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Common daily activities rely on information exchange and processing. Optical fiber links are the pre-
dominant way for transmitting vast amounts of data, thus enabling processing in remote data centers. As
critical use cases like autonomous driving and biomedical procedures start relying on such infrastructure,
the system’s availability becomes even more relevant. Assessing the availability of an optical link is a
well-known problem, but inconclusive nonetheless. Finding the true link availability requires a perfect
understanding of the complete underlying system, which is impossible to capture to such an extent. Hence,
different approaches or models arise as we focus on approximating the true value. Here, we develop a hier-
archical Bayesian model and compare it to various baselines. We show that the estimation methods present
different behavior for separate scenarios. Moreover, a use case is investigated where services with varying
availability requirements must be deployed. Using a Bayesian model to estimate the link availabilities
produces, on average, the best accuracy among the considered baselines and provides worthy uncertainty
estimations. Such estimations increase the network operator’s trust and allow more decision-making
flexibility.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

It is safe to argue that the most essential aspect of an engineered
system is that it operates in the first place. For optical network
links, this means that data can traverse a fiber cable and reach
the destination successfully. As perpetual operation cannot be
guaranteed, scientists devised measures to describe the degree to
which a system is expected to operate. All constructed measures
came under the umbrella of the generic term availability. The
availability of a network link signifies the time amount for which
the particular connection is operational. Optical network links
can fail due to several reasons, like fiber cuts (e.g., due to nearby
construction activities), device failure (e.g., due to an amplifier
or transponder fault), human errors (e.g., misconfigurations), or
natural disasters [1].

Upon failure, fault management schemes are activated to
reestablish connectivity using restoration or protection tech-
niques [2]. To develop efficient fault management schemes, it
is crucial to have a good availability model of the underlying
system behavior since different models lead to different solu-
tions. For example, [3] differs from previous research in that it
assumes that up to two links can fail simultaneously in a net-
work instead of just one. This modeling difference leads the
authors to develop a specialized backup precomputation algo-
rithm. Having a reliable model of the link availabilities and,
consequently, the end-to-end connections can have a real im-

pact and significantly help convince network operators to stop
overprovisioning resources and decrease power consumption
[4] and other costs.

A good underlying availability model is also pivotal when
dealing with stringent availability requirements. Service Level
Agreements (SLAs) are contractual agreements between service
providers and customers that define the Quality of Service (QoS)
that shall be provided [5]. Certain metrics are used to evaluate
whether the service fulfills the requirements. For example, the
agreed availability is assessed by measuring the empirical interval
availability throughout the contract period. Penalties are incurred
when the measured metrics do not comply with the SLA. An
accurate underlying availability model can help the network op-
erator minimize these penalties and provide the agreed service
to the customers.

Yet, to construct availability metrics, one must first determine
a model of the underlying system. An engineering model is
a representation or abstraction of a system that is used to un-
derstand, analyze, or predict its behavior. Models can be either
data-driven, depending solely on measurements, or incorporate
expert knowledge regarding the system’s dynamics [6]. Tradi-
tionally, pure data-driven approaches have been more popular
due to their simplicity and overall decent results. However, in
cases where measurements are scarce and data might be missing,
like failure incidents in a fiber link, such approaches become
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unreliable. Bayesian modeling [7] is a technique that combines
data observations and expert knowledge to boost estimation
accuracy while also having increased interpretability. Given its
probabilistic nature, it also provides valuable uncertainty assess-
ments, which can be propagated to newly constructed entities
that might be of interest.

In this work, we build a hierarchical Bayesian model, which
operators can use to accurately estimate the link availabilities
and manage their networks efficiently thereafter. Several posi-
tive repercussions can stem from this groundlaying model, im-
pacting a wide sphere of applications and research for reliable
optical networks. In the following Section, we mention past
work in the field and the contribution of this paper. In Section 3,
we introduce the model and an extended version before con-
ducting a prior analysis. In Section 4, we describe the Bayesian
inference. Section 5 lists the baselines and their metrics and
proceeds on an extended evaluation. Section 6 offers a summary
of the results and a higher-level discussion. We close the paper
with a conclusion in Section 7.

2. PREVIOUS WORK

Estimating availability measures in Optical Transport Networks
(OTNs) has been studied to a considerable extent. Following, we
mention a representative subset of the most relevant publications
to the current work.

Most research takes link availabilities for granted and pro-
ceeds to calculate network-wide availability measures. The mo-
tivation is to conduct availability-aware network design and di-
mensioning or network reconfiguration. For example, [8] devel-
ops a theoretical and computational approach for network avail-
ability analysis in mesh networks, given that single-span failures
are restorable. [9] assumes the Mean Time To Failure (MTTF)
and Mean Time To Repair (MTTR) to be independent mem-
oryless processes with known mean values and proposes an
availability-aware service provisioning strategy under differ-
ent protection modes. [10] introduces a framework for OTN
design, focusing on end-to-end reliability and cost. An optical
link is modeled to consist of several components like Reconfig-
urable Optical Add-Drop Multiplexers (ROADMs), amplifiers,
transponders, and regenerators. The authors argue that the
end-to-end availability of a few reference connections cannot
represent the overall reliability well. Therefore, they calculate
the end-to-end availability for all demand pairs while consider-
ing various protection schemes like dedicated protection, shared
protection, no protection, or a mixture of those. [11] assumes the
same link availabilities as [10] and proceeds to design a commu-
nication network with high availability requirements of up to
99.9999 %. The authors are interested in the all terminal reliability
and strive to redesign an existing network using greedy iterative
techniques and Integer Linear Programming (ILP). [12] analyzes
the influence of different topologies and their properties under
different protection scenarios. The link availability values are
still considered known and taken from [13].

[13] proposes an availability model covering various types of
IP-optical network equipment, including fibers, and utilizes a
trio of scalar values to represent different availability measures.
[14] presents a method to estimate link-dependent parameters
of OTNs, such as the number of amplifiers and modulation
schemes, using limited information, namely the statistical dis-
tribution model of the link lengths. This method improves over
previous work that used the average link length.

Several publications are focused on estimating the interval

availability due to its importance as an SLA metric. [15] de-
velops a Markov model to estimate the interval availability for
protected connections assuming Poisson node and link failures
and repairs. [16] introduces a way to limit network operators’ ex-
penses by increasing the MTTR to reduce the related repair costs
as a trade-off with potential SLA penalties. This is achieved by
modeling the interval availability and binding it to the expected
penalty compensations through a financial model. In subsequent
work, [17] uses a stochastic approach to estimate the probability
of SLA compliance for a service, such as to decrease the avail-
ability overfulfillment in favor of releasing resources reserved
for protection. Interestingly, [18] argues that in some cases, it
is more appropriate to focus on the continuity of a connection
instead of the overall availability.

