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1 Introduction

For many years, research community focused on determining quality of service (QoS) by using
packet level performance measures like loss probability, delay and delay variation. With
increasing importance of data transfer and WWW services producing elastic traffic based on
the transmission control protocol (TCP), the lack of models and measures considering retrans-
mission and rate adaptation became obvious.

A first step towards an adequate model for elastic traffic is to assume that network resources
are shared among a fixed number of long-lasting TCP connections (greedy sources) and to
measure long-term throughput. While this way of modelling may be appropriate in case of tra-
ditional file transfer services it is not adequate for describing WWW traffic using HTTP. The
latter kind of traffic is characterised by small to medium size objects transmitted over TCP
connections. The dynamic character of WWW traffic has, however, not only some influence on
source modelling. Finding appropriate measures to describe the quality received by such a
service has also become a major issue, which is addressed in this report.

An important question in this context is the grade of detail that is needed to describe elastic
traffic. A rather abstract model which is able to cover TCP’s fair rate adaptation effect is the
processor sharing (PS) model. This burst level model is well-known from computer system
modelling and can be evaluated analytically under quite general assumptions. However, it does
neither consider the details of TCP nor the special constraints occurring on the packet level.
Therefore the question comes up whether neglecting those details has a significant impact on
the performance results. Besides the processor sharing model, we consider a simulation model
based on a TCP implementation including a huge amount of configuration parameters.

A more detailed description of both the processor sharing and the TCP model can be found in
Section 2. Section 3 contains a comprehensive collection of possible performance measures.
Special emphasis is put on relative measures following the notion of delay and fun factors
introduced in [4] and [1], respectively. In Section 4, we show how the previously defined meas-
ures can be applied to the processor sharing model and to the TCP model. The results of a com-
parative performance evaluation using analysis and simulation are presented in Section 5.

2 Models

2.1 Processor sharing

The processor sharing model as considered in the context of this report is closely related to the
theoretical processor sharing model known from literature [3]. We assume an infinite number
of users and thus characterise the arriving traffic by request interarrival times and request size
distributions. The bandwidth on the link is shared equally among all active requests. Further-
more, the link bandwidth of each request can be bounded before the request is passed to the
link.

2.2 TCP simulation

Fig. 2.1 shows the principle structure of the simulation model. An application block is situated
on top of the TCP stack and controls transmission of data. For the present simulation study, we
assume an infinite number of users and thus model the traffic generated by the applications as
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Fig. 2.1: Global TCP simulation model considering applications

independent requests characterised by the request size distribution and request interarrival time
distribution, respectively. Thus, the correlation between successive/parallel requests is not con-
sidered in this model.

Data packets and acknowledgements are transmitted in a network that is modelled as depicted
in Fig. 2.2. Data packets are transmitted via two single server queues that represent the net-
work access and the bottleneck link, respectively. Propagation delay is only considered on the
acknowledgement path and is modelled as an infinite server with constant service time. After
each successful transmission of a request, statistics considering the actual request size and the
measured transfer time are updated.

Our TCP model does not consider connection setup and release. For computing a fun factor
that depends on both connection setup and data transfer delay, the setup times are drawn from
an independent distribution. We will further elaborate on this in Section 4.3.

3 General performance measures for elastic traffic

After an introduction of the model assumptions in Section 3.1 and an introduction of the
applied random variables in Section 3.2, performance measures that are based on the intro-
duced random variables are presented. In Sections 3.3 to 3.5 a variety of possible performance
measures are introduced. They differ in the way the previously defined random variables are
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combined. First, mean values are presented in Section 3.3. Section 3.4 presents mean values
that are conditioned on the actual request size. Finally, Section 3.5 introduces distributions.

3.1 Model assumptions

For the performance values presented in this section the following assumption are made:
» requests for object transmission arrive in a Poisson stream

 variable object size with arbitrary distribution

» TCP-based transmission over a shared backbone link

* limited access rate for each transfer
3.2 Random variables

The traffic parameters presented in the following are characteristics of the object itself and thus
are independent of the network. In contrast to that, the performance results represent measures
that also consider experienced/minimum transfer time.

