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This paper investigates mean delays in local-area
ring systems using a permission token access tech-
nique. An approximate analysis is performed for an
arbitrary number of stations, non-zero token-passing
overhead, exhaustive service discipline, Poisson
arrival processes, and general message-length dis-—
tributions. Neither interarrival time, nor message-
Lew th distributions have to be identical for the
di. .érent stations. A major value of our approxi-
mation lies in the simplicity of the numerical
evaluation for an arbitrary number of stations and
any traffic pattern. Extensive comparisons with
simulation results show the accuracy of the approxi-
mation over a wide range of parameters.

1. INTRODUCTION

Local-area networks with either ring or bus-
topology can use a token mechanism for medium
access [1-8]. For a bus topology, the token consists
of a special control frame. A station terminates
its own transmission period by sending a token
frame addressed to its successor in the access
sequence. In contrast to this, tokens on a ring
system do not carry an address, but are realized
by one bit position (or more) within a well-defined
bit pattern. After a station has finished its trans-—
mission, it generates this pattern which then cir-
culates around the ring until a station ready to
t{ smit changes the token from "free" to '"busy"
and appends its data. In the present paper, we
study the performance of token-controlled ring

systems. However, the queueing model presented and
tems. However, the queueing model presented and

the analysis also apply to token-controlled buses.
Queueing models applicable to token rings have
been extensively studied, primarily in the context
of polling systems [8-26]. In the present paper,
we provide an approximate analysis for an important
subset of the different schemes possible for token
rings. The corresponding queueing model has been
treated exactly in the literature [15-19]; however,
the numerical evaluation of the exact solution is
restricted to a rather small number of stations
attached to a ring. The reason is that — except
for very special cases — a system of equations of
order n“ to n3 has to be solved (n 1is the number
of stations) to calculate the mean queueing delays.
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Experience with the numerical evaluation of the
exact solution for a larger number of stations has
not been reported in’ the literature; in particular,
no simple algorithm is known to determine the
coefficients of these equations in case of many
stations.

In designing and configuring ring networks
with token access, there is a practical need for an
accurate delay formula which can be easily computed
for an arbitrary number of stations. The objective
of the present paper is to provide such a result.

2. THE MODEL

Fig. 1 shows a queueing model of a token ring
with four active stations represented by their
transmit queues. For convenience, we assume that
both transmit and receive buffers of the stations
are not limited in size. The stations are serviced
in a cyclic manner by a single server standing for
the ring. On token rings, different token-genera-
tion strategies can be employed; the general impact
on the delay-throughput characteristic of these
strategies has been shown in [6,261., In the present
paper, we assume what is called "multiple-token"
operation in [26], namely, that stations issue a

free token immediately after the end of their
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‘transmission.
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Fig. 1. Token-ring queueing model.



In the model of Fig. 1, the time needed to
pass the token from station 1 to station (i + 1)
is modeled by a constant delay r;. On an actual
ring, the delay r; corresponds to the propagation
delay of the signals between stations 1 and
(i + 1) plus the latency caused within station 1
by the repeater and by actions such as alteration
of the token bit. The station latency is usually in
the order of one bit time. Subsequently, we denote
by R the total ring latency, i.e., the sum of all
token-passing times rq + ro + ...+ 1.

Messages arrive from all stations according to
Poisson processes with rates Xs A2s wees Ay. The
entity of transmission on the ring is called a
"frame". It consists of the user message and a con-
stant overhead for frame delimitation, control
information, addresses, and a frame check sequence.
The message lengths are determined through an arbi-
trarily selectable distribution. We denote by hy
and h£ , respectively, the mean and second moments
of the service/transmission times H; of frames
transmitted by station i. The traffic ijh; offered
bg’ tation 1 1is denoted by pj, and we assume that
the sum p of all p; is less than one.

Several service disciplines can be distin-
guished. In this paper, we concentrate on the
exhaustive type of service discipline where a sta-—
tion is allowed to completely empty its transmit
queue when it holds the token. (Alternative disci-
plines would be to allow a station to transmit
either one frame per access opportunity, or up
to a specified number of frames, or for a given
maximum period of time.)