When anticipating multiple network faults, a probabilistic
Shared Risk Link Group (SRLG) framework is proposed in [19]
to model correlated failures and develop routing mechanisms.
Likewise, [20] proposes a general stochastic model to account
for geographically correlated link failures caused by natural
disasters, along with an efficient method to calculate the joint
failure distribution of specific links.

A limited number of papers have conducted a Bayesian anal-
ysis on similar matters. [21] proposes a probabilistic failure lo-
calization algorithm based on Bayesian networks for Root Cause
Analysis (RCA). [22] also uses a Bayesian network encoded with
expert knowledge to propose a fault propagation model for the
GPON-FTTH (Gigabit Passive Optical Network-Fiber To The
Home) access network.

Our work differs because it focuses on estimating the link
availability, which is commonly presupposed. Namely, we in-
vent a Bayesian model that combines expert knowledge and
data observations to produce a more accurate one-shot estimate.
This work was first presented in [23] and is now being extended
in various ways. To begin with, an alternative proof-of-concept
version of the model is given, allowing for more granular con-
trol over priors on a per-link basis. In addition, we present an
investigation of the influence of priors on the posterior model.
We offer a more robust evaluation across several topologies and
more advanced baselines. Lastly, we deploy the model in a simu-
lated scenario where services require different availability levels
and report on the findings.

3. MODELING

This section provides a fundamental overview of Bayesian mod-
eling in subsection A, introduces the link availability model in
B, and conducts a prior analysis in C. For the reporting of the
model, we adhere to guidelines supplied by [24]. Interested
readers are also referred to [23] for a broader perspective.

A. Introduction to Bayesian Modeling
Bayesian modeling is a type of statistical modeling that relies on
Bayes’ theorem.

P(θ|y) = P(y|θ) · P(θ)
P(y)

(1)

y is the evidence (or data) observed during an experiment,
and θ is the parameter we want to estimate. P(θ) is the prior
probability expressing the initial belief (or expert knowledge).
P(y|θ) gives the probability of the data given the parameters,
also known as likelihood. After receiving the data y, we can infer
the posterior probability P(θ|y), which is also the final estimate
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of the Random Variable (RV) θ of interest. The denominator
P(y), or marginal likelihood, is frequently hard to calculate and
can often be ignored, leading to the posterior being proportional
to the likelihood times the prior.

P(θ|y) ∝ P(y|θ) · P(θ) (2)

P(y) can be ignored because it is a constant and serves only
as a scaler to standardize the posterior probability density func-
tion (PDF) such that it integrates to 1 and adheres to the proba-
bility axioms. Hence, we can still draw meaningful conclusions
from the unstandardized posterior by relatively comparing the
probability outcomes with each other.

There are numerous methods to infer the posterior distri-
bution. As this was initially done analytically, statisticians de-
veloped the notion of conjugate priors, according to which cer-
tain distribution families for the prior and the likelihood give
a closed-form solution of the posterior distribution. However,
this is restricting as it can only be used for models with the ex-
act distribution families. Due to advancements in computing
and probabilistic programming [25], inferring the posterior using
Markov Chain Monte Carlo (MCMC) sampling techniques has
gained significant attention. MCMC techniques do not explicitly
calculate the posterior but instead generate a chain of values that
are representative samples of the posterior distribution. Conse-
quently, they are generic and can be used more broadly. Certain
metrics exist to evaluate the quality of the samples [26], such as
the effective sample size (ESS), which measures the number of
independent samples in the chain. Another is R̂ (R hat), which is
an indicator of the convergence of the Markov chain to the target
distribution. The ESS should be reasonably large, although the
number of generated samples clearly caps it. When the interest
lies in high-order statistics of the posterior, the ESS should ac-
cordingly be high. The Markov chain samples often begin with
a high correlation between many consecutive samples, leading
to biased sampling. As sampling continues, the Markov chain
[27] theoretically converges to the stationary distribution, which
is also the posterior distribution. The R̂ tests this convergence
and should approach the value 1.00 from above.

B. Link Availability Bayesian Model
We will lay the foundations in B.1 and later introduce the model
in B.2.

B.1. Network Availability

Since availability is an overloaded term, we first clarify its use
in this paper. Let G(V, E) be the graph of a network with a set
of nodes V and a set of undirected edges (i.e., links) E with link
length le ∀ e ∈ E. We are interested in estimating the steady-
state availability (from now on, also true availability) of every link
ae. The steady-state availability describes the availability of a
system in the long run and is given by

ae =
fe

fe + re
(3)

with fe being the MTTF and re the MTTR of the link. These
values can be observed in a network through the time series of
uptimes and downtimes. Assuming the measurement period
spans from to to ts, let Ue = {u1

e , u2
e , ...} be the set of experienced

uptimes of link e in chronological order, and De = {d1
e , d2

e , ...} be
the set of experienced downtimes between them, as shown in

up 1 2 3

down
1 2

+

+

u1e u2e u3ed1e d2e

tue

tde

to ts

Fig. 1. Uptimes, downtimes, and state representation of link e.

Fig. 1. Let U be the superset containing all Ue ∀ e ∈ E and D be
the superset containing all De ∀ e ∈ E.

The empirical interval availability (from now on, just interval
availability) is the availability of a system experienced in a time
window and is given by

aint
e =

tu
e

tu
e + td

e
(4)

tu
e and td

e are the total uptime and downtime of link e respec-
tively.

tu
e = ∑ Ue = ∑

i
ui

e (5)

td
e = ∑ De = ∑

i
di

e (6)

The interval availability approximates the steady-state avail-
ability as ∆t = ts − to → ∞. Despite that, the interval availability
has long been used as a substitute for the steady-state availabil-
ity [15]. This is a fair estimation only when the measurement
period is long enough since link failures are scarce.

