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The Multi-server Queuing System with Preemptive Priority

by G.JoacHIM BrRANDT *

The solution of a waiting system is presented, in which the calls are
served according to the preemptive priority rule:

A call of higher priority has absolute precedence over a call of lower
priority, not ooly in the queue, but also in the servers,

The general case of n servers and s waiting places is dealt with.

In the author’s thesis the loss-delay system has been solved for an
infinite and a finite number of Poisson sources. In this paper the infinite
case is dealt with.

Ein Wartesystem mit mehreren Bedienungseinheiten
und unterbrechenden Priorititen

Ein Wartesystem wird behandelt, in dem die ankommenden Rufe in
Klassen verschiedener Prioritit eingeteilt sind:

* Dr, G. J. BRANDT, ¢/o Institute for Switching and Data Technics,
University of Stuttgart, D-7 Stuttgart, Breitscheidstrasse 2. (Now with
SITA, Systems Planning Department, 112, Avenue Charles de Gaulle,
T-92 Neuilly Paris, France.)

Ein Ruf hoherer Prioritit hat nicht nur im Wartespeicher absoluten
Vorrang iiber einen Ruf niederer Prioritdt, sondern auch in den Be-
dienungseinheiten.

Das allgemeine Warteverlustsystem mit » Bedienungseinheiten und
s Warteplitzen wird geldst.

In der Dissertation des Verfassers wird das preemptive Warteverlust-
system sowohl fir eine endliche als auch fiir unendliche Zahl von Pois-
son-Quellen geldst, Hier wird der Fall unendlicher Quellenzahl be-
handelt.

1. Introduection

The loss-delay system has n servers and s waiting places.
The calls to be served belong to one of r priority classes so
that a call of class ¢ has absolute priority over all calls of
classes 7 4 1, ¢ + 2, ... up to class r. Combining the calls
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of classes 1, 2, ... up to class 4, we speak of class <1, ac-

cordingly of class <C¢ or >4. A call of class <r is any call

without regard to its individual priority class. A call of
class ¢ is abbreviated as “4-call”.

The traffic characteristics of a certain priority class are
labeled with the class index preceding the abbreviation of
the characteristic.

We investigate the preemptive priority assuming the
first come — first served rule within each priority class.
This service discipline prescribes an order of precedence,
which can be symbolized in the following manner:

If a total of § calls is in the system (being in service or
waiting), then we will say: The § calls occupy the places
1,2,... up to j. The call of highest importance occupies
place. 1, the next important one place 2 and so on up to
place j. A place » =< n represents a server and a place
¥ > n a waiting place.

This order of precedence has to be remembered for the
following two situations:

1. There are j calls in the system and one of the calls
being served terminates its service. Therefore, a place »
(with » = n) becomes free. The calls, having until now
occupied the places » + 1, » + 2, ..., 7, advance one
place so that they occupy the places v, v + 1, ..., §—1.
The call of place % + 1 proceeds to place n, that means
this call now gets a free server,

2. There are § calls in the system and a new call arrives,
say an 4-call. It is placed in front of all > ¢-calls, but
behind all =i-calls. If all n 4 s places are occupied by
=i-calls, then the arriving call is lost. If the call oc-
cupies a place v = 7, then the calls in place v, » - 1, ...
up to j are pushed back one place so that they now oc-
cupy the places v 4 1, v -+ 2,...,5 4+ 1. A call which
is pushed back from place # to place n + 1, interrupts
its service and waits until its service can be continued.
A call which is pushed back from place n 4 s is dis-
placed from the system and thus lost.

