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INTRODUCTION

The investigation of waiting lines is a basic problem in
computerized data-transmitting networks, in computer-sys=
tems and in many other technical, but also economical
situations. In my lecture some aspects of finite source
queuing systems shall be treated.

The general queuing system has n servers and s waiting
places, If at least one server is free, arriving calls °
are served immediately. If all servers are busy, arriving
calls can wait in one of the s waiting places., Calls

arriving during a time interval, when all servers as well

as all waiting places are occupied, cannot be handled and

are lost. This general loss-delay-system includes two

special cases: For s=0 we have the loss=-system, where each
call is lost which cannot be served immediately, and for
S =+ « we have the delay-system, where no call is lost.

The rules according to which the calls are served constitute
the service discipline. There are several different possible
disciplines, each of which hasg practical applications.

For FIRST COME = FIRST SERVED discipline the loss~-delay-
system can be calculated accordingly to the well-known
formulae of ERLANG, if POISSON-traffic is offered. That
means if the interarrival-time and the service~time is
distributed negative exponentially. The solution of the
waiting system with other traffic assumptions are




connected with the names MOLINA, FRY, POLLACZEK, KHINTCHINE,
CROMMELIN, PALM, COHEN and others. LOTZE has derived a
method for the calculation of the traffic characteristics

of delay-systems by means of the traffic characteristics

of the loss=system.

For a finite number of POISSON-sources, the loss~-delay-sys-
tem has been solved by BAUER and STURMER. Before discussing
the finite model, let us introduce some notations.
When j sources are busy, then J calls are in the system.
le say that this system is in state j. The mean arrival-
time in state j is the inverse of the arrival rate xj.
For an infinite number of sources the arrival rate is
independent of j:

Ao o= A (1)

In other words, when the number of subscribers is so large
that the arrival process is not remarkably influenced by
the number J of busy sources, then we are allowed to apply
the infinite model. On the other hand, when the number of
subscibers is of the same magnitude as the number of de-
vices n+s, then we have to apply the finite source model.

A typical finite source situation exists, when terminals

are connected to a time~-shared computer processor.

Another example is the group of subsribers, which is

connected with its preselection stage. These subsribers form
finite sources, which are allowed to wait preceding the
preselectors. The number of sources is denoted by q and in
general, we assume that all traffic sources have the same
intensity. In this case, the arrival rate is a linear function
of the number (g=j) of free sources:

U L A ; (2)

A, is the arrival rate, when all sources are free. The
greater the number of busy sources, the less is the

arrival rateykj.
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We nave introduced the mean interarrival=-time. Now we come %o

the service times which are assumed to be negat\ve exponentially
distributed with the mean service- time h, Thus, we can define

~the termination rate uj.

for j=n

for j>n

oy e o 3 (SR

At most n calls can be served at the same time, so that the
terminating rate for J>n equals the termination rate for j=n.
The variable of state X (t) gives the number J of calls 1in the
system at time t. The probability of state J, that means the
probability that j calls are 1n the system at time t is denocted

oy Py(t):
Pi(t) = P{X(t)=3} (4)

We are interested in the stationary probabilities of state,
which means in the time-independent solution:

P.(t) = P,

; (5)

The solution of the stationary probabilities for the loss-

delay-system with a finite number of traff1c sources are well

Known,

In order to obtain the mean arrival rate A, We average the Aj
with the probability Pj that j calls are in the system:

ngs
A= T nge P,
R T M R (6)

The arrival rate A is the mean number of arriving calls per
time unit., In the finite case the mean arrival rate A\ is &
traffic parameter, which is dependent oh the probabilities of
state and thereby on the number n of servers and on the number
s of waiting=places.
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Instead of A, the parameter
A= h « X (7)

known as traffic offered, is often used.

In many waiting-systems, not all calls are of equal importance.

In this case, we may associate & priority index i with each class
where i=1 denotes the class with highest priority and i=r the
class with lowest priority. Combining the calls of class

1,2,... until i to one group we refer to this group as class £i.
A call of class ¢r is an arbitrary call without regard of its
priority class.

If calls of higher priority are not allowed to interrupt calls

of lower priority, being in service, then we speak of non-

preemptive priorities, Under this discipline, a call, which is
( .

in service, cannot be interrupted bythe arrival of a higher
priority call.Thus, the priority call has to wait at the head

of the waiting line until a server becomes free. This discipline
was introduced by COBHAM, KESTEN and RUNNEBERG and has been
studied as a multi-service system by W. WAGNER.

