations of polling strategies. There­
by, g queues are polled by the polling server 
with the service rate E corresponding to the 
scheduling strategy. A queue i has s. waiting 
places and an arrival rate A .• The afrival and 
service processes are supposed1 to be of Markovian 
type, because of the same reasons as in the model 
for dispatching mechanisms. 

M M 

Sg 

Fig. 10 Basic model for polling strategies 

3.3 Solution Method 

As the solution is very similar to that for 
dispatching strategies, a detailed description 
can be ommitted here. 

The state variables are the numbers x of 
occupied places in each queue. One additi~nal 
state for the case of a free server must be used. 
For strategy 2 one more state variable is neces­
sary for the cycle number. For strategy 5 one 
more state variable is necessary for each queue 
to indicate between the hysteresis thresholds, 
whether at last the upper limit has been exceeded 
or the lower limit has been crossed. 

3.4 Results 

Although polling mechanisms have also been 
investigated in numerous parameter studies, only 
one example will be shown here, because the dif­
ferences between the strategies are very small. 

Fig. 11 shows the blocking probability Band 
Fig. 12 the mean waiting time t of the waiting 
customers for a symmetrical s~stem with g = 4 

g 
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Fig. 11 Blocking probability versus offered load 
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Fig. 12 Waiting time versus offered load for 
polling strategies 
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queues, each with si = 3 waiting places, versus 
the offered load p= LA/ e: • The curves show that 
the cyclic strategy 2 has almost the same block­
ing probability as the random strategy 1, while 
the dynamic strategy 3 is insignificantly better. 
The waiting time is almost the same for all stra­
tegies in the normal load range, but in the over­
load range the intelligent strategies are worse. 

All cases for different thresholds of stra­
tegies 4 and 5 lie between strategies 1 and 3, 
and a comparison between strategy 4 with a 
threshold th and strategy 5 with an hysteresis 
range around th renders almost the same results. 

So, it seems to be not very usefull to im­
plement state dependent polling strategies, but 
the advantage must be seen in the behaviour for 
unsymmetrical load and momentary overload, since 
a state dependent strategy automatically includes 
dynamic priorities and therefore adapts itself to 
the queue-individual loads. Investigations on 
these effects are in work at present. 

4. CONCLUSIONS 

The implementation of intelligent state de­
pendent load dispatching mechanisms in systems 
with modularized control according to the princi­
ple of load sharing improves the performance. The 
blocking probability and the waiting time can be 
evidentually reduced by the mentioned strate­
gies 3, 4, or 5, compared to simple mechanisms, 
as the strategies 1 or 2. The effectiveness of 
the intelligent strategies, especially strategy 
3, is the greater the more servers are sharing 
the load, but the performance improvements must 
be payed for by a higher amount of control over­
head. Therefore, the strategies 4 and 5 can be a 
compromise, especially strategy 5b. The following 
table gives the designer of such control systems 
a general summary of the results for the men­
tioned strategies: 

Blocking Waiting Time Control Overhead 
Disp. Probab. Normal Over- Normal Over-

Strategy Load load Load load 

1 high high low low low 

2 medium medium medium low low 

3 low low high high medium 

4(a) *) 
high high low •• low ••• low ••• ... low .. low high high high 

5(b) low high high low medium 

*) Parameter: Threshold th of the queue length 

If the principles of these dispatching me­
chanisms are also applied for intelligent state 
dependent polling strategies, the effectiveness 
of intelligent strategies, as the mentioned poll­
ing strategies 3, 4, or 5, do not improve the 
performance very much for symmetrical load. The 
blocking probability can be lowered insignifi­
cantly, but the waiting time and the amount of 
control are in principle higher. Nevertheless, 
i ntelligent polling mechanisms can improve the 
performance for unsymmetrical and dynamically 
changing load, since these strategies are adap­
tive. Under dynamic and overload aspects, the ap­
plication can although be profitable, but these 
effects are not investigated in this paper. 

For the realization of intelligent schedul­
ing strategies, a centralized control unit, e.g., 
a bus control unit, is suitable. The overhead of 
the control information which has to be trans­
ferred from the single modules to this scheduling 
control unit, has been estimated in this paper 
for the various dispatching mechanisms. But a de­
centralization of the scheduling control is also 
imaginable, e.g., being located in a microproces­
sor control of the communication system access 
ports 'of each unit. In this case, the scheduling 
control information messages with a fixed desti­
nation must be replaced by broadcast messages. 

Furthermore, analytic performance investi­
gations of the whole system can be facilitated by 
the implementation of the best scheduling strate­
gies, because then certain approximations can be 
applied. So, e.g., the blocking probability for 
the dispatching strategy 3 can be approximated 
quite well by the blocking probability of a sin­
gle queue M/M/g-s delay-loss system with s = LS

i 
waiting places. 
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