In token rings, the sender is responsible for
removing the frames it transmitted from the ring.
Therefore, the location of frame destinations on
the ring relative to the location of the sender
does not affect performance. Consequently, we have
only to specify the input traffic of the stations.

Hence ualifiers, such as "s etrical/asymmetrical
> 4 s ymm vy

or "balanced/unbalanced" traffic, are meant with
respect to traffic sources, not sinks.

3. MEAN WAITING TIME ANALYSIS

3. .pproximation

To determine the waiting time of messages in
station 1, it is appropriate to view the model
of Fig. 1 as an M/G/1 queue with server vacation
times. The server vacation time A; corresponds to
what in [15] is called "intervisit time", i.e.,
the time interval from the server's departure from
queue i wuntil its return to the same queue. This
consideration leads direct to the following rela-
tion for the mean waiting time of messages in
queue 1, see also [15]:

E(A.] varfa.]l  a.n, 2
1 1 1 1
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This means that the average delays can be deter-
mined if the first two moments of the intervisit
times are known. Whereas it is straightforward to
determine the first moment of A;, calculation of

the second moment is fairly involved. Our approach
is to employ an approximation for the second moment
based on a heuristic extrapolation from the exact
result for n = 2 stations to the case of an arbi-

~trary value of n.

Let C; be the cycle time defined as the time
between subsequent visits of the server to queue
i, and Ti be the time which the server spends to
service queue 1. Furthermore, let ¢,.(s) and
¢Ti(s) be the Laplace transforms of the probability
density functions of A; and T;. The time T; for
which the server is serving queue i can be con-
ceived as the sum of M; independent busy periods
B;, where M; is the number of arrivals at queue 1
during A;. Therefore, if we denote by ¢Bi(s) the
Laplace transform of the p.d.f. of the busy periods,
and by Gy, (z) the generating function of the
distribution of M;, we obtain

bp () = G (8 (9)) )

1 i i

and

Gy (2) = ¢,
1 1

(Ai—%iz). (3)

Insertion of (3) into (2) yields
¢p () =4, (=20, (D). )
i i i

By differentiating Eq. (4) twice, we obtain

E[T.] = A, E[A.] E[B.], (5)
1 1 1 1

BT.%] = A, ECA.T BIB.21 + 2.2 BA, %1 B[B,1%. (6)
i 1 1 1 . 1 1 1

The first two moments of the busy periods are given
by (see, e.g., [11,271)

by
E[B.] = R (7)
i 1—pi
h (2)
2 1
E[B.7] = — 3 - (8)
(l-pi)

Insertion of (7) into (5) vyields

0.
E[T.] = —— E[A.]
1 1-p. 1
1
= E[C.] - E[A,] 9)
i i
and hence
E[Ai] = (l—pi) E[Ci]. (10)



It can be shown that the average cycle time for all
queues is given by (see e.g. [15])

ElC.] = L (11)
1 1-p
This leads to
l-pi
E[A.] = R . (12)
i 1-p

If we insert (7), (8), and (12) into (6), we obtain

(2) 2

1-p. h. h.
VarlA,]

= R - A.z
(l—pi)

1
(l-pi)
(13)

Var[T.1 = X.
i i 1-p

For an arbitrary number of stations n, the above
considerations are apparently insufficient to
determine the variance of the intervisit times Aj
needed in (1) to calculate the mean waiting times.
In the special case of n = 2 stations, however, the
ir’ -visit times of one queue and the server's
so,.urn times at the other queue differ only by the
constant time Rj; hence, we have

Var[Ti] = Var[Ak] $01=1,2, k= 3-i. (14)

Inserting (14) into (13) and solving for Var (Ai)
leads to
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(1-p)° I-0;=py * 20,0

Var[Ai] = . (15)

i=1,2, k=3-i

Returning to our general model with n > 2 stationms,
we now establish our major heuristic assumption.

