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ABSTRACT
The core networks of current telecommunication infrastructures are

typically engineered as multi-layer networks. The uppermost layer

is defined by the virtual topology, which determines the logical

connections between core network routers. This topology is realized

by optical paths in the lower layer, which is defined by optical fiber

connections between network nodes. Minimizing the hardware cost

incurred by these optical paths for a given set of traffic demands is a

common combinatorial optimization problem in network planning,

often approached by Mixed-Integer Linear Programming. However,

increasing network densities and the introduction of additional

constraints will impact tractability of future network problems.

In order to provide a more scalable method, we suggest a Genetic

Algorithm-based approach that optimizes the virtual topology and

subsequently derives the remaining parameters from it. Our genetic

encoding utilizes a combination of spanning trees and augmenta-

tion links to quickly form meaningful topologies. We compare the

results of our approach to known linear programming solutions in

simple scenarios and to a competing heuristic based on Simulated

Annealing in large-scale problems.

CCS CONCEPTS
• Networks → Network design and planning algorithms; •
Theory of computation→ Evolutionary algorithms; • Comput-
ing methodologies→ Genetic algorithms.
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1 INTRODUCTION
Internet Service Providers (ISPs) face several changes that will sig-

nificantly impact future network planning. New technologies like
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Figure 1: Multi-Layer Network Example

5G and Fiber-To-The-x (FTTx) increase data rates and enable high-

reliability and low-latency services. Such Quality of Service (QoS)

capabilities, coupled with a growing customer interest in novel

interactive use cases, ranging from cloud-based gaming to remote-

operated vehicles in logistics, require ISPs to explicitly consider

QoS parameters in the design of their networks.

ISP networks typically consist of three sections. Customers con-

nect in the access section, while the aggregation section collects the

data from diverse locations, handing it to the packet routers in the

core. Core networks form country-wide backbones, which feature

nodes at central locations such as big cities. These core nodes are

connected by optical fibers, which form the physical links of the

physical topology, which is illustrated in Figure 1 in green color.

The routers are connected by optical circuits, which are essentially

high-speed laser connections routed through the optical fibers. A

circuit is terminated on both sides by a Transponder (TXP), which

translates the electric signal of a router port to an optical signal.

Circuits can be switched between fibers such that they can tra-

verse a path of several links. The resulting connections between the

routers form the virtual topology, shown in blue color in Figure 1.

Both, router ports and TXPs are expensive pieces of hardware,

typically in the six-figure range in US Dollars. This motivates ISPs

to plan their networks such that they offer sufficient transmission

capacity with the lowest amount of hardware possible. To this end,

trafficmay be groomed, i. e. routed on potentially longer paths if this

allows using already available TXP capacity, rather than installing

new TXPs. However, considering QoS requirements can prohibit

grooming, since longer paths incur more transmission delay and

reduce availability. Together with increasing core network densities,

this results in a significant increase in problem complexity, while
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the desired planning time frames decrease due to lower service lead

times. This can be prohibitive to established planning approaches,

motivating the development of more scalable heuristics, which can

provide meaningful results in short time frames.

Wewill explore the problem inmore detail in the next section and

relate it to other problems and solution approaches in Section 3. We

present our contribution, consisting primarily of a problem-specific

encoding and operators in Section 4 and provide experimental

results based on a reference problem of reduced complexity and a

real network instance in Section 5.

2 MULTI-LAYER NETWORK PLANNING
Our multi-layer network planning problems essentially consists of

four sub-problems. The Traffic Demand Routing problem assigns

paths of virtual links to each traffic demand, such that their QoS

requirements are fulfilled. The Virtual Topology Design problem

determines a topology, such that all traffic demands can be routed

and the topology can be realized by circuits. The Routing andWave-

length Assignment problem assigns circuit paths to virtual links

using physical links, such that the virtual topology can be created

and that the capacity of a physical link is not exceeded. The Physi-

cal Topology Design problem determines a topology based on the

physical link candidates, such that all circuits can be routed. The

length of a physical link determines its incurred delay and availabil-

ity, which are needed to determine whether the QoS constraints

can be met. The interplay between these problems is illustrated in

Figure 2, where blue layers relate to the virtual and green layers to

the physical topology aspects, while gray layers contain the inputs

to the problem.

More formally, input to our multi-layer network planning prob-

lem are the infrastructure nodes as set of vertices 𝑉 , a set of po-

tential physical edge candidates 𝐸𝑝 and a set of traffic demands

𝑇 . The edges ⟨𝑠, 𝑑, 𝑏⟩ ∈ 𝐸𝑝 with 𝑠, 𝑑 ∈ 𝑉 and 𝑠 ≠ 𝑑 with length

𝑏 in km form a simple, undirected graph 𝐺𝑝 = ⟨𝑉 , 𝐸𝑝 ⟩. This rep-
resents the infrastructure of the physical layer. A traffic demand

𝑡 ∈ 𝑇 is a tuple ⟨𝑠, 𝑑, 𝑟𝑡 , 𝑙, 𝑎⟩ with source and destination vertices

𝑠, 𝑑 ∈ 𝑉 , required data rate 𝑟𝑡 in Gbit/s and two QoS parameters:

The maximum latency 𝑙 in ms and the minimum availability 𝑎 in %.

