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Abstract

In this paper, we describe three different modifications of
the Exponential Moving Average (EMA) algorithm that
can be used for bandwidth estimation. Bandwidth estima-
tion algorithms have to be deployed by nodes in connec-
tionless networks (e.g. IP networks) that perform Qual-
ity of Service (QoS) routing based on the available band-
width. Since applications do not signal their bandwidth
requirements in such networks, estimation is the nodes’
only way to gain knowledge about the status of the links.
To use the results of the estimation for routing purposes,
several constraints have to be fulfilled: The algorithm
should react fast to changes in bandwidth, should con-
verge sufficiently fast to the actual used bandwidth, but
should show a certain independence of short-term peaks.
Furthermore the algorithm should not be overly complex
in terms of computing time and storage. We will compare
the modified algorithms to the basic EMA algorithm.

Keywords: Bandwidth estimation, Exponential Mov-
ing Average, QoS Routing

1 Introduction

Bandwidth estimation is essential when link occupancy
should be used for QoS routing in connectionless net-
works. Since these networks have generally no signalling
capabilities to announce the resource requirements of
end-to-end relationships, the intermediate nodes cannot
know how much bandwidth is still available, and which
link is therefore best suited for the forwarding of a packet.
To measure the traffic and to process these samples is the
only way to get meaningful information. This is were
bandwidth estimation algorithms come into action.

In connection-oriented networks, estimation algo-
rithms are not so important for routing purposes. Appli-
cations running over ATM networks can easily reserve the
necessary bandwidth or get a guarantee on maximum de-
lay, provided they know the respective parameters. This
is due to ATM’s signalling capability. Depending on the
service category various traffic parameters can be used
in signalling messages, e.g. peak cell rate (PCR), max-

imum burst size (MBS), maximum cell transfer delay
(maxCTD), and others [1]. Connection admission con-
trol (CAC) decides whether the network can accept a new
connection and guarantee the required service quality. As
long as the application complies to its traffic contract, the
negotiated QoS is guaranteed. Another important aspect
of signalling is that the nodes always know the resid-
ual (average) bandwidth on their attached links. Thus,
bandwidth-based routing information is easily available
and can be forwarded to other nodes or be used for route
computation in the respective node. However, estimation
algorithms can be used to monitor traffic and to ensure
that the senders comply to their agreed traffic contract.
This is called Usage Parameter Control (UPC).

Classical IP networks are connectionless and do not
have any signalling mechanisms by which the applica-
tions can make reservations or announce requirements
about packet delay. Each packet is routed independently,
i.e. that it might travel along a different path than other
packets belonging to the same end-to-end relationship.
RFC 2205 describes the Resource ReSerVation Protocol
(RSVP) that can be used by applications to signal traffic
characteristics to RSVP-capable IP routers which can re-
serve bandwidth [2]. In principle, RSVP could help the
nodes to gain knowledge about link status. However, even
if nodes knew about an application’s bandwidth consump-
tion — via signalling — they cannot predict which path a
packet will take and they do not know the residual band-
width of the attached links. As a solution to this problem,
route pinning in conjunction with RSVP was proposed
[3]. As for all approaches of this kind, this only works
when all nodes within a network support the mechanism.

To get information on the link status in IP networks
without the methods described above, estimation algo-
rithms can be employed. Thereby, each node measures
the amount of traffic on its (outgoing) ports and thus
knows about the occupancy of the links at any time. Us-
ing a routing protocol like OSPF [4] – possibly with the
QoS extensions described in [5] – the informations can
be exchanged between the routers and consequently be
used for route calculations. The estimation of occupied
bandwidth is based on the size of the passing packets and
time measurement and can involve several computational
steps.



The results of the estimation can be used to distinc-
tively route certain flows, e.g. flows belonging to a higher
prioritized DiffServ class, to keep adaptive routing tables
to balance load equally in a network, or for connection
admission control as described in [6] (e.g. for RSVP).

In chapter 2 an overview on bandwidth estimation is
given, including the exponential moving average algo-
rithm. Chapter 3 explains our modifications on the algo-
rithm and chapter 4 shows the impact of the modifications
by simulation results of the modifications. In chapter 5
conclusions are made and future work is discussed.

