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Abstract—Estimating availability in transport networks is essen-
tial to successfully provision connectivity services under various
requirements. As modern Service Level Agreements (SLAs) are
becoming more demanding, it is crucial to estimate the true
availability of an end-to-end path as soon and reliably as possible.
Network operators might have expert knowledge regarding the
theoretical availability of the network components, or they might
have some measured data to infer such information. However, in
either case, the true steady-state availability is unknown and must
be inferred as a combination of the above. Traditionally, the esti-
mation of Quality of Service (QoS) metrics, like availability, is done
by producing a scalar value as an approximation. This can often
be misleading and an oversimplification. In this paper, we build a
multilevel Bayesian model that provides a probabilistic estimate
of all network links’ availability by exploiting expert knowledge
and the underlying data. The value of this methodology is greater
for scenarios with scarce data, where the inference quality demon-
strates remarkable stability regardless of the randomness of the
incoming data. We demonstrate the effectiveness of our approach
through simulation experiments and compare our results with
the empirical interval availability. Our work has important impli-
cations for the design and management of optical networks since
it constitutes a valuable tool that provides accurate availability
estimations, which can be used for sophisticated decision-making.

Index Terms—availability, modeling, Bayesian, optical networks

I. INTRODUCTION

Modern networking introduces new challenges with ever
more demanding requirements. The emergence of 5G/6G
technologies may provide an answer for such high-end services,
but the optical network section must properly support them. The
network operators must adjust their configuration to align with
the promised Quality of Service (QoS) metrics of the Service
Level Agreement (SLA). One of the most popular QoS metrics
in an SLA is availability. The availability is a way to specify
the uptime of a system, and it is typically measured as the per-
centage of time that the system is available and usable. Network
operators might often be interested in steady-state availability,
which describes the availability of a system in the long run.
They can use this information to make optimized decisions to
implement network services of different availability require-
ments without overprovisioning and wasting precious resources.

There has generally been much research regarding network
availability. However, the estimation of the true steady-state
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availability has often been considered equivalent to the
empirical interval availability [1]. The empirical interval
availability is the measured availability that the system
experiences in a specific time interval. We question this
method, which we find inappropriate for scarce events, as is
the nature of optical fiber faults measured over a limited time.
We propose an alternative approach to estimate the steady-state
availability more reliably using multilevel Bayesian modeling.

Bayesian modeling [2] has its roots in Bayesian statistics.
It provides a technique to incorporate expert knowledge and
measured data into a model and describe the estimation of the
parameters with probability distributions. It has recently gained
much usability due to advancements in computing resources and
the emergence of Probabilistic Programming Languages (PPLs).
PPLs automatically infer the estimated parameters by com-
monly using Markov Chain Monte Carlo (MCMC) sampling.

Following, we mention a non-exhaustive list of the most
important works related to this paper. [3] defines an availability
model for multiple types of IP-optical network equipment,
including fibers, and uses a triplet of scalar values to represent
different availability measures. The authors in [4] describe
methods for calculating the overall network reliability, given
that the link failure probability is already known. In [1], a
methodology is developed to estimate the interval availability
for protected connections, and a summary is given about
previous works on availability estimation. [5] constructs a
two-level availability model for software-defined backbone
networks and compares the network availability with that of
traditional IP-routed networks.

This paper differentiates from all previous work in that it is
the first to use Bayesian modeling to estimate the steady-state
availability of the network fiber links. We accomplish this by
building a statistical model of the downtimes and uptimes of a
link and feeding into that model measured data retrieved over
a limited time window. Our methodology is independent of any
routing or protection mechanisms. Our model has several advan-
tages over using the empirical interval availability, which serves
as our baseline, like accuracy, reliability, uncertainty estimation.

The paper is structured as follows. Section II explains the ba-
sics of Bayesian modeling and formulates the model for estimat-
ing the availability of all network links. Section III evaluates the
model and compares the estimations with the empirical interval
availability. In Section IV, we offer the concluding remarks.
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II. MODELING

In this Section, we will develop a Bayesian model
for availability estimation in optical networks. Firstly in
Section II-A, we will revisit the basics of Bayesian modeling.
In Section II-B, we will formulate the multilevel Bayesian
model, and in Section II-C, we will conduct the prior analysis.

