
Grooming Connectivity Intents in
IP-Optical Networks Using Directed Acyclic Graphs

Filippos Christou
Institute of Communication Networks

and Computer Engineering (IKR)
University of Stuttgart

Stuttgart, Germany
filippos.christou@ikr.uni-stuttgart.de

Andreas Kirstädter
Institute of Communication Networks

and Computer Engineering (IKR)
University of Stuttgart

Stuttgart, Germany
andreas.kirstaedter@ikr.uni-stuttgart.de

Abstract—During the last few years, there have been concen-
trated efforts toward intent-driven networking. While relying upon
Software-Defined Networking (SDN), Intent-Based Networking
(IBN) pushes the frontiers of efficient networking by decoupling
the intentions of a network operator (i.e., what is desired to
be done) from the implementation (i.e., how is it achieved).
The advantages of such a paradigm have long been argued
and include, but are not limited to, the reduction of human
errors, reduced expertise requirements among operator personnel,
and faster business plan adaptation. In previous work, we have
shown how incorporating IBN in multi-domain networks can
have a significantly positive impact as it can enable decentralized
operation, accountability, and confidentiality. The pillar of our
previous contribution is the compilation of intents using system-
generated intent trees. In this work, we extend the architecture to
enable grooming among the user intents. Therefore, separate
intents can now end up using the same network resources.
While this makes the intent system reasonably more complex, it
indisputably improves resource allocation. To represent the intent
relationships of the newly enhanced architecture, we use Directed
Acyclic Graphs (DAGs). Furthermore, we appropriately adapt an
advanced established technique from the literature to solve the
Routing, Modulation, and Spectrum Assignment (RMSA) problem
for the intent compilation. We demonstrate a realistic scenario
in which we evaluate our architecture and the intent compilation
strategy. Our current approach successfully consolidates the advan-
tages of having an intent-driven architecture and, at the same time,
flexibly choosing among advanced resource allocation techniques.

Index Terms—architecture, IBN, RMSA, DAG

I. INTRODUCTION

With the dramatic growth of data traffic in IP-optical
networks, efficient and scalable network control and manage-
ment solutions have become increasingly critical. Intent-driven
networking has emerged as a promising approach to simplify
these tasks by allowing operators to express high-level network
objectives as intents. Connectivity intents define the desired
end-to-end connectivity between network nodes and are used to
automatically configure the underlying network infrastructure.
The Intent-Based Networking (IBN) framework responsible
for this automatic implementation is logically placed on top of
the Software-Defined Networking (SDN) controller and carries
the network logic. The SDN controller then gets exclusively
dedicated to facilitating the communication between the IBN
framework and the network devices; it receives a role similar

This work has been performed in the framework of the CELTIC-NEXT
EUREKA project AI-NET-ANTILLAS (Project ID C2019/3-3), and it is
partly funded by the German BMBF (Project ID 16KIS1312).

to a device driver in computer systems. Thus, the operator will
send connectivity intents to the IBN framework. The IBN frame-
work compiles the intents to an implementation, which is then
forwarded to the SDN controller to be installed into the devices.

One of the critical design choices in operating an IBN
framework is choosing the compilation algorithm. The
compilation algorithm receives an abstract high-level network
objective and automatically outputs an implementation that can
be realized in the network at a specific time. Depending on the
objective’s nature, different algorithms must be invoked. For
example, Network Function Virtualization (NFV) intents could
be addressed using algorithms for Virtual Network Functions
(VNFs) placement and Service Function Chain (SFC)
deployment [1], [2]. Since we consider IP-optical connectivity
intents in this work, the serving algorithmic family is that of
Routing, Modulation, and Spectrum Assignment (RMSA) [3].

Ideally, we would like to reuse any of the algorithms from
the literature in the intent-driven environment. This can be done
effortlessly using a one-step compilation procedure and inde-
pendently invoking the preferred algorithm when new intents
must be compiled. The resulting interoperability with legacy
algorithms would allow some of the advantages of IBN, like the
holistic view and the built-in architecture for the intent lifecycle.
However, a mere ”re-branding” of the algorithms without truly
adapting them to the intent-driven architecture would require
re-implementation of procedures like intent monitoring (making
sure that installed intents remain successfully installed), intent
conflicts resolution (when more than one intent requires the
same resources), and intent re-provisioning (in case of network
failures) each time according to the legacy algorithm chosen.