When no QoS is considered, i. e. all demands in 𝑇 are of the form

⟨𝑠, 𝑑, 𝑟𝑡 ,∞, 0⟩, we assume that there is one demand per node pair

and direction. For QoS-enabled cases, we assume one additional

traffic demand between each node pair for every unique combina-

tion of QoS requirements. Furthermore, we treat all demands as

indivisible aggregates.

The virtual topology also forms an undirected, simple Graph

𝐺𝑣 = ⟨𝑉 , 𝐸𝑣⟩. Each 𝑒𝑣 ∈ 𝐸𝑣 needs to provide at least as much

capacity, as the sum of all 𝑟𝑡 of the demands traversing it. This

capacity is provided by the sum of the data rates of all optical

circuits that realize a particular 𝑒𝑣 . Therefore, every virtual link

𝑒𝑣 = ⟨𝑠, 𝑑⟩ needs one or more circuits with 𝑠 as the first and 𝑑 as the

last node in a path of physical edges they traverse. Consequently,

the optical circuits 𝑐 ∈ 𝐶 are tuples ⟨⟨𝑒𝑝 ⟩𝑖 , 𝑟𝑐 ,𝑤⟩, where ⟨𝑒𝑝 ⟩𝑖 is
the path of physical links, 𝑟𝑐 is the provided data rate in Gbit/s,
and 𝑤 is a wavelength slot. Several optical circuits can exist in

parallel within a single physical link, as long as they have different

wavelength slots.
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Figure 2: Multi-Layer Planning Subproblems

We also consider several technologically motivated constraints.

All 𝑒𝑝 provide an identical limited number of wavelength slots.

Furthermore, the maximum attainable data rate of a circuit depends

on the length of fiber, i. e. the sum of the lengths of the traversed

physical edges. Modern TXP can adjust the data rate in a number of

discrete steps, but every step has an individual upper reach in km.

Lastly, we consider each circuit to use exactly one TXP at each end,

which is connected to a port in the router. Consequently, we denote

the hardware cost with a uniform cost value 𝜅 representing these

devices. In our approach, we consider the primary optimization

objective of minimizing the overall cost by using the least number of

devices that is sufficient to provide topology and routing solutions

such that all demands and constraints are satisfied.

3 RELATEDWORK
Multi-layer network problems have been addressed by various

methods in the past. Many scientific works utilize Mixed Integer

Linear Programming (MILP) approaches, often based on extensions

of minimum-cost Multi-Commodity Flow (mmMCF) formulations.

The survey by Rožić et al. [20] lists over a dozen works solving

different multi-layer problems using MILP approaches. However,

large problem instances or additional hardware or QoS constraints

typically require problem relaxations [22] or hybridizing MILP with

other algorithms [8], such that the usage of heuristics presents a

meaningful alternative.



A Genetic Algorithm Approach to Virtual Topology Design for Multi-Layer Communication Networks GECCO ’21, July 10–14, 2021, Lille, France

Genetic Algorithms (GAs) have been employed to solve both,

Virtual Topology Design in isolation as well as integrated within

multi-layer problems. Two common approaches for topology prob-

lems are encoding link candidates using a sequence of binary selec-

tor genes or encoding a system of link weights as a real-valued gene

vector, which is translated into a topology by graph algorithms.

The survey of Kampstra et al. [15] lists over 50 works applying

Evolutionary and Genetic Algorithms to such problems and an

additional 14 works that specifically deal with optical networks.

A smaller number of works solvemulti-layer problems somewhat

similar to our approach based on applying GAs to Virtual Topology

Design. Saha et al. [21] assume the hardware to be a fixed input and

encode a connectionmatrix between the given TXPs fromwhich the

topology can be determined. The remaining subproblem solutions

are derived by ancillary algorithms. The goal of their optimization is

either to maximize throughput or minimize traffic delay. Ahmad et
al. [1] encode a connection matrix containing the point-to-point

transmission capacity for each virtual link. Their goal is to minimize

the power consumption of the required hardware. Durán Barros

et al. [10] encode a priority queue of all possible node pairs. Based

on this, they route circuits on a number of precomputed paths, and

run a postprocessing function to ensure connectivity. Their goal is

the minimization of end-to-end delays.