A. Bayesian Modeling Basics

Bayesian modeling is based on Bayes’ theorem.

P (θ|y) =
P (y|θ) · P (θ)

P (y)
(1)

y is the evidence (i. e., data) observed in an experiment,
and θ are the parameters we want to estimate. P (θ|y) is the
posterior distribution, which expresses the probability density
function (PDF) of the parameters after consuming the evidence
y. P (y|θ) is the likelihood of the model, which expresses
the PDF of the data given the parameters. P (θ) is the prior
distribution of the initial beliefs (expert knowledge) and
represents the PDF of the parameters before considering the
data. The denominator P (y) is known as marginal likelihood,
and although it can be troublesome to calculate, it can often
be ignored, especially for the MCMC inference methods.

To formulate a Bayesian model, we need to specify the likeli-
hood P (y|θ) and the prior P (θ). Then given some data y gener-
ated by the investigated stochastic process, we can infer the pos-
terior P (θ|y). Altogether, the posterior incorporates modeling
assumptions through the likelihood, expert knowledge beliefs
through the prior, and the influence of the data y due to the infer-
ence. There are numerous methodologies to conduct Bayesian
inference. We use the No-U-Turn Sampler (NUTS) [6], a state-
of-the-art variant belonging to the MCMC algorithmic family.
MCMC algorithms do not produce a closed-form solution. In-
stead, they search the parameter space and return a chain of val-
ues that are representative samples of the posterior distribution.

A powerful technique of Bayesian modeling is grouping
observed data together by analyzing hierarchical or nested
stochastic processes. This gives birth to multilevel modeling.
As the name might suggest, a parameter θ may not be
exclusively dependent on a prior distribution P (θ) but instead
on P (θ; k), where k is an additional parameter, which is also
a Random Variable (RV) with another PDF P (k). This way,
multiple modeling levels are created.

B. Availability Multilevel Bayesian Model

In this subsection, we will derive a Bayesian model for
the steady-state availability (from now on, just availability)

up 1 2 3

down
1 2

+

+

u1e u2e u3ed1e d2e

tue

tde

to ts

Fig. 1. Uptimes and downtimes representation in a link e.

estimation of network links. Let G(V,E) be the graph of a
network with a set of nodes V and a set of undirected edges
(i. e. links) E with link length le ∀ e ∈ E. Let ae be the true
availability of link e ∈ E we want to estimate. Let fe be the
true Mean Time To Failure (MTTF) of link e and re the true
Mean Time To Repair (MTTR). The availability is known to be

ae =
fe

fe + re
(2)

While operating the network, we observe a time series
of uptime and downtime measurements of a link e. Our
measurements span a limited time window between to and ts.
Let Ue = {u1e, u2e, ...} be the set of experienced uptimes of link
e in chronological order, and De = {d1e, d2e, ...} be the set of
experienced downtimes between them. An illustration of these
quantities is given in Fig. 1. Let U be the superset containing all
Ue ∀ e ∈ E and D be the superset containing all De ∀ e ∈ E.
U and D are the data of our process. The empirical overall
uptime and downtime are given by (3) and (4) correspondingly.

tue =
∑

Ue =
∑
i

uie (3)

tde =
∑

De =
∑
i

die (4)

It holds that ts− to = tue + tde ∀ e ∈ E. Based on these mea-
surements, we can calculate the empirical interval availability
aemp
e (from now on, just interval availability) of link e.

aemp
e =

tue
tue + tde

(5)