In our previous work [4], we have outlined a series of
advantages that can be gained by having a multi-step intent
compilation approach. Specifically, we have concluded that
hierarchical system-generated intent structures, like intent trees,
can offer efficient decentralized coordination of multi-domain
IP-optical networks. Although possibly requiring more effort
to bind to legacy algorithms, this approach promises flexible
and scalable communication mechanisms, confidentiality, and
accountability. However, there is no inherent possibility to use
algorithms that leverage grooming as long as intent trees are
used for the representation of the multi-step intent compilation.
IP-optical traffic grooming [2] is a popular technique that
packs several demands into the same optical spectrum channel,

https://orcid.org/0000-0001-5181-378X


thus increasing resource utilization.
This paper fills this gap by developing a new approach that

permits IP-optical grooming by substituting the intent trees
with an intent Directed Acyclic Graph (DAG). As a result,
we reinvent an intent-driven framework that inherits all the
benefits from its predecessor and can successfully integrate
any grooming-enabled RMSA algorithm. To demonstrate this
universality, we adopt an established RMSA algorithm from
the literature [5]. We also proceed to slight modifications to
prioritize low-latency paths, showing the algorithm’s preserved
flexibility in the intent-driven environment. We validate the
operation of the architecture by simulating a realistic scenario
with well-known results. We limit our focus on single-domain
scenarios to better focus on the task at hand.

In the following section, we introduce the new architecture
using an intent DAG as opposed to the one using intent
trees. Section III describes the compilation algorithms and the
integration steps needed for [5]. In Section IV, we evaluate
our architecture in a realistic scenario seeking to reproduce
the expected well-known results. In Section V, we conclude
the paper and disclose future directions.

II. ARCHITECTURE

In this section, we will first briefly revisit the architecture
of [4] using intent trees and then contrast it with the novel
version using an intent DAG.

A. Intent Trees

Intent compilation using intent trees recursively generates
child intents from higher-level intents. The intent tree is a
hierarchical representation of the network intent, where the
depth corresponds to a different level of abstraction. The tree’s
root represents the high-level user intent, while the leaf nodes
represent the low-level intents which are the needed device
configurations.

The top of Fig. 1 illustrates two different intent trees
corresponding to two different user intents. The generation of
the intent tree is specific to the compilation algorithm chosen.
One-step compilation algorithms are still possible; in that case,
the tree would be two levels deep and be composed exclusively
of the root user intent and its low-level intents children.

Fig. 1. Comparing intent trees and intent DAG

It is important to notice that separate user intents define
separate intent trees, and there is no way of merging them.
As a result, the resources reserved by the low-level intents
in one intent tree cannot be jointly used by another, rendering
support for grooming impossible.

B. Intent DAG

To reuse resources (i.e., low-level intents) across different
user intents, we must allow some intent nodes to have several
parents, leading us to use a DAG. Furthermore, DAGs preserve
the direction the same way it exists in a tree and avoid unwanted
cyclic dependencies. In contrast with the intent trees, where
the number of intent trees directly depends on the number of
user intents, the intent DAG is unique per IBN framework and
includes all user intents. However, the intent DAG might be
disconnected (when no grooming is done), and then practically
several partial DAGs will appear. The bottom of Fig. 1 illus-
trates how an intent DAG could modify the intent structure. A
unified indexing is also necessary to combine all the intent trees.

The following network intents were defined to solve the
grooming-enabled RMSA problem.

• LightpathIntent is an intent that defines a lightpath across
some network nodes. These intents are the grooming
points for IP-optical networks. If our IP-optical intent
system were applied to the bottom of Fig. 1, then
intent #7 would be a LightpathIntent.

• SpectrumIntent is an intent that defines the spectrum
requirements of a parent LightpathIntent.