Traffic parameters

S object size
h(s)  object size probability density function

H(s) object size probability distribution function
Performance results

T transfer time

G per-transfer goodput
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The performance measures are defined by the following equations:

3.3 Mean values

3.3.1 Absolute measures

e mean transfer time:
t = E[T]

* mean goodput:

g = E[G] = E[_ﬂ

» weighted mean goodput:

G, = EISOG _ E[Sﬂ

minimum transfer time

Y E[S] T E[9)

3.3.2 Relative measures

Mean fun factors are always abbreviated wjth
relationship between fun and delay factor is

|

b, =

[o4]

and mean delay factorwith

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

. The general

(3.9)



Fun factors always relate an optimum measure to an experienced measure and thus yield a
value smaller or equal to one. On the contrary, delay factors relate an actual measure to the
optimum measure and thus are larger of equal to one. The considered measure here is either the
transfer time or the goodput.

Non-weighted mean fun/delay factors:
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3.4 Conditional mean values

In this section, the measures introduced in Section 3.3 are conditioned on the actual length of
the request. This allows to discuss whether the performance experienced by a request depends
on the length of the considered request or not.



3.4.1 Absolute measures
+ conditional mean transfer time:
t(s) = E[T|S=§

» conditional mean goodput:

g(s) = E[G|S= § = E[_:?‘S: s} = SEE[_Tl_‘S: s]

3.4.2 Relative measures

9:(s) conditional mean fun factors

d,(s) conditional mean delay factors
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3.5 Distributions

3.5.1 Absolute measures
« transfer time distribution

Qr(t) = P(T<t) (3.24)

» goodput distribution:
Qg(y) = P(Gsy) = F’%%S s (3.25)

» weighted goodput distribution:

00

Qs wly) = % D{(S [(P(G= yS= g [h(s))ds (3.26)

3.5.2 Relative measures

Non-weighted fun/delay factor distributions

FA(X) = P(ASX) = PE“_LHSXE, X[, ) (3.27)
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Weighted fun factor distribution:

Faw(®) = % DJ;(sEP(Asx|s= $ Th(s))ds = 1—F¢’W%}E, xO[Lw) (3.31)

00
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4 Application of performance measures to special models

In this chapter, a specialisation of the performance measures introduced in the previous section
Is presented. Whereas Section 4.1 focuses on the processor sharing model, Section 4.2 dis-
cusses aspects of the TCP model.

4.1 M/G/n processor sharing model

Model parameters

C linkrate
I max Maximal access rate
p utilization

Random variables

Thin, Ps = (4.1)
' rmax
C':'max PS: rmax (4-2)
_ s
CDPS T Dmax (43)
T
Apg = Smax (4.4)
Known results
E[S
E[Ti] = _r_[__] (4.5)
max
E[T|S= § = > o2& o0 (4.6)
rmax Gmax’ D .
E[S
ELT] = T2 o= of (4.7)
T T _ "E[T|S= §
E[S} —J;E[E‘S— s][h(s) s = g—s Ch(s) Cds
C
Bl 1 _ E[T]
= Ofh(s) s = of H=, p& (4.8)
| e L Y0 ™ ES)

using the expression



1+(n—n) 1-p) n,!
n[(lg—p) O — , ng=1Lnl (49)

(1- p)DZ(np) (n?ng
g

f(n,p) =1+

which was originally denoted as “delay factor” by Lindberger in [4] and which was extended
to non-integer values of in [1]. A simple approximationf@h, p) IS given by:

Fnp) = ma@,p%ﬁ_pgzﬁg (4.10)

Mean factors

o _ 1 E[S] 1
A PS — )
' T E[T] O 0C O
|5 T B e
T E[T C
6A, PS = E|:§:| D‘max = E[[S]] D‘max = f% ' p% (4-11)
max
_ __E[S  _ E[T] _0C
¢ = ——=—=— = 0pps Or ps= =r@ Umax = | pH =3 (4.12)
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r
max El2
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¢G PS — ¢tD PS (4'14)
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Op, w, PS = E[S] = E[S] . pD Op ps (4.15)
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E[S] EE[r Sj E[S]?
5]
o w ps = m (4.17)
Oc w ps= Pow ps (4.18)



Conditional mean factors

1 S 1
bp ps(S) = = — = = 0p ps:
A, PS E[T Dmaxs s} 'max E[T|S= 9§ 0 C ,pD A, PS
S E‘ﬁmax l
E[T|S= 94 O
5y pel(S) = E|:T DmaXS :| _ [T] 9 [ ax _ f%C pd = 8y ps  (4.19)
’ S max '
_ _ - _S lle—
Og oc(s) = E| S |s=g = EEHS_ }
. PS T O ax I max T
1 ' max

= (4.20)

