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ABSTRACT

The investigation of waiting-lines is a basic
problem in computerized data-transmitting net-
works, in high-organized computer-systems and

in many other technical, but also economical
situations. In this paper the solution of a wai-
ting-system is presented, in which the calls are
served according to the preemptive priority rule:

A call of higher priority has absolute precedence
over a call of lower priority, not only in the
queue, but also in the servers.

The general case of n servers and s waiting-pla-
ces is dealt with. This loss-delay-system inclu-
des two important special cases:

(1) For s=0 we have no waiting possibility so
that we have the preemptive loss-system,
where the interrupted calls are lost.

(2) For s - » no call is lost so that we have
the preemptive delay-system,

In my doctor-thesis /1/ the loss-delay-system
has been solved for an infinite and a finite

number of POISSON-sources. In this paper the

infinite case is dealt with.

A first class of traffic characteristics results
from the probabilities of state, Further traffic
characteristics can be calculated by the RANDOM-
WALK principle. As shown in /1/, the RANDOM-WALK
principle is not confined to the loss-delay-sys-
tem dealt with, but represents a method of how
to determine the traffic-characteristics of gen-
eral MARKOV-systems.

The basic function ¢, ., which in /1/ has been
introduced to simp1i¥y the known formulae of.the
loss-delay-system without priorities proves it-
self to be an important tool for handling the
preemptive loss-delay~-system.
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I INTRODUCTION

The loss-delay-system has n servers and s wait-
ing places. We have r priority classes so that
class i has absolute priority over all calls of
class i+, i+2,... up to class r. Joining the
calls of class 1,2,... up to class i, we speak
of class <i, accordingly of class <i or »i. A
call of class <r is any call without rerard to
its individual priority class. A call of classi
is shortly denoted as "i-call".

The traffic-characteristics of a certain pri-
ority class are labeled with the class index
preceding the abbreviation of the characteri-
stic. For instance the probability that a call
of class <i is lost is denoted by <iB.

We investigate the preemptive priority case as-
suming the first come - first served rule with-.
in each priority class. This service-discipline
prescribes an order of precedence, which can be
symbolized in the following manner:

If a total of j calls is in the system (being in
service or waiting), then we will say: The j
calls occupy the places 1,2,... up to j. The
call of highest importance occupies place 1, the
next important one place 2 and so on up to place
j. A place vs<n represents a server and a place
v>n a waiting place.

his order of precedence has to be
he following two situations:
There are j calls in the system and one of
the served calls terminates its service.
Therefore, a place v (with v<n) becomes free.
The calls, having until now occupied the pla-
ces v+#l, v+2,...,j, advance one place so
that they occupy the places v, v+l,...,j-1.
The call of place n+l proceeds to place n,
that means this call now finds a free server.

escribed in
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2. There are j calls in the system and a new
call arrives, say an i-call. It is placed
in front of all >i-calls, but behind all
< i-calls. If all n+s places are occupied
by <i-calls, then the arriving call is lost.
If the call occupies a place v<j, then the
caliis in piace v, v+l,...up to j are pushed
back one place so that they now occupy the
ptaces v+l, v+2,...,j+1. A call which is
pushed back from place n to place n+l, inter-
rupts its service and has to wait until its
service can be continued. A call, which is
pushed back from place n+s is displaced from
the system and thus lost.

We have an infinite number of POISSON-sources
that means the interarrival times are distribu-
ted negative exponentially., The mean number of
arriving calls per unit of time is denoted as
the total arrival rate _.x, The share of class i
is denoted by ;p so that:

grP = _2119 =1 (1)
The arrival rate ;) of class i results in:

1)\ = ip ST‘)‘ (2)



Concerning the service-process, we assume that -

the service-times are distributed negative-ex-
ponentially with the mean service-time h. The
MARKOV-property of the negative-exponential
distribution is made up of the following: Let
us consider a call which is still in service.
The call's remaining service time does not de-
pend on the time which has already been spent
in service. The remaining service time. is.
distributed again negative exponentially with
the mean h. This has an important consequence
for the preemptive system. Since the remain-
ing service-time of an interrupted call and

the whole service-time of the interrupting call
are identically distributed, the interruption
has no <influence upon the termination process:
With respect to the service time, two equivalent
calls are exchanged. Consequently, we need not
di?¥inguish non-interrupted and interrupted
calls.

If @here are j calls in the system,. the termi-
nation rate uj results in: i :

j i
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We conclude these introductionary remarks by
defining the parameter jA, the traffic offered
by class i:

jA = h - 32 (M)
4A is the expected number of arriving i-calls
within the mean service-time h.