We can also calculate the empirical MTTF f emp
e and MTTR

remp
e . However, we need to be cautious because the last measure-

ment of either Ue or Ud has been interrupted, and we must not
take it into account for this calculation. In other words, either
u
|Ue|
e or d|De|e must be discarded ∀ e ∈ E, where |·| denotes the

cardinality of the enclosed set. For example, in Fig. 1, u3e must
be ignored as it is interrupted due to the end of the measurement
period. We assume that our measurements start together with
the network equipment provisioning in a working (up) state,
so we do not need to do the same for u1e or d1e. Let U ′e and D′e
notate these meta-processed data sets where the last disrupted
measurement has been discarded, and U ′, D′ be the supersets
∀ e ∈ E. Then, f emp

e and remp
e can be derived from (6) and (7).

f emp
e =

∑
U ′e
|U ′e|

(6)

remp
e =

∑
D′e
|D′e|

(7)

To construct the statistical model, we first assume that the
link uptimes and downtimes follow an exponential distribution.

PDFexponential(x;µ) =
1

µ
e−

1
µx (8)
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Fig. 2. Prior and posterior distributions for estimated MTTR r̂.

uie ∼ Exponential(f̂e) ∀ i ∈ |U ′e| ∀ e ∈ E (9)

die ∼ Exponential(r̂e) ∀ i ∈ |D′e| ∀ e ∈ E (10)

where ∼ signifies that the Left-Hand Side (LHS) follows the
distribution on the Right-Hand Side (RHS). The LHS can be
either data, e. g., like (9) and (10), or an RV. The variables
f̂e, r̂e are RVs denoting the estimation of fe, re.

The estimated MTTF f̂e might be different for every link,
but we considered the estimated MTTR r̂e to be the same
for all links r̂ = r̂e ∀ e ∈ E. Now we need to find a prior
distribution for the parameters f̂e and r̂. A common prior
distribution for an exponential likelihood model is the gamma
distribution, as they also form a conjugate prior pair. However,
we have parametrized the exponential distribution (8) with the
mean value µ, which is reciprocal to the rate parameter λ, i. e.,
µ = 1/λ. And if we model λ to follow a gamma distribution,
then µ should follow an inverse-gamma distribution.

PDFinverse-gamma(x;α, β) =
βαx−α−1

Γ(α)
e−β/x (11)

The prior distributions for (9) and (10) are

f̂e ∼ Inverse-Gamma(αf
e, β

f
e) ∀ e ∈ E (12)

r̂ ∼ Inverse-Gamma(αr, βr) (13)

We need to specify values for αf
e, β

f
e, α

r, and βr based on ex-
pert knowledge prior beliefs. To demonstrate flexibility, we con-
sider weakly informative priors covering the parameter space’s
plausible values. However, stricter priors could be provided
depending on the theoretical background or expertise. For the es-
timated MTTR, r̂, we consider a prior distribution with αr = 2,
βr = 40, i. e., Inverse-Gamma(2, 40) as shown in Fig. 2.

To model αf
e and βf

e, we will leverage the power of
multilevel modeling, meaning we will not need to specify a
prior directly as we did for r̂. We know that f̂e should depend
on the link length le, and the larger the link length, the more
probable it is for the link to fail. Literature [3] suggests that
the relationship of failures over link length follows a reciprocal
function, which is also the consideration of this model.

f̃(le; k, s, h) = k +
s

le − h
(14)

In function (14), the LHS f̃(le) is the suggested MTTF for
a link with length le. Now we need to bind f̃(le) of (14) to
the prior parameters αf

e, β
f
e of (12). We want to make (14) the

mean of the inverse-gamma distribution. Thus, we set one of the
prior parameters of the inverse-gamma distribution to be fixed,
and we model the other parameter such that we get an overall
distribution with the desired mean. We keep the prior shape
parameter α of the inverse-gamma distribution in (11) fixed
and set the scale parameter as β = m · (α−1). The LHS is the
scale parameter β that we must choose to achieve the desired
mean value m in an inverse-gamma distribution with shape
parameter α. The desired mean value m is taken from (14), and
the shape value αf

e is initiated with a prior of αf
e = 10 ∀ e ∈ E.

βf
e = f̃(le; k, s, h) · (αf

e − 1) (15)

We note that (14) will be forced to be the mean of (12) as a prior,
but depending on the data during inference, (12) might deviate.