‘We have an infinite number of Poisson sources that means
the interarrival times are distributed negative exponen-
tially. The mean number of arriving calls per unit of time
is denoted as the total arrival rate 4. The share of class 4
is denoted by ;p so that -

r
wp= D p=1. (1)
i=1
The arrival rate ;4 of class ¢ results in
A =4p grl . (2)

Concerning the service process, we assume that the service
times are distributed negative exponentially with the mean
service time k. The Markov property of the negative ex-
ponential distribution has an important consequence for
the preemptive system. Since the remaining service time
of an interrupted call and the whole service time of the
interrupting call are identically distributed, the inter-
ruption has no influence upon the termination process:
With respect to the service time, two equivalent calls are
exchanged. :

If there are § calls in the system, the termination rate s
results in

ik for §=n
M= \n/h for §>n. @)

We conclude these introductory remarks by defining the
parameter ;4, the traffic offered by class 4
id = hil. (4)

4 is the expected number of arriving i-calls within the
mean service time h.
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2. The Probabilities of State and the Related Traffic
Characteristics

The random variable <X (t) indicates the number § of
=-calls which are in the system at time .
We calculate the probabilities of state for class <i:

<iPj(t) = P{<i X (t) =7j}. (%)

Considering the system at time ¢ and at time ¢ 4+ A¢,
the state j at time ¢ + Al can come about in the follow-
ing mutually exclusive ways:

i) from state j — 1 with probability
. <k At o(AY),
ii) from state j 4 1 with probability
i1 At 4+ o (Ag),
iii) from state j for § < n - s with probability
1 —(<id + u) At + 0(Al),
and for § = n + s with probability
1 — ppes At 4 0 (AL),
iv) from any other state with probability
o(At).
0(At) is a function of higher order in At.

Combining these events and proceeding to the limit
At — 0 we get a system of differential equations, where the
derivatives with respect to the time are denoted by primes:

<iPy(t) = — <ih <iPo(t) + p1 < P1(8),
Pi(t) = <id <iPya(t) — (gid + ) iP5 () +
+ ppa1 <iPra t), (6)
<iPhist) = <t <iPris-1() — pnss <iPuss(t) -

A
A

We sum up these equations from j = m up to j =n + s
and obtain

n+s
<!
2 Pi) = < ciPrma(t) — i <iPu(t). )
I=m
Summing up these equations again, we get
n+s n+s n+s—1 n+s (8)
\ ! . S‘W V
ZJ Z gipj(t) = gi}- 2 <iPm() — 2 pm gq;Pm(t) .
m=1 j=m m=0 m=1

A comparison of eq. (6) with the priority-less system
proves the following statement: Class =¢ — the union of
the priority classes 1,2, ... up to ¢ — behaves in the pre-
emptive system as if:

i) the priority classes >¢ do not exist,

ii) the sub-division of class =14 in preemptive priority clas-
ses does not exist,

that means as if no interruption and replacement within

class =14 would occur.

The solution of the system (6) of differential equations
leads to the determination of the roots ;&, of the charac-
teristic equation 4D (&) = 0, where ;D (&) is the determinant

WD(§) = )
<id+ & — i 0 ... 0
—<ib <kt +E —u2 ... 0
0 — i : 0
. - MUn+s
0 - giﬂ- gil + tin+s + f]

One root of this polynomial is ;& = 0, which corresponds
to the stationary solution ;P;. It can be shown [4] that



AEU, Band 25
[1971}, H.9/10

the other roots ;& are negative and distinct. Therefore, the
time-dependent probabilities of state can be written in the
form ns
ng(t) = gin -k z ng,peiEi't. (10)
p=1

The constants ;0j,» depend on the initial probabilities
<P (t = 0).

We are interested especially in the stationary solution
<iPj, which can be determined by substituting the sta-
tionary conditions

<iP;(t) = <iP; (11)

into eq. (7). Now, the probabilities of state are time-
independent. This leads to the “statistical equilibrium”

<ih <iPm-1 = pim <iPm . (12)
The probabilities of state satisfy the condition
n+s
D P=1. (13)
j=0
Using the traffic parameter
<iby = wl<il. (14)

the following formula for the time-independent probabili-

ties of state can easily be verified:
n+s

H éiﬁm

m=j+1
nts nes ’
2 11 <ibm

j=0 m=j+1

Py = (15)