2 Bandwidth estimation

In reality, links are always either completely occupied,
i.e. a packet is currently being transmitted, or completely
empty, i.e. no packet is currently being transmitted. How-
ever, this information does not help for routing. Instead,
we need to calculate mean values over a certain interval.

This mean value calculation is not as monolithic a task
as it might seem. Actually it consists of different tasks,
some of which are only optional. The first and always
necessary task is to measure the currently occupied band-
width. Depending on the method, this leads either to a
very volatile curve or a more steady, but not accurate one.
Neither of them can be used well for routing. The second
(optional) step is to smooth the measurement, i.e. lev-
elling out short peaks. Smoothing can take into account
the past and the future of a given measurement sample
(we will show later how this ”non-causality” can make
sense). The third step is the real estimation, where we try
to derive a bandwidth value which is a meaningful repre-
sentation of the current occupied bandwidth.

It would also be possible to finally use a prediction
mechanism, i.e. an algorithm that tries to predict the trend
of the occupied bandwidth. This would help the routing
algorithm to work pro-active. However, in this paper we
will not discuss this method.

In the next sections we will give a brief classification
of methods that can be used for these three steps.

2.1 Measurement

Measurement can be classified by the place where the
sample is taken. Routers take samples at the input or
output port. Measurement at the output port has the ad-
vantage that it gives information about the router’s own
outgoing resources, i.e. information that can directly be
used for local routing decisions. We will not discuss
this criterion further at this time, as it has no influence
on the results of the estimation. Instead the distinction
between packet-based and time-window-based measure-
ment is much more relevant for bandwidth estimations ap-
proaches.

Packet-based means, that for each packet arrival, the
time difference between the last packet arrival and the
current time is calculated. Then the rate is defined as

packet length divided by the respective time interval. Al-
though this method is quite accurate, it has several draw-
backs. First, if no packet arrives for some time, the router
does not get any new information on bandwidth occu-
pancy. Thus, it is impossible to ever discover a com-
pletely empty link. To overcome this problem, a timer
can be used. If during the timer’s interval no packet ar-
rives, the timer triggers the calculation as described above
(packet length equals zero). Another disadvantage is the
large amount of samples that is created and that has to be
processed by the router.

Time-window-based means that for a fixed time win-
dow, packet lengths are summed up. After that time, the
ratio of total data length and time gives the mean band-
width over that interval. The time window will then be
restarted (jumping window). Alternatively, the window
can be moved for only a fraction of the interval after ei-
ther a packet arrival or a fixed time. Yet its size remains
constant (sliding window). This leads to a finer granu-
larity of the results. Both methods are very stable and
produce no direct problems. However, the quality of the
results depends largely on the size of the time window.

2.2 Smoothing

Smoothing is a way to remove short peaks in a series of
measurements. For the following, we have to remem-
ber, that if a series of measurement samples ���������	��

is given, a smoothing algorithm produces a new series
of values � � �����
� 
 , which describes a smoother curve.
The deviation from the original curve (fitting) depends
on the parametrisation of the smoothing algorithm. Pos-
sible smoothing algorithms are Least Squares Fitting or
Penalized Least Square.

2.3 Estimation

Estimation creates a single new value ��� which is based
on a series of values ��
 (e.g. measured or smoothed band-
width). We can distinguish between two different classes
of estimation algorithms: stateless, i.e. new estimations
do not take into account history and state-dependent, i.e.
the history is taken into account. In the following, only
state-dependent algorithms are considered.

The most simple algorithm is the arithmetic mean

�����

���������� � ��� � (1)

where � �!� � is the occupied bandwidth (raw measurement
or smoothed) at time "$#&% . It requires the existence of a
set ' of samples �)( . The main problem is to find the right
size  for the set. If  is too big, real changes are levelled
out, if  is too small, brief peaks are not suppressed.

For the exponential moving average in its simplest
form (of order 1), only one old value has to be remem-
bered. Still the results are satisfying. A new estimation �*�



is calculated as follows:�+���-,	./#10$2	���!���4350���� (2)

The difficulty lies in the proper choice of 0 , the expo-
nential weight. With a large 0 the estimation follows the
measurement truly, but does not suppress peaks, whereas
with a small 0 peaks are suppressed but the estimation
follows real changes too slowly.