We assume (a) that the impact of the messages from
any queue k # i on the variance of the intervisit
time of queue 1 can be approximately described
by an expression corresponding to Eq. (15), and

(b) that the total variance of A; is obtained by

s/ rposition of the individual components of all
queaes, 1.e.,

2y 2

2
(e )™ + Ah, oy

n (2

A
k' k

el

(1~o)2 k

(16)

Var[A.] =
1 1 1=0,=0p + 2040y

Eoa
1

b

By inserting (12) and (16) into (1), we finally
obtain the following approximate formula for the
mean waiting time at station 1i:
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3.2 Discussion

In Section 4, by comparison with simulation
results we shall show that the accuracy of our
approximation is adequate for all practical pur-—
poses. Furthermore, as subsequently discussed,
Eq. (17) has the attractive property of yielding
the exact solution for a number of special cases.

1) In case of two stations with arbitrary service-
time distributions and arrival rates, our delay
formula yields the exact result known from [11]
and [12].

2) For an arbitrary number of stations but symmet-—
rical traffic conditions, i.e., identical
service-time distributions with mean h and
second moment. h , and equal arrival rates

A = ... = Ay = A/n, from (17) we obtain the
following mean delay for all stations:
(2)
1-p/n Xh
W = R + . 18
sym  2(1-p) 2(1-p) (18)

Comparison with the results derived in [16] and
[17] shows that (18) represents the exact result
for this particular case.

3) Summation over the station-specific delays
weighted with the corresponding utilization
yields '

no.
SR e
i=1 Pt
n n
1 -1y .2 ) ah, 2
Pri=1 * i=1 **t
= R + . 19
7C1-p) 2010 (19)

This result is noteworthy in two respects. First,
for zero token-passing overhead, i.e., R = 0, it
yields the correct M/G/1 delay, as required by the
conservation law [27]. Second, it suggests that
the more unbalanced the traffic, the smaller the
impact of the token-passing overhead on the delay
averaged over all statioms. This is an intuitively
appealing result since the more unequal the util-
izations of the different stations, the higher the
probability that a newly arriving message will
join a non-empty queue or one which is currently
being serviced. Such a message, however, will be
serviced without any token-passing overhead.

4, NUMERICAL RESULTS

In this section, we present numerical examples
in order to discuss some general characteristics
of token-ring models and, in particular, to show

‘the accuracy of our approximate solution.

In Fig. 2, we show a comparison between
analytic and simulation results for a token-ring
model with sixteen stations. The parameters chosen
are 1 Mbps transmission rate, 1 km cable length,
and 1 bit latency per station, which results in a
total ring latency of R = 21 us (see [26]). Message
lengths are expomentially distributed with mean
2 kbit; the framing overhead is 48 bit per message.
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Fig. 2. Comparison of analytic and simulation
results for a l6-station token-ring model
with one heavy-traffic station:

P2 = p3 = ... =014 = p1/150. Parameters:
11 Mbps transmission rate, 1 km cable
length, 1 bit latency per station (queue),
i.e., R = 21 us; exponentially distributed
message lengths (mean 2 kbit), 48 bit
framing overhead per message.

For this example, a very unbalanced traffic flow
was assumed, viz., that 10/11 of the total ring
traffic 1s generated by one station; the other 15
stations together generating only 1/11 of the
traffic in. equal amounts.

We observe that messages from the heavy-traffic
station 1 suffer a smaller delay than those from
the light-traffic stations 2 to .16. This -— at
first glance — surprising effect can be explained
by the fact that messages being generated by a
heavily loaded station have a better chance that
tt ¢ station is currently transmitting than those
ones from lightly loaded stations. It should be
noted that the simulation values shown for stations
2-16 represent the average of the individual
simulation results for these stations. The simulated
specific delays for stations 2 - 16 vary slightly
around this average. The simulation does not reveal
any significant interdependence of location relative
to the heavy-traffic source and delay, although
such differences do exist in principle [28].

Furthermore, Fig. 2 shows that our approximate
solution yields results of satisfactory accuracy. We
can generally observe that it has the tendency to
slightly underestimate the delay of heavy-traffic
stations, and slightly overestimate the delay of
light-traffic stations. Except for very high utili-
zations, the relative error stays well below 107.
(The relative error is defined as the difference
between calculated and simulated delay divided by
the simulated delay.) The accuracy of the waiting
time averaged over all stations w is very high.

