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ABSTRACT

In this paper a gqueueing model for a data switching centre
within a store-and-forward switching network is developed,
in order to provide a tool for the dimensioning of such
networks. The model includes the finite buffer memory and
the control processor of the switching centre, as well as
the data channels (transmission time plus propagaticn de-
lay) . Moreover, acknowledgement signalling is considered
because transmitted packets are stored in buffer until an
acknowledgement is received. Unacknowledged packets are
retransmitted after a constant time-out.

For exponentially distributed packet lengths a closed form
solution for the equilibrium distribution of queue sizes
is derived. This allows to evaluate performance values of
the system (buffer overflow probability, flow times etc.) .
For constant packet lengths a simple approach is given for
estimating the most important performance values. The ap-
proximation is checked by simulation. Moreover an algo-
rithm is proposed to analyze iteratively whole networks
with the aid of the developed model.

1. INTRODUCTION

The dimensioning of network devices {(buffer memories, con-
trol processcrs, data channels) for a given traffic load
is an important task in the development of store-and-for-
ward switching data networks.

At best, the characteristic values of these devices should
be balanced in such a way that a prescribed performance is
achieved with a minimum amount of costs. Dimensioning is
possible only, if the most important performance values
are known, namely, buffer overflow probability, buffer
load, mean time of packets in buffer, data throughput.

Section 2 of the paper contains a brief description of the
structure and operating mode of store-and-forward switch-
ing networks. In Section 3 a basic model for a switching
centre and its envircnment is developed in detail. In Sec-
tion 4 an analysis of the data flow within the presented
model is performed and an algorithm is proposed how to ap-
ply the model for analyzing whole networks. Using a number
of diagrams some typical numerical results are discussed
in Section 5.

2. STRUCTURE AND OPERATING MODE OF STORE-AND-FORWARD
SWITCHING NETWORKS

2.1 NETWORK PROPERTIES

In store-and-forward switching networks blocks of data are
stored completely in any intermediate switching centre and
then sent forward to the next node. The main components of
such a network are shown in Fig.l.

For security reascns a copy of any transmitted block of
data is held within the buffer memory until the succeed-
ing node has positively acknowledged its receipt. We will
use the term "packet" for the block of data handled by the
network although most results are valid for message
switching networks, too.

The data channels between the switching centres or between
switching centres and data concentrators are assumed to

operate in a full duplex manner, so that each node can si--
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multaneously send and receive packets on all data channels
to and from other nodes.
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Fig.l. Components of a store-and-forward switching netwoin

2.2 OPERATING MODE OF SWITCHING CENTRES

The data flow through a switching centre is shown in Fig.2
and is described as follows:

Storing Packets

Incoming packets are stored in the buffer memcry() . Usu
ally the buffer memory is partitioned into a number of
fixed length buffers, each of which is used in order to
store a single packet.

When the first character of a packet is received, a com-~
plete buffer is occupied even if the packet is shorter.
This is a simple and widely used method for buffer alloca-
tion in store—and-forward switching systems [1] , (3 ., [3] .

If the buffer memory is full, incoming packets are reject=-
ed(® . When the end of an incoming packet is detected 2
pointer is placed on the queue in front of the contxol
processor(:). All incoming packets are checked for errors
by an error detecting code. If a packet is received in
error it is discarded .

Processing Packets

After a possible waiting time a correctly received packet
is served by the control processor (5.

The control processor determines the next node the packet
will traverse on the path to its destination. This is done
with the aid of a routing procedure utilizing the destina-
tion address given in the packet header. Then a pointer is
put on the queue in front of the output channel connected
to that next node (E) .

Transmitting Packets

When the outgoing channel has become free the packet is
transmitted but a copy is still held in the buffer mem-
ory until a positive acknowledgement is received. If the
packet is not acknowledged within a certain time-out T,

it is retransmitted(®) .