In [7], an EMA algorithm with dynamic 0 is pre-
sented. The distance adaptive EMA algorithm uses the
inter-arrival time between packets to modify the weight.
For small time differences, the weight of the new sample
is smaller, for larger time differences its weight is higher.
This helps to bring down the estimate when a packet ar-
rives only after a long time interval. On the other hand, a
short inter-arrival time, that might only indicate a peak is
not over-valued.

2.4 Influence of estimation on routing

Different bandwidth estimation algorithms have different
characteristics, that make them better or worse suited to
create input for a routing algorithm. In the following clas-
sification we show these characteristics and describe the
desired behavior of the algorithm.6 Reaction: The algorithm should quickly discover an

increase or decrease in occupied bandwidth. How-
ever, it should only include this change into its re-
sult, when a long-term change is about to happen.
Brief peaks should influence the result as little as
possible. In practice, this leads often to the fact, that
the estimation lags behind the real trend (in terms
of time), because current values are only moderately
taken into account to avoid over-reaction.6 Stability: The algorithm should change the result of
the estimation as rarely as possible to avoid updates
for the routing. On the other hand, the results should
still reflect reality as close as possible (which leads
to inevitable changes).6 Symmetry: Some algorithms are fast in discovering
an increase and slow in discovering a decrease in
occupied bandwidth, they tend to overestimate oc-
cupied bandwidth. Others behave just the other way
round, they tend to underestimate the occupied band-
width. While the first group wastes resources, the
second one might lead to an overloaded network. Al-
gorithms that are slow on both sides are worst. So
the goal is to have a symmetrically fast algorithm.6 Convergence: No matter how fast the algorithm is, it
should eventually reach the true current mean value
of the occupied bandwidth. While most algorithms
approach this value from below after an increase and
from above after an decrease, there are also some
algorithms that tend to overshoot and converge only
afterwards.

6 Cost: Costs can be expressed in various terms: com-
putational complexity, memory, and time for calcu-
lation. The optimum is of course a simple, fast algo-
rithm that need not store much data.

Note that although the first two characteristics are the
most important, each of them has to satisfy contradictory
requirements. The goal is to find the most effective com-
promise, while achieving also good results for the three
other characteristics.

3 Modifications of the EMA
algorithm

The basic EMA algorithm shown in Equation 2 is stat-
ically configured, which means that 0 is possibly opti-
mized for special traffic conditions only. However, the
composition of traffic can not always be predicted which
complicates the selection of a suitable parameter.

It is desirable that the estimation algorithm adapts to
the traffic: reacting fast on real load changes, especially
under heavy load conditions, but staying on an average
level when brief oscillations happen. The ideal algorithm
would not need any preconfigured parameters — which
might be suitable only for certain conditions — but would
calculate any parameters by itself, based on monitoring of
the traffic. Nevertheless, a very basic parametrisation is
almost always inevitable.

The following sections show first general considera-
tions on how to dynamically modify the weight 0 of an
EMA algorithm. Then we will present two modifications
that we derived from these ideas. Finally we will present a
new EMA algorithm which is not based on dynamic adap-
tation, but on smoothing the measurements first. Still, our
goal was to match the characteristics presented in section
2.4.

3.1 Modifiers for dynamic weights

In the following we will restrict ourselves to the time-
window measurement as a base for getting the measure-
ment samples. In contrast to the distance adaptive EMA
[7], our approaches can not use the time distance between
measurement points since the time window and thereby
this distance is constant.

The basic assumption is, that sharp increases or de-
creases can first be treated as peaks. Only if the change
persists, it should be taken into account (but then very
quickly). The goal is to consider these changes with lower
weight. Smaller changes or stagnancy indicate a stable
trend, so these measurements can be considered with a
higher weight. As a consequence the main problem is to
distinguish different situations, and to identify the correct
reaction.

Changes in the amount of traffic generally have two
different reasons:



6 Activation or deactivation (or rerouting of the traffic)
of one or several sources at roughly the same time
leads to a permanent increase or decrease of occu-
pied bandwidth. These changes should be processed.6 Superposition of different traffic sources with dif-
ferent packet rate and rate variation leads to many
brief and small (although sometimes considerably
large) changes in occupied bandwidth that result in a
very unsteady curve with many short peaks or gaps.
These changes should be neglected.