IA

The denominator of this expression is identical to the
basic function @g, p+s(<id). This basic function is intro-
duced in the Appendix, where also some calculating rules
are stated. Next, we will agree upon the abbreviations

Dy = Do, x, gz‘@w, n = gi(pv, %(QA) . (16)’ (17)
For » > n the function @,, » depends only on the difference
% — v, 850 we define for » > n

Y, =B,y 0. (18)

Using the basic fuction @,,, the probability of state can
be written in the form

1 nts
iPrts = » <Py = <iPps iBi - 19
i n+s §i®n+s <t <t n+t smg_ 1§u€] ( )

The probability ;F; that an ¢-call occupies place § at its
arrival is given by

iy = il (20)

In the following, those traffic characteristics calculated
upon the probabilities of state shall be determined.

The probability ;C' that an ¢-call is lost at its arrival
results in 1

iC = gz’Pn+s = (21)

giqjm-s
and satisfies — in accordance with the priority rule — the

relation o 0 < <,0 with 0= B. 22)

B is the probability of loss in the loss-delay system without
priorities.
The probability ;R that an i-call occupies a waiting place
at its arrival results in
7 <¥s1

B = ——
i giA

(23)

gi(pnﬂ

The probability <;X; that place j is occupied by an =i-
call is

G.J.BRANDT: MULTI-SERVER QUEUING

SYSTEM WITH PREEMPTIVE PRIORITY 437
n+s
gi@j,nH'
X == Py == T, 24
<iXj ij <iy i Brs (24)

The mean total number é/[X of places occupied by =i-calls
reads n-+s

-
X =D jP;.
i=1

(25)

<X is the traffic of class =<4 carried by the system. When
we transform the sum of eq. (25) we get
n
X =
i

—+

3

™~

<iXj. (26)

A

i

1

Therefore, ;X; can be interpreted as the traffic of class ¢
carried by place 5.
Analogically, we gain the traffic ;¥ of class =<4 carried

by the servers: n
"
¥ = 2 uX;. (27)
=1

Using the definition that <;} is the mean number of servers
occupied by class <4, we find another formula for éiY:

nts

Y =h D il (28)
=1

Introducing the stationary conditions (11) into eq. (8), we
obtain Y = A — i Pass). (29)

We will return to this formula in Section 4. The mean
queue length <;@ of class =4 results in

A Vs — 1
<id=mn: Q= <! =its 1)
- n— 4 §i®n+s
. 1 (30)
A o) = — 1 .
<t $£=n ng B s(s-+1) gi@nJrs
‘We have the relation
X = ¥ + Q. (31)

The corresponding terms for class ¢ are given as differences
of class =<1 and of class <(¢, in particular the traffic of
class 4, carried by place j results in

7

<P s <Dy, nts

Xy = Xy —ady ==—g5— —
él nt+s

32
<i@n+s ( )

3. The Random Walk Prineiple

After having calculated the probabilities of state in the
last section, we were able to determine some important
traffic characteristics, but there are many others which
cannot be found only by means of the probabilities of
state. Not only the distribution of the waiting time or the
distribution of the total time a call stays in the system
belong to this class, but also e.g. such an elementary
characteristic as the probability ;U that an é-call is inter-
rupted.

In order to calculate these other traffic characteristics
we will follow the random walk principle, which has been
introduced for these problems in [1].

Let us consider a call which starts in place j. We will
observe its “life” in the system and we will describe this
“life” as a random walk. The states of the random walk
are the places which the call occupies one after another.
Beyond these places we define two states, which are ab-
sorbing. That means the random walk of the observed call
is terminated as soon as the call reaches an absorbing state.
The two absorbing states shall be specified as those of
{success} and {non-success}. In order to simplify the for-
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mulas we identify the state {success} with the figure 0 and
the state {non-success} with the figure n - s + 1. The
call can occupy the places 1,2, ... up to »n + s until it
reaches one of the states 0 or n 4 s + 1.