For a token-ring model of the same kind, but
with 20 stations, Table 1 compares analytic and
simulation results in another unbalanced traffic
flow situation. The underlying assumption of this

- example is that stations 1 and 8 generate 407 of

the total traffic each; the rest is generated by
the other 18 stations. Analytic and simulation
results again agree very well; the accuracy of the
approximation is slightly better than for the case
of Fig. 2. This suggests that a highly unbalanced
situation such as the one underlying Fig. 2 repre-
sents an unfavorable case with respect to accuracy
of our approximation.

p 0.3 0.5 0.8
Calc. 0.444 0.994 3.760
Wy Sim. 0.445 1.009 3.947
[ms] (£0.018) (#0.057) (z0.425)
Error -0.27% -1.67 -4, 77
Calc. 0.444 0.994 3.760
wg Sim. 0.448 0.997 3.896
[ms] (+0.021) (20.046) (20.316)
Error -0.97% ~0.37 -3.5%
Calc. 0.505 1.248 5.660
Wz,.. .,W7,
Sim. 0.499 1.236 5.693
W9,..n,W20,
[ms] Error 1.17% 1.07% -0.6%
_ Calc. 0.456 1.044 4.140
w Sim. 0.457 1.049 4,276
[ms] (£0.024) (20.062) (20.448)
Error ~0.2% ~0.4% -3.27%
Table 1. Comparison of analytic and simulation

results for a 20-station token-ring
model with two heavy~-traffic stations:
p1 = pg = 0.4p3

P = v = py7 = pg S ... T Dog < 9/90.
Parameters: 1 Mbps transmission rate,

1 km cable length, 1 bit latency per
station (queue), i.e., R = 25 us; expo-
nentially distributed message lengths
(mean 1024 bit), 48 bit framing over-
head per message; (957 confidence inter-
vals in parenthesis). (Note that the
calculation results are based on the
following values for p: 0.3003, 0.4996,
0.79973.)

In Table 2, we show the delays occurring on
32 Mbps rings with 5 and 10 km cable lengths which
represent extremely large values for local-area
token rings. Traffic pattern and message-length
distribution are the same as for Table 1. Further-—
more, it is assumed that each station causes a
latency of 8 bits. This results in total ring
latencies of R = 30 ps and R = 55 us, respectively;
hence, the ratios of ring latency to mean frame
transmission time are rather high, namely, 0.90 and
1.64. Comparison of Tables 1 and 2 shows that the



a) R = 30

Is
0 0.3 0.5 0.8
Calc. 32,221 54.470  167.354
Wy Sim. 32,205 54.595 168.45
[ps] (£0.880) (*#0.392) (£3.584)
Error 0.05% -0.2% -0.7%
Calc. 32.221 54,470 167.354
wg Sim. 32.360 54,498 167.37
Lus] (£0.796)" (20.538) (+3.932)
Error ~0.47 -0.17% -0.17%
Calc. 36.546 68.122 249,588
Wz,...,W7,
Sim. 36.884 68.187 246.77
W9,...,W20,
Lus] Error ~0.97% -0.17% 1.1%
_ Calc. 33.086 57.200 183.801
W Sim. 33.210 57.284 183.66
3] (£0.746) (20.464) (£4.132)
Error -0.4% ~-0.1% 0.17%
b) R = 55 us
p 0.3 0.5 0.8
Calc. 47.935 74.470 209.854
Wy Sim. 47.887 74.367 209.98
[us] (£0.666) (20.624) (+4.148)
Error 0.17% 0.17 -0.1%
Calc. 47.935 74.470 209.854
wg Sim, 48.328 74,449 209.84
[us] (£0.836) (%0.563) (£3.819)
Error -0.8% 0.03% 0.017%
Calc. 54.344 92.983 311.533
Wz,. .,W7,
Sim. 54,789 92.831 309.079
Wgs e esWo(s
;s Error  -0.8% 0.2% 0.8%
_ Calc. 49.217 78.173 230.190
w Sim. 49.449 78.100 229.72
[us] (+0.771) (£0.305) (£4:456)
Error -0.57% 0.1% 0.2%
Table 2. Comparison of analytic and simulation

results for a 20-station token ring model

with two heavy-traffic stations and
greater relative token-passing overhead:
pp = pg = 0.4p;
02=..=p7=pg=...=p20ép/90.
Parameters: 32 Mbps transmission rate,

5 and 10 km cable length, 8 bit latency
per station (queue), i.e., R = 30 us

and R = 55 us; exponentially distrib-
uted message lengths (mean 1024 bit),

48 bit framing overhead per message;

(95% confidence intervals in parenthesis).

accuracy of the approximation improves when the
ratio of latency to frame transmission time is
increased. This indicates that our approximation
reflects very accurately the impact of the token-
passing overhead on delay.

