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Abstract

Network Service Providers (NSPs) and especially Internet Service Providers (ISPs) will face
disruptive changes to their established mode of operation due to several factors. New access
technologies like Fiber-To-The-x (FTTx) and fifth generation cellular mobile communications
(5G) will enable novel use cases, which will require not only increased bandwidths, but also
more precise guarantees for Quality of Service (QoS). Many future applications will require
highly reliable, ultra-low delay and arbitrarily flexible services fueled by virtualization, Internet
of Things (IoT) and industry 4.0. Especially for cloud-based applications, orchestration of
computing and storage will be inextricable from network operation.

This puts forward a considerable challenge for NSP networks since their design is tradi-
tionally centered around services with long holding times and therefore uses overdimensioning
of capacity as a means to assure the necessary quality for common services while dedicated
resources are used for the smaller number of services with high QoS requirements. While earlier
stages of networks such as the access and aggregation areas can still benefit from adopting faster
technologies, especially transport networks cannot be overdimensioned feasibly in a similar
fashion since they are already utilizing devices at the pinnacle of achievable capacity. The only
remaining option in these parts of the network is to employ methods in order to maximize the
efficiency of network resources. As traditional scale-up approaches cease to be effective, NSPs
are prompted to adopt a network-wide scale-out strategy combined with a random interconnec-
tion network operation paradigm enabling utmost flexibility and efficiency. Future services on
this platform will not specify technological parameters, but simply the required QoS while the
platform itself will provide the exact bandwidth, latency, and availability figures custom-tailored
for each individual request, provisioned at a moment’s notice at an optimal resource usage to
the operator. The network itself will be highly automated, shifting the focus of the network
operators’ personnel from maintenance to service design.

Core networks based on optical transport technologies with electrical routing layers on
top will develop towards a consolidated model of two layers able to provide a maximum of
flexibility and performance. Until optical packet switching technology becomes available, a
packet optical paradigm combining the bandwidth and low delay of optical technologies with
the efficiency and flexibility of packet-switched networks will be imperative. Enabling such
a dynamic service-oriented network operation requires solving highly complex combinatorial
problems considering all aforementioned aspects. Traditional network planning relies on many
disjoint algorithms often working on heterogeneous representations of the same network state.
Each algorithm therefore solves its subproblem according to its own definition of optimality
without being able to consider effects of co-dependence with other algorithms thereby leading
to a sub-par solution considering the complete network information. An integrated approach on
the other hand could consider the problem in a holistic way and minimize or even eliminate
safety margins required to assemble a complete solution from different algorithms’ results. The
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ii Abstract

drawback is the much increased problem complexity which is prohibitive to traditional solutions
such as mathematical optimization.

In this thesis several novel solution approaches based on a well-established metaheuristic
method called Genetic Algorithms will be introduced, which can not only be used in network
planning, but also for dynamic network operation. Genetic Algorithms encode an abstract prob-
lem as a genetic code and apply the principle of natural evolution due to mutation and crossover
of genes under selection pressure as a means to solve a given problem. While the basic algo-
rithm has been used for network optimization in the past, the approach given here will adapt
the principle and combine several encoding schemes with novel operators and acceleration
techniques which are specifically designed to be highly efficient in solving even the complex,
large-scale problems associated with multi-layer network optimization under QoS constraints.
The approach leverages graph properties common to all such problems and builds on this knowl-
edge to provide a highly efficient and scalable optimization platform considering capabilities of
future networking devices.

The performance of these algorithms will be systematically evaluated based on several
approaches. The baseline reference will be the disjoint solution approach commonly used today
with operators while a second metaheuristic approach based on Simulated Annealing, which has
been successfully used in research applications in the past, will serve as reference to determine
the quality of the optimization results. The evaluation is carried out based on future network
layouts and architectures considering different use cases. Network load figures are generated
from publicly available load and population statistics and will allow to investigate realistic traffic
profiles with diverse network services.



Kurzfassung

Internetdienstanbieter (engl. Internet Service Provider, kurz ISP) werden sich in naher Zukunft
mit disruptiven Änderungen an deren etablierten Geschäftsprozessen bedingt durch diverse
Faktoren konfrontiert sehen. Neue Netzzugangstechnologien wie Fiber-To-The-x und Mobil-
funkdienste der fünften Generation (5G) werden nicht nur deutlich gesteigerte Bandbreiten,
sondern auch präzisere Garantien für Dienstgüte (engl. Quality of Service, kurz QoS) erfordern.
Weiter werden künftige Anwendungen hochverfügbare, hochflexibel ausgestaltbare Dienste von
geringster Latenz benötigen, was durch Cloudifizierung, das Internet der Dinge (engl. Internet
of Things, kurz IoT) und Industrie 4.0 zusätzlich an Relevanz erlangt. Die Orchestrierung von
Berechnung und Speicherung von Informationen wird nicht zuletzt aufgrund von Netzfunk-
tionsvirtualisierung (engl. Network Function Virtualization, kurz NFV) untrennbar mit dem
Netzbetrieb verwoben.

Dies resultiert in einer beträchtlichen Herausforderung für ISP Netze, da sich deren Design
traditionell an Diensten langer Haltezeiten orientiert und aufgrund dessen Überdimensionierung
von Kapazitäten als Methode eingesetzt werden kann, um die geforderte Güte für die verbreite-
ten Standarddienste zu erzielen. Gleichzeitig können seltener angefragte Dienste höherer QoS-
Anforderungen auf dedizierte Ressourcen abgebildet werden. Während vorgelagerte Bereiche
der Betreibernetze wie die Zugangs- und Aggregationsbereiche weiterhin vermittels schnellerer
Übertragungstechnologien in ihrer Leistungsfähigkeit gesteigert werden können, ist dies oftmals
kein mögliches Vorgehen für Transportnetze. Dort ist durch eine Überdimensionierung wirt-
schaftlich sinnvoll kein Mehrgewinn an Leistung zu erzielen, da hier typischerweise bereits alle
marktverfügbaren technologischen Möglichkeiten zur Kapazitätssteigerung ausgereizt sind. Die
einzig verbleibende Vorgehensweise in diesen Netzbereichen stellt die Anwendung von Metho-
den dar, welche die Nutzungseffizienz verfügbarer Ressourcen maximieren. Da also Ansätze,
welche auf vertikaler Skalierung basieren, nicht mehr effektiv sein werden, erfolgt eine Ver-
schiebung hin zu einer netzweiten horizontalen Skalierungsstrategie in Kombination mit einem
dynamisch anpassbaren Netzbetriebsparadigma, welches so die größtmögliche Flexibilität und
Effizienz ermöglicht. Künftige Dienste auf dieser Plattform werden nicht mehr technologiespe-
zifische Parameter angeben, sondern sich explizit auf Angeben zur Dienstgüte beziehen. Dies
erlaubt es der Plattform, selbstständig die exakt benötigten Bandbreiten-, Latenz- und Verfüg-
barkeitswerte spezifisch für jede individuelle Anforderung zu bestimmen und diese so in kurzer
Zeit unter optimaler Ressourcennutzung durch den Betreiber zur Verfügung zu stellen. Das Netz
selbst wird dabei hochautomatisiert sein und den Arbeitsschwerpunkt der Betriebsmannschaft
des Internetproviders von der Instandhaltung der Systeme hin zur Definition und Ausgestaltung
von Diensten verschieben.

Kernnetze, welche auf optischen Übertragungstechnologien in Kombination mit einer elektri-
schen Routing-Schicht basieren, werden sich hin zu einem konsolidierten Zweischichtenmodell
entwickeln. Dies erlaubt ein Maximum an Flexibilität und Leistung. Solange rein optische
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Paketvermittlung noch keine praktisch verfügbare Technologie ist, bleibt ein Paket-Optisches
Designparadigma, welches die hohen Bandbreiten und niedrige Latenzzeiten optischer Techno-
logien mit der Effizienz und Flexibilität eines paketvermittelten Netzes kombinieren, die einzige
Alternative. Um einen derartig dynamischen und dienst-orientierten Netzbetrieb zu ermöglichen,
müssen hochkomplexe kombinatorische Probleme unter Berücksichtigung der vorgenannten
Aspekte gelöst werden können. Herkömmliche Netzplanung setzt dabei eine Vielzahl unabhän-
giger Algorithmen ein, welche teils mit sehr heterogenen Darstellungen desselben Netzzustandes
arbeiten. Jeder Algorithmus löst dabei sein eigenes Teilproblem entsprechend seiner jeweiligen
Definition eines optimalen Zustandes. Es ist in einem solchen Ansatz daher kaum möglich, die
engen Zusammenhänge der Kopplung zwischen den Problemlösungen einzelner Algorithmen
zu berücksichtigen, sodass die entstehende Gesamtlösung hinter ihren Möglichkeiten zurück-
bleibt. Ein integrierter Lösungsansatz hingegen könnte das Problem holistisch betrachten und so
zur Reduktion oder gar Vermeidung von unnötigen Sicherheitsmargen beitragen, welche sonst
nötig wären. Der Nachteil dieses Ansatzes ist eine stark gesteigerte kombinatorische Komplexi-
tät, welche die Fähigkeiten traditioneller Ansätze wie mathematischer Optimierung übersteigen
dürfte.