Most similar to the problem presented in Section 2 is the work

by Balasubramanian et al. [2]. They also minimize hardware cost

and they consider QoS for their traffic demands. However, they

focus on a different aspect of improving availability. Rather than

considering it as a percentage, they specify whether and how the

traffic should be treated, e. g. that it requires a preplanned backup

route. Most interestingly, their network example is also rather large

at over 100 nodes, but the level of density of the virtual topology is

not explicitly stated. They seem to use a 2-part genetic code that

consists of a binary part, representing the connection matrix, and

an integer part, which represents an index to a set of precomputed

routes. However, their work focuses more on the network results,

rather than how their GA operates.

While the works of Balasubramanian et al. and Ahmad et al. use
roughly the same optimization goal as our approach, their specific

problems are different from ours in the treatment of QoS and the

methodical approach. Furthermore, their focus is less on aspects of

scalability, which is a gap we aim to fill with this paper.

4 GENETIC ALGORITHM APPROACH
We optimize the Virtual Topology using a generational GA with

stochastic tournament replacement and derive all other solution

parameters from its results. While a routing-based optimization

approach offers a finer level of granularity and can therefore theo-

retically achieve better results, the drawback is a drastically larger

search space which will inevitably limit scalability. We therefore

solve the routing problems by traditional shortest-path algorithms,

based on the optimized virtual topology and a full physical topology.

4.1 Encoding
We use two different encodings of the virtual topology to com-

pare their efficacy and performance. Both approaches start from

the physical infrastructure and the technological constraints by

determining the maximum feasible virtual topology. This is done

by computing shortest paths in terms of total length between all

node pairs in the physical topology and excluding all virtual link

candidates that cannot be created by a single circuit due to reach

limitations of the TXPs. The first approach then encodes each fea-

sible virtual link as a binary value, such that a chromosome for

a graph of |𝑉 | nodes has at most
|𝑉 | · ( |𝑉 |−1))

2
genes. This will be

referred to as Virtual Topology Binary (VTB) encoding.

A major drawback of VTB is the fact that it can represent unde-

sirable topologies. In actual core networks, traffic routes between all

node pairs are required, such that any unconnected graph can never

be an optimal solution. We therefore implement a repair function

that ensures graph connectivity. To this end, we initially compute

an adjacency matrix for the feasible virtual topology, which indi-

cates not just the presence, but also the position in the chromosome

for each potential link. From this, we can run a connectivity check

without the need to build the graph data structure first. The repair

function, also uses this matrix, randomly drawing from the edges

of unconnected nodes and setting the corresponding gene values.

The secondmethod, we name Virtual Topology Centralized Span-

ning Tree (VTCS) encoding, is motivated by the idea of making

it impossible to represent any unconnected graphs altogether by

using a more complex decoding function. Inherent to any span-

ning tree is the property of being a connected graph featuring

the least amount of edges. As such they have often been used in

optimizing topology design problems, even in conjunction with

GAs (e. g. [5, 9, 23]). However, trying to represent such trees in

genetic codes may suffer from problems in locality and heritabil-

ity [14] or increased runtimes of decoding functions [19]. Moreover,

a spanning tree itself is rarely a good solution for a communication

network, since it has no redundancies and can lead to very long

paths as even a daisy chain topology is a valid spanning tree.

VTCS therefore needs to augment a spanning tree with addi-

tional edges to form a good topology candidate. Furthermore, it

needs to reduce the number of spanning trees, since for a graph

of |𝑉 | nodes there will be |𝑉 | |𝑉 |−2 different spanning trees [4],

including various daisy chain topologies. The first requirement

can be solved by providing a compound chromosome where some

genes represent the base tree and others represent the augmenta-

tion edges. The second requirement is less easy to realize, since it is

a priori difficult to assess whether a given spanning tree is a good

candidate. We address this issue using a heuristic.

In generating the tree, we try to prioritize adding specifically

edges that are more likely to enable shorter paths. To this end, we

rank edges based on their betweenness centrality in the feasible

graph, which reflects the number of shortest paths passing through

the edge. To establish a strict total order relation, we additionally

use a unique identifier to order edges of identical betweenness.

We also determine the node with the highest nodal degree in the

feasible virtual topology to be the starting node of all trees. Finally,

we generate a routing table, which contains the next edge on the

shortest path from any node to any other. All of these steps are

performed in a preprocessing step prior to the actual GA.

The chromosome is split into two parts as shown in Figure 3. The

first part uses |𝑉 | − 2 genes to identify the spanning tree. Beginning
from the starting node, the genes indicate, which node is the next
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Figure 3: Decoding of a VTCS Chromosome

to be added to the spanning tree. To track the nodes to be added, we

create a next-edge table, which we initialize with all those entries

from the routing table that contain the starting node as shown in

Figure 3a. The first gene has a range of 1 to |𝑉 | − 1 integer values,
representing the other nodes. Using the gene value, we determine

the corresponding node and the appropriate edge from the next-

edge table and add them to the proto tree as visualized in Figure 3b.