Acknowledgement Handling

If the packet is correctly received by the neighbour node
then a positive acknowledgement is constructed(9) and sent
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back to the preceding ncde . Neighbour nodes in this
context may be other switching centres and data concentra-
tors, as well. When the switching centre receives an ac-
knowledgement it deletes its copy of the corresponding
packet@

discipline (mean transmission time over the r-th channel
Hypr & 6 pmnn B

After some propagation delay hy, modelled by infinite ser-
ver stations the packets are stored in the buffer memory
of the r-th neighbour ncde.

Buffer overflow in the neighbour nodes
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Fig.2. Data flow in a store~and-forward switching centre

3. MODELLING

3.1 BASIC MODEL OF A SWITCHING CENTRE

A queueing model to describe the data flow in a store-and-
forward switching centre is shown in Fig.3.

Packet arrivals from all incoming data channels are com-
bined in cne arriving process with mean arrival rate A v
(Therefore, the dashed lines in Fig.3} do not end at the
buffer memory like in Fig.2.) Each packet buffer is mod-
elled by one server of an n-server loss stage. Such a
server is busy during the input time of a packet (mean in=
put time hy), but it remains occupied, even when the com=-
plete packet is stored, unless the packet was received in
error. The latter happens with probability ROC), Should
all buffers be occupied arriving packets are rejected @) .

Correctly received packets are served by the control pro-
cessor (mean service time hp) @ . ®1in the order of ar-
rival.

After leaving the control processor the traffic is divid-
ed into R streams according to fixed probabilities pp,..
..:Pg which represent the routing decisions to the R
neighbour nodes@ . The packets are queued in front of the
outgoing data channel until transmission to the neighbour
node takes place according to a first-come-first-served

gy Ry

traffic which flows from neighbour node
r back to the considered switching cen-
tre is defined as wr-Ar. After transmis-
sion of the acknowledgement (mean trans-
mission time hsp, propagation delay hg.)
the occupied server in _the first stage
of the model is freed .

3.2 MODIFICATIONS OF THE MODEL

The described basic mechanism of packet handling in store-
and-forward switching centres can be realized in many dif-
ferent ways. These specific realizations will, of course,
lead to different models of the systems. Depending on par-
ticular realizations it may be necessary to modify, extend,
or specify the presented basic model.

For some of the following modifications models are already
developed [4] , [5] , [f] , for others investigations are cur-
rently performed : various buffer allccation schemes, mod-
ified acknowledgement signalling (negative acknowledge-
ments), special flow-control and routing strategies, pri-
orities.

4. ANALYSIS

4.1 ASSUMPTIONS

We shall investigate our model under the following assump-

tions

1) Poisson input processes

2) exponentially distributed service times of
control processors
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3) exponentially distributed packet lengths or
I constant packet lengths, respectively

i 4) general Erlangian distributed time-outs and
1_'[” propagation delays.

These assumptions are justified by the follow-
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Fig.3. Basic queueing model of a store-and-forward
switching centre
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processor by an exponential distribution will
be of little impact on global performance val-
ues (e.g. buffer overflow probability), as long
as the processor is fast compared to the data
channels.
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3) As long as the prescribed maximum packet length is not
too short compared with the mean length of subscriber mes-
sages, real packet lengths will vary over a wide range A -
In this case, the exponential assumption will be suitable.

If we have a relatively short maximum packet length then
the exponential distribution is only a rough approximation
of real packet lengths, so that the results obtained under
this assumption will usually overestimate waiting times,
flow times, and buffer overflow. Then it is more accurate
to assume constant packet lengths. With these two "extreme”
assumptions the performance cf most real systems could be
estimated.

4) With the general Erlangian distribution the constant
time-outs and propagation delays can be approximated with
any desired accuracy.

4.2 EXPONENTIALLY DISTRIBUTED PACKET LENGTHS

For a certain class of queueing networks it is well-known
that a product form solution for the equilibrium state
probabilities holds [8] , [9] .