In dieser Arbeit werden neuartige Lösungsansätze, basierend auf einer etablierten Metaheu-
ristik in Form von genetischen Algorithmen, eingeführt, welche nicht nur eine statische Netzpla-
nung, sondern auch eine dynamische Anpassung im Betrieb ermöglichen können. Genetische
Algorithmen bilden dabei ein abstraktes Problem als genetischen Code ab und verwenden natür-
liche Evolutionsprozesse wie Mutation und Rekombination von Genen unter Selektionsdruck,
um ein gegebenes Problem zu lösen. Während grundlegende Varianten genetischer Algorith-
men bereits in der Vergangenheit zur Optimierung von Netzen angewandt wurden, werden die
vorgestellten Ansätze diese Grundprinzipien anpassen und weiterentwickeln. Die Kombination
verschiedener problemspezifischer Kodierungsansätze und neuartiger Operatoren, ermöglicht so
einen Ansatz zur effizienten Lösung von komplexen Optimierungsproblemen im Kontext von
Multi-Layer-Netzen unter Berücksichtigung von Dienstgüteanforderungen. Dieser Ansatz nutzt
Eigenschaften von Graphen, wie sie in allen solchen Problemen zu finden sind, um eine hoch-
effiziente und skalierbare Optimierungsplattform zu schaffen, welche auch die Eigenschaften
künftiger Netz-Hardware berücksichtigt.

Die Leistung der entwickelten Algorithmen wird systematisch aus verschiedenen Blick-
winkeln ermittelt. Dabei dienen der etablierte Ansatz, mehrere lose gekoppelte Algorithmen
zu verwenden, sowie eine zweite Metaheuristik, welche auf Simulated Annealing basiert, als
Referenz. Diese zweite Heuristik wurde bereits in der Vergangenheit erfolgreich zu Forschungs-
zwecken eingesetzt und bildet so eine sinnvolle Grundlage für die Bewertung der erreichbaren
Lösungsqualität. Der Evaluation liegen dabei verschiedene Netzdesigns zugrunde, wobei auch
solche berücksichtigt werden, welche voraussichtlich repräsentativ für künftige Netze sind. Die
Verkehrslast wurde basierend auf Messungen und öffentlich verfügbaren Daten über Verkehrs-
aufkommen und Populationsverteilungen ermittelt und beinhaltet repräsentative Dienstgütean-
forderungen.
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xx NOTATION

Notation

a,b,c Minuscules represent individual variables

A,B,C Majuscules represent sets, where not explicitly noted otherwise

A = {a, . . .} Curvy brackets represent set enumerations

℘(A) Power set of A, i. e., set of all subsets of A

〈a, . . .〉 Angled brackets represent tuples, i. e., finite sequences

〈ai〉 Tuple of n elements ai where i ∈ {1..n} and n ∈ N

V Finite set of vertices

e = 〈s,d〉 Directed edge e connecting s to d where s,d ∈V and s 6= d

E Finite set of edges

g = 〈V ,E〉 Graph g represented as a tuple of a vertex set V and an edge set E where
∀〈s,d〉 ∈ E : s,d ∈V

g′ = 〈V ′,E ′〉 Subgraph g′ to g where V ′ ⊆V , E ′ ⊆ E and ∀〈s,d〉 ∈ E ′ : s,d ∈V ′

G = 〈gi〉 Multi-layer graph of n layers where i ∈ {1..n} and gi = 〈V ,Ei〉

p = 〈ei〉 Path of edges ei such that ∀ex = 〈sx,dx〉 : ex+1 = 〈dx,dx+1〉

fHops(g,s, t) = h Function for the minimum number of hops h from node s to node t in graph g

map[x] = y Associative map access providing a value y for a given value x

map[x][y] = z Bivariate associative map access giving z for a tuple 〈x,y〉

arr[x] = y Associative map access where the domain is a finite subset of N0

R N D(x,y) = r Random number generation returning r ∈ U(x,y) as a uniformly distributed
number smaller than y, but at least as large as x

R N D I(x,y) = r Random number generation of an integer value i between integers x and y

R N D(X) = x Randomized retrieval of an arbitrary element x ∈ X from a finite set X



NOTATION xxi

In geometry, the term vertex formally only applies to points where two or more lines meet.
However, in this monograph we will consider the more general usage of the term from graph
theory. Therein, the terms node and vertex are interchangeable, and they may or may not be
connected by at least one edge.

Associative maps can generally be described by functions mapping from a finite domain to
an arbitrary codomain. In computer programming, however, it is possible to iteratively define
such a mapping, by explicitly amending a set of relations M between individual elements of
the domain to elements of the codomain. This is especially true for the definition of Hashmaps
which typically do not require a complete mapping of the domain and therefore a full definition
of such maps requires a default element in the codomain to form a well-defined function. This
means that formally, an associative map realizes a function m with

m : X → Y ∪{⊥}, x 7→ y

where X and Y are finite sets and ⊥ signifies the default element, such that

m(x) =

{
y if ∃〈x,y〉 ∈M
⊥ otherwise

, M ⊆ X×Y

We also introduce a cardinality for associative maps. For a hypothetical map mapXY based on m,
we define this cardinality, which is given by the number of the contained mappings, as follows.

|mapXY|= |M|= |{m(x)|x ∈ X ∧m(x) 6=⊥}|

we typically expect constant time access for our maps, except where explicitly noted otherwise,
due to more complex hash functions. Furthermore, we define our maps to provide a deterministic
iteration order for loop access. We will consider the contained elements to follow the order of
their insertion.

There are two special cases of associative maps to which we apply different assumptions.
The first are arrays, which formally realize a function a with

a : {0..n}→ Y ∪{⊥}, x 7→ y, n ∈ N0

where we expect access time complexity to always be in O(1). The second case are mappings
where the codomain is a numeric type including the 0 such as N0 or R. In this case we define
⊥≡ 0.
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1 Introduction

This chapter will provide a brief introduction to the basics of how Network Service Providers
(NSPs) operate their networks and the challenges they will face in the near future due to changing
customer demands and advancing technological capabilities. It will highlight why these changes
will result in an increase in complexity of several aspects of network design and operation, which
motivates the need for a flexible new kind of efficient planning algorithms, such as the proposed
genetic algorithm approach introduced in this monograph.

1.1 Network Service Providers and Service-Level Agreements
An NSP’s business model depends on the revenue generated from sales of connection services
and the cost incurred from creating, operating, and maintaining its network as well as contractual
penalties for unfulfilled service obligations. Traditionally, the largest share of these services was
based on an agreement regarding the data rate an NSP has to provide to the customer. Such
contracts are typically long-term and inexpensive but contain almost no further guarantees on
quality meaning that the service will be provided on a best-effort basis. On the other hand, a
smaller number of customers, mostly from the business sector, held more differentiated contracts.
These include additional Quality of Service (QoS) metrics as well as penalties for the case that a
service should not be rendered to its full extent. The sum of such specifications is called Service-
Level Agreement (SLA). To ensure that, even in the face of failing networking hardware, any
such penalties could be avoided, NSPs employed more resources than strictly required for
customers with more demanding SLAs, thus providing them with higher quality of service than
was actually agreed upon. Since these customers were fewer in number, but generating more
revenue per contract, this was a feasible model for NSPs.

Services with and without extended SLAs are commonly implemented on the same network
infrastructure, which needs to provide sufficient resources to handle the expected traffic load
generated by the customers. Initially creating such a network requires a large amount of capital
expenditure (CAPEX) for public works, site and hardware procurement as well as installation
and configuration; over the lifetime of the network there is also significant operating expen-
diture (OPEX) for network and service management, hardware and site maintenance, heating,
ventilation and electricity. In order to reduce these costs, NSPs try to dimension their networks,
i. e., determining the amount and location of network resources required, to be as efficient as
possible.

Planning and provisioning an efficient network requires detailed information on the traffic
flows the resources will have to transport. NSPs utilize present and historical data about where
users connect, which SLAs they have and how much data they send and receive at which time
to derive statistically expected peak data rates which are then used as the basis for dimensioning.
In order to account for uncertainties of these statistical values and to provide a reserve for large-
scale failures or short-term contract acquisitions, NSPs are known to design their networks with

1
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capacities exceeding the expected maximum by a certain predetermined factor [22]. This practice
is also known as overdimensioning. By prioritizing the few services for their SLA-customers
over the many of best-effort-customers, NSPs were able to have a simple operation paradigm
that maximized revenue.

1.2 Future Traffic and Service Requirements
Several technological advancements as well as novel applications are expected to have a sig-
nificant impact on services and traffic characteristics in the near future. The current growth in
Internet traffic of 24 % annually1 [40], which is dominated by video traffic, will most likely
continue, supported through more potent access technologies like Fiber-To-The-x (FTTx) and
fifth generation cellular mobile communications (5G). Beyond the sheer volume, however, there
will also be an increased focus on other aspects of service delivery. Novel technologies such
as Virtual Reality (VR)- and Augmented Reality (AR)-devices give rise to the so-called Tactile
Internet [249], which has applications in areas ranging from online gaming to industry 4.0 and
telesurgery. In this context, “tactile” refers to a user experience of quasi-instantaneous feedback
when interacting with a remote process through an Internet-connection. This requires End-To-
End (E2E)-control loops, which are inherently sensitive to delay and delay variations. Especially
in the context of non-failsafe processes such as surgery or remotely operated machines, avail-
ability of connections will be of utmost importance.

In addition to these factors, the traffic volatility, i. e., its dynamic fluctuations on short
timescales, and its patterns of emergence might also be subject to change due to the Internet
of Things (IoT). The IoT represents a paradigm wherein things from smart watches, health
trackers and refrigerators to industrial systems and even cars are connected to the Internet and
therefore drastically increase the number and location density of sources and destinations of data
traffic. Coupled with the high capacity of 5G radios, this enables so-called massive machine-type
communication scenarios in which vast numbers of independent devices exchange and react
upon information of their own accord and far beyond the capabilities of systems with a human
in the loop.