Before moving on to the next gene, we have to update the next-

edge table. First, we remove the row of the selected node and edge.

We check the routing table for all entries with this selected node

and compare them to those currently in the next-edge table. We

consider only the ones connecting to nodes that have not yet been

included in the tree. We replace the old entry if the selected node

was also the target node of the old entry or if it has a higher value

in the proposed centrality ranking. This is visible in Figure 3c.

The next gene now features |𝑉 | − 2 integer values, correspond-
ing to the remaining nodes and we can repeat the process. The

last among the tree genes has only 2 choices and therefore deter-

mines both, the penultimate and ultimate node, which complete

the spanning tree as shown in Figure 3e. The remaining unused

edges are then encoded as binary genes, as they would with VTB,

which is illustrated in Figure 3f. This procedure yields at most

|𝑉 | · |𝑉 |−1
2

− (|𝑉 | − 1) additional genes. The exact decoding function
is shown in Algorithm 1.

While the VTCS encoding promises a reduction of the search

space towards meaningful solutions, it has four major drawbacks.

First, there is the complexity of the decoding operation itself. While

the routing table can initially be precomputed, it will still need to

compare on the order of 𝑛 log𝑛 entries between the tables. Second,

as this procedure does not allow all spanning trees to be repre-

sented, it cannot be guaranteed that the optimum topology can be

found. While this will become problematic for scarce traffic ma-

trices, a core network with a full any-to-any traffic matrix can be

expected to require a more dense topology, such that the selected

trees should provide a reasonably good starting point. Third, there

is an overrepresentation of the search space. By adding an augmen-

tation link to a spanning tree of 𝑛𝑒 edges, the resulting topology

could also be achieved by 𝑛𝑒 different spanning trees, which had

originally included this edge, but their respective augmentation

links were part of the original spanning tree. Ultimately, this results

in an inflation factor of about
( |𝑉 |−1)!
2
|𝑉 |−1 .

Finally, since there is no fixed association between genes and

links, i. e. the same gene location can refer to different links in the

different chromosomes, the encoding suffers from reduced locality

and heritability. This latter drawback, however, can be remediated

by an appropriate operator.

4.2 Operators
As standard operators, we consider a 3-Point Crossover (3PXO) and

the Random Reset Mutation (RRM). We also consider a Creep muta-

tion that simply increments or decrements an integer value at equal

probability by a value of 𝑖 , wrapping between lowest and highest

values. These will be used to perform baseline tests. Alternatively,

we utilize the following three more problem-specific operators, de-

signed to enhance the performance for the proposed encodings.

For the VTB encoding, we suggest Link Block Crossover (LBXO).

Rather than transferring contiguous gene sequences between chro-

mosomes, LBXO randomly chooses a variable number of nodes in

the graph and exchanges those genes that attach to these specific

nodes. This can facilitate grooming since it helps maintain the rout-

ing at that node. Otherwise, changing many links at one node could

completely alter the routes there. The number of genes to be ex-

changed can also be scaled according to the cost difference between

the individuals, such that a low-quality solution will receive more

genes from a high-quality solution.

Due to their mixture of integer and binary chromosomes, we

also suggest specific operators for the VTCS encoding. The first is

the VTCS-Specific Mutation (VSM) operator. Since the tree genes

are relatively few, they are not very likely to be changed. However,

if they are affected the solution will change drastically. To control

these effects, VSM has a parameter to adjust the probability that

a tree gene or link gene should be mutated. After deciding this,

a gene from the respective substring is selected at random and

manipulated in the same way as by Creep mutation with increment

size 𝑖 = 1.

Finally, we also suggest a VTCS-Specific Crossover (VSXO) op-

erator. Since the gene sequences in identical places of two different

VTCS chromosomes may represent very different links, a regu-

lar crossover operator will result in low heritability of traits. To

counteract this, VSXO first takes the tree genes of the parents and

copies them without change to the offspring. Now it can determine

which genes correspond to which links in the offspring. It then
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Algorithm 1 Spanning Tree Encoding – Decoding Function

Require: ⟨𝑉 , 𝐸𝑣⟩ is a connected, non-empty graph

Require: edges provides feasible edges as priority-sorted array

Require: genes provides gene sequence as array
function Decode(𝑉 ,𝐸𝑣 ,edges,edgeMap, 𝑣𝑠𝑡𝑎𝑟𝑡 , genes)

let tmpEdges← edges
let 𝑉tmp ← 𝑉 \ {𝑣𝑠𝑡𝑎𝑟𝑡 }
let 𝑖𝑡𝑎𝑟𝑔𝑒𝑡 ← 0, 𝑖 ← 0, 𝑣𝑐𝑢𝑟𝑟 ← 𝑣𝑠𝑡𝑎𝑟𝑡
let nextEdgeMap← edgeMap[𝑣𝑠𝑡𝑎𝑟𝑡 ]
let 𝐸tmp ← ∅
for 𝑖𝑔𝑒𝑛𝑒 = 0 to 𝑖𝑔𝑒𝑛𝑒 = |𝑉 | − 2 − 1 do