We are interested in the probability ; that an observed
call reaches the state {success} under the condition that it
starts (or stays) in place j. Moreover the distribution of the
time shall be calculated, which a call in place j needs until
it reaches the state 0. In Section 4, we will see that we get
the various traffic characteristics by suitably defining the
state {success}.

The random variable ¥ (t) shall indicate the places of
a call during its random walk. The transition probability
that the call changes from place & to place § (j = 0 or
n -+ s+ 1 included) within the time Af is denoted by

P{Y (L Aty =V (t) =k} = up ; Al + 0(At).  (33)

The probability that the call remains in state k during the
time Af can be found by means of the condition

n+s-+1

Z;) P{Y(E+ M) =Y () =k} =1.
£

(34)

The coefficients wy,; are denoted “jump rates’. They re-
sult directly from the arrival and termination rates, as we
will see in Section 4.

Summing up all jump rates uy ; over § (the two ab-
sorbing states included), we obtain the jump rate wug, g,
which describes the event that the call leaves its place k
within Af: 41

|
Uk, ko == Z Uk, -
7=0

ik

(35)

- Using this abbreviation the probability that the call re-
mains in its place k& during At reads

P{Y(t-+ A = k| Y (1) = k} = 1 — up g Az L o(Az). (36)

The following results are derived explicitly in [1].

The probability F; that a call reaches the absorbing state
{success} under the condition that it. starts in place §
satisfies the system of equations

n+s .
N, !
ug,5 —kZl uj, 6 B = ug,0. (37)
ki

The probability Z; (z) that a call reaches the state {success}
and needs a time greater x under the condition that it
starts in place § satisfies the following system of differential
equations: nts

Zj(a) = D w1 Zle) — w12 ().

(38)
B+

The initial values are the success probabilities £; in place §:
Zij(e = 0) = Bj. (39)

Finally, we have the following system (40) of equations for
the mean times Z; of a successful call in place § related to
all calls in place j:

n {;\é
g, Z) ”LZI%', w2y = H;. (40)
ke

This equation results by integration from the differential
system (38).

For the derivation of the calculations (37), (38), and (40)
we do not need to assume that the process is stationary.
These conditioned characteristics are valid also for the time-
dependent process.
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4. Displacement Characteristies

In this chapter the random walk principle will be applied
in order to calculate those traffic characteristics which are
connected with the displacement of calls. The state {suc-
cess} of our first random walk shall be designated as the
departure from the system of the observed call (either that
the call successfully terminates its service or that it is dis-
placed from the system). Each i-call reaches this state with
certainty; therefore, the success probability £; equals unity.

The jump rates of this random walk are: An i-call in
place j proceeds to place j— 1, when one of the j — 1 calls
which precede it, terminates service:

Uj-1,5 = -1 . (41)

An i-call in place j < n + s recedes to place j + 1, when
an <i-call arrives:

Ui, f == <ih. (42)

An i-call leaves its place j, when a < 4-call arrives or when
one of its j— 1 preceeding calls or the observed call itself

terminates its service:
w5 = <+ py . (43)

“Substituting these jump rates in eq. (38), we get the
following system of differential equations for the prob-
ability: G;(x) that an 4-call stays in the system for a time
greater a:

PG (@) = — («ih -+ 1) 1G1(®) + «i2:65 (),
i@ (@) = py10Gy1 () + <ihiGyar () —
— («d + )Gy (),
iGpts(2) = pinis 1:Gnis- () —
— (<id + pnrs) iGnois ().

Since the success probabilities of this random walk equal 1,
we get as initial values

Ojx=0)=1.

(44)

(45)

As Gy, we denote the total time, which an i-call, starting

in place j, stays in the system. For this mean total time
Gy of an ¢-call in place j we obtain from eq. (40)

(<t + p1)iG1 — <ihiGy =1,

— wi-14G-1 + (< + ) G5 — <hiGpa =1,

— Un+s-1iGnts-1 + («id + Hnts) iGnprs = 1.