In a business context, such applications will lead to an increase in the creation, processing,
and storage of large amounts of data. Many businesses have therefore outsourced operation
and maintenance of computing hard- and software to the Data Centers (DCs) of Cloud Service
Providers (CSPs) for reasons of scalability: Customers of CSPs can order and provision com-
puting resources within minutes [155] and do not have to invest in and maintain a potentially
vastly underutilized DC at their own expense. To enable business-critical tasks, CSPs offer their
own SLAs with various performance guarantees. In order to make an E2E service between
businesses and CSPs viable, the SLA of the connection between them has to match the SLA
requirements of the cloud service. For NSPs, this necessitates a shift away from long-term and
static services of few SLA-classes, which could be manually planned once and left in service;
rather future businesses will need on-demand, flexible and QoS-diverse service compositions
and therefore all operational and planning tasks of NSPs will need to be aware of the traffic flows’
SLA requirements every step of the way. This not only significantly increases the complexity of
planning tasks, but also requires a greater amount of flexibility in the networks operated by the
NSPs.

1Compound annual growth rate 2016 – 2021 of worldwide IP-traffic



1.3 NSP/ISP Network Structure 3

Access Aggregation Core

TransportClients

107 105 103 102

101 101.5 102 103

app. order of
 number of nodes

app. order of
distance in km10-0.5

Figure 1.1: Common NSP/ISP network structure

1.3 NSP/ISP Network Structure
The networking infrastructure of larger NSPs and especially Internet Service Providers (ISPs)
consists of many nodes, which represent an abstract view of physical sites with active network-
ing hardware. These nodes differ in the functions they realize and are typically organized in
three stages of networks. In the access stage, the users connect their user equipment such as
home routers or cell phones to the access network. The networks in this stage often feature a
variety of different technologies such as Digital Subscriber Line (DSL), Fiber-To-The-Home
(FTTH) or Long-Term Evolution (LTE) cellular communication that may require very heteroge-
neous infrastructures on the side of the NSP. The access stage is therefore designed to handle
technology-specific aspects and re-package the customers’ traffic into a format that allows for a
homogeneous transport in the next network stages which form the so-called transport network.
The primary purpose of such networks is transmitting traffic from its source location to its des-
tination location in the network [97]. For larger NSPs, the transport network is often further
divided into an aggregation and at least one core stage. In the aggregation stage, which is often
realized by redundant ring topologies, the traffic is collected from many diverse locations of the
access stage and bundled on higher-rate interfaces toward the core for long-distance transport.
The nodes of the core network commonly feature a much higher degree of interconnection
than the previous stages forming a relatively dense mesh. The primary function in this stage
is high-speed data transport over long distances between core nodes. On the egress side of the
core the traffic is handed over, depending on where the destination is located, to another part
of the aggregation network of the NSP itself, the transport network of a different NSP or the
data center of a CSP. A schematic illustration of this structure along with rough estimates [239]
regarding the order of the number of nodes and link distances is given in Figure 1.1.
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Transport networks are designed as multi-layer networks, where the lowest layer is almost ex-
clusively based on high-speed optical interconnection technologies such as Wavelength-Division
Multiplexing (WDM), because they provide the highest data rates and reaches of commercially
available interfaces. However, these technologies are based on circuit switching which impedes
flexible traffic routing. To mitigate this, there is typically at least one layer on top which uses
a packet-oriented transmission paradigm such as Multiprotocol Label Switching (MPLS) or In-
ternet Protocol (IP). Many NSPs have several more layers, mostly due to hard-to-replace legacy
systems like Frame Relay and Asynchronous Transfer Mode (ATM), but there is a tendency
towards consolidating protocols towards a model of only two layers with a common control
plane [116, 149]. This allows for a meaningful compromise between flexibility, performance,
and management complexity.

1.4 Transport Network Design and Operation
In the past, transport networks could be designed and built layer after layer with the individ-
ual design teams including safety margins at layer interconnection points to avoid unforeseen
shortfalls in this sequential process. After that, a network could remain largely static until the re-
placement by a next generation network. This had been a feasible mode of design and operation
as any single trunk connection in the core could carry a very large number of client connections
from different customers due to the large disparity in attainable data rates between the fiber-optic
core and the copper-based access. A fact that also allowed transport networks to require only
few core sites as they could readily collect the traffic of many aggregation sites.

But now, with the emergence of FTTx in the home segment and an increasing number of
CSPs and other large businesses connecting directly to the aggregation stage with dedicated
fibers, trunk connections can be saturated much more quickly by a smaller number of customers
with varied needs in terms of bandwidth and low latency. Therefore, network design cannot rely
on overprovisioning and ample safety margins for headroom anymore since trunk connections
are costly. Further exacerbating the situation are new architecture concepts such as the 5G PPP’s
network slicing [85] and the Open Networking Foundation (ONF)’s CORD1 [190] suggesting
the integration of micro-data centers, edge cloud services and Network Function Virtualization
(NFV). This leads to service creation points and data center functions moving from networks’
cores closer to the access stage and becoming tightly integrated with network control functions.
Consequently, nodes in the aggregation stage need to be enhanced in their functionality beyond
simple traffic aggregation and become more similar to core nodes in connection density, function
and technology [149, 239, 272]. Reacting to these changes, transport networks need to be
planned with more sites, more functions and more hardware requiring precise dimensioning
and safety margins. This induces additional complexity, not just to the network design and
dimensioning problems, but also to the operation and service provisioning, especially when
combined with diverse and short-term service requests.

To increase flexibility in network operation, NSPs have recently taken interest into adapting
the Software-Defined Networking (SDN) paradigm for transport networks. SDN allows to moni-
tor and configure network hardware by means of programmable interfaces, such that routing and
connection properties can be dynamically adjusted to the present needs. While this has already
been demonstrated to be viable in the packet-forwarding domain, optical technologies are also
currently under development which allow a fine-granular control over various transmission and
routing parameters.

1Central Office Re-architected as a Datacenter
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A unified Transport-SDN (T-SDN) as envisioned by the ONF [275] would allow to jointly
control devices on all layers and therefore enable a resource- and energy-optimized service-
centric operation of the network where safety margins can be reduced and QoS flexibly provi-
sioned as needed. The drawback, however, is the significantly increased complexity of finding
an optimal network configuration on short timescales as more nodes, more technology-specific
capabilities and limitations and more QoS parameters have to be taken into account simultane-
ously.

1.5 Problems and Algorithms for Future Transport Networks
NSPs need to design their network structure, dimension and configure their resources and pro-
vision connections according to their contracts and expected traffic. These tasks can be broken
down into a small number of basic sub-problems such as versions of the topology design and
routing problems. The most common sub-problems work on the substrate of graphs and can be
formulated as combinatorial problems sharing certain constraints based on topological, techno-
logical, and traffic-related properties.

This allowed the development of many efficient solution methods, where the most common
are either heuristics derived from graph-theoretical algorithms, or they are based on mathemati-
cal optimization. Heuristics are often readily extensible and scalable, but unable to find globally
optimal solutions, whereas mathematical optimization allows to determine the global optimum,
but is limited in scalability. As outlined in the introduction above, the mentioned problems will
become significantly more difficult in the near future due to the following factors.

• Novel applications will require higher and more diverse QoS.

• Business cloud service adoption will emphasize SLA-awareness.

• Network density and device flexibility will increase complexity.

• Static overprovisioning will be replaced by dynamic allocation.

The increased complexity may well detract from the solution quality of common heuristics, but
also render mathematical optimization infeasible. This motivates the need for novel algorithmic
approaches which can solve these sub-problems by combining aspects from graph-theory and
combinatorics while offering an improved scaling behavior through inherent parallelism and
ease of modeling.

1.6 Contribution
This thesis provides two main contributions. First, it describes several different approaches to
adapt a meta-heuristic optimization method based on genetic algorithms to solve the aforemen-
tioned problems in a scalable and readily extensible manner. Second, the performance of a select
number of these algorithm variations is evaluated in comparison with another metaheuristic
solution method, based on archetypal problem scenarios.

Genetic Algorithm Coding and Operator Design
Genetic Algorithms are a class of metaheuristics which can be used to efficiently solve highly
complex, multimodal combinatorial problems. They express solutions as genetic codes and apply
evolutionary operators to iteratively evolve better solutions. We present a number of approaches
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combining various adaptions and acceleration techniques to create problem-specific genetic
algorithm variants, which can be employed to solve complex network problems. We will explain
each component and provide a theoretical analysis of their advantages and drawbacks.

Evaluation in Multi-Layer Scenarios
Several of the presented sub-problems will be combined in different ways to create typical
problem combinations as they are commonly encountered in planning and operating multi-layer
networks. We provide network and traffic examples to create scenarios in which we evaluate the
most interesting combination of genetic algorithm approaches in terms of solution quality and
solving time.

1.7 Outline
This thesis is structured as follows.

Chapter 2 gives a detailed description of the technological aspects of multi-layer networks.
It explores the capabilities and limitations of the individual layers and their interplay, which
define the central constraints to the problems under investigation. Based on these constraints,
typical planning and routing problems are explained and categorized.

Chapter 3 provides background on different algorithms and methods which are commonly
used in solving the problems from the previous chapter. It will show the basic working principles
of common methods, both exact and heuristic in nature, and derive their applicability to different
network optimization problems. Special attention will be given to the role of genetic algorithms.
Finally, the chapter will summarize the current state of research on approaches to these problems.

Chapter 4 describes the design goals and approach for the genetic algorithms. It explains
the network abstraction model utilized and how a network configuration can be represented as
a chromosome by different genetic encodings and how corresponding genetic operators, both
generic and problem-specific, interact with these encodings. These components are theoretically
analyzed, both in isolation and as part of an integrated solution approach.