Another flavor of empirical availability for a time interval
can be calculated using Eq. (3) with the empirical MTTF f int

e and
MTTR rint

e instead. However, the last measurement of either Ue
or Ud must not be included in the calculation since the measure-
ment was interrupted, and it is not a representative sample of
the underlying process. This does not hold for the first mea-
surement, as we assume that our measurements start with the
network equipment provisioned in a working (up) state. For
example, in Fig. 1, only u3

e must be ignored as it is interrupted
due to the end of the measurement period. Given U′

e and D′
e

notate these meta-processed data sets where the last disrupted
measurement has been discarded, we can formulate Eq. (7) and
Eq. (8).

f int
e =

∑ U′
e

|U′
e|

(7)

rint
e =

∑ D′
e

|D′
e|

(8)

The | · | denotes the cardinality of the enclosed set. U′, D′ are
similarly the supersets of U′

e and D′
e respectively ∀ e ∈ E.

The target of this work is to develop an accurate estimate
for MTTF f̂e and MTTR r̂e, such that using Eq. (3), we derive an
availability estimate âe for each link.

âe =
f̂e

f̂e + r̂e
∀ e ∈ E (9)
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Fig. 2. Bayesian network for links e ∈ E

From link availabilities, we can calculate path availabilities.
Given that a path p covers the links Ep, the path availability is

ap = ∏
e∈Ep

ae (10)

The same formula holds for the estimated path availability
âp but not for the empirical interval path availability aint

p . The
aint

p is calculated using Eq. (4) but with the overall uptimes tu
p

and downtimes td
p across the complete path p instead.

B.2. Bayesian Model

A Bayesian model can be represented using a Directed Acyclic
Graph (DAG), known as a Bayesian network, to illustrate the
relationships between the RVs [28]. Fig. 2 illustrates the core of
the model. The directed links express that the distribution of
the target node is conditioned on the source node. We denote
observed variables by shading the corresponding nodes; e.g.,
the availability link node ae is not directly observed. Determin-
istic parameters, like link length le, are denoted by smaller solid
circles. Finally, Xe with the dashed arrow signifies any combi-
nation of unknown variables that might influence the overall
availability, but we ignore or do not know. We assume such
influence is independent per link, and we trust the data to repre-
sent them in the model implicitly. In Fig. 2, the edges are drawn
such that they expose the causality, i.e., some unknown entities
and the link length influence the availability of a link, which in
turn influences the data generation of uptimes and downtimes.

Embracing the Bayesian framework means f̂e and r̂e are now
considered to be RVs, and our estimates of fe and re will have a
stochastic nature. Bayesian models are always generative and
capable of imitating the data generation process. We begin by
addressing the generation of the measurements. We model the
uptimes and downtimes to follow an exponential distribution
parametrized with f̂e and r̂e respectively.

ui
e ∼ Exponential( f̂e) ∀ i ∈ |U′

e| ∀ e ∈ E (11)

di
e ∼ Exponential(r̂e) ∀ i ∈ |D′

e| ∀ e ∈ E (12)

∼ signifies that the Left-Hand Side (LHS) follows the distri-
bution on the Right-Hand Side (RHS). The LHS can be either
data, like Eq. (11) and (12), or an RV.

We set the repair times to follow the same distribution for
all links r̂ = r̂e, which is a common assumption among several
studies like [9, 15, 17, 29]. A typical prior distribution for an
exponential likelihood model is the inverse-gamma distribution,
as they form a conjugate prior pair.

f̂e ∼ Inverse-Gamma(αf
e, βf

e) ∀ e ∈ E (13)

r̂ ∼ Inverse-Gamma(αr, βr) (14)

To exploit the interrupted last measurement u|Ue |
e or d|De |

e ,
we will use the tu

e and td
e , to which they are implicitly included.

An RV that counts events following an exponential inter-arrival
time distribution is a Poisson distribution with rate parameter λ.
The average rate of occurrence λ is equal to the total time of the
experiment divided by the mean of the underlying exponential
distribution. With that, we model the counts of uptime (i.e.,
failures) and downtime (i.e., repairs) events.

|U′
e| ∼ Poisson

(
tu
e

f̂e

)
∀ e ∈ E (15)

∑
e
|D′

e| ∼ Poisson

(
∑e td

e
r̂

)
(16)

Eq. (16) is aggregated across all links because the sum of inde-
pendent Poisson distributions Xi ∼ Poisson(λi) is still Poisson
∑i Xi ∼ Poisson(∑i λi). The time duration of the experiment for
the failure events is the total uptime tu

e , and for the repair events,
it is the total downtime td

e .
To model the influence of the link length on the availability,

we consult [30], which suggests that the relationship of failures
over link length follows a reciprocal function, out of which we
derive the most generic form.

f̃ (le; k, s, h) = k +
s

le − h
(17)

f̃ (le) is a continuous function estimate of fe. We bind f̃ to the
link estimations f̂e by conditioning the first one to the second,
i.e., Pr( f̂e) = Pr(αf

e, βf
e| f̃ ), where Pr() denotes the probability.

We achieve this by letting f̃ participate in the calculation of the
inverse-gamma parameters in Eq. (13).

βf
e = f̃ (le; k, s, h) · (αf

e − 1) (18)

Eq. (18) is such that given a shape parameter αf
e, the scale pa-

rameter βf
e of the inverse-gamma distribution is calculated so

that the mean value of the distribution in Eq. (13) is f̃ (le; k, s, h).
We note that Eq. (17) will be forced to be the mean of Eq. (13)
as a prior, but depending on the data during inference, it might
deviate. The technique presented here is known as hierarchical
or multilevel modeling, according to which a layer of RVs (e.g.,
f̂e) depends on another RV (e.g., f̃ ). Hierarchical modeling is a
powerful Bayesian technique that enables grouping observed
data and analyzing nested stochastic processes.

Now we specify the parameters k, s, and h of Eq. (17). We
set h = 0, so that limle→0 f̃ (le) = ∞ and to exclude potential
negative values of f̃ . We want to keep both k and s positive with
a long tail on the right side, so we model them using a gamma
distribution.

k ∼ Gamma(kα, kθ) (19)

s ∼ Gamma(sα, sθ) (20)

Since k, s are RVs, so are f̃ (through Eq. (17)) and βf
e (through

Eq. (18)).
Eq. (11–20) constitute the Bayesian model as also developed

in [23] (from here on, just base model). In the following subsection,
C, we will determine the priors for αf

e, αr, βr, kα, kθ , sα, sθ and an-
alyze them. The priors are a way for the operator to convey
expert knowledge in the model. Unfortunately, the base model
does not support different MTTF priors per link. Such a thing
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Fig. 3. Prior and posterior distributions for estimated MTTR r̂.
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Fig. 4. Comparison of the inverse-gamma scale parameter
prior with a normal distribution of similar mean and standard
deviation values.

is common for multilevel models, and it is usually treated as
an advantage because it relieves us from the burden of defining
priors for every element in a group. However, since network
operators might have information regarding certain links be-
having as outliers (e.g., due to older equipment), we provide a
proof-of-concept version of the base model with such support.
First, we define a set of positive RVs that will directly operate
on the f̂e.

be ∼ Exponential(ce) ∀ e ∈ E (21)

Furthermore, we substitute Eq. (13) with the following.

f̂e ∼ Inverse-Gamma(αf
e, βf

e) · be ∀ e ∈ E (22)

The extended model is given by Eq. (11), (12) and (14–22) (from
here on, just granular model). The network operator has more
granular control over each link prior by accordingly setting the
ce parameter. If such information is missing. ce is set to 1.