The problem is shown in Figure 1: During intervals 1 and

I I I I I1 2 3 4 5 Time
Interval

Occupied Bandwidth

Figure 1: Short peaks and long-term changes

5 the changes are very brief and only temporary, caused
by variations in single flows. In contrast, changes in inter-
val 2 and 4 are more permanent, caused by flows begin-
ning or ending respectively. The difference between the
two situations is clear: although the changes are approx-
imately equally large, the duration of them differs signif-
icantly. We could easily suppress the short-term varia-
tions by using long measurement intervals (like in the fig-
ure), however this might lead to a delayed reaction to real
changes. As a consequence samples are not only taken
at the beginning of each interval but also several times in
between, i.e. in relatively short intervals.

Based on these considerations, we have identified two
different approaches using the gradient of occupied band-
width and the change of the gradient of the occupied
bandwidth for the generation of a dynamic weight.

3.1.1 Gradient of occupied bandwidth

For the first approach, consider the example in Figure 2.
Looking at times 7)� and 7	8 , we see that the occupied band-
width is identical, but the occupancy trend is different
which can be seen from the gradient of the curve. A
good estimation not only depends on the currently occu-
pied bandwidth, but also on the change of the occupied
bandwidth over time. To enable this, we can take into
account the gradient � � between two points 7 ����� and 7 � :

� � � � � #&� �!���7	�9#17	����� (3)

b i−1

Timetti−1 i

b

t1 2t
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Figure 2: Change of occupied bandwidth

We will show in chapter 3.2 how this refined information
of the bandwidth status of a link can be used for a better
estimation.

While the gradient of the occupied bandwidth already
can indicate a certain trend, the variations of this change
over time give further information. The next approach
will take this into account.

3.1.2 Change of gradient of occupied bandwidth

For the second approach we will compare consecutive
measurements to find out more about the general trend.
This comparison should be independent of the absolute
value of occupied bandwidth. Therefore, we will use the
difference of two consecutive gradients (see Figure 3).

b

b

b

i−2

i−1

i

i

i−1m

m

t t ti−2 i−1 i

Occupied Bandwidth

Time

Figure 3: Determination of the difference of gradients

This difference of the gradients is calculated as follows:

: �����;����#1�<�!���/� � � #&� �!���7 � #17 �!��� # � �!��� #&� �!�=87 �!��� #17 ���98
(4)

To evaluate the result, different conditions must be con-
sidered:6 When the load is constant for some time, the gradient

is always zero and so is the difference between two
gradients.



6 Constant long-term increases or decreases also show
the same gradient for some time and therefore the
difference between successive gradients is also zero.6 Due to oscillations, the gradient changes frequently
and the change is very sharp. Although this could
also happen for long-term increases or decreases,
chances are much higher that a short-term peak ar-
rived.

The first two cases show the difference of this approach:
Long-term tendencies are detected, since the difference
between the successive gradients is zero or at least very
low. There is no need to differentiate these two cases for
the adaptation of the weight. In the first case, the weight
of new samples has no influence on an already steady es-
timation. In the second case, it is not important that the
samples change, but that the change is constant. So the
weight of the new sample can remain the same. The third
condition can be easily detected and a suitable metric (e.g.
derived from the change of gradients) can be used to adapt0 .

However, there is a slight disadvantage in this method:
To explain this, assume that only one source is sending
packets of equal size at a constant rate. The result of the
measurement should become a straight line. However, if
the time window is not synchronized with the source –
which is generally the case – there is a jitter in the results,
depending on how the time window border matches with
the packet borders. We will later show that using the dif-
ference of gradients as an exponent to 0 helps to avoid
this problem to a large degree. This is because these kind
of changes are very small. With an exponent close to zero,
the impact is even smaller. Note that the same is true for
a constant increase or decrease.

In the next two sections we will show how to compute
the weights for the EMA algorithm using the approaches
explained so far.