Chapter 5 specifies the scenarios used in the evaluation and explains the simulation envi-
ronment and the solution methods used for comparison. The integrated solution approaches
are evaluated in different scenarios with different sets of parameters and compared against the
reference methods in order to demonstrate their efficacy in solving relevant multi-layer network
problems.

Chapter 6 provides a summary of this monograph and ends on a conclusion on the algorithms
and the results of the evaluation. Advantages and deficiencies are stated, and special emphasis is
put on the identification of the remaining hurdles for application in a carrier-grade environment.



2 Planning and Routing for Multi-Layer
Networks

This chapter is split into two sections. In the first section, a generalized description for multi-
layer networks will be given, followed by the formulation of a dual-layer model architecture
and its technical details, which reflect common properties of real-world multi-layer transport
networks.

Building on these definitions, the second section presents typical tasks and problems, which
arise when building or managing transport networks, such as traffic routing and network dimen-
sioning. These problems are classified and discussed in the context of the dual-layer architecture.
Finally, a selected set of possible goals for which operators typically design their networks will
be given.

2.1 Multi-Layer Networks

A multi-layer network is a network of multiple layers, such that each layer may form its own,
largely independent network, which is interconnected with the other layers at specific points.
Typical transport networks and especially their cores are built as or have evolved into multi-layer
networks for various reasons ranging from the need to maintain legacy services to combining
advantages of different technologies. In this work, we will focus on a multi-layered, unified
transport network structure following the same basic principles as suggested by the Telecom-
munication Standardization Sector of the ITU (ITU-T) in their recommendation G.800 [97].
This recommendation also contains a very comprehensive model for the proposed multi-layer
network, capturing a plethora of different realizations, and dealing with transport and control
aspects. However, this model is unnecessarily complex for the purpose of this monograph, such
that we will consider a more generic and abstracted perspective, focusing on transport functions.
This section will provide an overview on features, capabilities and limitations of such networks
and commonly utilized hardware and provide the required details concerning the problems and
algorithms in the following chapters.

2.1.1 Generic Structure
From an abstract perspective, a network consists of nodes and links, such that the links provide
connectivity between nodes. A generic multi-layer network is an extension to this concept, such
that it consists of different layers of individual networks. The layers are connected to each other
by nodes in their respective networks that are associated to nodes in the other layers’ networks.
In communication networks, the layers follow a client–server principle such that lower layers
provide connection services to higher layers. Higher layers then use these in order to realize their
own links on which they provide connection services for their respective clients. A connection
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Figure 2.1: Multi-layer network with 6 PoPs where each virtual link has a physical link

service from a client perspective can therefore transparently be composed of several lower-layer
connection services.

For the specific case of transport networks based on optical transmission equipment, only the
lowest layer, formed by the optical fibers, physically interconnects nodes. All following layers
recursively require connections of lower layers to establish their own links. Therefore, we will
refer to the links of the fiber layer as physical links and to links on higher layers as virtual links.
Since nodes with virtual links require lower-layer links to implement them, any node of a higher
layer will consequently also have an associated node in the layers below. This monograph is
focused on multi-layer networks, where the presence of a node in any layer means that there
exist corresponding nodes in all other layers as well.

Considering the deployment of a network, this means that a node always corresponds to a
site, where hardware resources of all layers are installed and connected. These physical hardware
devices, called network elements (NEs) [153], are typically layer-specific and realize their layer’s
functionalities. Furthermore, we consider all of these sites to potentially feature connections to
clients outside of the transport network. Such sites are also referred to as Point of Presence (PoP).
Figure 2.1 shows an example with two layers and six PoPs, where each PoP consists of two NEs,
a router on the blue upper layer and a switch on the red lower layer. The separation of layers
is often motivated by a simplified management of heterogeneous systems, but there also other
reasons, which are explored in Section A.1 of the appendix. Apart from the networking layers
themselves, the customers’ connection services between the nodes may also be considered as an
individual layer above the actual transport network.

2.1.1.1 Services and Demands

From the perspective of a client, i. e., a service-requesting entity, outside of the network, a con-
nection service in a transport network realizes a transparent, point-to-point connection between
two PoPs. It allows the transmission of data from the source PoP on a given layer to another
destination PoP located on the same layer. It has a required data rate and may or may not have as-
sociated QoS-constraints, e. g., regarding the maximum tolerable latency and minimum required
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availability. This definition can apply to both, a client in terms of a request from another layer
of the network itself, but also to the customer connecting to the transport network. In principle,
NSPs can sell point-to-point connection services at every layer of their network, but the vast
majority of the traffic is packetized traffic.

Some providers also offer special services such as routed or unrouted point-to-multipoint,
encrypted or added value services such as Video on Demand (VoD) or converged telephony
services. In this monograph, we will not focus on the peculiarities of such services in isolation,
but rather treat them together with standard connection services. For the provider, these special
services can be realized as a combination of individual point-to-point services and data center
functions, and therefore, they can be modeled as connection services with specific constraints.
Furthermore, we will consider so-called traffic demands as aggregates of connection services
of identical source and destination nodes, as well as identical QoS-requirements summarized in
QoS classes. Since all properties relevant to realize the individual services in the network are
identical, their aggregate can be treated as an individual connection service.

2.1.2 Dual-Layer Architecture
Several multi-layer architectures for transport networks have been proposed and are in use with
NSPs and ISPs. As stated in Section 2.1.1.1, most client traffic is packet-based, such that the
top-most layer is implemented using a packet-based technology like IP or MPLS, while the
point-to-point transport is handled by an optical layer providing high data rates and long-range
connectivity, typically using Dense WDM (DWDM) [90]. More information on different multi-
layer architectures and their protocols can be found in Section A.2 of the appendix. Abstracting
from the different architecture variants, we will focus on a generic dual-layer architecture model,
following the trend of network architecture consolidation [116, 149, 239, 243]. In the dual-
layer architecture, every node consists of upper-layer and lower-layer NEs which are connected
to each other. Since the principal interactions between these layers stay the same, no matter
the exact technologies used, this generic dual-layer architecture is applicable to most common
transport network architectures.

2.1.2.1 Packet Layer
All clients connect to the packet layer of this architecture through dedicated interfaces. Since the
NSP knows these client interfaces and the associated connection services and SLAs, it is possible
to assign arbitrary routes for every packet flow based on this information. The principle NE
performing such actions on the packet layer is a router, which maintains both, client- and core-
facing connections. Typical core routers (e. g., Cisco NCS 6000 [46], Nokia 7950 XRS [178],
Juniper MX2000 [169], Huawei NE9000 [174]) follow a modular design that mainly consists
of three different types of sub-components, such that each router has a number of slots for each
type of module. Figure 2.2 shows an abstract model view of such a modular router.

Control plane functions and protocols are handled by the control modules. There are com-
monly two slots to allow for a primary and a backup module. The control modules can either
use their own routing algorithms or receive explicit routes from external controllers from which
they derive forwarding rules for the packet traffic on their own interfaces. The control modules
compile these rules into forwarding tables and install them on the individual line cards, which
are the second type of component.

Line cards house one or more transceiver ports through which packet traffic arrives and
departs. Depending on the type, a transceiver may be a fixed part of the line card or come in the
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Figure 2.2: Upper-layer NE: A modular core router and its components

form of a pluggable module for slots on the line card, as indicated in the lower right of Figure 2.2.
A single router chassis typically features between 2 and 20 line card slots. The total forwarding
capacity of a router therefore depends on the number of installed line cards and ports.

They contain mostly buffer memory and complex Application-Specific Integrated Circuits
(ASICs) optimized for high-speed packet classification and lookup in their respective forwarding
tables. Depending on the rules, a packet is either forwarded to another port on the same line card
or to a port on another line card. In the second case, the packets are relayed to the outgoing line
card via an internal interconnection fabric which is formed by the switch fabric modules, the
third sub-component. While the number of installed line cards may vary, the 4 to 8 slots for the
switch fabrics modules are typically fully occupied for redundancy reasons. The client-facing
line cards, which we will refer to as tributary line cards, exclusively feature ports connecting to
client nodes directly or via the access network. The ports of core-facing line cards exclusively
connect to other core nodes via the lower layer.

2.1.2.2 Optical Layer

The optical layer in this generic dual-layer architecture is a Wavelength Switched Optical Net-
work (WSON) based on WDM. An optical connection in this architecture is realized by an
optical circuit, also referred to as lightpath. We define an optical circuit to be a bi-directional
point-to-point transmission between two NEs called Transponders (TXPs). Furthermore, each
circuit has a defined center wavelength that occupies a specific part of the optical spectrum in a
traversed optical fiber1.

The physical length of fiber a circuit can traverse is limited due to different signal-degrading
effects in the medium like attenuation and noise. While attenuation can be compensated by Opti-
cal Line Amplifiers (OLAs), which are installed at regular intervals of about 80 to 120 km [184,
p. 106] along the fiber, the accumulation of noise through repeated amplification gradually
reduces the signal quality with increasing distance [167, p. 79]. This requires circuits to be

1An optical fiber in this context physically consists of two individual strands of silica fiber to realize bidirec-
tional transmission.
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terminated within their so-called transparent reach, which is the maximum fiber distance after
which the data can still be recovered.