O, pg(S) =
E S
|:T Lr

Distributions

T
Faps(X) = PES— ~ 0 1-Fg PSE:_(D 1-Fo PSE;_(D

x 0 [1, ) (4.21)

Frpdx) = PEr<XEE80- o  XELED g0, w) (4.22)

max

Fo ps(X) = P@sxDmag = Qg pdXUa) = FgpdX) = 1-F, PS%}(E’

x 0 (0, 1] (4.23)

Fg pdX) = I:)E§S)(Dma>1% = Qg pdXma) = Fo ps(X) = 1-F, PSE%(E'

x 0 (0, o) (4.24)
Fa,u() E[S] DI% L
E[S] DJ’%EE]. PE5< s = $hm(9s

-1- QGWﬂmaE 1- Fm&%, x 0 [1, o) (4.25)
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_ 1 S
Fou(® = grg D{% PhE <%

S= $h(9)ts

= Qg WX Tma) = 1-F 53 x0(0,1] (4.26)

4.2 TCP model

Model parameters

C link rate

I max maximal access rate

p link utilization

MSS maximum segment size

T propagation delay (on feedback channel)
o _ MSS

h MSSservice timél = ~=—

no delayed ACK
Random variables

Using the random variabl€ .., representing transfer time offset minimum transfer time and
maximum delay can be described as follows:

_ _ S
Tmin, TCP ™ Toffset+ Tmin, PS — Toffset+ r (4-27)
max
S r
Gmax TCF’: T.. = T e (428)
min, TCP 1+ offsetD_
S max

Known results

In the case of infinitely large sender-side access buffersatittesh initial value as well as
the delayed ACK option being turned off at the receiver side the delay offset can be expressed
in terms of object siz& , propagation defay , and TCP maximum segmenS& ( ):

Toftset = d(9 (4.29)
using

d(s) = D(K(s)), (4.30)

D(i) = (1+h)Qi-1)-h(2 -2),i = 1,2, ... (4.31)

K(s) = minaldgﬁs—‘+ng,K+lg (4.32)

—11 -



K = {ld% + 1EJ (4.33)

The mean value of the delay offset further depends on the object size distribution:

(o]

ElTottsed = J’D(K(s)) Ch(s)ds
0

K [ (21+1-2) IMSS 0 0
=y DdOHo h(gdsd+D(k+1)0 [ h(s)ds
i=1D (21-2) MSS B (2x+1-2) MSS

> (B(0) H((2'*1-2) IMSS —H((2' -2) LMSY)) +
i=1
D(k +1) Q1-H((2¢*1-2) [MS9) (4.34)

Relative measures

Fun and delay factors may be related to eitigf, tcp ey tcp OF tth ps and
Gmax ps respectively. In the first case the derived measured are tagged with sudsCfpt
while in the latter cas€ CP HS is used as subscript.

4.3 TCP model with simple connection setup

In [2], a special fun factor was introduced that considers that the transmission of the requested
object does not start immediately (due to delay caused by a connection setup phase) and that a
user may also be satisfied with his observed transfer delay, even if he cannot use the whole
access bandwidth. This especially holds in the case of short requests where the full access
speed cannot be utilized because of special TCP mechanisms (e.g. slow start).

For the definition of this fun factor, the following parameters have to be introduced:
d, target delay (for pure waiting)

t,  target transfer time

Tp initial delay for connection setup

T, observed loading time

Fun factor 4 according to [2] is defined as follows:

.0 d,+Sr0O
®, = minfy, 0 (4.35)
¢ 0 To*TLn

The expectation of fun factor 4 is given by

d+& rtm} (4.36)

0
¢, = E[®,] = E| minOL, 0
4 4 0 TD+TLD

—12 —



and the distribution is denoted as

F¢4(X) = P(®,<x), xd[o, 1] (4.37)

As the connection setup phase is not considered in our model (and also in all previously intro-
duced performance measures), we simply take from an arbitrary distribution. This cer-

tainly does not reflect the reality properly as the correlation between network state and dura-
tion of the setup phase is neglected. However, first results to indicate the impact of considering
connection setup are obtained.

5 Performance comparison

During all simulations we assume that the bottleneck link has a capacily of =10 Mbit/s and
that interarrival time of TCP flows has an exponential distribution.

5.1 PS model

Mean values

Fig. 5.1 - Fig. 5.10 depict mean fun and delay factors defined in Section 4.1. In all figures, the
objects size is exponentially distributed with mean 10 kByte.