We also need to specify the parameters k, s, and h of
(14). Since it makes sense that limle→0 f̃(le) = ∞, we fix
the parameter h = 0. We want to keep both k and s positive
with a long tail on the right side, so we model them using
a Gamma distribution and the following priors.

PDFgamma(x;α, θ) =
xα−1e−x/θ

Γ(α)θα
(16)

k ∼ Gamma(kα, kθ) ∼ Gamma(0.8, 9) (17)
s ∼ Gamma(sα, sθ) ∼ Gamma(2, 155) (18)

The choice of the prior values is not definite and will be ana-
lyzed in Section II-C. The parameter βf

e of (12) is now also an
RV since it depends through (14) and (15) on the RVs k and s.

Until now, we managed to use all information inside U ′e
and D′e. However, we still have not used the interrupted last
measurement u|Ue|e or d|De|e . For scarce data situations, it is
even more important to incorporate them into our model and
take advantage of this information. To incorporate this evidence,
we know that an RV that counts events following an exponential
inter-arrival time distribution is a Poisson distribution.

PDFPoisson(x;λ) =
λx

x!
e−λ (19)

The average rate of occurrence λ is equal to the total time
of the experiment divided by the mean of the underlying
exponential distribution. With this in mind, we model the
counts of uptime and downtime events.

|U ′e| ∼ Poisson
(
tue

f̂e

)
∀ e ∈ E (20)

∑
e

|D′e| ∼ Poisson
(∑

e t
d
e

r̂

)
(21)

The total count of failures in a link e equals the count of
uptime intervals |{u1e, u2e, ...}| = |U ′e|. The total time of this
Poisson experiment is tue since only when the link is up can it go
down. The formulation is similar for the total count of repairs,
only that this time we aggregate together all links. This is
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Fig. 3. Estimation of MTTFs and availabilities.

possible because the sum of independent Poisson distributions
Xi ∼ Poisson(λi) is still Poisson

∑
iXi ∼ Poisson(

∑
i λi).

We do this because we expect scarce events, and some
links never fail during our measurements. In this case, we
would have tde = 0, giving an illegal rate for the Poisson
distribution. Equation (21) handles it by aggregating all
downtimes together. Overall (20) and (21) incorporate the
interrupted last measurement using the tue and tde evidence.

Following, we repeat the complete Bayesian model.

uie ∼ Exponential(f̂e) ∀ i ∈ |U ′e| ∀ e ∈ E (22a)

die ∼ Exponential(r̂) ∀ i ∈ |D′e| ∀ e ∈ E (22b)

|U ′e| ∼ Poisson
(
tue

f̂e

)
∀ e ∈ E (22c)

∑
e

|D′e| ∼ Poisson
(∑

e t
d
e

r̂

)
(22d)

f̂e ∼ Inverse-Gamma(10, βf
e) ∀ e ∈ E (22e)

r̂ ∼ Inverse-Gamma(2, 40) (22f)

f̃(le; k, s) = k +
s

le
(22g)

k ∼ Gamma(0.8, 9) (22h)
s ∼ Gamma(2, 155) (22i)

βf
e = 9f̃(le; k, s) ∀ e ∈ E (22j)

The (22a–22d) are part of the model’s likelihood since all LHSs
are data observations. The priors are tuned for up/downtimes
measured in hours and link distances in kilometers (km).

C. Prior Analysis

During prior analysis, we will confirm the validity of
the selected priors. Fig. 2 shows with gray the prior MTTR
r̂ distribution. The Inverse-Gamma(2, 40) prior is weakly
informative but still introduces the desired constraints. The
inverse-gamma distribution allows only positive values, which
are valid for our use. Also, the choice of the parameters does
not encourage MTTRs close to 0 hours and does not exclude
very high MTTRs because of the long tail. We remind that the
prior distribution models the mean parameter for an exponential
distribution and is not the likelihood of the data itself.