WDM transmission systems enable Optical Multiplex Sections (OMSes), where several
circuits can be transmitted in parallel over the same fiber given that they use non-overlapping
spectrum. To facilitate multiplexing, the available optical spectrum of such fibers is divided into
a grid of a fixed number of standardized wavelength slots, e. g., as specified for DWDM in ITU-T
recommendation G.694.1 [92]. A circuit may occupy one or more such slots, depending on the
bandwidth of the exact signal. Two circuits in the same OMS cannot use the same wavelength
slot. Figure 2.3 illustrates this by showing a topology with three circuits, each occupying a
different part of the spectrum as indicated by their different colors. Note, that the circuit between
A and B could also use the same wavelength slots as the circuit between B and C, since they
never use the same OMS.

The defining property of a WSON is that switching can be performed on the level of individ-
ual circuits through special Wavelength-Selective Switches (WSSs). Since only WDM systems
are considered within this monograph, we refer to these switches as WDM Circuit Switches
(WCSs). In a WSON it is not necessary to terminate all circuits on the next node. Circuits with
destinations other than the next node can be extracted from the OMS on the fiber and the WCS
can directly switch them to be multiplexed into other fibers towards their destinations. This
bypasses the upper-layer NEs and reduces the number of required TXPs. Such a bypass is illus-
trated in Figure 2.3, where the circuit between node A and node C passes through the switch at
node B without being terminated at a TXP there.

The lower-layer NEs that require interaction with the control plane, i. e., mostly TXPs and
WCS, are often integrated into larger chassis or shelves (e. g., Cisco NCS 2000 [44] or Adva
FSP 3000 [88]) with common control modules as shown in Figure 2.4. Regarding the dual-layer
architecture, the TXPs provide the link to the upper layer. A TXP can be considered to consist
of two back-to-back transceivers linked by an electronic adaptation component. It performs
Optical–Electrical–Optical (O-E-O)-conversion between a client-signal, which is typically a
short-reach optical connection and a WDM circuit. The circuit is then switched through the
WCS to an outgoing port, where it is multiplexed into the OMS and amplified for long-haul
transport.

When it comes to optical switching NEs, there are various implementations combining
different devices such as de- and multiplexers, splitters, couplers, fiber and WSSs based on
Microelectromechanical System (MEMS) or Liquid Crystal on Silicon (LCoS) technology. In
commercial systems many of these components are integrated in modules called Reconfigurable
Optical Add-Drop Multiplexers (ROADMs), which can be combined to form larger, multi-
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degree ROADMs [50, 91, 195, 226]. In order to abstract from these implementation details
and focus on the switching function, we define the WCS to be a generic, transparent and non-
blocking optical switch for WDM-circuits with several fiber ports. It is able to switch any
WDM-circuit from an OMS on any fiber port to an OMS on any other fiber port, thereby
fulfilling the properties of being directionless, colorless and contentionless as defined in ITU-T
recommendation G.672 [91]. All fibers leaving the lower-layer NEs, whether they connect to
other nodes or to router ports via the TXPs, are attached to the WCS, such that only one is needed
at each node. For more detailed information on the variations in composition and architectures
of such switching devices, the interested reader is referred to the comprehensive work of Marom
et al. [156].

2.1.2.3 Layer Interactions

Apart from the physical interaction between the layers, data rates, connectivity and failure mit-
igation have to be considered at their interface. The physical connection between upper layer
and lower layer is typically formed by direct connections between router ports and TXPs or by
having the TXPs integrated into the router port in case of an IP over DWDM (IPoDWDM) archi-
tecture1. For the proposed model, we consider this to be a non-reconfigurable 1:1 relationship,
which is consistent with both variants. While special TXPs, called muxponders exist, which
feature a larger number of ports to multiplex several low-rate router ports into few high-rate cir-
cuits, these make mostly sense when aggregating many client connections close to the customers.
Since we do not consider the access stage of the network, the proposed model does not include
muxponders. We further assume the line card ports and the TXP to always have matching data
rates, such that the optical circuit can be used to the maximum of its capability without any
adaption.

The circuits between two TXPs appear to the routers as direct connections and therefore
represent a virtual link. If the fiber distance between the source and destination routers exceeds

1For more details on IPoDWDM see Section A.2 in the appendix.
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the transparent reach of a circuit, then the circuit has to be terminated at an intermediate node
and a second circuit needs to be established towards the destination.

This can be achieved in two ways. The first is via so-called 3R-regenerators (performing
signal Reamplification, Reshaping and Retiming), which are essentially special TXPs with two
back-to-back WDM-interfaces. These can be connected to the WCS and receive a degraded
optical signal, recover the client data and create a new optical signal that is switched back onto
the fiber towards the destination.

Alternatively, a circuit can be terminated at an intermediate node’s router and the traffic
can be switched onto a line card with an already existing circuit towards the destination. The
advantage of the latter approach is that traffic of the original source node and traffic at the
intermediate node, which is destined for the same target node, can be combined onto the same
circuit. Additionally, traffic from the original source node to the intermediate node can also
be combined onto one circuit. This prevents establishing additional circuits of potentially low
utilization, thereby avoiding the undue use of associated hardware and spectral occupation. This
harmonization of (data rate) demand to (data rate) capacity with the goal of improved efficiency
is called grooming [296].

While grooming can help reduce the number of NEs required, it may come at a drawback re-
garding QoS figures. Packet processing in the router introduces additional latency. In the unlikely
event that a packet interface becomes congested due to unmitigated traffic bursts, buffering may
drastically increase this delay or even worse, lead to packet loss if the burst does not subside,
before the buffer space is depleted. Furthermore, there is also a negative impact on availability
since the traffic needs to traverse more NEs with several subcomponents which can all be subject
to failure.

Dealing with failures is another important aspect of the coordination between upper and
lower layer. The most likely failure scenario is a fiber cut. In this case, all of the circuits within
an OMS on a cut fiber are interrupted and need to be rerouted in both layers and under the
supervision of the control plane. Since the approaches under investigation in this monograph
do not explicitly include failure occurrences and their recovery, we will omit specific failure
recovery devices and procedures in the proposed architecture. We will include fiber cuts, as a
static availability figure for each fiber, which we will consider for QoS-aware traffic.

2.1.3 Flexibility of Optic Transmission Systems
Traditionally, optical systems were mainly used to provide interconnection between neighbor-
ing nodes and therefore circuits were planned to be set up once and then simply remain active
indefinitely to maintain connectivity [167, p. 29]. This enabled a reliable, but static network
topology for the upper layers, which then provided the required flexibility in terms of routing.
Nowadays, as packet router capacities approach and surpass the capacities of circuits and as
circuit capacities approach the theoretical maximum data rate, flexibility is needed to manage
resources efficiently. Legacy TXPs are hardwired to a single configuration supporting one pre-
defined WDM slot and a fixed data rate given by a predefined modulation format and symbol
rate. In contrast, present TXPs are not just tunable, meaning that they can be reconfigured in
software to an arbitrary WDM slot, but also exhibit additional degrees of flexibility.

2.1.3.1 Transmission Rates and Transparent Reach
The new generation of flexrate TXPs, which are also referred to as Bandwidth-Variable Transpon-
ders (BVTs), can be reconfigured to adjust their modulation scheme [70, 280] and more advanced
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Figure 2.5: Illustration of different operation modes for commercial flexrate devices

models additionally their symbol rate [71, 177] in discrete steps. Since the net data rate is equal
to the symbol rate times the number of bits per symbol as defined by the modulation, this can
be used to realize circuits of different data rates. If lower data rates are sufficient, a more robust
modulation format can be configured that exhibits a higher tolerance to degradation and there-
fore a much increased transparent reach. This allows bypassing more router nodes in the upper
layer, potentially reducing latency and router hardware requirements. Figure 2.5 shows the reach
values in different operation modes for a number of commercial flexrate devices. It should be
noted that these values are given by the respective vendors and featured on promotional material.
Therefore, they will, in all likelihood, only represent a rough, yet favorable estimate, motivated
by business considerations.

2.1.3.2 Flexible Grid and Spectral Efficiency
Increasing the symbol rate not just increases the data rate proportionally, but also the required op-
tical spectrum. In legacy hardware, a circuit is limited by a fixed amount of bandwidth available
in a WDM slot, which effectively creates an upper bound on the attainable symbol rate. E. g., a
legacy DWDM slot can occupy at most 50 GHz of optical spectrum. Present-day optical NEs
can allocate more than one slot to a circuit, but this capability introduces additional complexity.
If slot size and bandwidth do not match well, this can lead to stranded spectrum which has a
detrimental effect on the amount of traffic a fiber can transmit.

The spectral efficiency of a circuit, which is defined as the net data rate divided by the
occupied spectrum, gives a measure of how well the spectrum is utilized. To avoid wasting
optical spectrum by only partly using slots, the ITU-T specified a second, flexible grid [92],
which reduces the DWDM slot size to multiples of 12.5 GHz. While this helps to increase the
spectral efficiency for higher data rates, it conversely allows the same for lower data rates if a
circuit does not require an entire 50 GHz slot.
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2.2 Optimization in Planning, Operation and Routing
In the design and management of transport networks, NSPs most commonly have two over-
arching goals. One is to minimize costs, which is especially relevant during the design phase
where hardware needs be procured. The second goal is to maximize utility for all resources
that have already been installed. Many of these and related tasks can be formulated as optimiza-
tion problems. In a broader sense, these are problems that aim to find a solution for which a
predefined figure of merit reaches the best value possible. The function that determines this
figure of merit for a solution, is called objective function and will be denoted F . Additionally,
there are typically also a number of conditions or constraints that need to be fulfilled, which
will be denoted as C. This section will introduce common goals and conditions and present a
classification of real-world problems in this simplified context. The following chapter will then
give a more formal overview on the nature and solubility of optimization problems. For a brief
summary of other networking optimization problems, see Section B.1 of the appendix.