From these figure, the following effects can be observed:

* ¢, (known as reciprocal of delay factbr according to Lindberger’s definition [4])dapd
(corresponding to the mean fun factpr  as originally defined by Charzinski [1]) signifi-
cantly differ for greater access rates. This can especially be seen in Fig. 5.7 where the ratio
o,/ b is depicted.

* The mean fun factors get worse with increasing access rate.
* ¢4 andoy,, only slightly differ and are thus not depicted in the overview in Fig. 5.5.

* ¢,(s) does not depend on the actual object size wherggss) slightly decreases for
greater objects, see Fig. 5.8.

* The approximation o6, presented in Section 4.1 fits the exact analysis quite well for
medium to large values &,,.,,/C especially in the heavy load case.

The performance results for other object size distributions (with identical mean) are rather
unchanged. In the case of a Pareto distribution only the weighted fun/delay factors proved to be
slightly different.

Distributions

Fig. 5.11 - Fig. 5.12 depict fun and delay factor distributions for exponentially distributed
object sizes whereas Fig. 5.13 and also Fig. 5.14 consider Pareto distributed object sizes with
shape parametex = 1.6 (corresponding to Hurst parankteter = 0.7). It can be seen that
slightly smaller values can be observed for the weighted fun factor in both cases. The main
proposition of these figures is that only the transfer time distribution (and therefopg(x)

andF 4 pg(X) ) significantly change (Fig. 5.14). ’

— 13-
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5.2 TCP model

In the simulation study based on the TCP model implemented with support of the IND simula-
tion library [5], the following parameters are unchanged:

* MSS= 1460 byte
* TCP/IP header length = 40 byte
» delayed ACK is turned on

5.2.1 Goodput

Mean values

In Fig. 5.15 - Fig. 5.17¢ is depicted against the propagation delay for different object size
distributions. Here, the following effects can be observed:

* ¢ is smaller for larger access rates due to higher user exectations.
» For smaller propagation delay, the objects size distribution has only a minor imgagt on

+ Decreasing the load to values smaller than 0.8 causes only a slight incrégase of
Conditional mean values

Fig. 5.18 - Fig. 5.21 depiap5(s) and thus shows the dependengg of
size. The following effects can be seen:

on the actual request

* The window mechanism of TCP is clearly visible indicated be the peaked shape of the
curves. Here, the shape of the first peak is independent of because the window mecha-
nism is only effective for larger requests.

» Decreasing the load to values smaller than 0.8 only slightly increéags}

» For larger values of the propagation delay, the objects size hardly influences the mean good-
put. Thus most of the time is spent to wait for acknowledgements in order to continue send-
ing compared to the time the transmission of the data takes.
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5.2.2 Transfer time

Fig. 5.22 and Fig. 5.23 depict the conditional mean transfer time for different access rates.

From Fig. 5.22, it can be seen that the conditional mean transfer time increases almost linearly
for requests with increasing size. The steps in the curves with higher propagation delay clearly
indicate the influence of the window mechanism and thus indicate where (and how long) the

request waits for acknowledges in order to continue being transmitted.

For greater access speeds, Fig. 5.23 shows that the effect of the window mechanism is much
higher. This is indicated by the height of the steps compared to the slope of the curves.

5.2.3 Fun factor considering connection setup

Fig. 5.24 - Fig. 5.31 depiop, and thus not only consider traffic parameters and performance

results, but also target values for delay and rate. For our evaluations, the target values sug-
gested in [2] are applied, i.e. target delay of 500 ms and target rate of 50 kpbs for 64 kpbs and

500 kbps for 768 kbps access rate, respectively. However, it should be remarked here, that the
results strongly depend on these target values.
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From Fig. 5.24 it can be seen that different object size distributions hardly influence the princi-
ple shape ofp, . For greater access rate, the difference is larger than for smaller access rate.
Furthermore, it can be seen that an increase in the propagation delay has minor impact on

in case of low access bandwidth wherdgs
delay in case of larger access bandwidth.

As already mentioned fap 5

, Fig. 5.25 indicates ttat

quickly drops down for increasing propagation

remains almost constant for a carried

traffic decreased below 0.8.

Fig. 5.26 depicts the shape df, for different setup delay distributions and varying load
against the propagation delay. It can be seen that the load is the critical parameter whereas the
curves are similar for different setup delay distributions. In order to show the influence of setup
delay, Fig. 5.27 depict$, in case of zero setup time. Hérer 1 holds even for larger
propagation delays
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Fig. 5.28 and Fig. 5.29 depict the complementary distributio®gf for an access rate of 128

kbps. It can be seen that the complementary distributions are rather similar for different request
size distributions and propagation delays smaller than 700 ms. All these curves have in com-
mon that they start with a small slope and drop down slowly.