𝑖 ← 0

𝑖𝑡𝑎𝑟𝑔𝑒𝑡 ← genes[𝑖𝑔𝑒𝑛𝑒 ]
nextEdgeMap[𝑣𝑐𝑢𝑟𝑟 ] ← ⊥
for all ⟨𝑣, ⟨𝑠, 𝑑⟩⟩ ∈ nextEdgeMap do

if 𝑖 ≤ 𝑖𝑡𝑎𝑟𝑔𝑒𝑡 then
𝑣𝑐𝑢𝑟𝑟 ← 𝑑

if 𝑣𝑐𝑢𝑟𝑟 ∈ 𝑉tmp and ∃⟨𝑛, ⟨𝑠, 𝑑⟩⟩ ∈ tmpEdges then
if 𝑖 = 𝑖𝑡𝑎𝑟𝑔𝑒𝑡 then

𝑉tmp ← 𝑉tmp \ {𝑣𝑐𝑢𝑟𝑟 }
tmpEdges[𝑛] ← ⊥
∃!⟨𝑚, ⟨𝑑, 𝑠⟩⟩ ∈ tmpEdges
tmpEdges[𝑚] ← ⊥
𝐸tmp ← 𝐸tmp ∪ {⟨𝑠, 𝑑⟩, ⟨𝑑, 𝑠⟩}

end if
𝑖 ← 𝑖 + 1

end if
end if

end for
for all 𝑣 ∈ 𝑉tmp do ⊲ Update Next-Edge Table

⟨𝑠, 𝑑⟩ ← edgeMap[𝑣𝑐𝑢𝑟𝑟 ] [𝑣]
if 𝑑 ∈ 𝑉tmp and ∃⟨𝑛, ⟨𝑠, 𝑑⟩⟩ ∈ tmpEdges and

↩→ nextEdgeMap[𝑣] ≠ ⊥ then
⟨𝑜, 𝑡⟩ ← nextEdgeMap[𝑣]
if (𝑡 ≠ 𝑣 and 𝑑 = 𝑣) or 𝑣𝑐𝑢𝑟𝑟 = 𝑡 or

↩→ (⟨𝑜, 𝑡⟩ ⪰𝐸 ⟨𝑠, 𝑑⟩ and 𝑡 ≠ 𝑣) then
nextEdgeMap[𝑣] ← ⟨𝑠, 𝑑⟩

end if
end if

end for
end for
∃!𝑣 ∈ 𝑉tmp ⊲ Only exactly one element remaining

𝑣𝑐𝑢𝑟𝑟 ← 𝑣

⟨𝑠, 𝑑⟩ ← nextEdgeMap[𝑣𝑐𝑢𝑟𝑟 ]
∃!⟨𝑛, ⟨𝑠, 𝑑⟩⟩ ∈ tmpEdges
tmpEdges[𝑛] ← ⊥
∃!⟨𝑚, ⟨𝑑, 𝑠⟩⟩ ∈ tmpEdges
tmpEdges[𝑚] ← ⊥
𝐸tmp ← 𝐸tmp ∪ {⟨𝑠, 𝑑⟩, ⟨𝑑, 𝑠⟩}
for all 𝑒 ≠ ⊥ ∈ tmpEdges do

𝑖𝑔𝑒𝑛𝑒 ← 𝑖𝑔𝑒𝑛𝑒 + 1
if genes[𝑖𝑔𝑒𝑛𝑒 ] = 1 then

𝐸tmp ← 𝐸tmp ∪ {𝑒}
end if

end for
return 𝐸tmp

end function

activates the augmentation links corresponding to the opposite

chromosome’s tree links. The last step is to exchange the remaining

links based on a regular probabilistic crossover.

4.3 Population Management
Since our goal is to develop a single good solution as quickly as

possible, we can expect a meaningful initialization to accelerate

the search. Following the notion that a link-augmented spanning

tree provides a good starting point, we propose to initialize the

population for VTB chromosomes with just such trees. To this end,

we adapt the repair function that ensures connectivity for VTB and

add further augmentation links according to a fixed ratio. We found

in experiments that for our scenarios a relatively high ratio of 0.7

was most useful. We will refer to this initialization as Augmented

Spanning Tree Initialization (ASTI). Note, that randomly initializing

a VTCS chromosome with this probability will have the same effect

as ASTI for VTB.