C. Prior Analysis
During this study, we used weakly informative priors, i.e., the
priors have been chosen so that they do not bias the inference
but still introduce meaningful constraints. The model was de-
signed so that negative or availability values above 1.0 are not
supported. Moreover, the priors strongly encourage availability
values above 0.99, which we characterize as a broad region. If
considerations are different for an application, the priors must
change accordingly. Minor modifications of the priors will lead
to similar results as we confirm in 5C. Thus, the specific priors
proposed are not a necessity to the model and are interchange-
able. The priors are tuned for up/downtimes measured in hours
and link distances in kilometers (km).

We set the priors αr = 2 and βr = 40 for Eq. (14). Fig. 3
shows the prior for r̂ in gray. The Inverse-Gamma(2, 40) does
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Fig. 5. The PDFs of the different priors for k and s. The dashed
red line is the mean value of the distribution.

sl sh

kl

kh

av
a
il
ab

il
it

y

0.996
0.997
0.998
0.999
1.000

link length in km
0 500 1000 1500 2000

link length in km
0 500 1000 1500 2000

av
ai

la
b
il
it

y

0.996
0.997
0.998
0.999
1.000

Fig. 6. Prior predictive simulation for different k and s priors.

not encourage MTTRs close to 0 hours nor excludes very high
values because of the long tail.

The shape parameter of Eq. (13) is set to αf
e = 10. The reason

for giving αf
e a scalar prior instead of βf

e is that it is much easier
to find a general prior for the shape rather than the scale. The
shape parameter has been chosen such that the inverse-gamma
resembles a normal distribution but with some positive skew-
ness (see Fig. 4). Due to hierarchical modeling, we do not need
to specify a prior for βf

e explicitly.
Finally, we must decide the priors for kα, kθ , sα, sθ . As this

situation is not straightforward, we create two priors for k and s
of Eq.(19) and (20), respectively, and analyze their effects. For
each case, we define a prior with low l and high h values. Fig. 5
shows the resulting gamma distributions kl and kh for k and sl
and sh for s. As it is hard to understand the implications of these
RVs, we take advantage of the generative nature of Bayesian
modeling and sample the availabilities âe and ã using just the pri-
ors and no data (commonly known as prior predictive simulation
[26]). This way, we can see what our prior choices imply about
meaningful and well-understood quantities. ã is derived from
f̃ , and it is similarly a continuous function of the link length.
Fig. 6 shows the results of the prior predictive simulation. There
are 4 total combinations between kl , kh and sl , sh. The vertical
dashed lines are drawn where network links are supposed to be.
Each case demonstrates the sampled prior availabilities ã and âe
with gray lines and scattered gray circles correspondingly. Every
gray line is a sample of ã representing a plausible relationship.
The numerous widely spread lines indicate that the underlying
priors hardly exclude any possibilities. The gray circles, which
are samples of âe, are similarly broad. We note that kh generally
encourages higher availabilities, and kl may not cover well some
very high availabilities near 1.000 00. The effect of s is looser,
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but we generally see that sh generates mildly more sporadic
samples, meaning that the estimates might have higher variance.
During prior sensitivity analysis in 5C, we find that such reason-
ably small changes in the priors do not significantly influence
the posterior distributions. This tolerance against such prior
adjustments renders the model more reliable and stable.

4. INFERENCE

In this section, we go through the posterior inference for both
the base and the granular model. Along the way, we introduce
alternatives to estimate the link and path availabilities, which
we use as baselines in Section 5. We use the No-U-Turn Sam-
pler (NUTS) [31], a state-of-the-art algorithm belonging to the
MCMC algorithmic family. We preprocess the data, i.e., normal-
ize all uptimes U by dividing them with their standard deviation.
We run chains with 3000 samples and find that the ESS and R̂
metrics are within acceptable ranges. This section uses the Abi-
lene topology of Fig. 11. The simulation setup will be described
rigorously in 5B.

A. Base Model

Given the red square downtime data points D′ in Fig. 3 and the
gray prior, we infer the blue posterior estimate r̂. The posterior
is drawn using a Gaussian kernel estimate from the posterior
samples. Since the inference gives a distribution instead of scalar
values, we can assess uncertainty measures and calculate several
statistics. We can also narrow it down to a scalar value by, e.g.,
taking the expected value of the posterior samples. A popular

measure is the Highest Density Interval (HDI), defined as the
narrowest interval containing the specified probability mass [26].
The HDI is the interval that best represents the region more
consistent with the data. In Fig. 3, we calculate the 90 % HDI,
yielding that the model is 90 % confident that the true MTTR
r lies within (8.65, 11.93). In this simulation, the data mean
coincides more or less with the posterior mean, and the true
MTTR r is slightly lower at 9 hours.

The uptimes U′ are shown in red squares in Fig. 7. These,
together with the priors (gray lines and circles), lead to the pos-
teriors f̃ and f̂e. The blue lines denote the posterior for f̃ by
updating the k and s parameters of the continuous reciprocal
relationship Eq. (17). The colorful scattered circles are the poste-
riors of f̂e, discrete for each link. Some links have never failed
and thus have no U′

e data. This is noted with the red cross po-
sitioned at the time of measurement completion (e.g., 2 years).
The true MTTFs are depicted with the green rhombuses. The
posterior distributions have notably narrowed down compared
to the priors.