• NodeTransmoduleIntent is a low-level intent that requires
using a particular transmission module in a multilayer node.

• NodeRouterPortIntent is a low-level intent that requires
using a port in the router of a multilayer node.

• NodeSpectrumIntent is a low-level intent that requires the
reservation of some spectrum slots in a link connected to
a multilayer node.

Fig. 2 shows an example of a compiled intent involving
all the aforementioned intents.

A

B

C

D

E

F

ConnectivityIntent A to F

LightpathIntent A-C-D-F

SpectrumIntent A-C-D-F 5:9

NodeSpectrumIntent A, A-C 5:9 NodeSpectrumIntent C, C-D 5:9 NodeSpectrumIntent D, D-F 5:9

NodeSpectrumIntent C, A-C 5:9 NodeSpectrumIntent D, C-D 5:9 NodeSpectrumIntent F, D-F 5:9

NodeTransmoduleIntent A

NodeRouterPortIntent A NodeRouterPortIntent F

NodeTransmoduleIntent F

Fig. 2. Example of a compiled intent. The connection from node A to node
F is implemented with one lightpath covering the nodes A-C-D-F and using
the spectrum slots 5,6,7,8,9 along the involved fibers.



III. INTENT COMPILATION ALGORITHMS

On top of the intent DAG architecture, any grooming-
enabled RMSA algorithm could be implemented. In this
section, we will look closer at three of such algorithms.

A. Shortest Available Path
The Shortest Available Path (SAP) is the simplest algorithm,

also used in [4], and is treated as the baseline. It is an RMSA
algorithm that first solves routing using k-shortest-path and
then the spectrum assignment using first-fit [6]. If the path
is unavailable, the next shortest path is considered. Using
algorithms without grooming like this makes no difference
whether we have intent trees or an intent DAG.

B. Joint Multilayer
The Joint Multilayer (JML) algorithm has been proposed

in [5]. It is a complex algorithm that can be used in an online
fashion and is composed of the following steps:
• Create a directed multilayer multigraph.
The layers of the graph correspond to the optical and electrical
views. Each topology node is converted to a two-layered node
composed of an IP router vertex and an Optical Cross-Connect
(OXC) vertex. The edges in the electrical layer signify
the established lightpaths (virtual links), and the edges in
the physical layer are the fibers. Inter-layer links are the
transmission modules connecting the OXC with the IP router
and vice versa. Since more than one transmission module
might be available, a multigraph is needed to accommodate
several edges between the same vertices.
• Calculate the cost vector for all edges.
Each edge e in the multilayer multigraph is described by a
vector (De, Ce, Pe, H̄e, Fe, W̄e, Te, Ie, Le). De is the distance
covered by the last transmission module, i.e., since the last
regeneration. Ce is the cost of the transmission module. Pe

is the cost of the router port. H̄e is the vector of transmission
module mode tuples [(r1, d1, b1), (r2, d2, b2), ...], where
ri, di, bi is the transmission rate, the optical reach, and the
spectrum slot requirements, respectively. Fe is a boolean
variable specifying whether the link is virtual. W̄e is the boolean

vector indicating the availability of the spectrum slots. The last
three components, Te, Ie, and Le, are new additions needed
for the adaptation as an intent DAG compilation algorithm. Te

is the type of link (virtual, optical, optical-to-virtual, or virtual-
to-optical) and is used because different actions are needed
based on the link type. Ie is the index of the intent DAG
node if the (virtual) link corresponds to an already established
LightpathIntent. Le is the physical link length. Several
link cost vectors can be added to create a path cost vector
with similar components (Dp, Cp, Pp, H̄p, W̄p, Ip, Lp, R̄p, p̄),
where R̄p are the transmission modules chosen along the way
and p̄ is the path in the multilayer multigraph.
• Obtain non-dominated paths.
Here, an algorithm generates a series of candidate multilayer
paths. A multilayer path comprises a series of optical, virtual,
optical-to-virtual, and virtual-to-optical links in the correct
logical order. This collection excludes the paths whose path
cost vector is categorically worse than others, i.e., they are
dominated by other paths. Such comparison can only happen
between paths of the same source and destination. A path p1
is categorically better (i.e., dominates) than a path p2 if
Dp1 ≤ Dp2 and Cp1 + Pp1 ≤ Cp2 + Pp2 and Fp1 ≤ Fp2