3.2 Low pass EMA algorithm

The low pass EMA (LpEMA) algorithm is based on the
first approach and uses the gradient to modify the weight
of a .+>@? order EMA algorithm. The weight is calculated
with the help of a low pass filter of . >@? order. Using the
classical formula for a low pass filterA ,CB�2D� ..E3GFIHHKJ (5)

we replace the frequency B by the gradient � � and the
limit B�L by a normalizing gradient ��M�N)O�P . To control the
maximum adaptation, we introduce a maximum weight0QPSR
T . This leads to the following equation for the weight0 � :

0 � �U0QPSRKT ..E3 V WYXZVW\[	]_^a` (6)

The larger the gradient is, compared to �bM�N)O�P , the
smaller the fraction becomes, and the smaller 0 � be-
comes. The result is, that short peaks are hardly noticed.
In case that the absolute of the current gradient c � � c is
equal to the normative gradient ��M�N)O�P , we get

0 � � .d 0�PSR
T (7)

This leads us to the problem of selecting ��M�N)O�P and0QPSRKT . First we define a weight 0�N
e�f , which gives the
optimal result in case the bandwidth change happens to
be equal to the mean gradient. Next we define �bM�N)O�P
to be equal to the mean gradient. Thereby 0$PSRKT can be
determined as:

0 PSR
T � d 0 N)e�f (8)

Note that the determination of 0�N)e�f is not part of this pa-
per. This leaves only the determination of the mean gra-
dient. In principle, this value can be chosen arbitrarily to
provoke a certain behaviour. We will present two specific
values, which have a meaning:6 Traffic-dependent mean: This � M�N
O!P is the real

mean gradient of the traffic envelope. The value
can be obtained by observation and continual aver-
aging. It can either be calculated over the entire time
since the start of the node or by using an interval over
which it is calculated. The second approach values
the current traffic situation higher.6 Link-dependent mean: This ��M�N)O�P is calculated by
simply using the half of the maximum gradient dur-
ing a time window:

�gM�N
O�Ph� .d i7 � #�" �!��� (9)

where i is the capacity of the link. Although this
might not be the real mean value, it gives a rough
estimation, based on the minimum and maximum
gradient. The big advantage is, that this value is
independent of the real traffic. As a result, the al-
gorithm will weight deviations from the mean much
stronger or weaker, since this alternative generally
gives a larger ��M�N)O�P than the first one.

3.3 Gradient adaptive EMA algorithm

The gradient adaptive EMA (GaEMA) algorithm is based
on the second approach and uses the difference of two
consecutive gradients to modify the base weight 04j . The
modification is done by using dynamically calculated ex-
ponents for the base weight of a . >@? order EMA algo-
rithm. Following the dynamic adaptive EMA algorithm
of [7], the difference of the gradients is used as an expo-
nent to the base weight 0Sj . Therefore the actual weight
for a new rate measurement results as

0����U0Qk Xj (10)



So, the weight is more sensitive to extreme values and
more robust to slight deviations from mean changes.

The exponent is calculated as:l � �nm V oSWYXZVoSW [	]_^a` p c : � � c=q�Ur. p c : � � cs�Ur (11)l � �t. for c : � � cu�vr was introduced to ensure a proper
smoothness. This makes sense, as this case can only hap-
pen in case of constant load or constant change of load.
Then the maximum adaptation rate 04j must be used.

The normalization difference of the gradients defines
at which change of gradients the base weight will be used
since forc : � � cs� : �gM�N
O!Phw l � �x. (12)

Note, that in contrast to the low pass EMA algorithm the
base weight 0 j needs not be modified to compare the re-
sults to a simple EMA algorithm (see Equation 8).

3.4 Retrospective EMA algorithm

In section 2.2 we have shown that we can already smooth
the curve before making the estimation. We will explain
here what problems occur when the estimation is made
with an EMA algorithm. For reasons of simplicity, the
EMA algorithm used here does not have a dynamic com-
ponent.

Figure 4 depicts how an estimation based on the
smoothed curve (solid line) is calculated. 7
� denotes the
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Figure 4: Retrospective change of smoothed value

times at which samples are taken, � � denotes the mea-
sured sample, � � denotes the smoothed value of the sam-
ple, and � � is the estimation. So in the first graph we get�+y/�z,	.{#|0$2	��8E350��+y (13)

In the next graph, at 7	} the same calculation is done
again. However, we can see that due to smoothing, � y has
changed to ��~y . From the current point of view, it seems
that using � y as a base for the estimation of � y was not
optimal. Thus using � y as a base for the calculation of ��}
is also not optimal.

The solution is ”to go back in time” and recalculate �*y .
However, the smoothing algorithm might not only have
changed � y , but also other values � (s� FG��� . This means
that � 8 and other estimations before are also not optimal.
Actually recalculation has to start at the last value that is
not affected by smoothing anymore, i.e. that has already
reached a steady state.