Given the assumption of a reciprocal relationship between
the link length and the uptimes, one might be tempted to fit a
reciprocal line on the data. The regression can be achieved by
finding kr, sr ∈ R+ such that the least squares error between
fr(x; kr, sr) = kr + sr/x and the data points is minimized. Since
this boils down to a non-linear problem, we set z = 1/x and fit
the linear fr(z; kr, sr) = kr + sr · z instead. The resulting curve is
illustrated with the red continuous line in Fig. 7. There are cases
where sr is found to be 0.0 , which produces a straight line.

Working with the complete posterior distributions enables
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Fig. 9. Path availability estimations.

us to construct new RVs and propagate the uncertainty. We
achieve this by doing operations using the posterior samples.
For example, we use Eq. (9) for all 3000 samples of the chain to
get a representation of the posterior link availability âe. We can
similarly calculate HDIs and the posterior mean, as shown in
Fig. 8. The red squares denote the interval availability, which
is 1.0 for links that never failed. The red line is calculated with
Eq. (9) using the reciprocal regression for uptimes and the data
mean for downtimes. We also use the interval availabilities to
conduct a first (linear) and second-order (quadratic) polynomial
regression, as shown with the blue lines marked with triangles
and stars, respectively. We note that, in the specific simulation,
even if the quadratic regression might fit the data well, it misses
on representing the actual relationship as it is visibly convex,
and thus, the availabilities will grow for longer links, which
is unrealistic. Moreover, in both polynomial regressions, the
dependent variable must be clipped between 0 and 1.0

We similarly calculate the availability estimates for all short-
est paths using Eq. (10) and the end-to-end uptimes and down-
times for the interval availabilities. Fig. 9 shows the estimates for
the posterior mean (from now on, also meanbayes), the posterior
mode (from now on, also modebayes), the quadratic regression
(from now on, also polyfit2), and the interval availabilities (from
now on, also intav). The posterior mode, also known as Maxi-
mum a Posteriori (MAP), is the value with the highest posterior
probability. Modebayes is calculated by finding the MAP for
each link and then using Eq. (10). On the top of Fig. 9, the
estimations are shown, which should follow the green true avail-
ability as closely as possible. In the middle, the absolute errors
to the true availability are shown. The path indices are sorted
with the fewest hops and shortest overall length first. In this
instance, modebayes and polyfit2 maintain the lowest error for
longer paths, meanbayes error steadily increases as the paths
get longer, and intav has high variance. Meanbayes diverges
with higher hop counts because uncertainty accumulates, and
the long-tailed distributions we used together with the capped
availability from above incur significant skewness that shifts the
mean value considerably. At the bottom of Fig. 9, we remind the
readers that meanbayes and modebayes are only point estimates
of a full posterior distribution, which is depicted here from a
90 % HDI with lighter shades to a 10 % HDI with darker shades
and increments of 10 %. We notice how the uncertainty and
skewness grow for longer paths. This is expected since paths
with more hops involve operations with more RVs.
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Fig. 10. Granular model f̂e and f̃ . Compare with Fig. 7.

B. Granular Model
Since the inference for the granular model is similar, we only
focus on the particular usability of the model. We notice from
Fig. 7 that the true MTTF fe from the second shortest link e2
with around 330 km is very high, almost 5.5 years. This might be
because the link involves new equipment or is well-sealed and
protected. The base model could never properly estimate this
value with only 2 years of simulation. However, the operator
can provide expert knowledge using the granular model and
the ce priors. Following, we supplied the model with ce =
1 ∀ e ∈ E \ {e2} and ce2 = 2, meaning that we expect e2 to have
twice the MTTF than usual. Fig. 10 shows the advancement
in estimating MTTF for e2. Namely, comparing it to Fig. 7, the
f̂e2 samples are much closer to the true MTTF fe2 . This leads
to a 75 % error reduction in the final availability estimate of e2
using the posterior mean. However, the current granular model
also brings additional noise to the other links. For example, the
MTTF estimates for the third link e3 with almost 500 km are also
significantly higher compared to the base model, even if ce3 =
1. The reason is that multiplying Eq. (13) with an exponential
distribution to get Eq. (22) may amplify the influence of the data
(in this case, count of uptimes |U′

e3
|) or generally spread the

estimations.

5. EVALUATION

In this section, we conduct an extended evaluation using the
developed model and baselines. Subsection A introduces the
metrics considered, B describes the simulation process, C reports
the results, and D demonstrates a decision-making scenario.
Comments and interpretations of the results are integrated in
this section.

A. Methodologies and Baselines
Following, we provide a list of the estimation methodologies,
some already introduced in Section 4. The metrics are attained
by getting the mean absolute error across all links or shortest
paths between the estimation and the true availability.

• meanbayesgran: posterior mean of the granular model with
uninformative prior ce = 1.

• meanbayes: posterior mean of the base model.

• meanbayes66: posterior mean of the base model with sam-
ples only contained in the 66 % HDI. The objective is to
trim the long tail of the distribution such that they do not
propagate during path estimation.
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• meanbayes33: posterior mean of the base model with sam-
ples only contained in the 33 % HDI.

• modebayes: MAP of the base model

• polyfit1: linear regression of the interval link availabilities.

• polyfit2: quadratic regression of the interval link availabili-
ties.

• recfit: Eq. (9) using the reciprocal regression of uptimes for
MTTF estimation and the mean downtimes for MTTR.

• intav: interval link or path availabilities computed along the
measurement period.

All estimates, except intav, first apply to the links, and then we
use Eq. (10) to deduce the path availabilities. We will identify

meanbayes33 and meanbayes66 together as meanbayestrimmed
and polyfit1 and polyfit2 as polyfit.

B. Simulations

We conducted simulations with different topologies and settings
to get robust results. The considered topologies are extracted
from [32] and [33] and shown in Fig. 11. We filtered the topolo-
gies of [33] down to only metro/core optical fiber meshed topolo-
gies. Let dT be the standard deviation of the link distances in
topology T. The overall simulation setup is depicted in Fig. 12.
We evaluated each topology across measurement periods of 1,
2, 4, and 8 years. For each case, we analyzed the sensitivity
between all four combinations of k and s priors shown in Fig. 6.