and max
rate

R̄p1 ≥ max
rate

R̄p2 and W̄p1 ≥ W̄p2

During the non-dominated paths generation, care is being
taken to only output valid multilayer paths, which respect
the limitations imposed by the port rate, optical reach, and
bandwidth requirements in H̄p. Paths picked in this step serve
as candidate paths for the next step.
• Select the winner path.
An optimization function is chosen based on the preferences,
and a path is selected from all the candidates that minimize this
function. The legacy optimization function the JML algorithm
uses aggregates all electrical and optical costs Cp + Pp. As a
result, the path is selected that minimizes these costs at best.
• Allocate spectrum slots.
After choosing the winner path, the spectrum allocation is
conducted with the preferred algorithm. The legacy algorithm
uses the first fit.

connectivity intents
0 200 400

la
te

nc
y 

in
 m

ill
is

ec
on

ds

0

5

10

15
Comparison between different routing strategies

different strategies
JML LDJML SAP

no
rm

al
iz

ed
 c

os
ts

 %

0
10
20
30
40
50
60
70
80
90

100

Total configuration costs

JML
LDJML
SAP
failed (SAP)

IP costs

optics costs

Fig. 3. Single simulation comparison. On the right, the IP and optics costs are the same as the attributes Pp and Cp in the path cost vector.



JML LDJML SAP

m
ill

is
ec

on
ds

2.0

2.5

3.0

3.5

mean latency

JML LDJML SAP
no

rm
al

iz
ed

 c
os

ts
 %

80

85

90

95

100
cost

JML LDJML SAPno
rm

al
iz

ed
 b

lo
ck

ed
 tr

af
fic

 %

0.0

0.5

1.0

1.5

2.0
blocked traffic

JML
LDJML
SAP

Fig. 4. Multiple simulations comparison. The black line in the violin plots
is the median.

Following are the extra steps introduced in the procedure
for the adaptation to the intent DAG compilation.
• Break solution into predefined intents.
Once the algorithm yields an output path with all the needed
resource allocations, this information is mapped into the intents
defined in Section II. The result will be similar to Fig. 2.
• Attach intents to the intent DAG.
In the final step of the compilation algorithm, the newly
generated nodes are added to the intent DAG as descendants
of the user intent. In case of no grooming, all intents involved
will create new child intents. If grooming takes place, not all
involved intents will be added to the DAG, but instead, an edge
will be created between the involved intents and a LightpathIn-
tent already existing in the DAG identified by the Ie attribute.

C. Latency-Driven Joint Multilayer
After being ported into the intent-based regime, the adapted

algorithm JML should remain easy to modify as designed
by the original authors of [5]. Indeed, we can easily modify
the optimization function to adjust the algorithm to focus on
finding the shortest paths, rendering the intent-driven approach
equally flexible. For this reason, we had to introduce the
extra attribute Lp to quantify the physical length of the path,
which now needs to be minimized. With a lower priority and
in case of a tie between paths, we fall back to the previous
objective function Cp + Pp. We called this slight variation
Latency-Driven Joint Multilayer (LDJML), which is further
used during the evaluation to attain more variety of use cases.

IV. EVALUATION

In this section, we will evaluate the presented architecture.
The results should not invoke surprise, as the core algorithms
used are well-known and should yield the expected results.
This section has the role of proof of concept, where we
validate that the adapted compilation algorithm JML and its
slight variation LDJML operate as expected.

For the simulation, we used the Nobel-Germany topology
from [7]. The demand matrix is generated using a truncated
normal distribution for every node pair, aggregating to circa
62 Tbps for the whole network. Each entry on the demand
matrix is then used to issue a connectivity intent. The cost
and network equipment model is derived from [8].