2.2.1 Aspects of Planning and Operation
Optimization problems present themselves in many stages of a network’s life cycle and accord-
ingly, the objectives and conditions may differ at different points in time. The initial stages may
offer greater freedom of choice, while later upgrades and extensions will face preconditions,
e. g., because of the already installed network resources. While monetary aspects are always the
primary driver, they may manifest themselves as different optimization goals. Especially during
network operation, things like changing customer demands and unexpected resource reliability
issues may shift the goal from hardware resources towards optimization of service provisioning.

2.2.1.1 Time Frames and Resource Preconditions
Network problems can mostly be divided into planning tasks and in-operation tasks. Network
planning is traditionally defined by long-term tasks with a temporal horizon on the order of
months up to years [194, p. 29]. They are solved offline, before a new network goes into oper-
ation (green field design) or undergoes large-scale redesign or expansion (brown field design).
Typically, such network design problems consist of a given estimation of traffic demands along
with some constraints on the resources with the objective to create an efficient network. In this
context, the most efficient design typically needs the least amount of resources to handle the
given traffic. When there is no initial constraint on the amount of resources, this is referred to
as an uncapacitated problem [194, p. 106]. In colloquial terms, solving this type of problem
means designing the network or part of it from scratch and determining where to install which
combination of NEs.

Alternatively, the amount of available resources may be fixed from the beginning while
the exact traffic demands are unknown. In this case, efficiency is often indicated by the largest
amount of traffic a network can handle given these resources. This corresponds to a typical
capacitated network design problem [194, p. 112], where network resources and a traffic gener-
ation procedure are given as inputs and the output defines the network. This procedure allows
to generate scalable demands according to some model of expected traffic, such as those well-
established in queueing theory. Less formally, solving this type of problems means finding a
configuration for the installed or to-be installed NEs such that the resulting network provides
the most capacity for future traffic.

Capacitated problems in green field or brown field design, which determine a configuration
of the resources to be installed, are planning tasks, while dynamic networks, which can change
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their configuration during operation, can re-interpret these problems to become operational tasks
with traffic data based on actual measurements as input.

In network operation, the timescales are typically on the order of minutes to several days
and the present network state with its configuration and traffic are reflected in the constraints.
Such tasks can also be summarized as network engineering [194, p. 28]. The general problem
can be formulated as follows. Given a set of measured or forecast traffic demands, determine
the most efficient configuration of routes through a given base network topology constrained by
the installed capacity and possibly required QoS. The definition of efficiency in the operational
case traditionally translates to finding the shortest paths through the network, where a NSP
can vary the meaning of "short" by assigning arbitrary link weights. With the advent of data
plane programmability and optical flexibility, however, a myriad of other goals can be directly
addressed. These range from providing lowest latency, highest availability to network-wide
efficiency by adjusting the routing explicitly for each traffic flow.

These novel degrees of flexibility and the protocols and controllers of the SDN era, blur the
lines between network planning and network engineering. Therefore, elements of traditional
planning problems become relevant in operational tasks as well and may be subject to different
optimization goals.

2.2.1.2 Common Optimization Goals
NSPs are typically companies that operate in a competitive market and therefore the primary
goal of such enterprises is maximizing profit by increasing revenue and reducing cost. In terms
of networking, this mostly translates to providing the largest number of connection services
to paying customers with the least amount of expensive network resources while avoiding
contractual penalties for violating SLAs. Although optimizing the composition and definition of
connection service contracts is an interesting goal for an NSP in its own right, these aspects will
not be considered here. Since the design of service contracts including pricing and penalties is
subject to market effects and the NSP’s specific customer structure and service portfolio, it is
mostly driven by economic considerations outside the realm of networking and therefore such
investigations are outside the scope of this monograph, which will focus on resources and SLA
parameters.

Resource Cost
The cost of hardware resources is probably the most common subject of optimization, especially
regarding CAPEX of fiber and NEs (e. g., [9, 14, 132, 273, 287]). A reduction in CAPEX can be
achieved by optimizing the traffic demand routing, in order to groom traffic into fewer circuits
and thereby help reduce the number of TXPs and line cards. Additionally, optimizing the virtual
topology can enable bypassing upper-layer NEs, reducing their number, and may also be able to
reduce the amount of optical fibers needed.

In the operational stage the network can be adapted for the traffic situation at hand. New
connection services or extraordinary usage patterns may deviate from the originally planned
capacity limits and cause local overloads or underutilization. Reconfiguring the network through
adaption of virtual topology and routing can redistribute the load and return the network to a
stable state if sufficient resources are available.

However, it is important to include QoS requirements as secondary objectives, as aggressive
grooming may lead traffic onto longer paths increasing the delay and risk of being disrupted by
a fiber cut.
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Availability
The availability of a system is the probability that the system is functional at a given point in
time. Since all NEs and fibers may be subject to degradation or failure, their availability naturally
affects the availability of services. This has to be considered in both, planning and operation,
especially when SLAs give explicit availability target figures.

A radical availability maximization will result in excessive amounts of hardware, such that
an uncapacitated approach is not meaningful for this optimization goal, unless another factor
indirectly limits the resources. This occurs naturally in brown field design, e. g., when the
network is to be extended, where an optimization of availability can be constrained by a limited
upgrade budget. For reconfigurable networks, this becomes a capacitated problem, where NSPs
may optimize availability continuously, since critical traffic flows may vary over time. In both
cases, traffic and circuit routing can be adjusted to move such traffic flows away from failure-
prone hardware, while an optimized topology may offer more alternative routes for service
restoration.

Energy Efficiency
Several studies have found that Information and Communication Technology (ICT) is a ma-
jor consumer of electricity and accordingly contributes to greenhouse gas emissions [19, 21,
123, 128]. Therefore, more and more companies, including ISPs, CSPs, as well as equipment
manufacturers and vendors, are striving for an eco-friendly profile due to market pressure and
governmental regulations. Apart from external factors, energy consumption is not only part of
OPEX, but also draws secondary costs in planning and operation with respect to power lines
at PoPs, rack space, Uninterruptible Power Supply (UPS)-systems, power conversion losses,
air conditioning and ventilation. Typical optimization goals in these works include maximizing
the amount of traffic that can be offloaded to less energy-intensive systems, maximizing router
bypasses or directly minimizing the overall power consumption of the NSP’s network.

In the planning stage, a reduction in overprovisioning by consolidating resources and re-
ducing margins can significantly improve energy efficiency. For the network operation stage,
energy efficiency can be increased by switching off or reducing the capacity of devices through
technologies well-established in consumer devices such as Dynamic Voltage and Frequency
Scaling (DVFS) and extended sleep modes. The effectiveness of these approaches can be am-
plified by dynamically adapting routing and virtual topology to shift traffic away from lightly
loaded devices, such that they may enter sleep or reduced capacity modes.

2.2.2 Topology Design Problems
The topology defines how the nodes of a network are connected to each other. For multi-layer
networks, different topologies can exist at different layers. Common to all topology design
problems is that they can be expressed as graph problems as follows. Given a set of nodes V and
a set of candidate edges 〈s, t〉 ∈ Ec with s 6= t and s, t ∈V find a graph g = 〈V ,E〉 with E ⊆ Ec
that fulfills a set of conditions C and is optimal regarding an objective function F .

Within C there are always two central components. There is a definition, how edges con-
tribute capacity and cost to the network and there is a set of demands D that specifies target
capacities for pairs of nodes that have to be fulfilled. There exist capacitated and uncapacitated
versions, where typically F either minimizes cost under the constraint of providing a fixed target
capacity sufficient for the demands or F maximizes the capacity provided to the demands under
the constraint of limited cost and/or resources.
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Figure 2.6: Layer-1 topologies of transport networks

2.2.2.1 Physical Topology

As explained in Section 2.1.1, the lowest layer is the physical layer, where interconnections
are established by optical fibers. Therefore, the bidirectional candidate edges of the physical
topology represent possible connections, where optical fibers can be deployed. The capacity
fibers contribute to the topology graph can be defined by the number of fibers on a candidate
edge or by the number of WDM slots, which can be carried by a set of parallel fibers. Physical
Topology Design (PTD) problems therefore have a known set of node locations and a set of
bidirectional candidate edges between them, and the goal is to find a topology such that F is
optimal and the resulting graph is connected. Commonly, there are also conditions to increase
resiliency to outages, e. g., by requiring every node to be connected by at least two fibers on
different edges. The cost of possible fibers between nodes may correspond to the price of
deployment, purchase, or rent. Typical further edge parameters used in constraints may include
expected availability, length, attenuation, or other fiber parameters.

The uncapacitated PTD is most commonly found in network planning tasks, where new fiber
has to be added to the transport network in a cost-efficient way. Here, the possible intercon-
nections may correspond to existing rights-of-way or similar easements, which legally restrict
where new fiber can be deployed. The capacitated version commonly occurs in the planning
tasks of NSPs who are not in possession of their own fiber infrastructure, but rather use a limited
amount of leased dark fiber to create their networks, such that the possible interconnections are
restricted by rental agreements with the fiber owners. For more details on planning and designing
topologies with different motivations, constraints and goals, the interested reader is referred to
Grover [115, ch. 9] or Pióro and Medhi [194, ch. 4 and 6].

The graphs of known physical topologies are often sparse or even planar graphs [27, 147, 183,
231, 258]. This fact can be illustrated by determining the averages of two standard measures
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from graph theory for the fiber topology graphs of telecommunication networks: The node
degree, i. e., the number of links connected to a node, and the normalized closeness centrality1,
which is a measure for node connectedness in graphs. For average closeness centrality, dense
graphs with unit link weights result in values closer to 1, whereas sparse graphs result in values
closer to 0. The number of links and nodes in a selected set of layer-1 topologies assembled
in Çetinkaya et al. [33], Durairajan et al. [64], Rueda et al. [238], and others are shown in
Figure 2.6. The trend in the ratio is much closer to the lower limit in graph density with average
degrees between 2.3 and 2.72. Closeness centrality values range from 0.05 to 0.3. Many of these
networks are structurally and sometimes even geographically very similar to road or railway
networks [33, 64].