For every simulation parameter combination, we generated 5
different true link availabilities sets. These are calculated using
the MTTF and MTTR model of [13]. Namely, the MTTR r is
set to 9 hours for all links, and the MTTF fe is calculated using
the reciprocal relationship f (le) = 628 · 360 · 24/le. Before we
evaluate the reciprocal relationship f to produce the uptimes,
we add noise to each link’s distance function argument l′e us-
ing a positively truncated normal distribution with a standard
deviation of 30 km and a mean value of the real link length le.
Also, we randomly (uniform distribution) pick 10 % of the links
in the network to behave like outliers by adding or subtracting
(Bernoulli distribution with probability parameter p = 0.5) from
the previously noise-inflicted distance the quantity 2 · dT . Lastly,
the arguments are capped between 30 km and 10 000 km, before
passed into the MTTF reciprocal function f . The reason for intro-
ducing artificial noise is twofold. First, data generation becomes
more realistic. Second, the noise differentiates the Bayesian
model from the underlying data generation process. This makes
the Bayesian inference and estimation more challenging, but the
overall results more general and relevant to situations where the
designed model is not identical to the system dynamics.

For each set of different MTTFs fe and MTTR r derived (yield-
ing ae), we parametrize exponential distributions to generate
uptimes U and downtimes D for the links. We use a distinct
seed for 10 different cases to generate different data. For each
simulation, the metrics of the subsection A are noted. We also
calculate the inter-simulation mean (ISM) and inter-simulation
standard deviation (ISSD) of the metrics given by the same true
availabilities. A reliable metric should have a low standard de-
viation, meaning it should not be too sensitive to different data,
given that the underlying generative process is the same. In
total, for each simulation parameter combination of topologies,
years, and k and s priors, we get 5 · 10 = 50 differently seeded
simulations. Altogether, we conducted 11 · 4 · 2 · 2 · 5 · 10 = 8800
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Fig. 14. Top, the average computation time of the Bayesian
inference per topology and measurement period. Bottom, an
analysis of the considered topologies.

simulations and produced 11 · 4 · 2 · 2 · 5 = 880 ISMs and ISSDs.
A small analysis of the topology properties is shown at the

bottom Fig. 14. In the plot, the topologies are sorted from the
highest average link length to the lowest. All link distances le for
each topology within the y-axis limits are shown with gray cir-
cles. The link distances’ mean and standard deviation are shown
in blue. In addition, the total average of failure events across all
simulations is shown per topology for different measurement
periods in yellow. The number of events is vital since each event
conveys information to the estimators. The number of events is
positively associated with the number of links and their length.

The number of links per topology is shown on the right axis. The
top of Fig. 14 gives the average sampling time of the Bayesian
inference for the different topologies and measurement periods.
The reported times include the warmup stage of the NUTS al-
gorithm and the further generation of 3000 samples. For longer
periods, more data gets produced, which in turn demands more
resources. Additional links also lead to additional computations,
since the number of RVs increases as well. The longest infer-
ence, which involved the Interoute topology and the 8-years
timeframe, took, on average, 14 minutes. The experiments were
executed using the AMD EPYC 7282 16-Core processor with
2.8 GHz clock speed in a single thread. Understandably, MCMC
sampling using NUTS is an offline methodology and cannot be
used to incrementally process new live data. Given that new
data generate at a much slower rate than the inference comple-
tion, it is still realistic to trigger the Bayesian inference with the
occurrence of every new event. Otherwise, the inference update
should be strategically scheduled periodically when the output
estimations are needed. The baseline intav is instantaneous to
calculate, while polyfit and recfit might take a couple of seconds.

The Bayesian model was implemented using Turing [34],
a general-purpose probabilistic programming language for
Bayesian inference in Julia [35]. All the figures in this paper
were generated using Makie [36]. Data processing is made easy
using DataFrames [37].

C. Results and Discussion

As the results are numerous, we do not offer a numerical value
for all of them. We communicate them using different plots and
highlight the most important aspects in the text.

Fig. 13 shows all the ISMs and ISSDs of the metrics in a
raincloud plot across all simulations for links and paths. The
raincloud plots [38] visualize the raw data, the empirical prob-
ability density, a box plot, and key summary statistics such
as median and mean. Regarding the boxplots, the crossbars
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Fig. 16. Average of ISMs and ISSDs across all simulations.

span the Interquartile Range (IQR), with the midline marking
the median, and the error bar whiskers continue to span up
to 1.5 × IQR. The black circular marker is the average value.
Looking at the link ISMs, we notice that the Bayesian meth-
ods generally have the lowest errors and the recfit the highest.
The lowest error is given by bayesmean33 and beats polyfit1,
the best non-Bayesian estimate, by an average of −24%. How-
ever, bayesmean66’s mean value is very close to bayesmean33
with a negligible difference of +0.6%. Since their probability
densities are very similar, we argue that they are indistinguish-
able. We can also support this with more traditional methods
like the two-sample KolmogorovSmirnov test [39], according to
which we calculate that the null hypothesis that the samples of
bayesmean66 and bayesmean33 follow the same distribution is
not rejected. The same holds for polyfit1 and polyfit2.

To better grasp the average behavior (black circles), we plot-
ted their relative values in Fig. 16. Each heatmap is symmetrical
along the antidiagonal and shows the relative difference of the
y-axis to the x-axis metric. The blue colors signify lower error
or standard deviation for the y-axis respective to the x-axis met-

ric, while the red signifies higher. As we move from the link
estimates to path estimates, on the bottom left of Fig. 13 and
Fig. 16, the relative differences decrease, benefiting polyfit the
most. This is because potentially wrong link estimates are av-
eraged and can lead to unexpectedly better path estimates. In
addition, Bayesian estimators, except for meanbayestrimmed,
are also becoming relatively less successful because of the long
tails that propagate and damage the point estimates of path
availabilities. Although intav performs similarly to polyfit, it
ends up slightly worse in the path estimations. Regarding the
ISSDs, the weakness of intav is shown, as they present high vari-
ance. On this matter, polyfit is the most consistent method, with
meanbayestrimmed coming second. The meanbayesgran met-
ric, unfortunately, generally demonstrates considerably worse
performance than meanbayes.

Fig. 13 and Fig. 16 serve to find the best estimation method,
agnostic to the scenario. In Fig. 15, we isolate the influence of
the different simulation settings and examine the results sep-
arately, e.g., for each topology and measurement period. The
y-axis shows the metrics omitting recfit because of its poor per-
formance. We also omit meanbayes33 and polyfit2 since they are
statistically identical to meanbayes66 and polyfit1, respectively.
The values depicted in the heatmap are the averages of ISMs and
ISSDs, similar to Fig. 16 or the black circular markers of Fig. 13.
However, the averages are not across all simulations but only
for those that hold constant the parameter value depicted on the
x-axis. For example, for years-2, we will get the average across
all simulations run with a measurement period of 2 years. Black
lines separate the simulation parameter types. The magenta
stairs-plot lines are drawn per simulation parameter and evenly
scale the heatmap column values from minimum on the left to
maximum on the right. This serves so that small differences
along a column can be better spotted.