Furthermore, we suggest including two trivial solutions along

with those generated by ASTI. The first is the solution, where all

feasible links are activated. The second activates exactly those

virtual links that correspond exactly to the links of the physical

topology. We refer to the combination of these trivial solutions

and ASTI as hybrid initialization. Finally, we always ensure that no

duplicate chromosomes exist in the population and that the best

individual cannot by removed by the replacement process.

5 EVALUATION
We evaluate the aforementioned approaches in two different scenar-

ios. In order to establish a meaningful baseline in attainable solution

quality, we use a known problem from the SNDlib [16] database of

reference networking problems. While there is no problem match-

ing our intended level of complexity regarding QoS-enabled traffic,

the problem called france--D-B-M-N-S-A-N-N can in fact be inter-

preted as a multi-layer network problem of reduced complexity.

The second part of the evaluation is based on full-featured scenarios

that have been modeled after actual networks with realistic traffic

matrices. In this part, we focus on the ability of given methods

to achieve meaningful improvements over the baseline solution

within limited time frames.

For comparison, we include results from a Shortest Path Heuris-

tic (SPH), which simply uses shortest paths in a virtual topology

identical to the physical topology. Furthermore, we employ two

different approaches based on Simulated Annealing. Both use the

random activation or deactivation of virtual links as perturbation

function. The first, which we will abbreviate as SaT, reroutes all

traffic following a perturbation of the virtual topology. The second,

which we refer to as SaR, reroutes only the traffic demands affected

by the change. SaR can therefore compute an iteration faster than

SaT and it can passively optimize routing. These approaches are

based on the original works of Feller [12, 13]. We start both ap-

proaches from a virtual topology, which corresponds to the physical

topology, such that the result can never be worse than what SPH

can achieve.
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Figure 4: Topology of france--D-B-M-N-S-A-N-N

5.1 SNDLib Reference Scenario
The problem france--D-B-M-N-S-A-N-N contains the infrastructure

of a french core network with 25 nodes and 45 physical link can-

didates. This topology of density 0.15 is shown in Figure 4. The

included traffic matrix contains 300 unidirectional demands of be-

tween 332 and 1808 required data rate units, but regrettably no

QoS classes. Some terms and parameters differ slightly from those

described in Section 2: Circuits cannot be optically switched and

there is no limit on the number of circuits on a single physical link.

Furthermore, a pair of TXPs for a circuit is referred to as a “module”

and all modules have a uniform cost 𝜅𝑆𝑁𝐷 of 250 cost units while

providing a capacity of 2500 data rate units at infinite reach.

The cost function included with the problem is as follows.

𝐹Cost = |𝐶 | · 𝜅SND (1)

For our optimization algorithm, we add two more penalty terms,

such that we arrive at

𝐹Opt = |𝐶 | · 𝜅SND + 𝑢𝑑 · 𝛼 + 𝑢𝑐 · 𝛽 (2)

with

𝛼 > 𝛽

𝛽 > 𝜅SND

𝛼 + 𝑟t,min · 𝛽 ≫ |𝐸𝑣 | · 𝜅SND
𝛼, 𝛽 ∈ R+

where 𝑟t,min is the lowest rate of all demands, 𝑢𝑑 is the number of

unrouted demands and 𝑢𝑐 is the sum of the unrouted capacity. The

scaling factors 𝛼 and 𝛽 are chosen such that the penalty incurred

for not routing the lowest data rate is still higher than that of the

longest possible path.

All metaheuristic approaches were run with a time limit of 12 h

and repeated 10 times with independent seeds to control for statisti-

cal effects. All tests were run on dedicated servers with dual-socket

Xeon E5-2640 v4 processors, each featuring 10 cores and a max-

imum frequency of 3.4GHz. The Simulated Annealing methods

use different cooling schedules. While SaR was run with a cooling

factor of 0.95 at 6000 iterations per temperature, SaT had to be run

with a much slower 0.9999 at 10000 iterations, as it would otherwise

lead to premature convergence. The GA methods were run on 20

parallel threads with the parameters listed in Table 1.