Such networks consist of an arbitrary number of queueing
stations. Reguests travel through the network according to
transition probabilities. For different classes of requests,
different transition probabilities may be prescribed.
Changes of class membership are allowed when leaving a sta-
tion.

Service times at first-come-first-served single server
queues have to be exponentially distributed, whereas serv=
ice times at pure delay stations ("infinite server" sta-
tions) may be general Erlangian distributed (rational
Laplace transform of service time distribution) .

In the case of an open network, external arrival processes
have to be Poissonian; the instantaneous mean arrival rate
may in a particular way be dependent on the actual number
of requests within the network. (For a detailed description
+f these networks the reader is referred to reference [9] .)

Although the conditions for the arrival and service pro-
cesses are met by our assumptions, this solution seems Lo
be not a priori applicable to our problem because of two
facts: 1) tha buffer overflow and 2) the occupation of a
buffer when a pointer beleonging to the packet, stored with-
in the buffer, is placed on the processor gueue, OF when
the buffer contains a copy of an already transmitted but
unacknowledged packet.

In the following section we will show, however, that our
model can be mapped into an equivalent system without this
blocked state of buffers but a state-dependent arrival rate
of packets.

4,2.1 OUTLINE OF SOLUTION

For the sake of simplicity, we will derive the solution for
a simplified version of our general model (cf. Fig.4). The
solution for the general model can be found analcgously; it
is given in Section 4.2.2 . The considered system consists
of 10 stations numbered as depicted in the figure. Cbvious-—
ly, the simplified system corresponds to the model of a
switching centre in Fig.3 with two neighbour nodes where
propagation delays are neglected.
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Fig.4. Simplified model
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Request Classes

In order to know the number of requests which are stored in
a buffer of the considered switching node, we have to dis-
tinguish between two classes of requests within our model.

All requests which enter the gueueing network via station 1
(i.e. which occupy a buffer in the considered switching
node) belong to request class 1; requests which enter the
network via stations 7 or 8 (i.e. which do not momentarily
occupy a buffer in the considered node) belong to request
class 2. According to this distinction we define the fol-
lowing random variables:

xl random number of requests in station 1 corresponding
to momentarily incoming packets (class 1 requests)

X, random number of requests in station i (iE{2,....10})

a
which entered the queueing network via staticn 1
(class 1 reguests)
¥, random number of requests in station i (ie{7,... 701)

which entered the gueueing network via stations T ocr
B (class 2 reguests).

Transition Matrix

The requests travel through our queueing network acc .. g
to transition probabilities. In the general case, reguestis
of a certain class r which complete their service at -
tion i will next go to station j and change their clases
membership to s with probability p .. e

(ir), (is)

No class changes are necessary in our basic model,

fore all Pir) with r # s are set to zero.
r

(js)

The values for the other transition probabilities nusc Lo
chosen according to the probabilities pg, Py« P2+ 91v 92
Tys Ty in Fig.4. (For example, the transition probabilit®

P(Zl),(}l) is egual to pi.l

The transition matrix P = p . ) in our model has the
: (ir}, (is)

following important property:

The Markov chain defined by P is decomposable into two

ergodic subchains. In more detail, the sets of states in

these subchains are:

E, = {aan] 1 elt,... t0}}

E, = Py | & 80,0et0h}

Equivalent Network

As one can see our Jueueing network can be described
equivalently by deleting the blocked state of servers 11
station ! (cf. the definition of Xy) but introducing &

tate-dependent mean arrival rate ¥of class | reguests
defined as follows:

10
A if I x;<n
i=1

10

odif L x, 2n
i
i=1

o]

This corresponds exactly to the real input process oi
finite buffer memory. Hence, the mean arrival rate A"is a
function only of the number of reguests in subchain Eq.
This Fact is a necessary condition for the validity of the
solution, presented in the following.

Class 2 requests from external sources entering the network
via stations 7 or B are assumed to arrive with constant
rates Al or Az, respectively.