One of the major points in this figure is that the estimates get
better for smaller networks (in link length and number). This
might appear counterintuitive since smaller links generate fewer
failure events, and the models end up with less information.
However, the link distances of the smaller networks are much
more concentrated, which significantly facilitates the predictions.
In addition, bigger networks may provide the models with more
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data, but the stakes are higher since a much greater range of
links and outliers must be covered. As a result, small and big
networks are why some metrics demonstrate a bimodal distri-
bution of results, which is also visible in Fig. 13 (e.g., polyfit
ISMs). Moreover, for small networks, the benefit of Bayesian
methodologies diminishes, and meanbayes66 is only marginally
better than polyfit1. However, the Bayesian metrics are doing
notably better for the big topologies. The main reason polyfit is
suffering in big topologies is that it cannot independently adapt
to each link’s diverse behavior. On the contrary, intav treats
each link separately and cannot consolidate the amount of infor-
mation to identify interlink patterns. The Bayesian estimators
achieve both by simultaneously treating each link individually
while also respecting the overall trend. To prove that more data
indisputably benefit the models, we notice that as simulations
run longer (from year-1 to year-8), the metrics improve, i.e., turn
darker. An interesting phenomenon is that as data input grows,
polyfit’s performance remains unchanged, and consequently,
even the interval availabilities start to beat it. Polyfit picks up
quickly and is on par with meanbayes66 when data is scarce
but is rapidly saturated and left behind when information is
increased. Finally, the influence of the different priors of Fig. 6 is
negligible, meaning that the model is robust, and small changes
in priors will not matter.

To consider the different measurement periods and the
topologies jointly, Fig. 17 is provided. The plot shows the effect
only for the average link ISMs, the meanbayes estimator, and
limited topologies to avoid clutter. Fig. 17 instructs us that as the
measurement period grows, we can expect greater improvement
in scenarios of poor performance.

D. Model Deployment and Decision-Making
In this part of the evaluation, we employ all the different metrics
as decision variables for selecting routing and protection paths
for various services. During the previous evaluations, we have
only used point estimates (like mean and mode) to describe the
full posterior. This section will showcase a scenario that uses
the full posterior distribution for sophisticated decision-making.
The simulations here were run with the same structure described
in Fig. 12, but we will only showcase the average values across
all simulations. Given a network topology, we generate 5 con-

nection requests per node pair, and each is randomly assigned
an availability requirement. Let astd be the standard deviation
of the true availabilities from all the shortest paths in a network.
The availability requirements are generated with a normal distri-
bution around the true shortest path availability with a standard
deviation of astd/2.

For the deployment, we use the algorithm developed in [17].
The algorithm receives as input the connection request with its
availability requirement and a minimum compliance target. The
compliance target is the desired availability compliance proba-
bility, which indicates how probable it is that a given connection
implementation covers the service availability. Given its prob-
abilistic nature, it can only be fully supported by probabilistic
estimations like the Bayesian model. Non-probabilistic estima-
tions will default to a compliance target of 100 %. Using one
of the methods in subsection A, the algorithm estimates the
availability of the shortest path and calculates the probability
that the compliance target will be covered. In non-probabilistic
estimates, compliance is achieved if the availability estimation
is higher or equal to the availability requirement. For the full
Bayesian estimates, the posterior distribution is examined to set-
tle whether the compliance target is reached. If the compliance
target is not covered, disjoint protection is added, and the com-
pliance target is tested again. If it fails, the second shortest path
is examined, and so on, until the compliance target is achieved
or the algorithm quits after some iterations. In the case of paths
with equal lengths, the selection order is random. We assume
unlimited resources.

Fig. 18 depicts the outcomes of this algorithm. The bar plots
show the averaged ISMs and the red error bars show the av-
eraged ISSDs across all simulations. The fullbayesgran method
utilizes the full posterior of the granular model, and fullbayes
utilizes the full posterior of the base model. The fullbayes66 only
considers the trimmed posterior distribution enclosed in the
66 % HDI. The meaning of the different bar plots is explained.

• failed: the percentage of connections that failed.

• false-fail: the percentage of failed connections that should
not fail because the true availabilities could handle the re-
quirement.

• protected: the percentage of protected connections

• false-protected: the percentage of protected connections that
should not be protected because the true availability of the
selected path alone could handle the requirement.

• false-coverage: the percentage of connections wrongly de-
ployed because the true connection availability does not
cover the requirement.

The 100 % compliance probability case shows the Bayesian
estimates have the lowest false-coverage. Remarkably, when the
algorithm uses the full Bayesian posterior, there is almost 0 %
false-coverage. This comes at the cost of the false-protected con-
nections being increased. The reasoning is that the model cannot
be 100 % sure that some connections can cover the requirement,
so it enforces a protection path. Notably, the standard deviations
for the full Bayesian posterior are also very low, which testify to
outstanding reliability and stable performance. The modebayes,
being a point estimate, can only be used for the 100 % compli-
ance target. Although it introduces some false-coverage, it is
lower than the polyfit and the interval availabilities. The polyfit
and interval availabilities look very similar and exhibit among
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Fig. 18. Evaluation of the models deployed in a decision-making scenario.

the lowest false-fail and false-protect, similar to modebayes. We
emphasize the difference between theoretical evaluations like
subsection C, where polyfit and intav differ, and practical evalu-
ations, where it might be hard to tell them apart. This gap may
occur because the relative estimation difference between polyfit
and intav is too low to trigger different routing decisions for the
given availability requirements.

Interestingly, as the compliance target probability decreases,
the false-fail and the false-protect also decrease, but the false-
coverage increases. Ideally, false-fail, false-protect, and false-
coverage should all be 0 %. Nevertheless, this is unrealistic to
expect from any model. A model without the true estimations
will inevitably end up with at least some of these quantities
being positive. Even worse, non-probabilistic models will get
trapped in a specific instance of all the trade-off possibilities.
In contrast, probabilistic models enable the operator to choose
among different situations conveniently. Finding the best trade-
off depends on the priorities, and our Bayesian model can be
used to navigate between different solutions. We also learn that
the effects of fullbayes66 can be reproduced using fullbayes with
a lower compliance probability of around 50-80 %. This is a
sensible finding since both approaches rely on a similar portion
of the posterior distribution.