Figure 5 shows boxplots of the final value of 𝐹Cost for each of

the metaheuristics and the time required to reach this value. In the

left sub-figure, the top line represents the cost value achieved by

the SPH. Unfortunately, SNDlib’s database does neither contain

Table 1: Genetic Algorithm Parameters in SNDlib Scenario

Encoding VTB VTCS

Population Size 10,000 10,000

Offspring 1,000 1,000

Initialization ASTI Random

Mutation RRM, Creep,

𝑝 = 0.02 𝑖 = 1

Recombination 3PXO 3PXO
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Figure 5: Cost and Runtime for SNDlib Scenario

an exact optimum, nor a primal solution, likely due to problem

complexity. However, a dual bound, i. e. a lower bound to the ac-

tual optimum obtained from a MILP approach by relaxation, is

present and indicated by the lower line in the left figure. All meta-

heuristics achieve better cost values than the simple SPH. This

meets expectations since SPH cannot enforce grooming by elimi-

nating underutilized links. Furthermore, both Simulated Annealing

methods use the SPH solution as a starting point. While the SaT

approach lags behind, the overall best result was achieved by the

SaR approach, which is even better than all results obtained from

the GA methods, probably due to its ability to influence the traf-

fic routing more directly. However, VTB and VTCS show better

median values and VTCS has the best average cost value.

When comparing the times until these values were reached, the

GA approaches drastically outperform SaT and SaR, thanks to their

parallel implementation with all VTB runs being below 10min,

while VTCS took less than 30min, except for one outlier. When

comparing the number of candidate solutions evaluated during

runtime, such that the speedup due to parallel implementation is

irrelevant, we observe that SaR requires about 5 % fewer evaluations

than VTB, while VTCS needed almost 63 % fewer, when ignoring

the outlier.

5.2 QoS Scenario
To analyze our approaches in scenarios covering all technological

and QoS constraints, we collected data about the network of a North

American ISP and reverse-engineered the physical link lengths by
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Figure 6: Topology of USA-DC

Table 2: TXP Transmission Modes

Data Rate in Gbit/s 50 100 150 200 250

Reach in km 8,000 4,000 2,000 1,000 500

V. Link Coverage in % 100 92.4 50.3 18.1 5.3

correlating this data with road and rail networks. We refer to this

topology as USA-DC. It consists of 19 nodes and 35 links as shown in
Figure 6. For the TXPs, we assume 5 different transmission modes,

based on data obtained from technical documentation [6, 7]. We

assume that the mode of highest data rate for a given link length

is used. The modes and the resulting coverage of potential virtual

links are shown in Table 2. Since 100 % of these links can be realized,

we need to consider the full graph of 171 virtual links.

Traffic data was obtained from a generator developed by Enderle

and the author [11] using public forecasts from Cisco [17, 18] and

US Census surveys [3]. There are 812 unidirectional demands with

a sum data rate of 47.4 Tbit/s. Among these, 23.3 % require a maxi-

mum latency of 10ms and 17.4 % a minimum availability of 0.99 %.

We determine the incurred traffic delay for each link, based on the

speed of light in optical fiber at about 4.8985 µs/km. Additionally,

we consider 1ms per router due to packet processing and queuing.

Availability is modeled to decrease with fiber length, since longer

distances increase the risk of a fiber defect, e. g. due to a digging

accident. We assume a figure of 2.55 × 10−6 km−1, resulting in an

availability of 0.99745 for a distance of 1000 km.

For the optimization cost function in Equation 3, we consider

the TXPs at a unit cost of 𝜅 = 1, while also including penalty terms

for unfulfilled QoS requirements.

𝐹QoS = |𝐶 | · 2 · 𝜅 + 𝑢𝑑 · 𝜙 + 𝑢𝑎 ·𝜓 + 𝑢𝑙 · 𝜔 (3)

with

𝜙 > |𝑉 | ·
𝑟t,max

𝑟c,min
· 𝜅

𝜅 > |𝑇 | ·𝜓
𝜓 > |𝑇 | · 𝜔

𝜅, 𝜙,𝜓, 𝜔 ∈ R+
where 𝑟t,max is the maximum data rate of all demands in 𝑇 and

𝑟c,min is the minimum data rate of all TXP modes. Small greek

letters indicate weighting parameters. The variable 𝑢𝑑 represents

the number of unrouted demands, 𝑢𝑎 represents the number of

Table 3: Genetic Algorithm Parameters in QoS Scenario

Version VTB-R VTB-E VTCS-R VTCS-E

Encoding VTB VTB VTCS VTCS

Population Size 400 400 400 400

Offspring 100 100 100 100

Initialization Random Hybrid Random Hybrid

Mutation RRM,

𝑝 = 0.02

RRM,

𝑝 = 0.02

Creep,

𝑖 = 1

VSM,

𝑝 = 0.15

Recombination 3PXO LBXO 3PXO VSXO
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Figure 7: Cost and Runtime for USA-DC Scenario

demands failing their availability requirement, whereas 𝑢𝑙 is the

number of demands that exceed their latency limit.