Now we analyze the choice of the priors αf
e = 10 from (22e)

and the priors from (22h–22j). This time plotting each prior
distribution distinctively will not give us significant insight.
The RVs of interest are f̂e and f̃ because they reveal essential
information about the system. The first reveals the estimated
MTTF per link, and the second the influence of the link length.
Both involve operations between several RVs, and finding a
closed-form distribution is hard or impossible. Therefore, we
visualize each by sampling all involved prior distributions and
calculating f̂e and f̃ for each sample. Fig. 3a demonstrates
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the sampled priors for f̃ and f̂e with gray lines and scattered
gray circles correspondingly. Every gray line is a sample of
the priors of f̃ representing a possible reciprocal relationship.
The numerous widely spread reciprocal lines indicate that the
underlying priors hardly exclude any possibilities. Similarly,
the gray circles, which are priors for f̂e, are quite wide since
they span from 0 to 13 years and beyond. Although we kept
our priors weakly informative on purpose, in order not to
introduce any bias into the model, network operators with
more exact knowledge can leverage stricter priors to have
more precise inference. With multilevel modeling, we build
an overall reciprocal relationship (22g–22j) for all links and
their dependence on link length. Moreover, each network link
is individually modeled (22e) to obey the overall reciprocal
relationship but can also differentiate itself from the group.

III. EVALUATION

We evaluate our model using simulative data and compare
the results with the interval availability. We generated data
for a two-year timeframe for a German topology [7] with two
additional links to France based on [8]. The data generation was
done using a reciprocal relationship between the link length and
failure events, according to [3]. We added an extra layer of ran-
domness with a positive truncated normal distribution to demon-
strate some generalization abilities of the Bayesian model.
All up/downtime data were generated with an exponential
distribution, and we used the same PDF for all link downtimes.

A. Inference

First, we normalized our data as we experienced that it facil-
itated the inference. We normalized all uptimes U by dividing
them with their standard deviation. We employed the NUTS
algorithm with 30 parallel chains, each with 3000 samples
using the Turing [9] PPL. We inspected the inference quality
and concluded that the metrics satisfy guidelines like [10]. The
R̂ convergence metric and the potential scale reduction factor
(PSRF) were close to 1± 0.1 %, and the effective sample sizes
(ESSs) of the parameters were around 10000.

The posterior for r̂ is visible with blue in Fig. 2. The
transition from the gray prior to the blue posterior was
exclusively due to the blue square data points D′. With a
distribution instead of a scalar value as an estimation, we can
assess uncertainty. We could narrow it down to a scalar value by,

path index
0 100 200 300

av
ai

la
b
il
it

y

0.998

0.999

1.000

0 100 200 300

le
n
gt

h
 (

k
m

)

0

200

400

600

800

E[a ̂p] mean
a ̂p 90% HDI
true ap
interval ap

emp

path length lp

Fig. 4. Path availability estimation âp.

e. g., taking the expected value of the posterior distribution (in
the MCMC case, it is the average of all the samples), which is
equal to 7.80 hours. Similarly, we can calculate Highest Density
Intervals (HDIs), e. g., yielding that the model is 90 % confident
that the true MTTR r lies within (7.03, 8.55). In this simulation,
the data mean coincides more or less with the posterior mean,
and the true MTTR r is slightly higher at 9 hours.

The posteriors f̃ and f̂e are visible in Fig. 3a. The blue lines
denote the posterior for f̃ by updating the k and s parameters
of the continuous reciprocal relationship (22g). The colorful
scattered circles are the posteriors of f̂e, discrete for each link.
The concentration of the lines or the scattered circles denotes
the probability mass. The colors of the circles are different to
visually separate consecutive links. Most links have never failed
and thus have no U ′e data. This is noted with the red cross
positioned at the time point where the measurement stopped.
This information is vital for a good inference and should not
be ignored. That is why we insisted on incorporating this
knowledge using the Poisson distribution in (22c) and (22d).
Despite the scarcity of the data, we see that the inference
is satisfactory and can approximate the true values of the
green rhombuses. Namely, 24 out of 28 true MTTFs are
contained within the 90 % HDI, with an average standard
deviation of 2.1 years against the prior standard deviation of
7.5 years. This time, the data mean cannot reach the quality of
estimations we achieve with the model. Additionally, we can
detect how some links deviate from the reciprocal relationship,
like the orange f̂e around 262 km, which has the probability
mass lower or equal to the purple one at 293 km, thus, going
against the reciprocal relationship. The inference will improve
with more data, suggesting that this methodology is scalable.