11 THE PROBABILITIES OF STATE AND THE
RELATED TRAFFIC CHARACTERISTICS

The random variable _;X(t) indicates the
number j of <i-calls; which are in the sys-
tem at time t.

We calculate the probabilities of state for
class <i:

(iPy(t) = Plgx(t) = ) (5)

Consfdering the system at time t and at time
t+At, the state J at time t+At can come about in
the following mutually exclusive ways:

(1) from state j-1 with probability
<ireAt + o(At)
(2) from state j+1 with probability
Hjeqcat + o(At)
(3) from state j for j < n+s with probability
1 - (girtuy)eAt + o(At)
and for j = n+s with probability
1 - Un+S’At + O(At)
(4) from another state with probability
o(at)

o(At) isa function of higher order in At.

Combinina these events and proceeding to the
1imit At - 0 we get a system of differential
equations, where the derivatives with respect to
the time are denoted by primes:

GPolE) = =g hegqPo(t) + e giPy(Y)
[}

GP5E) = iregiPal®) = Cogrvug)egiPy(B) i
*ugengifger(t) (6)

sipﬁ+s(t) = sik'sipn+s—1(t) - un+s’sipn+s(t)

We sum up these equations from j=m up to Jj=n+s
and we obtain:
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1 iP3(8) = cideciPno1(t) < v ciPalt) (7)
%umming up these equations again, we get:

n+s n+s

R
: nis-l n+s (8)
<iAe zogipm(t) = 1 uprgiPa(t)

e e

For i=r the system (6) of equations is identical
with the system for the probabilities of state
pi(t) of the priorityless loss-delay-system.
T%erewith we conclude that the total state pro-
cess ¢pX(t) of the preemptive system behaves, as
if the priority classification does not exist.
This theorem is analogously valid for the state
process ¢iX(t) by replacing the arrival rate:
This process (iX(t) of the preemptive system be-
haves as does the state process of the priority-
less system, if only the calls of class <i are
offered. Consequently, the process iX(t) behav-
es, as if the calls of class >i were not exis-
tent.

The solution of the system (6) of differential
equations leads to the determination of the

roots &, of the characteristic equation §D(£)=0,
where iDY&) js the following determinant:

51A+E “Hiy 0 soo 0
= A g APHIFE cup e e
0 = A 0
iD(g) = . Y °, (9)
o ° “Hn+s
| o 0 = AN gidtunastE|

One. root of ‘this polynomial is jE=0, which cor-
responds to the stationary solutiongiPj. It can
be shown /4/ that the other roots & ate nega-
tive and distinct. ‘Therefore, the time-dependent
probabilities of state can be written in the
following form:
n+s ‘iE\) ot :
<iPj(t) = <iPj + 1$icj,v‘e - (10)
\)= .
The constants <iCj o depend on the initial pro-
babilities ¢jPj{t=0).
We are,interes%ed especially in the stationary
solution ¢yPj, which can be determined by sub-
stituting the stationary conditions

<iPi(t) = <iPj : (11)
into equation (7). Now, the probabilities of

state are time-independent. This leads to the
"statistical equilibrium®:

<irociPm-1 = Up°<iPm (12)

The probabilities of state satisfy the condition
n+s

,Zosin =1 (13)

Using the traffic-parameter .iB;:
b}
iBiy = 14
<iBj * 7YX (14)

the following formula for the time~indepgn@ent
probabilities of state can easily be verified:

n+s
m_n+lsi3m
<iPj ® FrsREs (15)
. <iBm
j=0 m=j+1

The denominator of this expression agrees with
the basic function &g nes(gih). This basic func-
tion is introduced in'the appendix, where also
some calculating rules are stated. Next, we will
agree upon the following abbreviations.

e = g,k {16)
<idu,k = <idv,clgih) (17)



For v>n the function ¢ . depends only on the
difference k-v, so we 35§ine for ven:

¥o = 9y, v4ep (13}

Using the basic function &y  , the probability
of state can be stated in the following form:

<iPnes = = L
= < i%nes
n+s (19)
<iPj = <iPpege T <iBj
m=j+1

The probability jFj that an i-call occupies
place j at its arrival is given by:

iFj = <iPy (20}
In the following, those traffic-characteristics
calculated upon the probabilities of state shall
be determined.
The probability 4C that an i-call is lost at its
arrival results in:

e .1
16 = <ibes = oy (1)

and satisfies ~ in accordance with the priority
rule - the relation:

1€ <20 < .o < € with € = B (22)

B is the probability of loss in the loss-delay-
system without priorities.
The probability §R that an i-call occupies a
waiting-place at its arvival results in:
i n  si¥sel 23
! ik Si%nes (23)

The probability <i¥Xj that place j is occupied by
an <i-call is:

X "ES p o Si%3nes (24)
<1 v;jgl VT TSiTnes

The mean total number <iX of places occupied by
<i-calls reads: n+s

<iX = ,le°siP3 (25)
J=
is the traffic of class <i carried by the

em, ¥When we transform the sum of equation
we get:

—~ @BIA
P9 e
G s
e ad

f+s
siXo= ] <Xy (26)
j=1

Therefore, Sin can be interpreted as the traf-
ficof class i Carried by place j.