6. DISCUSSION

This subsection recaps some of the results and remarks of the
previous sections and offers a higher-level perspective on mod-
eling.

A. Results Summary

The developed Bayesian model was found to attain the overall
best performance when evaluating it among different topologies
and measurement periods. Its performance beats the baselines
like empirical interval availabilities, their polynomial fit, and

reciprocal regression of uptimes. The reciprocal regression pro-
vides particular interest as a baseline since it uses the same infor-
mation as the Bayesian model: the downtimes and the uptimes
with the assumption that they follow a reciprocal relationship
against the link length. More specifically, we developed several
point estimates out of the Bayesian model, which we compared.
These included the mean of the posterior distribution, the mode
of the posterior distribution, and the mean of the posterior dis-
tribution after trimming it to an HDI. The posterior mean for
the 66 % and 33 % HDIs behave similarly, pointing out that the
posterior should be trimmed just enough to get rid of the long
tail, which severely influences the mean point estimate of path
availabilities. The mean of the posterior trimmed distributions
achieved on average 24 % higher accuracy in estimating the true
link availabilities compared to the best non-Bayesian baseline.
This win is higher for bigger topologies because of the high
link length variability and the numerous outliers and decreases
for smaller topologies. Allowing longer measurement periods
improves the model as more information becomes available.
By conducting a prior sensitivity analysis, we confirm that the
Bayesian model is robust and that small changes in the priors
will not matter. The proof-of-concept granular Bayesian model
is handy when the network operator possesses expert knowl-
edge on a per-link basis, which can be shared through priors. A
small isolated experiment led to a 75 % error reduction in a link
availability estimation. However, the overall granular model
performs worse when using uninformative priors than the base
Bayesian model. Future efforts can focus on mitigating this effect
of the granular model.

Limiting the distributions to an HDI has been a successful
approach. However, when dealing with realistic scenarios and
some stochasticity is involved, the full posterior distribution
should be used. In particular, we found out that the trimmed
posterior approach can be considered as a special case of dealing
with the full posterior distribution. The probabilistic nature of
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the Bayesian model can not only be used for building stochastic
policies, where consecutive choices must be made but also for
one-off decisions. For example, we showcased that our model
can flexibly tune a decision-making algorithm, making routing
and protection choices. Moreover, when needed, the developed
model achieved remarkable stability and performance in satisfy-
ing the service requirements.

B. Modeling Remarks
For the development of the Bayesian model, several assump-
tions were made. For example, the downtimes were modeled
using an exponential distribution. Although this is a common
assumption, it is implausible that the underlying process indeed
follows an exponential distribution. When modeling using an
exponential distribution, we are actually interested in finding
a continuous, non-negative distribution with a specified mean
value. Searching through different distribution families, it turns
out that the exponential distribution provides the maximum
entropy on this matter [40], i.e., it is the widest and least in-
formative distribution that holds onto the requirements. This
constitutes an excellent argument for why we choose the expo-
nential distribution. It is not because we think that the under-
lying process is an exponential distribution but because we are
settling with focusing only on the mean value of the underlying
process. Using Bayesian inference, we can calculate the posterior
distribution, which can also be seen as entropy maximization
[26, 41], meaning that the posterior has the least possible diver-
gence from the priors such that it is consistent with the data
received. With this in mind, the statistical choices in the model,
which at times might seem overly simplified, can be excused.

A statistical model, being only an approximation to the truth,
should be shaped to focus on addressing specific aspects of in-
terest rather than replicating reality since that might lead to
overfitting with highly complex models [42]. The current work
provides a general equipment-agnostic model that only con-
sumes the overall link uptimes and downtimes. The model can
successfully personalize the behavior of each link so that, for
example, unknown effects (like Xe from Fig. 2) can be accommo-
dated through the data while respecting the overall reciprocal
behavior between the uptimes and the link length. If more data
is available, the current model can be modified to include several
networking components in the form of nodes. If the equipment
lifetime is also available, the time dimension may be integrated,
e.g., using a bathtub failure rate curve [43]. As these require
separate analyses and might lead to disruptive changes, such
efforts are encouraged for future work.

The findings in this paper present convincing arguments for
the use of Bayesian modeling in reliable optical networks. The
study provides theoretical value backed up with diverse simula-
tion setups. Future efforts should also focus on the deployment
of the model in real-life scenarios. Since the data requirements
(i.e., the link lengths, uptimes, and downtimes) are easily calcu-
lated, the setup can be tested across a wide range of networks.
Although the simplicity of the model grants it generality, it can
break if the data distributions are very different from the consid-
ered exponential. For example, if the true downtime distribution
is bimodal, the Bayesian inference can fail miserably as it will
continue to assume unimodality. A natural extension would be
to stop modeling all the downtimes with the same distribution.
It could be especially helpful to divide the link downtimes into
terrestrial and submarine groups, leveraging hierarchical mod-
eling similar to the uptimes. Finally, special care was taken to
provide broad priors applicable to a wide range of use cases.

Network operators can either adopt the values stated in this
paper or adapt them (e.g., by narrowing them down) given their
expertise.

7. CONCLUSION

This work breaks new ground by developing a Bayesian ap-
proach to model link availabilities in optical transport networks
by consuming their overall uptimes and downtimes. The de-
veloped model delivers higher accuracy compared to baselines
like empirical interval availability or polynomial and reciprocal
regressions. The uncertainty of the model can be propagated
to construct new estimators, e.g., for paths or end-to-end con-
nections. We provided a proof-of-concept alternative to the de-
veloped model that enables the operator to convey more expert
knowledge on a per-link basis. Although the alternative model
can be convenient in certain situations, it generally performs
poorer than the base model, which should be preferred if no
link-based prior knowledge is available. We conducted a thor-
ough evaluation of many different metrics and scenarios. We
found that using an HDI trimmed posterior mean offers the best
point estimate with the lowest error against the true availabili-
ties. However, since Bayesian modeling outputs a probabilistic
estimation, practical applications should endorse their stochastic
nature and employ the full posterior distribution. Embracing
the probabilistic nature enables flexibly tuning the underlying
decision-making procedure and assessing uncertainty, leading
to reliable algorithms and increased stability. The results sug-
gest that this approach is a valuable tool for attaining accurate
availability estimations and is appropriate for critical situations.
The output availability estimations generated by this model
can be utilized in conducting independent studies on network
availability.
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