B. Availability Estimation

To calculate the inferred availability, we use (2)

âe =
f̂e

f̂e + r̂
∀ e ∈ E (23)

We calculate the posterior PDF of (23) using the chain samples
from the inference. Fig. 3b shows all link availability estimates.
Observe that the interval availability aemp

e , illustrated with red
squares, is almost always exactly 1 because most links never
failed. Of course, such an overestimation of the availability
is wrong and unrealistic; an availability of 1 is known to
be impossible. The continuous availability estimation ã is
calculated using f̃ instead of f̂e in (23). The gray band shows
the 90 % HDI of the prior availability ã, which covers a big
portion of the parameter space. After inference, the posterior ã
90 % HDI is significantly reduced and is much more focused,
as appointed by the pink band. The model estimations look
more realistic as an availability of 1 is excluded. Additionally,
the model estimations have smaller error margins and provide
useful uncertainty assessments. We calculated that the expected
values of the posterior link availabilities E[âe] have on average
78 % lower error estimating the true availability with respect
to the interval availabilities. Furthermore, having a continuous
model of the link availabilities depending on the distance, we
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can easily extrapolate a new availability for hypothetical new
links, which could be useful for network dimensioning.

We can also calculate the posterior availability âp for a path
p by multiplying the availabilities (i. e. the samples) of all the
participating links. Fig. 4 illustrates all the end-to-end path
availabilities. The baseline is the interval path availability aemp

p

which factors in the empirical end-to-end path uptimes and
downtimes. We observe the erratic behavior of aemp

p and the
unreliable estimations. On the contrary, the model estimations
âp are more consistent and mostly include the true availability
value inside the 90 % HDI. We also observe that the model
slightly underestimates the path availabilities. This is because
the long tails of the gamma and inverse-gamma distributions
grant the model estimations a skewed character. For a few
data, this effect is desirable, and for more data, it diminishes.
We see that the âp uncertainty is greater for longer paths. This
is because longer routes contain more links, and with every
link availability multiplication, the uncertainty propagates and
accumulates. As more data become available due to a longer
measurement period, aemp

p and âp will begin to look more alike.
Finally, we conducted the above simulation 40 times using

different seeds to generate different up/downtime measurement
data. We compared aemp

ip and âip for different simulations i
in Fig. 5. On the upper left plot, we notice the consistency
of the estimates for different data inputs. On the upper right
plot, the interval path availabilities are spontaneous and with
high variance. We do not average the curves as this would
undisputably favor the interval availabilities due to the law
of large numbers. Our model might make consistently good
estimations, but it also consistently makes some bad ones; it can
mainly be improved with more data or more informative priors.
Given that the network operator cannot artificially generate
realistic data or conduct the experiment several times (since
the interest lies in the real infrastructure), our model gives a
more reliable one-shot estimation. It is fair to compare the âp
and aemp

p using the Root Mean Square Error (RMSE) over all
simulations with respect to the true path availabilities. Although
the posterior âp is a distribution, we choose a scalar value for
the comparison, e. g., the expected value E[âp]. These results
are shown in the lower plot of Fig. 5. After averaging over
all paths, the model estimations present a 52 % lower error.

IV. CONCLUSIONS

Our study demonstrates the effectiveness of using Bayesian
multilevel modeling for estimating the availability of links
and paths in optical networks. We found that this approach
significantly improves upon simply using the empirical interval
availability. Our results suggest that this method can be a
valuable tool for network designers and operators seeking to
improve the availability estimations of their networks and who
also want to account for uncertainty. Our model is especially
helpful for scenarios with scarce data and can also scale well
given more. Future work can involve further additions to the
model by including node availabilities and other QoS metrics.
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