Fig. 5.30 and Fig. 5.31 show the complementary distribution in case of 768 kbps access rate.
Like the curves with smaller access rate, the distributions start with a small slope. But, how-
ever, in case of greater access rate, the complementary distributions drop down very quickly
and in case of constant and Pareto distributed objects ¢izes, is always smaller than 1.
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5.3 Comparison of PS and TCP model

In this section, results obtained with the processor sharing model and the TCP model are com-
pared. For the TCP model, the following parameters are applied:

e MSS=1000 bytes

* TCP/IP header length =0

* no delayed ACK

» shared link buffer size and access link buffer size = 100 000 bytes

» propagation delay (on feedback channel): =100 ms

* initial congestion window (cwnd) = RISS

» upper bound of the congestion window (cwnd) = 1008S (approximately infinity)
* initial value of slow-start threshold (ssthresh) = 1008S (approximately infinity)

Fig. 5.32 - Fig. 5.35 show the conditional mean transfer time delay for different access rates
and load 0.8. In these figures, not only the results obtained for the PS model according to (4.6)
and the TCP model (obtained by simulation) under the given load conditions are depicted, but
also the curves for an empty PS and TCP model according to equations (4.1) and (4.27) using
(4.29) - (4.33), respectively. The latter ones are lower bounds for the transfer time in the corre-
sponding models and can be used as a basis for relative measures.

For larger access rates, the results obtained for the loaded PS and TCP model differ signifi-
cantly as the curve of the TCP model is dominated by the slow start behaviour of TCP. This is
visible through the stair step shape in the corresponding curves of the TCP simulation.

The minimum transfer times in the TCP model and the PS model also differ significantly for
greater access rates. The impact of relatgs) to different minimum values is depicted in
Fig. 5.36 and Fig. 5.37. In Fig. 5.36, the minimum transfer time obtained for the PS model is
taken as reference, whereas the minimum obtained for the TCP model is taken as reference in
Fig. 5.37. The huge difference of the curves indicates that — at least for greater access rates — it
IS not reasonable to relate the transfer time to the minimum obtained for the PS model as this
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can never be reached. This would result i &s) that is bounded by a rather small interval.
Forr,ax = 10 Mbit/s, e.g., the maximum mean fun factor that can be reached is 0.2.

On the contrary, a relation of the transfer time to a more realistic minimum obtained for the
TCP model assuming an unloaded backbone link yieldig @) that is rather close to 1 as can
be seen in Fig. 5.37. That means a load of 0.8 does not significantly reduce the mean fun factor.
Moreover, the fact thap ,(s) is nearly independent of the objectsize over a wide range is an
appealing feature of that approach.

In Fig. 5.38 - Fig. 5.43, results for an increased load of 0.9 with the other parameters being
unchanged are depicted. The same effect as described above can be observed. For the TCP
model, the delay component which is caused by congestion on the bottleneck link (this compo-
nent is responsible for the linear increasea(s) ) is now larger. The linear slope of the curve
for t(s) is, however, significantly smaller in the case of the TCP model as compared to the PS
model. As clearly visible in Fig. 5.39 and Fig. 5.40 this leads to an intersection of the curves.
Fig. 5.43, finally, shows that the mean fun factor related toTthe, rcp is now significantly
smaller than 1 due to the increased load.
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6 Conclusions

The comparison of different fun factor definitions has shown ¢hat  ¢apd significantly dif-

fer in the processor sharing model as well as in the TCP model. In the processor sharing case
¢, seems to be a promising QoS measure as it can be calculated (straight line) in case the
access rate and the link rate are the same. More¢y¢s) hardly depends on the request size.

For greater access rates, the PS model is not appropriate to describe the perceived QoS. The
TCP window mechanism (especially slow start) influences the statistics significantly in many
cases and thus cannot be generally neglected. In comparison to that, the effect of increasing the
load from 0.8 to 0.9 is not as large as originally expected. Decreasing the load below a value of
0.8 results in a fun factor increase that is even hardly visible.

In order to take the influence of slow start into accodr)t,  should be related to the minimum
transfer time that is obtained for the TCP model instead of using the the minimum obtained for
the PS model.

Case studies using a fun factor definition that considers connection setup delay have shown
that the setup delay distribution has only minor influence on the mean fun factor in most cases.
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