In general terms, to get ��� at time 7	� with a smoothing
window size of  , we have to rely on value ���!�=
 , the last
trustworthy estimation. Then — step by step — all es-
timations � ���9
*�Q� �����
� � have to be recalculated by use of
the EMA algorithm.

As a result, we get an estimation, that is based on val-
ues that are smoothed by future information (from the
point of view of these values). Of course, this approach
cannot predict the future for the current estimation.

4 Simulation results

In this section, we will present simulation results, that
show the behavior of the proposed variations.

For the simulative evaluation we have used the IND
SimLib, an object-oriented, event-driven library devel-
oped at our institute [8]. Figure 5 shows the simulation
model. The sources are multiplexed by the multiplexer in

Estimator

Mux SinkSources Shaper Link

Figure 5: Simulation model

a round-robin fashion. The shaper ensures that the traffic
of the sources does not exceed the bandwidth of the link
in bursty situations. The shaper works without loss, so
the total amount of data at the sink equals the input by the
sources. The estimator monitors the by-passing packets
between shaper and sink and calculates the estimates.

In this paper, we use three different traffic scenarios to
evaluate the algorithms:6 IP telephony (short): the sources send in on-off

mode, where packet inter-arrival times during the



very short on-phase (mean of �4� ) are constant (
: 74�� rS�b� ). Furthermore, all packets have the same size

of . � r4'���7	��� , leading to a mean rate of approx-
imately

d .Q%���"@7
�*� . This profile was derived from
measurements of real IP-Telephony traffic [9]. The
sources offer a �*r�� load on a link with a capacity
of i ���s�*�\%���"@7
�*� . The measured mean gradient is�gM�N
O�Px� d ��� �E%���"@7
�*� 8 , the simple mean gradient is� M�N
O�P �x.+� d %���"_7
�s� 8 .6 IP telephony (long): the parameters for the sources
and the algorithms are the same as for the first se-
ries of simulations but the duration of the calls was
increased (mean of .���rD� ). The offered load was
kept roughly the same (approximately 50%). The
measured mean gradient is ��M�N)O�P������ �E%���"@7
�*� 8 ,
the simple mean gradient is again ��M�N
O!P �.�� d %���"@7
�*� 8 . From Equation 6 we can see, that this
leads to much larger 0 � and thus to a stronger reac-
tion.6 Internet traffic: the traffic consists of Pareto
distribution-sized blocks that were segmented into
IP packets ( �G��������������.+�srsr4'���7	� ). The parame-
ters for the Pareto are 0���.s� � and �b���� \¡a¢u£�¤��������¥���¦*�sr . The generators produce on-off traffic, offering
70% of load to the network, a .+r�§-��"@7
�*� link.

The parameters for the different algorithms are:6 Simple EMA: The base weight is set to 01�¨r�� � .6 Low pass EMA: The base weight is set to 0 j �xr�� �
— see Equation 8 for the explanation why we have
chosen 0 j to be twice as large as 0 .6 Gradient adaptive EMA: The base weight is set to01�Ur�� � .6 Retrospective EMA: The base weight is set to0©��r�� � . For the smoothed and the retrospective
EMA algorithm, the penalized least squares algo-
rithm was used before doing the estimation. The
parameters are: ª¬«�­�®=��¯�°/±!�b����²K«�¯)��­³����´�²��µ� ,��­³¢�¢s´
¶�����²)²n� .�r�rsr�r , ·¥�*´)�s¸����a¹�¶�´º� . , and·/�a»=��¯
����£��+·/��¹s¯)���¥�-. .

For all simulations, we have chosen the time-window
measurement approach with a jumping window with a
size of .Q� . The choice of the interval size was based
on the assumption that most routing protocols have fixed
restrictions on the minimum time between routing infor-
mation updates. So, measurements with too fine a gran-
ularity are not necessary. The result of the time-window
measurement is always shown as reference. Further the
results of a comparable simple EMA algorithm are always
shown as a dashed line.