While it is argued that this sparseness is too common to be coincidental [27], it is unclear
if it is an intrinsically intended result or a tangible result of cost-optimization or deployment
preconditions. The physical topology of least fiber cost is by definition a minimum spanning tree,
which is a property well-exploited in typical FTTx planning approaches [114]. Augmenting such
minimum cost trees by resiliency constraints such as 2-connectedness yields graphs very similar
to the presented networks. While the exact preconditions to fiber deployments are proprietary
knowledge, NSPs are known to use preexisting fiber conduits for new deployments to reduce
costs and some conduits are even shared between competing NSPs [64, 124]. In a similar fashion
preexisting infrastructure and rights-of-way pertaining to operators of road, rail and gas pipeline
networks are also used under contract by NSPs to deploy their networks [124], which inherently
creates the structural analogy to these networks.

Due to such deployment constraints it is to be expected, that the cardinality of the candidate
edge set Ec is much smaller than that of a corresponding fully connected graph. Since the goal of
topology design problems is choosing an optimal subset of Ec, the number of potential subsets is
also smaller making the PTD problem comparatively more simple for larger problem instances.
Furthermore, the graph using the entire candidate edge set g′ = 〈V ,Ec〉 may even be planar,
especially when considering the capacitated problem versions. This property can contribute
significantly to solving constrained topology design problems, as many efficient algorithms [154,
264] are known for planar networks.

2.2.2.2 Virtual Topology
The virtual topology is defined by the interconnections visible to the upper layer, which are in
fact abstractions of the point-to-point capacity provided by the lower layer. Therefore, these
bidirectional virtual links are the primary resource and the capacity they provide is the net
data rate available to the upper-layer NEs. Virtual topology design problems, which we will
denote as VTD, aim to find an optimal overlay topology based on a given physical topology
and potential parameters restricting usage of lower-layer links. Since these links are realized
by optical circuits for the given network architecture, this specific problem is also known as
lightpath topology design problem.

The constraints on optical circuits typically contain an upper bound on the link length
defined by the transparent reach, which directly relates to the capacity that can be provided as
explained in Section 2.1.3.1. Therefore, a potential virtual link may in fact be infeasible if the
shortest path in the physical topology exceeds the largest transparent reach available to a circuit.
While this constraint is often addressed by a fixed mapping of lengths to data rates, there also
exist more elaborate versions which incorporate the exact fiber parameters in determining the

1For further details on closeness centrality cf. section D.1 in the appendix.
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transparent reach. Other relevant factors for virtual topology problems are latency and resiliency
requirements of the traffic demands, which may also be expressed as constraints.

As mentioned before, a radical cost optimization without such constraints will result in a tree
topology, which can in fact become a series of sequential interconnections where no alternative
paths between two nodes exist. This situation is undesirable from a resiliency perspective since
any failure of a node or link will immediately split the graph into unconnected islands. Such
a topology is also unsuitable for low latency requirements since it creates unnecessarily long
routes. E. g., traffic between leaf nodes will have to traverse all nodes and active links in the
entire topology.

Similar to the PTD problem, there are capacitated and uncapacitated versions, but there are
also common hybrid versions. For the uncapacitated variety, a virtual link may be realized by
any number of circuits, which is a problem faced by NSPs when sites and fiber conduits are
fixed, but there is no actual hardware installed or configured. In contrast to this, the networking
hardware is already installed, but not yet configured in the capacitated case, such that circuits
can only be created where sufficient hardware, e. g., in terms of TXPs and fibers, are available.

The hybrid versions are mostly motivated by the dependencies between NEs of different lay-
ers. E. g., the number of fibers in the physical topology may be fixed, but all other hardware still
has to be installed. This can be considered as a specially constrained case of the uncapacitated
version of the VTD problem. For more details on different aspects and subtypes of planning
and design problems for virtual topologies, the interested reader is referred to Mukherjee [167,
ch. 8] and again to Grover [115, ch. 9] as well as Pióro and Medhi [194, ch. 4 and 6] for more
general considerations on topologies.

For the known layer-3 topologies given in the studies by Çetinkaya et al. [33] and Rueda et
al. [238], we can see that the ratio of links to nodes can be significantly higher and more variable.
Average nodal degrees range from 2.61 in the case of AT&T (with 2.55 for the corresponding
layer-1 topology) up to 19.8 for Level 3 (compared to 2.63 for the underlying physical layer).
Average closeness centrality varies between 0.3 for AT&T and 0.7 for Level 3. Furthermore, it
can be observed that the number of nodes on the lower layers is always larger than the number
of nodes on the higher layers as shown in Figure 2.7. This is caused by the fact that providing
higher-layer services typically requires larger CAPEX investments since NEs at higher layers
always require nodes on the layers below, whereas pure layer-1 services can be provided without
hardware in additional layers. As outlined in Section 1.4, the difference between layer 1 and
the layers above is likely to decrease in the near future as more and more layer-1 nodes will be
extended towards higher layers to provide more and diverse service types.

While the above topologies are most likely based on a static optical layer, the increasing
flexibility of optical devices as outlined in Section 2.1.3 has the potential to increase the density
of the upper layer even further. Since transparent reaches exceeding 6000 km are feasible for
state-of-the-art TXPs [26, 43], it is highly likely that any two points within the continental USA
or Europe could theoretically be linked with a point-to-point connection. Moreover, port count,
energy, and latency considerations provide a strong incentive to keep traffic in the lower layer
and bypass any upper layer NEs when no grooming of meaningful magnitude can be performed.

Clearly, the VTD problem is much more complex than the physical topology design problem
due to the potentially much larger size of the candidate edge set Ec. Coupled with the expected
growth in the number of nodes and feasible links, this will severely impact the tractability
of this problem in the near future. While the problem grows larger and more complex, there
is also a growing interest in decreasing the solving times to enable more frequent network
reconfigurations, further exacerbating the diminishing performance of established methods.



2.2 Optimization in Planning, Operation and Routing 21

10 100

10

100

Fu
ll

M
es

h
Li

m
it

Connecti
vit

y Lim
it

Nodes

Li
nk

s

AT&T
Internet2
Level 3
Sprint
Telia
Layer 1
Layer 3

Figure 2.7: Layer-1 and layer-3 topologies of transport networks

2.2.3 Routing Problems
Routing can be defined as the act of determining a route or path through a network structure
between a given source and destination. We will focus on single-source, single-destination
routes since this is the most common type of routing problem. Real-world routing problems
often depend on specific technology and service requirements, such that routes are often subject
to further constraints.

Routing problems can inherently be expressed as graph problems as follows. Given a graph
g = 〈V ,E〉 with one or more pairs of a source node s ∈V and a destination node t ∈V with s 6= t,
find a path p = 〈ei〉 with ei ∈ E and i ∈ {1, . . . ,n} for all node pairs required. For p to be a path,
it has to hold that e1 = 〈s,x〉 and en = 〈y, t〉. Furthermore, when n≥ 2, it shall hold that for any
ei = 〈a,b〉 the subsequent element is ei+1 = 〈b,c〉. The most generic routing problem simply
requires an arbitrary path for all possible pairs of nodes, but in addition to this definition1 there
may also exist a set of conditions C, which have to be fulfilled. The most common is that there is
a routing weight or routing cost function that defines how an edge contributes to the total cost of
the path. When routing a single path for a single source-and-destination pair, the total path cost
corresponding to the sum of the edge costs should be minimized, which corresponds to solving a
shortest path problem. For the single source shortest path problem with non-negative edge cost,
many efficient algorithms exist with the most well-known being Dijkstra’s algorithm [59] (cf.
Grover [115, pp. 189–192]).

While this generic routing problem requires routes between all node pairs without consider-
ation of capacities, this may also be limited to a specific subset of node pairs, where demands
are present. In this case, C contains a set of demands D, where a demand d ∈ D is a tuple
d = 〈s, t,r,Qd〉 of its source node s ∈V , destination node t ∈V , required capacity r ∈ R+ and a

1Note, that this includes the single-hop case with s = y and d = x, such that e1 = en = 〈y,x〉= 〈s,d〉
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set of additional constraints Qd, which can be empty. For routing problems in communication
networks, the additional constraints may include limitations regarding length and resiliency.

For an entire network, routes for many or even all source and destination pairs have to
be determined, with the goal of optimizing a global target function F which depends on all
routes. What makes optimizing F much harder than solving the shortest path problem is that the
constraints of any determined route may influence constraints for all other routes. E. g., when
considering capacity constraints, deploying a route on a link may deplete the link capacity and
thereby exclude it from use in subsequent routes. Therefore, optimizing all individual path costs
separately, may not lead to an optimal value of F . Routing problems exist in capacitated and
uncapacitated form, such that typically, F either minimizes cost under the constraint of providing
a target capacity sufficient for a fixed demand set or F maximizes the number of serviceable
demands by providing capacity under the constraint of limited cost.

2.2.3.1 Traffic Demand Routing
In the dual-layer architecture, packet routing is done on the upper layer, such that the edges
available for a path are the links of the virtual topology and traffic demands can be routed along
these paths. These virtual links provide a capacity in transmissible data rate which is used by
traffic demands. The traffic demands in transport networks are typically aggregated packet flows,
such that all properties influencing path selection are identical within a single traffic demand.
Routing has to be performed for each demand, rather than each packet flow and therefore the
goal of traffic routing is to find a feasible path for each demand. The feasibility of paths may
be restricted not only by capacity constraints, but also by constraints derived from the QoS
parameters of the underlying SLA. The most common constraints are based on loss, latency, and
availability. We will denote these problems as traffic demand routing (TDR) problems.