Analogically, we gain the traffic 4V of class
¢i carried by the servers:

n
<if = ,leixj (27)
J*
Using the definition that .Y is the mean number
of servers occupied by class <i, we find another
formula for ;V:
nis
siVo=h o b wjegiP; (28)
=1
Introducing the stationary conditions (1l) into
equation (8), we obtain:

iV = gihe(l = <iPpes) (29)

We will return to this formula in chapter IV,
The mean queue length of class <i results in:

<ihA ci¥g-{s+1)

sA=n g = o
s <il ?“siA <i®nss (30)
<iAsn <iQ = ?°S'(S+1)°m-

We have the relation:

<iX ® g3+ <40 (31}

The corresponding terms for class i are given as
differences of class <i and of class <i, in par~
ticular the traffic of class i, carried by place
J results in: 5. 'y
2i%jnes <i¥jontes

iXj = <iXj

<iky = (32)

<i%nes <i®n+sg
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111 THE RANDOM-WALW PRINCIPLE

After having calculated the probabilities
of state in the Tast chapter, we wers able
to determine some important traffic-characte=-
ristics, but there are wmany others whieh
cannot be found only by means of the proba-
bitities of stete. Not only the distribution
of the waitinag-time or the distribution of
the total-time, which a eall stavs in the
system belona to this class, but also e.q.
such an elermentary characteristic as the
probability U that an i-call is interrupted.
In order to calculate these other traffice
characteristics we will follow the RANDOM-
WALK principle, which has been introduced
te these problems in /1/. The RAMDOM-WALK
principle shall be dealt with in this paper
as far as it s necessary for the preemptive
foss-delay-system in case of an infinite
number of socurces.
Let us consider a call which starts in place J.
We will observe its *1ife®™ in the zvstem and we
will describe this "1ife" as a RANDOW-WALK. The
states of the RANDOM-WALK are the places which
the call ocecupies one after another. Beyond
these places we define twe states, which are abe
sorbina., That means the RANDOM-WALK of the ob-
served call is terminated as scon as the call
reaches an absorbing state. The two abserbing
states shall be specified as those of {success]
and {non-success}. In order to simplify the fore
mulae we identify the state {success} with the
figure 0 and the state {non-success | with the
figure n+s+1. The call can occcupy the places
1,2,... up to n+s until it reaches one of the
states 0 or n+s+l,
We ave interested in the probability E. that
an observed call reaches the state {sulcess!
under the condition that it starts (or stays)
in place j. Moreover the distribution of the
time shall be calculated, which a call in
place Jj needs until it reaches the state 0.
In chapter IV, we will see that we get the
various traffic-characteristics by suitably
defining the state {success}).

The randem variable Y(t) shall indicate the
places of a call during its RANDOM-WALK. The
transition probability that the call changes
from place k to place J (J=0 or n+s+1 inclu-
ded) within the time At is denoted by:

PLY(t+at)=3|Y(t)=k} = up oAt + o(At) (33)

The probability that the call remains in state
k during the time At can be found by means of
the condition:

nes+l
P{Y({t+at)=j|V(t)=k} = 1 (34)
j=0
The coefficients uy 4 are denoted "jump rates"”.
They result direct%y”Frﬁm the arrvival and ter-
mination rates, as we will sce in chanter IV.
Sunming up all jump rates u, ; over j {the

two absorbing states included], we obtain
the jump rate up ¢ which describes the event
that the call leaves its place k within Atl:
ntsel
U,k = Lo uk,g , (35)
#

P

St
LD

Using this abbreviation the probability that

the call vemains in its place k during At

reads as follows:

P{Y{teat)=k|¥{t)ek} = 1 = up gebx + o{ax]  (36)
The following results are dervived explicitly
in /1/.