The examples considered so far were based on
identical message-length distributions for all

~ stations. With the final example, we demonstrate

that our approximation yields reasonably accurate
results also for cases with different message-
length distributions for different stations.

Table 3 shows the mean waiting times in a queueing
model of a token ring with 20 statioms. Utilization
values are the same as for Tables 1 and 2. Messages
from the heavy-traffic stations are assumed to be
eight times longer on the average than those from
light-traffic stations. Moreover, the coefficients

_of variation of the message lengths are also dif-

ferent: 1.0 and 2.0 for the heavy-traffic stations
1 and 8, respectively, and 0.5 for the light-traffic

stations. Comparing results for stations 1 and 8
reveals an interesting effect: although both

stations generate the same amount of traffic and
p 0.3 0.5 0.8
Calc. 1.372 3.118 12.001
Wy Sim. 1.347 2.896 13.126
[ms] (£0.194) (20.276) (£2.199)
Error 1.87% 7.7% -8.67
Calc. 1.218 2.545 8.927
g Sim. 1.198 2,513 10.922
[ms] (x0.146) (£0.205) (#£1.261)
Error 1.7% 1.37 -18.37%
Calc. 1.515 3.744 17.182
Wz,..-,W'],
Sim. 1.489 3.512 17.863
WGy esWo(s
[ms] Error 1.77% 6.67% ~3.8%
_ Calc. 1.434 3.409 14.716
w Sim. 1.408 3.215 15.710
[ms] (£0.229) (£0.277) (#2.219)
Error 1.87% 6.07% -6.3%
Table 3. Comparison of analytic and simulation

results for a 20-station token-ring model
with two heavy-traffic stations and
different service-time distributions:

p1 = pg = O.4p3

P9 = ... =07 =Pg = ... T pog = 0/90.
Parameters: 1 Mbps transmission rate,

lkm cable length, 8 bit latency per
station (queue), i.e., R = 165 us; mean
message lengths: 2048 bit for queues 1

and 8, 256 bit for all other queues;
coefficient of variation of message-
length distributions: 1.0 for queue 1,

2.0 for queue 8, 0.5 for all other queues;
48 bit framing overhead per message;

(95% confidence intervals in parenthesis).



the coefficient of the message-length distribution
is greater for station 8, the delay in station 1

is always slightly longer than in station 8.

An intuitive explanation of this phenomenon is
that, due to the greater variance of the service
times of station 8, the chance that a message finds
its own station being served upon its arrival is
greater for station 8. Our analysis reflects this
effect correctly, although its accuracy decreases
at higher utilizations.

5. CONCLUSIONS

Modeling of token rings leads to single-server
models with cyclic service among an arbitrary num-
ber of queues. For the exhaustive service disci-
pline, rigorous analyses under the assumption of
Poisson input, generally distributed message
lengths, and non-zero token-passing overhead have
appeared in the literature. From a practical
traffic-engineering point of view, a drawback in
the application of these results is that their
numerical evaluation is difficult, except for
c{ iin special cases.

To overcome these limitations, the present
paper suggests a rather simple approximate solution
for the mean delays of individual stations. The
important features of our solution are:

1) Its overall accuracy is good. Comparison with
simulation results shows that, except for
very high utilizations and extremely unbal-
anced traffic flow, the relative error is
less than 107%.

2) For the special cases of (a) two stations and
arbitrary traffic, and (b) an arbitrary num-—
ber of stations but symmetrical traffic con-
ditions, the solution is exact. Furthermore,
in case of zero token-passing overhead, it
yields the correct result for the delay
averaged over all stations, as required by
the M/G/1 conservation law.

3) The numerical evaluation of the approximate
delay formula is very simple for an arbitrary
number of stations and any kind of traffic
pattern.
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