(46)

This inhomogenous linear system of equations is basical
for the following calculations. Therefore, its solution for an
arbitrary “right hand side” € is given in the Appendix.

Beyond that the characteristics for calls in place § (e.g.:
() are weighted with the probabilities ;#;, that an ¢-call
starts in place j. Thus we obtain directly the traffic charac-
teristics of an i-call independently of its starting place.

In order to get the mean total time ;&, which an arbitrary
t-call (all lost ¢-calls included) stays in the system, we sub-
stitute the “‘right-hand side” C; = 1 into eq. (95). If we
notice eq. (26) for the traffic ;X carried by the system, we
obtain the relation :

X = 4,6 (47)
Eq. (47) can be interpreted easily: The mean number ;X
of ¢-calls in the system is equal to the mean number of
i-calls which arrive during the mean total time. This theo-
rem is valid in the priorityless case. Kq. (47) proves that
it holds true also in the preemptive case where displace-
ments and interruptions occur.

When we sum up the ;X of eq. (47) over all i, we obtain
the mean total time & of an arbitrary call averaged
among all classes by means of
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(48)

A

,.
X = Z Al = <rh <G
=1

In order to derive the probability ;¥ that an 4-call is
displaced from the system by an <Ci-call, we define a new
random walk. The state {success} shall be identified with
the displacement of the observed ¢-call. This state can be
reached only from place n - s. The corresponding jump
rate s Wnts0 = <ih (49)
All other jump rates u;,¢ equal to 0.

The success probability of this random walk is the prob-
ability ;V;, that an ¢-call is displaced, if it starts its random
walk in place 5. We get from eq. (93)

<i®Pj-1

iV = (50)

<i@n+s

From eq. (95) we get the probability ;V that an arbitrary
i-call is displaced:

<k 1 1
7= 5;7»- <iPnis  <iPnis ) ‘ 61
Using eq. (19) we can write
AV = <ih(<iPrnis — <iPn+s) - (52)

At the left-hand side we have the mean number of ¢-calls
which are displaced per-time unit. This number has to
equal the mean number of <Ci-calls which displace i-calls.
A displacement of an i-call can arise when all (n -+ s) places
are occupied by =i-calls, but not all by <Ci-calls.

The probability ;B that an i-call is lost (either at its
arrival or by displacement), results in

iB=3C +V. (63)

The probability of loss for class =1 is obtained by sum-
mation: i

K3
B= 0 B =C (54)
y=1
and in particular:
«B=,0=B. (55)

This overall probability of loss in the preemptive system
equals the probability of loss B in the system without
priorities.

Next, we substitute relation (54) into eq. (29). Thus, we
get a new expression for the traffic carried by the servers:

¥V =41 —B), ¥ =401 —B).  (56), (57)
This relation (57) is not so obvious as the corresponding

one in the system without priorities, because in the pre-
emptive case also those calls which get lost by displacement

contribute to the traffic carried by the servers. ;Y can be
rewritten as
¥ = ip ¥ +14(4B — iB). (58)

0 <rY Is the traffic of class i which would be carried by the
gervers in the priorityless system. The traffic ;¥ of class ¢
is greater or smaller correspondingly as the probability of
loss ;B of class ¢ is smaller or greater than the probability
B = B of the priorityless loss-delay system.

To clarify the meaning of the different total times which
the calls spend in the system, an example may be given:

We observe z ¢-calls from which zp are lost at their ar-
rival, z; are displaced and z3 are successful (with or without
interruption). We sum up the total times of the three dif-
ferent classes. Those calls which are lost at their arrival,
have the total time 0 and thus the sum g of their total
times equals 0. Let us assume that the sum of all total
times of displaced calls is z; and the sum of all “successfull”’
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total times is @9. The sum of the total times of all calls is
denoted by x = xo -+ x1 -+ @3. Then the ratio z/z cor-
responds to the total time ;G. The following terms give
analogous relations:

zC = 20/25
iG:x/z,

iB =z + 21,

L= ayfz1,

lV = Zl/za

i =x1/7, iD= xafzs.