The probability E; that a call reaches the
absorbing state {3uccess} under the condition
that it starts in place j satisfies the follo-
wing system of equations:
n+s
ujlj : Ej - kgl ujlk : Ek = ujlo (37)
k#j
The probabilit Zj(x) that a call reaches the
state {success{ ahd needs a time greater x
under the condition that it starts in place j
satisfies the following system of differential
equations:
n+s
Zi(x) = kgl Uik o Zi(x) = ugy o0 Z5(x) (38)
o kej
The initial values are the success probabilities
Ej in place j:

Zj(x=0) = Ej (39)

Finally, we have the following system (40
! f
$q#ati$?s_forlthe mean times Zj gf a sSccgsg~
ul ca in place j related t i
el J 0 all calls in
n+s
ujtj ® Zj - kgl Uj'k e Zk = Ej (40)
kej

This equation results by integration from
the differential system (38). The system
of linear equations (40) for the Z; is
identical with the system (37) for the pro-
babilities E; of success, but with other
"right hand ¥ides".

By means of the systems (37), (38) and (40),
we can calculate the probability Ej of success
in place j, the distribution Z-{x) and the
mean time Z; of a successful cg 1 in place §
related to g]l calls in place j. In the de-
rivation of these results we do not need to
assume that the process is stationary. These
conditioned characteristics are valid also

for the time-dependent process.

IV DISPLACEMENT CHARACTERISTICS

In this chapter the RANDOM-WALK principle
will be applied in order to calculate those
traffic-characteristics, which are connected
with the displacement of calls. The state
ssuccess} of our first RANDOM-WALK shall be

esignated as the departure from the system
of the observed call (either that the call
successfully terminates its service or that
it is displaced from the system). Each i-call
reaches this state with certainty ; therefore,
‘the success-probability Ej equals unity.

The jump rates of this RANDOM-WALK are the
following: An i-call in place j proceeds to
piace j-1, when one of the j-1 calls, which
precede it, terminates service:

Mie1, T My-1 (41)

An i-call in place j<n+s recedes to place j+1,
when an <i-call arrives:

1,3 = <ik (42)

An i-cail leaves its place j, when a <j-ca11
arrives or when one of its j-1 preceed1qg calls
or the observed call itself terminates its ser-
vice:

U

ivi = <ik + uj (43)

Substituting these jump rates in (38), we
get the following system of differential
equations for the probability: Gj(x) that an
i-call stays in the system for a"time great-
er x:
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i61(x) < {eirrm ) sqGu(x) + <32-462(x)
§65(x) = uje1ti6-1(X) + <ireiGyen(x) +

= (cirruy)eiGy(x) (44)
iGaes(Xx) = upysa1°iGpeg-1(%) +

= (<irupss) e iGpes (%)
Since the success probabilities of this RANDOM-
WALK equal 1, we get as initial values:

Gj(x=0) =1 (45)
As iG;, we denote the total-time, which an
i-call,starting in place j, stays in the sys-

tem. For this mean total-time ;Gj of an i-call
in place j we obtain from equa{ien (4G):

(cirui)«6, = 4ae46,
T Hie1tiGye1 b (Mg ey - gaeybyyy =
© Un+s-1°i0pese1 * (cirtupeg) =iGhys =

(46)

[T —

This inhomogenous linear system of equations
is basical for the following calculations.
Therefore, its solution for an arbitrary
"right hand side" Cj is given in the appendix.

Beyond that the general resulting characteris-
tics for calls in place j (e.g.: ;G;) are
weighted with the probabilities 1&-, that an
i-call starts in place j. Thus, we obtain di-
rectly the non-conditional traffic-characteris-
tics by substituting the actual “right hand
side" Cj, .

In order to get the mean total-time G, which
an arbitrary i-call (all lost i-calls included)
stays in the system, we substitute the "right
hand side" C:=1 into equation (95). If we no-
tice equatioﬂ (26) for the traffic X carried
by the system, we obtain the relation:

X = 31 ¢ 46 (47}

Equation (47) can be interpreted easily: The

mean number ;X of i-calls in the system is

equal to the mean number of i-calls which ar-
rive during the mean total-time. This theoven

is valid in the priorityless case. Equation (47)
proves that it holds true aiso in the preemptive
case where displacements and intervuptions occur.

When we sum up the {X of equation (47} over all i,
we obtain the mean total-time (.G of an arbitrary
call averaged among all classeS by nieans of:
r
crX = T g e 36 = gpd e gy (48)
i=1
In order to derive the probability ;V that an
i-call is displaced from the system by an
<i-call, we define a new RANDOM-WALK. The state
{success} shall be identified with the displace-
ment of the observed i-call. This state can be
reached only from place n+s. The corresponding
Jjump-rate is: '
s . 49)
Yn+s,o0 <i? (49)
A1l other jump-rates Us.o equal to O.