A. Single Simulation
Fig. 3 shows the results of running a single simulation

for each compilation algorithm presented in Section III. On
the left, we can see the latency for every connectivity intent
for all compilation algorithms. SAP generally delivers the
lowest latency, JML the highest, and LDJML is, as designed,

in the middle. However, SAP does not leverage grooming, and
62 Tbps are already too much to accommodate with such a
naive approach. As a result, this leads to certain connectivity
intents being blocked. Blocking does not happen for JML and
LDJML, which both leverage grooming and thus manage their
resources more efficiently.

We witness similar results also regarding the cost of the
three compilation algorithms. SAP presents the highest costs
as it allocates more resources for every new connectivity
intent. JML presents the lowest costs as it is the objective of
the optimization function used. LDJML again stands in the
middle as it uses grooming, which helps reduce the costs, but
also tries to minimize latency with a higher priority.

B. Multiple Simulations
To achieve more confidence in the results, we repeat the

simulation 40 times using different seeds for the random
generation of the demand matrix. Fig. 4 confirms the same
results as described previously. LDJML always stands in the
middle between JML and SAP, with SAP having the lowest
latency, highest cost, and some blocking and JML having the
highest latency, lowest cost, and no blocking. LDJML also
shows no blocking due to the grooming capabilities enabled
by the intent DAG compilation design.

V. CONCLUSION

In this paper, we designed a modular architecture for intent
compilation algorithms. We used an intent DAG to represent
the realization of any grooming-enabled RMSA algorithm.
Using the proposed architecture, any related algorithm can
be adapted while also preserving the possibility for further
modifications. This work enables the migration of legacy
algorithms to the intent-based regime for single-domain
scenarios. We demonstrated the validity of our approach by
making simulations using three different intent compilation
algorithms and confirming the well-known results. As new,
exciting benefits are still to be gained for decentralized
multi-domain operation, future work will focus on expanding
and analyzing the presence of intent DAGs in such use cases.

REFERENCES

[1] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive
survey of network function virtualization,” Computer Networks, vol. 133,
pp. 212–262, 2018.

[2] S. Miladić-Tešić, G. Marković, and V. Radojičić, “Traffic grooming
technique for elastic optical networks: A survey,” Optik, vol. 176, pp.
464–475, 2019.

[3] F. Shirin Abkenar and A. Ghaffarpour Rahbar, “Study and analysis
of routing and spectrum allocation (rsa) and routing, modulation and
spectrum allocation (rmsa) algorithms in elastic optical networks (eons),”
Optical Switching and Networking, vol. 23, pp. 5–39, 2017.

[4] F. Christou, “Decentralized intent-driven coordination of multi-domain
ip-optical networks,” in 2022 18th International Conference on Network
and Service Management (CNSM), 2022, pp. 359–363.

[5] V. Gkamas, K. Christodoulopoulos, and E. Varvarigos, “A joint multi-layer
planning algorithm for ip over flexible optical networks,” Journal of
Lightwave Technology, vol. 33, no. 14, pp. 2965–2977, 2015.

[6] B. C. Chatterjee and E. Oki, “Performance evaluation of spectrum
allocation policies for elastic optical networks,” in 2015 17th International
Conference on Transparent Optical Networks (ICTON), 2015, pp. 1–4.

[7] S. Orlowski, R. Wessäly, M. Pioro, and A. Tomaszewski, “Sndlib 1.0—sur-
vivable network design library,” Networks, vol. 55, pp. 276 – 286, 01 2009.

[8] F. Christou, T. Enderle, and A. Witt, “Towards a hybrid architecture by in-
troducing coherent pluggable transceivers in ip-optical core networks with
optical cross-connects,” in Photonic Networks; 23th ITG-Symposium, 2022.


	Introduction
	Architecture
	Intent Trees
	Intent DAG

	Intent Compilation Algorithms
	Shortest Available Path
	Joint Multilayer
	Latency-Driven Joint Multilayer

	Evaluation
	Single Simulation
	Multiple Simulations

	Conclusion
	References