The traffic characteristics ¢/, ; 12, and ;D will be derived in
the following.

In order to get ;D (the mean total time of an unsuccessful
call) we investigate that random walk, where the state
{success} is defined as the displacement of the observed
call. ;J;(x) is the probability that an i-call is displaced and
that it stays in the system a time greater x until it is
displaced under the condition that it starts in place j.

Then ;J; (x) satisies the same system (44) of differential
equations as does ;G (x), but with the initial values

Gy =iV;. (59)

The mean total time ;J of an unsuccessful i-call related
to all 4-calls results from eq. (95) with the ‘‘right-hand

side i@ =0) = V. (60)
We get: nts
Al " -
ihid = ZiniVj- (61)
i=1

In eq. (61) we use the term ;X;, which has been intro-
duced in eq. (32) as the traffic of class ¢ carried by place 7.
The term ;X;;V; is that share of the carried traffic ;X3 of
place § which comes from those i-calls which are displaced
later on. Thus, we can interpret the “right-hand side” of
eq. (61) as the unsuccessful share of traffic carried by the
system. This unsuccessful traffic is not equal to ;V;X. This
is reasonable, since the displacement probabilities of the
various places are not the same. The greater j, the greater
is the displacement probability ;7; of place j.

We get the mean total time ;D that a displaced call

stays in the system, by dividing ;J by ;¥
iD= IV (62)

Correspondingly, the mean total time ;L that a successful
call stays in the system results in

il = (G — J)iS. (63)
2
n=5 : AL
<pA=h8
h=1 L
Tig. 1. r=1
The total time L of a successfull EN ,L
call in the priorityless system, :1.'31/ { ;
the total times 1L and ol of a e 2
successful call of class 1 and 2 - W*—*"’“‘
resp. and the total time 2D of 3
an unsuccessful 2-eall as func-
tions of the number s of waiting
places. 0
0 i [ [}

The different total times of a preemptive loss-delay sys-
tem are shown in Fig. 1 as a function of the number s of
waiting places. We observe the obvious effect that the total
times increase as s increases. For s = 0 we have the pre-
emptive loss system, in which the total times are equal to
the service times. For the priorityless loss system and for
class 1 of the preemptive loss system the service time of
a successful call equals the mean service time » = 1. How-
ever, the mean service time of a successful call of class 2
is smaller than A, since particularly those 2-calls, which
have a long service time, are interrupted. For small values
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of s, only a few 2-calls are successful, but these have a
small total time. As s increases more 2-calls are successful,
but the total time increases t0o. The mean time oD, during
which an unsuccessful call stays in the system, increases
analogously with increasing s.

5. Waiting Characteristics

This section deals with those traffic characteristics which
are related to the waiting probability.

In general, the total waiting time in the preemptive loss-
delay system is composed of several sections: The first
waiting time, a second one following the first interruption
and so on.

In order to investigate the first waiting time we consider
the random walk of a waiting i-call within the queue. The
state {success} shall be specified by the departure from
the waiting room (either by beginning with its service or
by being displaced). The distribution of the first waiting
time can be solved in an explicit form, but this will not be
treated here. We will confine ourselves to the mean first
waiting time ;7' of an arbitrary i-call. Using a modified
form of eq. (95) the following formulas can be derived:

i/
il = Q@ — ——I“ET<¢Q (64)

G-

where ;# is the probability that an s-call cannot be served
immediately at its arrival. Together with eqs. (21) and (23)
we obtain

iB= 04 R= S (65)

Please notice that we do not have an analogous result as
in the priorityless system (A7 = @). The reason being that
the waiting line of class ¢ is not only maintained by the
incoming ¢-calls, but also by those which are interrupted.
Only in the case 4 = 1, where no interruptions arise, do we
get the corresponding formulas

1T =1Q. (66)
The mean W;Liting time ;741 of an i-call starting in place
7 -+ 1 results in

,...1_.. <i¢n+s
<ih ¥

iTpi1 = «@. (67)
iT'n+1 is also the (next) mean waiting time of an inter-
rupted i-call, since each interrupted call begins its (next)
waiting time in place n + 1.