The success probability of this RANDOM-WALK is
the probability ;V,, that an i-call is displaced,
if it starts its RANDOM-WALK in place j. We get
from equation (93):

<i®j.1

iV 3 B cmmmmm— 50
T <ifnes (50)

From equation (95) we get the probability ;V that
an arbitrary i-call is displaced:

<i i 1 .
iV = — - 51
! i Lsi°n¢s <€¢n+s} (51)
Using equation (19) we can write:

1i823
JARe

e s - P
iAo iV o= gid e {ciPpes = <iPhas



At the left hand side we have the mean number

of i-calls, which are displaced per time unit.
This number has to equal the mean number of
<i-calls which displace i-calls. A displacement
of an i-call can arise, when all (n+s) places

are occupied by <i-calls, but not all by <i-calls.
The probability ;B that an i-call is lost (either
at its arrival or by displacement), results in:

iB = iC + iV (53)

The probability of loss for class <i is obtained
by summation:

e

B = I e B = gC (54)
vl
and in particular:
B =, =8B (55)

This overall probability of loss in the pre-
emptive system equals the probability of lossB
in the system without priorities.
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FIGURE 1: Total probability of loss B, Toss
probability .B and B of class 1
and 2, respectively, displacement
probability ,V and interruption
probability .U of class 2 as func-
tions of the share ,p of class 1.

For a loss~delay-system with r=2 priority
classes figure 1 shows some traffic-characte-
ristics as a function of the share ,p of class L
According to equation (55), the overall proba-
bility of loss <2B is equal to the probability
B of the priorityless system. The loss~-proba-
bility 1B of class 1 is less than B and :B is
greater than B for all values of ,p. For ,p=0
no calls of class 1 are offered so that the
traffic-characteristics of class 2 equal those
of the priorityless system. For ,p=0, the dis-
placement probability ,V and the interruption
probability ,U of class 2 (which will be cal-
culated later on) are equal to 0.

Together with,V, the probability B increases
as ¢iX increases. So does the loss-probability
B until it reaches (for ,p=1) the value B.

ihe intervruption probability .U decreases
after having reached a maximum, since for
greater values of ,p, class 1 displaces the
calls of class 2 out of the servers so that
fewer interruptions occur.

Next, we substitute relation (54) into equation
(29). Thus, we get a new expression for the
traffic carried by the servers:
iV = A e (1 - £4B) (56)
Y = A < (1 - 4B) (57)
This relation (57) is not so obvious as the
corresponding one in the system without prio-
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rities, because in the preemptive case also
those calls which get lost by displacement
contribute to the traffic carried by the ser-
vers. ;Y can be rewritten as follows:

§Y = gpegyY + A pB=yB) (58)

ipegpY is the traffic of c¢lass i which would
be ctarried by the servers in the priorityless
system, The traffic ;¥ of class i is greater
or smaller corresponéingiy as the probability

“of loss iB of class i is smaller or greater

than the probability Be_.B of the priorityless
loss-delay-system. To clarify the meaning of
the different total-times which the calls spent
in the system, an example may be given:

We observe z i-calls from which z, are lost
at their arrival, z, ave displaced and z, are
successful (with our without interruption).
We sum up the total-times of the three dif-
ferent classes. Those calls, which are lost
at their arrival, have the total-time 0 and
thus the sum x, of their total-times equals 0.
Let us assume that the sum of all total-times
of displaced calls is x, and the sum of all
“successful" total-times is %, . The sum of
the total-times of all calls is denoted by

X = Xg+Xy+X%z. Then the ratio x/z corresponds
to the total-time ;G. The following terms
give analogous correspondencies:

iB = (zo*zy)
-iL = X}/Zx

ic = Zo/Z
iG = X/Z

Vo= 2,/2

jJ = X1/2 iD= xaf22
The traffic characteristics ;J, 4L gﬁd D
will still be derived in the fciiow1nga

The mean time ;D (or L, respectively}, which
an unsuccessful (or successful resp.) call
stays in the system cannot be calculated by
means of the total-time .6 of am arbitrary
i~-call. In order to get .0 {the mean total-
time of an uncuscessful &&11) we investigate
that RANDOM-WALK, where the state isuccess}
is defined as the displacement of the obser-
ved call. ;J:(x) is the probability that an
j-call is éigplaced and that it stays in the
system a time greater x until it is displaced
under the condition that it starts in place J.
Then ;J.(x) satisfies the same system (44}

of ditfirential equations as does G(x}, but
with the following initial values:

Cj = 4V (60)

The mean total-time ;J of an unsuccessful
i-call related to a]i j-calls results from
equation (95) with the “right hand sides”:

iJj(XﬁO) = 4Vj {59)
We qet: nes
Ao gd o= 4y in ° ivj (61)