In this evaluation, we focus on the potential to achieve improve-

ments over SPH in short time frames. The runtime limit is set to

a mere 1000 seconds. All proposed approaches are used and the

algorithmic parameters adjusted to match this scenario. For Sim-

ulated Annealing, this means compressing the cooling schedules,

such that a meaningful amount of temperature steps towards refine-

ment can be taken in the available time. We set the cooling factors

for SaT and SaR to 0.95 and reduce the number of iterations per

temperature to 1000. For the GA approaches, we also reduce the

population and offspring sizes to allow for a meaningful number

of generations. We use two different versions per encoding. The

versions abbreviated VTB-R and VTCS-R use the regular operators

and random initialization, while VTB-E and VTCS-E use enhanced

operators and initialization schemes as listed in Table 3.

While all obtained solutions succeed in fulfilling all QoS require-

ments, the resulting hardware costs vary considerably as presented

by the boxplots in Figure 7. The drastically increased complexity in

conjunction with the limited timeframe compared to the previous

problem has a large impact on the Simulated Annealing methods.

Their median values remain identical to the SPH solution, which is

their starting point. Only few runs showed a minor improvement

within the initial 20 of about 80,000 iterations. The GAs can analyze
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Figure 8: Topology of USA-Max

Table 4: Feasible Virtual Topology Variations of USA-Max

Version Physical Small Medium Large Full

Nodes 149 149 149 149 149

V. Links 206 1,755 4,725 9,345 11,026

Density 0.0187 0.159 0.429 0.848 1

more than 500,000 solutions in the same time thanks to their paral-

lel implementation. They improve the cost value by between 8 and

11 % compared to SPH, with both enhanced versions achieving the

best overall value at 298. While VTCS-E exhibits the lowest median

time, this comes at the drawback of being much less consistent in

cost and time values, such that the median cost value for VTCS-R

is lower than for VTCS-E.

5.3 Large-Scale QoS Scenario
The final scenario is geared towards exploring the scalability lim-

its of the proposed approaches. Based on the data sources in the

previous scenario, we have also created a much larger topology

including all known sites of the ISP. It is referred to as USA-Max
and consists of 149 nodes and 206 links as shown in Figure 8. All

virtual links are feasible assuming the transmission modes listed

in Table 2, which results in a full topology of 11,026 virtual links.

In order to approach this level of complexity more gradually, we

chose to create several intermediate feasible topologies as shown

in Table 4 by artificially limiting the reach of the TXP modes. The

traffic generator from the last scenario is used once more to gen-

erate the traffic matrix. The sum data rate of the resulting 47,094

traffic demands amounts to 44.8 Tbit/s with 22.9 % requiring the

previous latency and 19.2 % the previous availability requirements.

We focus on the fastest of the previous approaches. For Simulated

Annealing, we will use only SaR, and for the GA approaches VTB-

E and VTCS-E. However, some adjustments are made to increase

the scalability. With topologies of the current level of complexity,

the supporting algorithms in traffic and especially circuit routing

become a bottleneck, such that a single network cost evaluation

would require on the order of minutes, which is prohibitive to the

proposed optimization timeframe of 1,000 seconds. We therefore

reduce the population size to 10 and the number of offspring to

20. For VTB we also omit the repair function and slightly change

the hybrid initialization. Rather than creating augmented spanning
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Figure 9: Cost for USA-Max Scenario Versions

trees, we use a randomly augmented physical topology to avoid

the computational overhead of creating random trees. Finally, we

also apply a global relaxation to the problem for all methods by

lifting the wavelength continuity constraint, i. e. we skip the steps

of properly assigning a wavelength slot. This is necessary, since it

is the least scalable part of the supporting algorithms, ultimately

consuming more than 5 times the computing time of all other

algorithms combined.

Results for the different topologies is shown in Figure 9. The

Simulated Annealing method was unable to achieve any improve-

ment over the SPH baseline in all experiments. The GA versions

are initially still capable of achieving an average improvement of

6.55 % for VTB and VTCS even improves the cost value by 8.7 %.

However, the achievable gains rapidly shrink with growing num-

bers of feasible links. For the full topology this amounts to a 1.96 %

improvement for VTB, while VTCS is capable of 2.89 % on average.

6 CONCLUSION
We have presented a multi-layer networking problem description,

common in planning and operation for typical core networks of

large ISPs. Rather than optimizing all aspects of such problems

jointly, we suggest focusing on one of its primary constituent prob-

lems to provide meaningful scalability. We therefore presented an

established and a novel approach to encode a virtual topology and

suggested several specific adaptions to operators and initialization

procedures to accelerate the optimization process.

We determined that our approaches outperform the simple base-

line heuristic as expected and that they provide performance compa-

rable to other metaheuristics, while exploiting approximately half

of the headroom towards known dual bounds in reference problems.

Furthermore, we could show that the cost improvements carry over

to complex problems including relevant technological and QoS pa-

rameters while operating on limited time budgets. Finally, provided

that the supporting algorithms retain sufficient performance, we

have also shown that the approach can even scale towards large

networks, albeit at decreasing solution quality.
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