By means of another random walk we obtain the prob-
ability 4K 45 that an i-call starting in waiting place § is dis-
placed without having reached a server:

< W1

68
<iTs ( )

Ky =

The unconditioned probability that an arbitrary é-call is
lost by displacement without having been in service re-
sults in ( 1 B 1 )

<ip
. B e T J—
v P i1 i @ps

69
<iPnt1 (69)
This probability of immediate displacement differs from the
overall probability ;7 of displacement by the same factor
which already appears in eq. (64).

6. Interruption Characteristics

In the last part of this paper the probability of inter-
ruption and related characteristics shall be determined. In
the associated random walk an i-call is successful — in the
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sense of the random walk — if it is interrupted. Sub-
stituting the jump rates of this random walk in eq. (37),
we get the following system of equations for the probability
1U; that an 4-call is interrupted under the condition that
it starts in place §:

(wr + <A)iUs — 42Uz =0,
— -1 iU + (5 + «ih) iUy — «diUp1 =0, j<=n,
- /ln—liUn—l + (Mn + <i/‘L) Un = <k, (70)
- Mn+s~1iUn+s—-1 + (pn + <ih) i Unas = 0;
i=1,2..,n, in:“qZ‘l, (71)
<i¥n
j=1,2,...,s, tUn+s = 1Un(1 — 1 Kpyy) . (72)

The last formulas can be interpreted such that an i-call,
which starts in place # + j and which will be interrupted
later on, has at first to reach a server. This arises with
probability (1 —;K,.4), known from eq. (68). Now, the
i-call starts service in place #. From here the probability
of interruption is ;U,. It follows from eq. (72) that both
these events are independent. Before using this fact, we
calculate the unconditional probability ;U that an i-call
is interrupted: n

iU:ZiFjin—}—(iR—iK)jUn. (73)
=1

The sum can be evaluated using eq. (95) in the Appendix:

<¢@n)
1— = . 74
<i(pn ( )

f [
102PyaPoyp=1/4

Z": - <A ns 1 [
j=1iFji i= M giAs gi@nﬂ(
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Fig. 2. Interruption probabilities 1U as a function of the total arrival
rate §M~

For the loss-delay system as in Fig. 2 the probability of
interruption ;U for classes ¢ = 2, 3, 4 is shown as a func-
tion of the total arrival rate .,A. For small .4 the prob-
abilities ;U increase with increasing 4. Then after having
reached a maximum, they decrease and tend towards 0,
since with increasing <;4, more and more i-calls are lost at
their arrival or are displaced without reaching a server and
thus without interruptions.

A call has to wait, either if it starts at a waiting place
or if it starts in a server and then is interrupted. Thus, the
probability ;W that an arbitrary i-call has to wait results in

n
W =R+ ZiFjin. (75)
=]

The independence stated in eq. (72) and discussed above,
enables us to directly determine the probability %U that
an arbitrary i-call is interrupted » times:

W= U Unii(l — Uni). (76)
With eq. (76) we can calculate the mean number ;N of
interruptions of an é-call:

& U
N=SN -
N 2, v; U [ (77)

p=1
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The mean number of interruptions of an arbitrary call
amounts to

)
N =D piN. (78)
=1

Tn Section 5 we calculated in eq. (64) the mean first wait-
ing time ;7" and in eq. (67) the mean waiting time in place
% -} 1, which is valid for interrupted calls. Noticing that
the mean number ;N of interruptions for an arbitrary i-call
is given by eq. (77), we are able to calculate the mean total
waiting time ;M of an ¢-call:

oM =T + N Tpr1. (79)