In equation (61) we use the term :X;, which
has been introduced in equation (%2% as the
traffic of class i carried by place j. The
term §Xj° ¢Vj is that share of the carried
traffic” x %f place j, which comes from those
i~calls, which are displaced later on. Thus,
we can interprete the "right hand side” of
equation (61) as the unsuccessful share of
traffic carried by the system. This unsuccess=-
ful traffic is not equal to ;V.;X. This is
obvious, since the displacement-probabilities
of the various places have not the same guanti-
ty. The greater j, the greater is the displace-
ment probability ‘Vj of place j. He get the
mean total-time 169 which a displaced call stays
in the system by dividing ;J by V:

id

1



Corvespondingly, the mean total-time ;L, which a
successful call stays in the system, results in:

iGeid
b= e (63)
A
TIME x
2 nz 5 R
oAz48 P A
h=1 1 | L
r=2 P ! 2

—
)

g @ A = 1L
cr/////y D
— 2
<>-’”””"¢4F’M#M‘y
| 4 5

o] 1 2 3
FIGURE 2:
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The total-time L of a successful
call in the priorityless system,
the total-time ;L and L of a suc-
cessful call of class 1 and 2 resp.
and the total-time D of an unsuc-
cessful 2-call as functions of the
number s of waiting-places.

The different total-times of a preemptive loss-
delay-system are shown in figure 2 as a function
of the number s of waiting places. HWe observe

the obvious effect that the total-times incre-

ase as s increases. For s=0 we have the pre-
emptive loss-system, in which the total-times

are equal to the service times. For the priority-
less loss-system and for class 1 of the preemptive
loss-system the service-time of a successful call
equals the mean service-time h=1. However, the
mean service-time of a successful call of class 2
is smaller than h,since particularly those
2-calls, which have a long service-time, are inter-
rupted. For small values of s, only a few 2-calls
are successful, but these have & small total-time.
As s increases more 2~calls are successful, but
the total-time increases too. The mean time N
during which an unsuccessful call stays in t%e
system, increases analogousiy with increasing s.

1v WAITING=-CHARACTERISTICS

In this chapter those traffic-characteristics
~are dealt with, which are related to the wait-
ing probability.

.In general, the total waiting-time in the pre-
emptive loss-delay-system is composed of several
sections: The first waiting-time, a second one
following the first interruption and so on.

The second and further sections of the waiting-
time are distributed as the first waiting-time
of those calis, which arrive at place n+l.

In order to investigate the first waiting-time
we consider the RANDOM-WALK of a waiting i-call
within the queue. The state {success} shall be
specified by the departure from the waiting-
room (either by beginning with its service or
by being displaced) The distribution of the
first waiting-time can be solved in an expli-
cite form, but this will not be treated here.
We will confine ocurselves to the mean first
waiting-time ;T of an arbitrary i-call. Using
a modified form of (95) the following formulae
can be derived:
iE s
1% o iT 2$iQ - ??Y? o SiQ (64)
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wheve 4E is the probability that an i-call can-
not be served immediately at its arrival. To-
gether with (21) and (23) we obtain:
<i¥s

L R LY Syvs ;(65)
Please notice that we do not have an analogous
result, as in the priorityless system (A-T=Q).
The reason being that the waiting-line of class i
is not only maintained by the incoming i-calis,
but also by those which are interrupted. Only
in the case i=1, where no interruptions arise,
do we get the corresponding formulae:

tAoe T o= 40 [66)

The mean waiting time §Tn,q of an i-call start-
ing in place n+l results in:
1 <i®n+s
iTnel = 77—y © <l (67)
iTnt1 15 also the (next) mean waiting-time of
an interrupted i-call, since each interrupted
call begins its (next) waiting-time in place nd.

By means of another RANDOM-WALK we cobtain the
probability jK,,j that an i-call starting in
waiting-place J %s displaced without having
reached a server:

<j¥k-1 (68)
<i¥s
The unconditioned probability that an arbit-

rary i call is lost by displace@ent without
having been in service results in:

sip 1 iE 1y (69)
<i%n+1  i-1F <i%n+s

This probability of immediate displacement
differs from the overall probability ;V of dis-
placement by the same factor, which a*ready
appears in equation (64).

iKnej =

VI INTERRUPTION CHARACTERISTICS

In the last part of this paper the probability
of interruption and related characteristics
shall be determined. In the associated RANDOM-
WALK an i-call is successful - in the sense of
the RANDOM-WALK - if it is interrupted. Sub-
stituting the jump-rates of this RANDOM-WALK
in equation (37), we get the following system
of equations for the probability jUj, that an
j-call is interrupted under the condition that
it starts in place j.