We will show only a cutout of the simulation run. On a
larger time scale, the peaks are too close to each other, so
that details cannot be recognized anymore. However, the

result in the cutout represents the overall behavior very
well. We will rate the result of the algorithms by vi-
sually comparing the estimation curve with the original
measurement to see if the defined requirements are met
(see 2.4). This is because so far, we have not identified a
good method to make an analytical comparison. Methods
like the root-mean-square (RMS) are not suitable since

1. if our estimation does not follow a short peak, we get
a large deviation which is desired,

2. if our estimation does not follow a long-term trend,
we get a large deviation which is not desired.

Hence, the difference between the measurement and the
estimation does not directly express the quality of the es-
timation. Only in the context of the current trend, we can
make a statement.

4.1 Short duration IP telephony

Figures 6–7 show the results of the low pass EMA algo-
rithm. When using the traffic-dependent mean gradient,
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Figure 6: LpEMA – traffic-dep. � M�N)O�P , short duration

we see, that the results of the simple EMA algorithm and
the low pass EMA algorithm hardly differ. As long as
the changes of occupied bandwidth happen with approx-
imately the mean gradient, the low pass EMA algorithm
behaves much like the simple EMA algorithm. Only for
strong deviations from the mean gradient (e.g. between� d rD� and �*�srE� ), real differences can be observed.

Using a link-dependent � M�N)O�P results in a different
behavior. The algorithm reacts faster both in increases
and decreases of the occupied bandwidth. Naturally, this
leads to a higher roughness where peaks are not levelled
out as well as expected. However, as long as the peaks
are small enough and only disturb a solid trend (as e.g.
around ��¦*rD� ), the smoothing is still satisfying.

Figure 8 shows the results of the gradient adap-
tive EMA algorithm. We have only shown the traffic-
dependent result since the link-dependent result follows
the measurement too close. This happens, because our
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Figure 7: LpEMA – link-dep. ��M�N)O�P , short duration
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Figure 8: GaEMA – traffic-dep. � M�N)O�P , short duration

normalizing gradient is larger than the measured one
( .�� d %���"@7
�s� 8/¼ d �E%���"@7
�*� 8 ). Thus, the exponent of 0$� is
most of the time relatively small and therefore 0$� is close
to 1. The traffic sources are the same as for the low pass
EMA algorithm. The traffic-dependent alternative shows
almost the same reaction like the low pass EMA algo-
rithm. However, the estimation follows the measurement
much closer. Sometimes this leads to undesired peaks.

Figure 9 shows the result of the retrospective EMA al-
gorithm. For comparison, the reference measurement, the
simple EMA algorithm and a smoothed EMA algorithm
are included. First of all, we can see, that there is indeed
a remarkable difference between the smoothed EMA al-
gorithm and the retrospective EMA algorithm:6 The retrospective EMA algorithm runs almost syn-

chronously with the measurement, whereas the
smoothed EMA algorithm is delayed, i.e. it recog-
nizes increases and decreases later.6 The retrospective EMA algorithm follows the trend
of the measured traffic — especially minimum and
maximum values — much better than the smoothed
EMA algorithm and the EMA algorithm. Thereby
the result gives a better estimation of the real occu-
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Figure 9: Retrospective EMA, short duration

pied and free bandwidth respectively.6 The smoothness of the retrospective EMA algorithm
and the smoothed EMA algorithm are almost equal.
It is much better than that of the simple EMA algo-
rithm. All short peaks are completely levelled out,
which means that the true trend is better recognized.

4.2 Long duration IP telephony
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Figure 10: LpEMA – traffic-dep. ��M�N)O�P , long duration

Predictably, the results for the low pass EMA algorithm
are much the same as in the first series of simulations
(Figure 10). When using the link-dependent mean gra-
dient, the reaction of the low pass EMA algorithm again
is definitely faster and converges faster than the simple
EMA algorithm. On the other hand, the small oscillations
caused by the measurement approach are not smoothed
out as well. Figure 11 shows a magnification of one of
the ”constant” phases of the low pass EMA algorithm.

For the gradient adaptive EMA algorithm we also get
similar results compared to both the low pass EMA al-
gorithm and the scenario from the first series (see Fig-
ure 12). However, the traffic-dependent alternative shows
an even worse reaction time. As we can see, it reacts later
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Figure 11: LpEMA – Smoothing out of oscillations
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Figure 12: GaEMA – traffic-dep. � M�N)O�P , long duration

to changes than the simple EMA algorithm. Only due to
its sharp increase or decrease it converges at least faster.
The link-dependent alternative again shows almost com-
plete identity with the measurement curve. One advan-
tage of the traffic-dependent alternative over its low pass
counterpart is, that the oscillations during the ”constant”
phases are better smoothed out. As for the traffic with
short peaks, the retrospective EMA algorithm shows the
best results. We can see this in Figure 13. The oscillations
are hardly detectable, it reacts as fast as the simple EMA
algorithm and converges better.