In the preemptive case a call of higher priority has the right

v

to interrupt the service of a lower priority gall. This discipiine
was introduced by WHITE and CHRISTIE, HEATHCOYE and TAKACS.
The preemptive discipline can be divided in two cases, depending

on the manner in which an interrupted call is served upon its

pt

reentry., In the preemptive resume case the interrupted call
resumes service from the point where it was interrupted. In the
preemptive repeat case the interrupted call starts its service
anew.

Next, let us consider a finite number of sources for a system
wWwith r different priority classes. -

We have to distinguish two different priority source models:
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The multiple finite-source model, in which the g sources
are composed of r groupes, containing 1G, 2G.... until 4

sources. The total number of sources is the sum of all E

q = ’z fq (8)
i=1

This model seems to be suitable for military networks.
Another example for the application of this model are
real-time computer systems, whose traffic-sources can be
classified as follows: Programs of the operating systen
have highest priority, real-time jobs second priority and
batch-jobs the lowest priority.

The single finite-source model, in which each of the

q traffic-sources can produce calls of each priority class.
In this model, the priority of a call can be chosen by the
subscribers themselves. The higher a priority"isAchosen the
more expensive are the fees. This model is suitable for
example for time=-sharing systems with several terminals

or for teletype networks. A call of class i shai]‘be
produced with probability ;P» SO that the sum of all ;P
equals unity:

.E/ ip = 1 (9)

is finite source priority model, the arrival of a cail of
i affects the arrivals of other classes, while in the

ple finite-source priority model the arrivals of the

different classes are independent. Consequently, the multiple

case

is easier to nandle than the single case.

For g+~ and ,q+= for all i, the two finite-source priority models
approach the infinite source model.




~total number of calls in the system is given by .
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Chapter II

THE?REEMPTIVE LOSS-DELAY=-SYSTEM WITH A FINITE NUMBLR
OF SINGLE SOURCES '

No investigations are known dealing with the complicated single
source model and preem%tive service discib?ine. In this chapter,
we investigate this case for the preemptive resume discipliine,
where an interrupted call waits until its service can be con-
tinued. It follows from the negative exponential distribution

of the service time that the remaining service time is distributed
negative exponentially with the same mean as th? total service
time. This has an important consequence for the preemptive system,
Since the remaining service time of an interrupted call and the
total service time of an interrupting call have the same distri=-
bution, the interruption has no influence upon the termination
process:‘With respect to the service time, two equivalent calls
are exchanged. Consequently, we need not distinguish non-inter-
rupted and interrupted calls.

In ordar to describe the state of the preemptive loss~-delay=~system
we consider the class <1, which is the union of the classes
1,2,... until i The state variable 41X(t) gives the number of
calls of class £ staying in the system at time t. Thus, the

rX (t).

In the infinite case, the following basical sentence can be
proved: The state variable LiX(t) behaves as if the calls of

the classes i+1, i+2,... until r were non-existent . Consequently,

k_éiX(t) behaves exactly like the state variable X{t) of the

priorityless system, to which only the calls of class #i are
offered. Specificly, the total state process(rX(t) of the pre-

| emptive system behaves in the infinite case as jf the classifi=

cation into priority classes did not exist.

However, in the finite case  the arrival process depends on the
total number of calls in the system that means on the total

state‘variableg X(t). We combine the two state variables _.X{t)

r £3
i
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and irX(t) and investigate the probabilities of state éi?k j
- ¢ , b

() = PLX(E)=k o X(t)=4) | (10)

P

<7 Kk,
In the above, M‘Pk j(t:) is the probability that at time t
kK calls of classsi are in the system at the $ame time as a
total number of j calls. Considering the different events
wiich canarise within the short time At, the following system
of differential equations can be derived for the time-dependent
probabxlwtwe;lof state sipk.j(t):

j”e’l’ooo’n+s”1 knO.I'IO."j

P08 ® P18 uidyir v 5P, a1 (B ghyoy ¥

FeiPr s (B tugmmed) P a1 (B oM ¥
- P R Ye i .
j=n+s k“O,l,... gj
B T AL P L P LD RS LS PSRRI S U P LA L P B

YeiPra1, 30 ity P (B (g hyruy)
jek=n+s '

ciPk (8l = gPiin 518 ghga b P, (B 42y

"aiPy, g () u;

The sum of all probabilities of state'equals unity:
| e
) P (t) = 1
j=0 k=0%' *tJ

When we'sum up the above equations for fixed j over

k=1,2,... until Jj, then we get a system of differential
equations for the probabilities that a total of j calls are

in the system at time t. The resulting differential system

is identical with the differential system for the probabili-
ties of state in the case of the priorityless system. The

fact of the identical systems lecads to an important result:

In case of finite single priority sources, the state process
éjX(t) of class £1 does not behave independent?y of the classes
i+l, i+2,... until r as itdoes in the infinite case, but the
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total state process  X(t) behaves as if the classification
into priority classes did not exist. This sentence is in
agreement with the general sentence in case of the infinite
- model.