Average Number of Visits to the Stations

In order to get the joint equilibrium distribution of gqueue
sizes we have to determine the average number of visits to
the 10 stations of our queueing network for class 1 ¢
quests (ej;) and class 2 requests (ej;). These values are
given by the following two sets of equations corres™ ing

to subchains El’ EZ'
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Subchain Ei:
10
igl oyy Pryay, g1y * 1 = Sq1 3 Gereantoh)
1 if =1 (3)
where usy =
J 0 if %1
Subchain EZ:
vl GyurertS]
e, P +u,, = e, (je{?,...,10})
Ly fi2 Pan, g T T2 T2 i
A1/(?‘1+;\2) if §=7
where uj2 = Az/(A1+l2) if 4=8
0 if j¢{7,8}

(usp is the probability that a class k request enters the
network via station j; therefore the above given values
for ujl' “jz are obvious.)

We don't want to give the explicit expressions for ejy.
e;7 in this context, because they appear implicitly in
the solution (&) of the general case.

Once the values ej,, e, are known, then the joint equi=-
librium distribution of gueue sizes can be found in a
straightforward manner [9] .

The state probabilities become:

p(SD} = p(x!....xlo,y7,...ylo)

PAX =X, 0o v o Xy oKy 1YY g0 oo ¥ 07V 0)

X
X, +ea ¥R yot..ty, . (e, h) 1 4
=g r ! YW 2 to 11 : T (e,,h,)
1 i=2
& (e, h,) L 10 x +
e, X, +y %
m i m T henpt (eizhilyi
=5 %! %
] pisy) =1 =
p =
o
SOE ¢0
10 2
¢, = {(xl,..,xlo,y7,...y101{ XY, € Norﬁlzl x; £n }

4.2.2 SOLUTION FOR THE GENERAL MODEL

The steady state probabilities for our general medel from
Fig.3 are found in a way, similar to that explained in the
preceding section. Therefore, we can present the final re-
sult immediately in Eg. (6). {(Note that the subscripts of
variables x (class | requests) and y (class 2 requests)
correspond to the subscripts given in Fig.3.)

p(Sl! = pcxl“2'”31""x3a‘x41""x4R'x51'"'x5R'x61'Y61"

Ki.

)

s Xgpr¥eprXqy ¥yy et Xre ¥R *g1 ¥g1 o ¥R Yer
x x X
i 4r 5r
a, " xy Rxy 3, 35 Xgrer Xer Yer)
S %0 % Do, ot xcl ¥ & Yagr hGr}
1° r=1 4r 5c (39 )
% . a"ar byax
5 ; {(x?r Y?r)a 7r Yoy ®ar Br }
$1 xq, 1 Tr xSr! yarl
z ( - (8)
pi(s,) 1
5.6 o P51

8 R

b, = {(x,seees¥gn) | Xyoera¥gy € Mg A ¥y 4ot I Ix, ®n
1 i 8R 1 ' 78R 0 1708 ym3 z=t jr
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}

a1=lhl a2=81h2 a'Zir=5p:r”'l‘-r a5r=Bprquh5r

for

for j€%4,6,7,8} refl,..,r}

ajr=59r (1-q.) lhjr

b A e, b, =m A h. bg,=T.A hg,
R

where B = (1'90}/11- z prqr)
r=1

We are mainly interested in performance values related to
class 1 requests; hence it is useful to simplify the solu-
tion (6) by evaluating the marginal distributions:

X )

?(x1=x1‘x2“32'x3l'x31'"'x3R=x3a""'x31=x81" %8R

= p(xl,xz,x31,..,x3R,...,x81,..,xBR) = 9(52)

This is done, by summing the p(S,) over all possible values

OFf Yo, 1 ¥gpt¥Vqpt¥gy+ It follows f¥om Equation (6):

1 5 *ar  Xox o x alr
p(s.) =C & ax2 | ar ar  %sr [ 33 ]xﬁz[ 7r ] 7r T8r
2 2 xls 2 i r xdr! Xgy l—hsr 1-b7r xg !
I p(sy) =1 (N
S£%
8 R 2
0, = { (k1o r%gp) | RyseerXgy € NG A x1+x2+j£3 rille; n}