4.3 Internet traffic

The low pass EMA shows good results (Figure 14). It
recognizes the fully loaded link faster than the normal
EMA. Not only does it react slightly faster, but it also
converges much faster. The traffic-Dependant alternative
is a little bit smoother. The link-dependent alternative is
rarely faster although it uses a much higher normalizing
gradient. On the other hand, it shows a rougher curve,
following the measurement much closer.

The results for the gradient adaptive EMA are bad. Us-
ing the traffic-dependent norm gradient, it underestimates
the occupancy very often (Figure 15). Secondly, for most

170.0

180.0

190.0

200.0

210.0

220.0

660.00 675.00 690.00 705.00 720.00 735.00 750.00 765.00

O
cc

up
ie

d 
B

an
dw

id
th

 [k
bi

t/s
]

Time [s]

Reference
EMA

EMA (smoothed)
Retrospective EMA

Figure 13: Retrospective EMA, long duration
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Figure 14: LpEMA – traffic-dep. ��M�N)O�P , Internet traffic

of the time it reacts too late. The very good reaction
around ¦*�sr�� can be explained by the first and smaller
step that triggers a reaction. When the curve increases
again heavily after, the estimation follows very quickly.
However, only in situations like this, the algorithm works
well. Using the link-dependent norm gradient, it follows
the measurement very close, so that there is no benefit
from not using the measurement directly.

The results of the retrospective EMA are shown in Fig-
ure 16. It is a little bit slower than the simple EMA,
but it converges earlier, when the bandwidth remains con-
stant for some time. Besides, it provides a better envelope
curve when the trend remains for some time. Whereas the
smoothing generally overestimates the occupancy during
decreases, the retrospective EMA is more optimistic with-
out being overly optimistic. The overall behaviour is very
similar to the other two scenarios.

5 Conclusion

In this paper, we have presented and evaluated by simula-
tion three different modifications on the exponential mov-
ing average algorithm. For two of them, the weight was
dynamically calculated to adapt to different load situa-
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Figure 15: GaEMA – traffic-dep. ��M�N)O�P , Internet traffic
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Figure 16: Retrospective EMA, Internet traffic

tions and to filter out short-term effects. For the third one,
a smoothing algorithm was used to filter out short-term
effects before employing the EMA algorithm. The sim-
ple EMA algorithm was then adapted to get the maximum
out of the smoothed results, by modifying the history.

The simulations showed that the low pass EMA algo-
rithm works generally better than the gradient adaptive
EMA algorithm. The first one does not differ much from a
simple EMA algorithm, but the second one stays too close
to the measurement and produces numerous unwanted
peaks that should have been levelled out. Whether these
algorithms could perform better with different parameters
has yet to be investigated. It has been shown that they
show the same behavior under different traffic conditions.
For both approaches, the link-dependent normalizing gra-
dient has shown an unsatisfying performance.

The retrospective EMA algorithm showed a good per-
formance. The curve runs very smooth, levelling out mi-
nor peaks. At the same time, it reacts at least as fast as
the simple EMA algorithm but converges faster. Using a
small series of samples (in our example it was five sam-
ples) to smooth the curve, the computational overhead is
sufficiently small.

Our further work, will take a closer look at the
parametrisation hoping that different weights might lead

to better results, independently of the traffic. We will
also investigate the dynamic calculation of the traffic-
dependent normalizing gradient. This will improve the
usability of these algorithms since no arbitrary setting of�<M�N)O�P is necessary. We will also examine the combina-
tion of retrospective behavior and dynamic adaptation of
the weight could bring further enhancement.

During the evaluation of our modifications, several
other ideas for adaptive estimation algorithms were de-
veloped, that have to be analyzed. Eventually, we like to
investigate the effects of bandwidth estimation on routing
decisions. Therefore we have to deploy a larger simula-
tion environment, that uses several nodes where traffic is
really routed.
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