As a consequence, the mean total arrival rate _ A of the

preemptive system is identical with the mean arriva} rate A
of the priorityless system. ’

Substituting the stationary condition

sipk.J(t) } ﬁipk.i (13)
into the differential system, this changes inta a linear
system of equations with rank %~(n+s+1)~(n+s+2)rl. For this
linear system I derived two different algorithms which allow
an efficient numerical evaluation.

In the following final portion of my paper several numerical
results will be given. In these examples, the traffic characte-
ristics are shown as a function of the total mean arrival rate
érk. The greater this mean arrival rate, the more calls are
offered to the system.

For all examples I have chosen a loss-delay~-system with n=2

servers, s=3 waiting-places and r=2 priority classes. Theé pro-
bability of class 1 is equal to %. and consequently the proba-
bility of class 2 is equal to és The mean service time is h=1.

Figure 1 shows the infinite case. Obviously the total loss
increases'with increasing arrival rate. The loss 18 of the

higher priority class is smaller than the total loss B and the
loss 28 of the calls of lower priority is greater than B.

The probability 2V that a call of class 2 is displaced increases
at first with increasing arrival rate. Then, after having reachec
a maximum, ZV decreases for high values of ire This can be
explained as follows: ' '
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Figure 1: Some traffic characteristics as a function of the

‘ ' total arrival rate grA in the infini?e case.

In case of a high arrival rate the system is occupied by
calls of class 1. Therefore, only few calls enter the system.
Since only few calls of class 2 are present in the system,

: bn]y few calls of class 2 can be displaced.

The critical situations where losses and displacements are
possible, are those with a great number of busy sources.

For the finite model we pointed out in chapter I that the
arrival rates of these states are less than the mean arrival
rate, which in the infinite case is valid for all states j.
Therefore, the probability of loss and of displacement must

in the finite case be less than in the infinite case. This
consideration proves to be true in figure 2 and 3. In these
figures the drdinates are subdivided logarithmically.

Figure 2 shows the probability of loss for class 1. The lowest
curve corresponds to g=7 sources. With an increasing number of
sources the probability of loss for class 1 increases until it
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Figure 2: The probability of loss for class 1 as a

function of the total arrival ratecrl

‘approaches the values for gq=e, namely the infinite source
model.
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Figure 3: The probability of displacement for class 2
as a function of the total arrival rate ﬁrk
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The same behaviour is valid for the probability ZV
that a call of class 2 is displaced, as it is shown in

figure 3.

Finally, for the same loss-delay-system, the behaviour of

the traffic carried by the servers shall be discussed as

a function of the mean total arrival rate. The traffic carried
by the servers of class i is the mean number of servers

. occupied by class i. -

4Y TOTAL TRAFFIC CARRIED BY THE SERVERS
W TRAFFIC OF CLASS 1 CARRIED BY THE SERVERS
oY TRAFFIC OF CLASS 2 CARRIED BY THE SERVERS
n=2
s=3
h=1
r=2
L1
PET
.2
P
Y7
| TOTAL ARRIVAL
RATE (A
L ¥ T ) T - + %’
0 1 2 3 4 5

Figure 4: The traffic carried by the servers as a function

of the total arrival rate érx
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Figure 4 shows that in the infinite case the total traffic Y
increases with increasing arrival rate until it approaches

the Timiting value 2. The traffic lY of class 1 does not only
increase with increasing mean arrival rate, but its part of
the total traffic Y increases also so that for higher arrival
rates class 1 displaces class 2 from the system. Consequently,
the traffic ZY of class 2 decreases after having reached a
maximum,

On the other hand we consider the system, when the numbeér of
sources is equal to the number of devices, in this case
q=n+s=5. When all g=n+s calls are busy the system is occupied
but no further calls can arrive. Thus, we have no losses.

In this case of a pure delay system the dependénce of the
carried traffic is represented by the straight. lines correspon-
ding to the total traffic Y and the traffics of class 1 or 2,
res pectively,

For the loss-delay-system with finite g>n+s the functions are
between the extremes q=«= and q=n+s as shown for a number of
q=10 sources in the figure 4.

With these examples I conclude my introduction into the broac

field of finite source priority queuing systems,
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