(mitcid)ejUs = cirejlhe
“Hje1cilje1 + {(Myteir) el - <ireqljey = O J&n
“up-1°iUn-1 * (Hpteir) il =<
“Hpes-1iUnsse1 + (Mnteir) ilngs =0

In the appendix the solution of this system is
also given for an arbitrary “right hand side" Cj.
With the "right hand side" of equation (70) the
general solution (g7) of the appendix results in:

<i¢j-1

J=1,2,00. 50 in = ~;?3;“ (71)
J=1,254.0,8 iUﬂ+j = iUn- (ImiKﬂ*j) (72)

The last formulae can be interpreted such that
an i-call, which starts in place n+j and which
will be interrupted later on, has at first to
reach a server. This arises with probability
(1-3Kg4i)s known from equation (68). Now, the
i-call starts service in place n. From here the
probability of interruption is Uy, It follows
from equation (72) that both these events arve
independent. Before using this fact, we calcu-
jate the unconditional probability ;U that an
j-call is interrupted:

~
wd
L

o~

n
U= 'ilithin + (§R=3K)o5Uqy
J:



The sum can be evaluated using the eaquation (95)
in the apnendix:

1 _ <iX S 1 <i®n
J.Eﬁ V3 SR e U Gl U8
APROBABILITY OF n:a B N
INTERRUPTION s=z7 P7T SPEF
h=1 = ~
0,51 r=4 2D--§- 4p'i'
0,4 1
0,3 1 2U-—;‘\\\\
0,2
aU
0,11
-4 4Ul v

O12345678910<r'\
FIGURE 3: Interruption probabilities .U as a
function of the total arrival <PA.
rate cp.A
For the loss-delay-system as in figure 3 the
probability of interruption jU for class
i=2,3,4 is shown as a function of the total
arrival rate _,A. For small <p) the probabili-
ties ;U increase with increasing ..A. Then after
having reached a maximum, they decrease and tend
towards 0, since with increasing <jArs more and
more i-calls are lost at their arrival or are
displaced without reaching a server and thus
without interruptions.

A call has to wait, either if it starts at
a waiting-place or if it starts in a server
and then is interrupted. Thus, the probability
iW that an arbitrary i-call has to wait results
in:
n
iW = §R + .z iFje §Uj (75)
j=1
The independence stated in equation (72) and
discussed above, enables us to directly deter-
mine the probability Yu tbat an arbitrary
j-call is interrupted v times:

ju = ju - iU:H ¢ (1 = jUns1) (76)

With equation (76) we can calculate the mean
number ;N of interruptions of an i-call:

U
NPT L (77)

N =
! 1 1-iUps1

v

Hew 8

A

The mean number of interruptions of an arbitrary
call amounts to:

;
M= T ogp e N (78)

In chapter V we calculated in equation (64)
the mean first waiting-time 47 and in equation
(67) the mean waiting-time in place n+l, which
is valid for interrupted calls. Noticing that
the mean number ;N of interruptions for an
arbitrary i-call is given by (75), we are able
to calculate the mean total waiting-time M of
an i-call:

iM = 4T + iN ¢ {Tp+l (79)

Finally, we calculate the mean number Z of
interruptions per time-unit. This characteris-
tic is important for the management of the sys-
tem:

<ifX

l = —— <pN (80)
<i™?
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Substituting equation (78) and (48) into (80) we
get the following result for the mean number of
interruptions per unit of time:

Zo= gpd o N (81)
b NUMBER OF n=2 r=2
INTERRUPTIONS =3 p=<
08 h=1 :
P=3
0,4 7
02

o 1 2 3 4 5 6 7 8B 9 104 ph

FIGURE 4: The mean number of interruptions
per time-unit as a function of the
total arrival rate <phe

Figure 4 shows the mean number Z of interrup-
tions per time unit as a function of the to-
tal arrival rate_x. For small ..x only few
interruptions ocCur. As _,.A increases, Z in-
creases also, reaches a maximum and then de-
creases, since for high arrival rates the
2-calls are displaced more and more from the
system and from the servers so that fewer
interruptions take place.

VII CONCLUSION

The traffic-characteristics of the preemptive
loss-delay-system are calculated exactly in
this paper for an infinite number of POISSON-
sources.

These characteristics have been classified
into the following four groups:

State-probability characteristics
(Chapter II)

- Displacement characteristics
(Chapter 1IV)

+ MWaiting characteristics
(Chapter V)

* Interruption characteristics
(Chapter VI)

The derivations presented are shown in
more detail in /1/, for an infinite as well
as a finite number of POISSON-sources.