Finally, we calculate the mean number Z of interruptions
per time unit. This characteristic is important for the
management of the system:

(80)

Substituting eqs. (78) and (48) into eq. (80) we get the
following result for the mean number of interruptions per
unit of time:

Z= doN. (81)
. "=§ pi%/a
, TU‘* B T ey
7 T
0

0 2 4 i 8 1

aph—

Tig. 3. The mean number of interruptions per time unit as a function of
the total arrival rate <A

Fig. 3 shows the mean number Z of interruptions per
time unit as a function of the total arrival rate <,A. For
small <,A only few interruptions occur. As <4 increases,
Z increases also, reaches a maximum and then decreases,
since for high arrival rates the 2-calls are displaced more
.and more from the system and from the servers so that
fewer interruptions take place.

Appendix

In the Appendix the solutions of two systems of equations
are given, which are important in order to explicitly solve
the displacement-, the waiting- and the interruption charac-
teristics. The solution will be presented in terms of the basic
function P, ,. For this basic function the definition and
some calculating rules are stated. We will define the basic
function @, , as a function of the traffic offered 4 and
of the traffic parameter §,, respectively. According to eq.
(14) we have

Bo = pofA- (82)
The basic function @, , is given by the definition
% %
Ou=2 11 e (53

o=v @=0-+1

The basic function <;®@,, » results by substituting 4 by
<id (and as a consequence fp by «iffp). If » = 0, then we
use the abbreviation of eq. (16):

o, = Dy (84)

Since f, is equal to f, for ¢ = n, the basic function @,, »
depends only on the difference » —» for v = n. Therefore
we abbreviate (cf. eq. (18)): o

y=n: g/QZQV,’IPFQ:ZﬁZ' (85)
o=0
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The basic function satisfies the relation
¥l
By = o+ Boot | | fo (86)
0=0
and in particular for ¢ = » + 1 and o = %, resp.
b
(pv,n = gDH—J.,M + H 5@ ’ (87)
o=v-+1
D=1+ Dy, 1. (88)

By means of the above recurrence formulas we can write
D,, ,, as an explicit function of the traffic offered 4. We get
different formulas according to the range of » and x:

x! & Ao
Prn = 2o

% <n: (89)
o=
v = n: (90)
A pr—r+l
By, = Wy = ;rz&ﬂmqu for A=n,
w—v -1 for 4=mn,
Yy < n < n: Dy, 5 = V-1 + (nfAY1 Dy . (91)

The relations (83) up to (91) were important in order to
prove various formulas of this paper. In particular, the
solution of the following systems of egs. (92) and (96) is
based on the ‘“‘calculating-tool” presented by the basic
function @,, .

The system of equations, solution of which shall be given
in this Appendix, reads as follows (cf. eq. (46)):

(u1 -+ <ih)iX1 — <ihi X2 =04,
— p-1iX -1+ (U + <eh) i Xp — <A1 X1 = O,
- ﬂh+s—1 1 Xnts—1 + (M'n+s + <il) 1 X nts

(92)

= Cpas.

For an arbitrary “right-hand side” C} the solution of the
system (92) of equations is given by

1

1 @ —

T i <iPuts (93)
k-1 k—1 n+8

x <<i@k‘, n+s Zlov <iPy1 ]__I<iﬂg +<iPr-1 Z o <i@v, n+s) .
Y= o=V y=F

The index k of ;X represents the starting place, to which
the characteristic ;X is related. We get the corresponding
characteristic ;X, which is averaged among all starting
places by means of the probability ;F, that an ¢-call

starts in place j: nts

X = Z i Xy (94)
k=1

An extensive calculation results in the following relation,

which allows the direct calculation of many important

traffic characteristics:

n-+s
£i®v, n+s <i®v, nts )
X = o= = )
’ ;1 ,,( <iPn+s <iPnts (95)

Substituting “actual” right-hand sides C; into eqs. (93)
and (95), we obtain the various traffic characteristics pre-
sented in this paper.
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