4,2.3 PERFORMANCE VALUES

With the knowledge of the state probabilities, now the per-
formance values can be determined:

Probability of Buffer Overflow

8 R

B = p(x3+x2+j£3 rilxjr =n) = szeg(mp(sz) (8)
8 R

where (&) = {Sz| S,eb, A xytx L ) X = £}
j=3 r=1

Load of Buffer Memory

n 8 R n
¥y = L DR I Exy = )= Ilx- I =250 @

x=0 j=3 r=1 x=0 SZET(x}

Mean Time of Packets in Buffer

Y,

b
% T X(i-B) =
Packet Throughput Rate
A_ = A(1-B) (11}
s

4,2.4 EXTENSION

We have assumed that the mean input time is equal for all
packets. If this is not true (e.g. because of different
speeds of incoming data channels) the model can be extend-
ed by introducing c additional request classes each of
which having a certain distinct mean input time hll""hlc
and mean arrival rate A, s essh, -
11 ic
In this case, the term a?i/x;l in Equation (6) is split up
into a product of c factors

X

iv
E Ay hyy)
vt 1yl

denctes the number of instantaneously incoming
(i.e. which

where x
packets having the same mean input time hlv
belong to the same "input class” V).
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4.2.5 NUMERICAL EVALUATION

Because of the very large number of states in models for
practical systems the numerical evaluation of the pre-
sented solution is only possible by applying special ef-
fective algorithms [1c], [11] .

The cited algorithms are valid for closed queueing net-
works but can be used here as well to determine perform-
ance values related to class 1 requests[6] .

4.3 CONSTANT PACKET LENGTHS

The assumption of constant packet lengths leads to tremen-
dous theoretical difficulties in the investigation of such

a complex gueueing network. Approximate results could be
obtained at least for the special case of an infinite buffer
{n+®=) applying one of the following methods: diffusion
approximation [12] , parametric analysis (13 , decomposition

methods [14] .

To determine the value in which we are most interested,
namely buffer overflow, a simple heuristic approcach yields
good results at least in the range of practical interest.

This approach is based on the fact that the service time
distribution of the data channels influences the mean time,
a packet is stored in buffer, and hence, the buffer over-
flow probability. This observation leads to the following

appreximation:

In a first step, we estimate the mean arrival rate A to a
data channel by assuming exponentially distributed service
times and applying our solution. Then we determine the mean
service time hg of an M/M/1 queue which yields the same
mean flow time as an M/D/1 queue with the prescribed mean
sarvice time of the channel, when both gueues Poisson traf-
fic with mean arrival rate A is offered. With this “ficti~
tious" mean service time hg , determined for each channel
separately, we evaluate the buffer overflow probability
again with the aid of our solution and take this value as
an approximation for the case of constant packet lengths.

An example for the accuracy of this quite simple approxima=
tion is given in Fig.5; simulation results in this diagram

are shown with 95% confidence intervals.
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,/ /s Ay=eemAg=O
/ hy =1
| h2=0.02
{ hy,=e..=h =1
l hyy=+e=h,p=0
- A
=...=h =0

61 (3
71=...=h7Rﬁ0.2

81=°"=h8

/
10" A

0
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=0 °
R
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--- exponentially distributed packet lengths
(exact solution)

—— constant packet lengths (approximation)
§ constant packet lengths (simulation)
Fig.5. Buffer overflow probability B versus mean arrival

rate A for exponentially distributed or constant
packet lengths, respectively. Parameter: number of

outgoing data channels R

ITC8

Of course, the approximation could be refined, if necessary,
with a more accurate description of the input process for
estimating the flow times through the gqueues with constant

service times.