In order to facilitate practical applications
ALGOL-programs have been written for the nu-
merical evaluation. Besides the analysis of
traffic-characteristics for given systems and
fixed traffic values, these calculation meth-
ods enable the investigation of the trends
and of the interdependences of the various
traffic-characteristics. This may be impor-
tant for the synthesis of systems. E.g. a
system can be planned such that only a suit-
able number of interruptions per time-unit
occurs (confer figure 4).

APPENDIX

In the appendix the solution of two systems of e-
quations are given, which are important in ordgr
to explicitely solve the displacement-, the wait-
ing and the interruption characteristics. The so-
jution will be presented in terms of the basic
function ovy,k. For this basic function the de-
finition and some calculating rules are stated,
at first.



We will define the basic function &y, as a func-
tion of the traffic offered A and of the traffic
parameter Bp, respectively. According to equation
(14) we have:

u
By = = (82)
The basic function &y,x is given by the follow-
ing definition:
K K
by, = ¢ 1T 8p (83)

o=v p=g+l

The basic function <, results by substitut-
ing A by <iA (and as a consequence Bp by <iBp).

If ¥=0. then we use the abbreviation of equation
(16):
b0 ¢ = Oy (84)

Since Bp is equal to Bp for p2n, the basic func-
tion ¢y ,¢ depends only on the difference x-v.

Therefore we abbreviate (cf. equation 18):

van: Yo = dy,vip = g Bg (85)
o=0

The basic function satisfies the following rela-

tion:

K
®y,c = dg,k + dv,0-1 ] Bp (86)

p=0
and in particular for o=v+l and o=k, resp.:
K
by, = Pyel,e t i Bo (87)
p=v+1

By, =1+ Be o by k-1 (88)

By means of the above recurrence formulae we can
write ¢y « as an explicite function of the traf-
fic offered A. We get different formulae accord-
ing to the range of v and k:

K<ns by, k = Ei g 5T (89)
g=v
K=v+l
A (D - 1) Adn
n=A pAk=v+l
vz ‘l’\)'K 5 Yoy = (90)
K=v+l A=n
ven<i: Oy, = Yeon-1 + (%)‘“" © by.n (91)

The relations (83) up to (91) were important in
order to prove various formulae of this paper.
In particular, the solution of the following
systems of equations (92) and (96) is based on
the “"calculating-tool" presented by the basic
function &, .

The first system of equations, whose solution
shall be given in this appendix, reads as fol-
lTows (cf. equation 46):

(Mateir)eiX,
= ug-10iX¥k-1 * (uk*eir)oqXk = <iheiXge1 = Cx(92)
< Upes-1°i%nes-1 * (Mpes*t<ir) *iXnss = Cpes

- <~i)\’1‘xz = {,

For an arbitrary "right hand side" Cj the solution of the system (92) of equations is given by:
k-1

1

N S,
UL NP TR NN

n+s

* {<i%, nes® Zl Cyrci®y-1°TT ciBp + <i®k-1° Xk Cyoci®y, nesl (93)
v p=v v=

The index k of {Xk represents the starting place, to which the characteristic {Xi is related. We get
the corresponding characteristic X, which is averaged among all starting places by means of the pro-
bability jFy, that an i-call starts in place j: nes
X = I §Fe ¢ X (94)
i iTk itk
k=1
An extensive calculation results in the following relation, which allows the direct calculation of
many important traffic-characteristics:

n+s

.9 ;0
c\) R {S'l v,n+s = <1 \’.TH'S} (95)

(X =
! 1 <i%n+s <i®n+s

s e

\Y

In order to calculate the interuption probabilitiy, we have to solve the following system of linear
equations (cf. equation 70): Ce :

(U-l+<b]':‘k)'°iu'l‘ - <1)‘.iuz, o= 0y —pn_luiUn_l + (un+<ik)aiun = Cn (96)
Hge1tiUko1 * GigtegAdo g = iU = G “Hpes=1"iUnes-1 + (Ma*eir)*ilnss = Cpss
The solution of this system is given by:
1 S k-1 k-1 n

Xk = - {<1'°k.n° ) Cv'<i¢\,_1'TT<-in + o011 Cy <i®y,n k=l,2,...,n0

<ir*<i%n - v=l p=v v=k

(s7)
o Be. .Y n n-1
oy, e <iln <is-k i 1 . Coooib,_q° g+ k=1,2,.0.4$
itk ¥ ik <i®n K£1 K <i¥k=-1 J];<1 p
n-1 K- S
1
4 e ® LY o C e B P SRR T [¥ R
<ire<i¥s lei¥s-k Kgl ntk <iPn T<ifk-1l T <ik-1 sz e <i¥s-xl

Substituting "actual® right hand sides Cj into (93), (95) and (97) resp., we obtain the various traffic
characteristics, which were presented in this paper.
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