Numerous simulations showed that performance values with
constant packet lengths are always superior to those with
exponentially distributed packet lengths [6] , [15] . This evi-
dently plausible result guarantees that the dimensioning of
store-and-forward switching networks assuming exponentially
distributed packet lengths yields values "located in the

safe region".

4.4 ANALYSIS OF NETWORKS

As mentioned above the retransmission probabilities q, ...
.1gqg do not only depend on the probability pg, that a

packet will have at least cone error when transmitted ove:r
the r-th channel but also on the overflow probability B,

of neighbour node r, namely,

qr = pOz * nr -
A whole network (or parts of it) can be analyzed by app:iy
ing the following algorithm:

12
PorPr (

(i) set initial values for the retransmission pruobabll
dy in any involved node

determine overflow probabilities B, for any inval

(i1)
node

{iii) correct the retransmission probabilities &co:ds
to equation (12) and the mean arrival rates, it
essary

(iv) repeat steps (ii) and (iii) until equation (12)

fulfilled for any invelved node with the desired
accuracy

(v) evaluate performance values with the determined re-
transmission prebabilities for any involved node
separately.

5. NUMERICAL RESULTS

Figs. 6,7,8,9,10,11 show typical numerical performance
values obtained for exponentially distributed packet
lengths. Those system parameters, which are common for
all these diagrams, are summarized in Table 1, wheresa
specific parameters are given in the figures.

Figs. 6,7 show the relationship between mean arrival

rate A, buffer memory size n, oI retransmission prob-
rob-

ability g, respectively, and the buffer overflow p
ability B.
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Fig.6. Buffer overflow proba- Fig.7.
bility versus buffer
memory size n; parame-

ter: mean arrival

rate A

(g=0, hzzo.oz, hp=o)
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R=10  p,=0.001 Py=:-+=p; ;0.1 4=+ =459
Ty =T, =0.1 Ag=..omd =10
h,=1 hyy=eromhy (o=l By =eee=hy jo7hy
hgy = -=hg ;=2 hgy=+ =g ;57001
hy,=...=h, ;=0.2 hgy =+« =hg jo7hy

mable I. Common parameters for Figures 6,7,8,9,10,11

In Figs. 8,9 the mean time of packets in buffer tp and
the normalized load of the buffer memory Yp/n are plot-
ted versus the mean arrival rate A, for several sizes

of the buffer memory n.

16 - 1
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. \‘\ 65 \yog V
T :35ﬁj
0 g =1 1 —=A
00 2 L 6 8 10

Fig.8. Mean time of packets
in buffer tp versus
mean arrival rate A;
parameter: buffer
memory Size n
(g=0, h,=0.02, hp=o;

Fig.9. Normalized load of
buffer memory Yp/n
versus mean arrival
rate A; parameter:
buffer memory size n
(g=0, h2=0.02, hp=0)

Fig.l10 shows how the buffer overflow probability B depends
on the mean service time h2 of the control processor.

The influence of the propagation delay hp on the buffer
memory size n, necessary for achieving a prescribed buffer

overflow probability B,

is shown in Fig.ll.
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L 5 3 10 2 0 1 2 3 %

Fig.10. Buffer overflow prob-
ability B versus mean
arrival rate A; para-
meter: mean service
time of the control
processor hj
(n=50, g=0.01, hp=o)
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Fig.1l. Buffer memory size n
versus propagation
delay hp; parameter:
buffer overflow
probability B
(A=5, gq=0, h2=0.02J

6. CONCLUSION

With the aid of the developed model it is possible to ana-
lyze the fundamental traffic phencmena within store-and-
forward switching centres. As indicated in Section 3.2 the
basic model can be modified according to special realiza-
tions. Investigations of such medified models may perhaps
be performed inaway similar to that described in Section 4
but they may as well lead to enormous analytical difficul-
ties. Simulation will therefore alsc be a necessary and
powerful tool in investigating the data flow within store-
and-forward switching networks.

Performance values, obtained by investigations, like the
presented one, should be useful as a guide for dimensioning
such data networks.
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