Packet loss is mostly caused by nodes discarding packets due to overload or by transmission
errors on links. However, in transport networks loss is a comparatively rare event due to careful
network design. NSPs employ suitable Forward Error Correction (FEC) to compensate for link
errors and apply rate shaping to client traffic early at the hand-over points, such that excessive
traffic spikes are blocked in the access stages before they can cause congestion in the core.
Since this leads to predictable traffic demand volumes, the problem of avoiding loss through
congestion at nodes can be met by careful capacity planning.

Availability can be addressed by estimating the failure probabilities of NEs and fibers along
the candidate path and choosing among those with sufficient availability or by including backup
and restoration mechanisms.

Latency is the result of several delays occurring on both, nodes and links. On virtual links
there is predominantly propagation delay which is determined by the length of fiber the circuit
traverses. For nodes there are delays for processing, queueing, and transmission. Transmission
delay is essentially the time the interface needs to put the data into the fiber. Therefore, this
delay depends on the transmission rate and the packet size and is typically about 1 µs or less1.
Processing delay is the time required to analyze and classify the packet header, look up the
correct output interface and forward the packet to it, which typically remains well below 1 ms [47,
133, 200].

Queueing delays occur whenever the input rate to a node is higher than the output rate.
This can be caused by traffic spikes and may amount to several 100 ms, but such cases should
be prevented by prior rate shaping. The more common case is queueing delay due to output

1A typical packet of 1500 Bytes incurs 1.2 µs of transmission delay on a comparatively slow 10 Gbit/s interface.
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contention, which arises when several input interfaces simultaneously receive traffic destined
for the same output interface. If the sum of the input data rates remains below or equal to the
output data rate, then a packet is queued for at most the number of contending input interfaces
times the transmission delay on the congested output interface which is typically on the order of
a few microseconds1.

Another factor, which is sometimes encountered, is the requirement of having all traffic of a
demand to be routed on a single path, which is also called non-bifurcation constraint. Being able
to arbitrarily split an aggregated demand can help improve the utilization of network resources
but may impact client traffic negatively. Splitting the traffic may lead to a re-ordering of packets
due to different lengths of different paths which is not tolerable if the client relies on a predictable
low-jitter environment, e. g., as is required for a Time-Division Multiplexing (TDM) emulation
service.

Packet routing can be performed in two basic ways, a more traditional distributed and a fully
centralized approach. For the first, a network management system or controller can determine
a system of link costs, also known as link weights, and push these values to the NEs, such that
distributed routing modules on each NE only need to compute shortest paths based on these
costs. The alternative is to have a path computation engine determine explicit paths through
the network and signal them directly to the forwarding engines of NEs. This allows arbitrary
routing for all traffic and offers the greatest flexibility for traffic engineering, but it requires a
tight control of NEs and the capability to quickly solve the global routing problem.

For the uncapacitated problems, arbitrary traffic volumes can be assigned to a path, which
can be used to determine how much hardware, e. g., in terms of ports and line cards, need to
be installed at the nodes. This is where many hybrid versions of this problem come into play
since many combinations of pre-existing hardware and new hardware can be used. The number
of TXPs may be fixed or the number of ports on the optical switch may be limited or there are
upper limits on the number of line cards installable in NEs etc.

The capacitated problems occur often in network operation. When client traffic sufficiently
deviates from its forecast, the routing may have to be adjusted to prevent resource bottlenecks at
unplanned points in the network. While this is typically a reaction to long-term traffic changes,
it may also be used for specific short-term goals such as restoring network operation after
unplanned failures or moving traffic away from certain links or nodes when maintenance is
required. More routing problems and versions thereof are given in Vasseur et al. [271, ch. 4], as
well as Pióro and Medhi [194, ch. 7].

Traffic routing problems are among the most complex problems since they need to be solved
on the dense topologies of the upper layer which leads to a very large space of possible paths.
This is further exacerbated by the increasing focus on QoS, since demands of differing SLAs
may require specific routes. In this case, the number of paths does not only depend on the number
of source-destination pairs, but also on the number of SLA-classes. At the same time, however,
NSPs like AT&T [266] and Verizon [20] show increasing interest in the optimization of routing
in their SDN-enabled networks to support a flexible (re)configuration for NFV-based services.

1Considering an extreme case where a large router simultaneously receives 1500 Byte packets on 1000 different
interfaces of a transmission rate of 1 Gbit/s which are all forwarded to a single 1 Tbit/s output interface, then the
queueing delay amounts to about 12 µs.
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2.2.3.2 Circuit Routing

Circuit routing is performed on the lower layer of the presented dual-layer architecture. The paths
for the circuits consist of edges of the physical topology of the network, i. e., the available fiber
links. The fiber links provide optical spectrum which is occupied by active circuits. As outlined
in Section 2.1.2.2 and Section 2.1.3 there are many factors determining, whether an optical
circuit is feasible. Two factors which always need to be addressed are the maximum transparent
reach and which wavelength slots will be occupied. We will denote the circuit routing problem
without integrated wavelength slot assignment as Independent Circuit Routing (ICR) problem.

Transparent reach is the most important constraint in determining path feasibility as ex-
plained in Section 2.1.2.3. It presents itself as an upper bound on the cumulative length of edges
in a path. If a connection service exceeding this length is required, then there are two general and
one hardware-specific approach. The routing of the lower layer may reject the request outright
and delegate the problem to be solved in the routing of the upper layer. The second approach
involves using sufficient 3R regenerators such that the resulting linear sequence of circuits can
be treated as a single virtual link. Finally, if flexrate devices are considered, there is also the
option of reducing the data rate to increase the transparent reach as explained in Section 2.1.3.1
and realize the service by bundling several circuits.

Apart from feasibility concerns related to the path length, a circuit also requires an appropri-
ate amount of spectrum along the path as explained in Section 2.1.2.3. Considering the so-called
wavelength continuity constraint [115, sect. 10.4.1], i. e., the constraint that a circuit traversing
a sequence of fibers always has to occupy the same slots on all fibers, as part of the routing
optimization gives rise to a number of complex subproblems. For fixed-grid systems this is
known as the wavelength assignment problem, for flex-grid systems it is also referred to as
spectrum assignment problem. These problems can either be solved independently or together
with circuit routing resulting in the Routing and Wavelength Assignment (RWA) or Routing
and Spectrum Assignment (RSA) problem, respectively. However, it is a common simplification
to disregard this constraint [167, p. 442] [77, p. 18] and assume full wavelength conversion
capabilities in every optical node, which could be realized using tunable 3R-regenerators. More
details on RWA and related problems incorporating additional physical layer factors can be
found in Mukherjee [167, ch. 7], Pióro and Medhi [194, pp. 446–451], Pachnike [184, ch. 5.3],
or Farrel and Bryskin [76, pp. 248–253].

When considering QoS-based requirements, latency bounds may also lead to a length lim-
itation of possible paths. Delays are incurred on fiber links as well as at nodes. Within nodes,
TXPs add delay through internal processing (5 µs to 11 µs reported in Vjaceslavs et al. [276])
and especially through FEC calculation (about 4 to 50 µs [41, 42]). Amplifiers, switches and
other purely optical components add further propagation delay due to internal fiber spools and
external cabling. However, these fiber lengths are small compared to the fiber lengths between
nodes. Light travels 1 km in typical optical fiber in about 4.9 µs, such that given the geographical
layout of typical transport networks, the propagation delay on links becomes the dominating
factor [284] [167, p. 442] which has to be considered when latency bounds are specified.

Availability and protection mechanisms are often included in SLAs. While active NEs are
always a potential source of failures, their projected availability as given by the Mean Time
Between Failures (MTBF) values stated by vendors, are typically much higher than that of
the fibers. While underground conduits are regularly damaged during construction works, the
situation is much worse for aerial fiber deployments which are often disrupted by traffic acci-
dents, weather incidents or even vandalism according to a study [52] performed by the Federal
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Communications Commission (FCC). Especially fiber topologies which feature both, aerial and
underground deployments, should explicitly consider the likelihood of failures.

The capacitated version of the circuit routing problem has already deployed fibers, TXPs
and WCSs. It is encountered during network operation and may be motivated by effects at
different layers. E. g., SLA-based services are added, changed, or removed at the service layer,
traffic behavior on the packet layer may differ too much from predictions or the establishment
of new circuits on the optical layer is hindered by excessive spectral fragmentation. The goal is
typically to either realize the requested circuits using the least amount of spectral resources, or
to minimize blocking, i. e., the rejection of requests due to resource depletion. The uncapacitated
version and its hybrids are used to determine the optical equipment required. This may mean that
the packet routing NEs at nodes are already installed and the number of fibers to be deployed
in conduits is subject to minimization, or, the more common case, fiber is already deployed,
limiting the spectral resources and the goal is to minimize the number of TXPs or the ports on
the switching systems to be installed at nodes.

Just like in packet routing, paths can be computed by routing modules locally at each node,
which maintain and distribute adjacency and link cost information, or the paths can be computed
by a centralized path computation engine and signaled explicitly to NEs. As routing occurs on the
substrate of the fiber topology, which commonly is rather sparse as explained in Section 2.2.2.1,
and the transparent reach restricts the path length, the number of possible paths is typically
significantly reduced compared to the routing of demands on the upper layer. However, when
wavelength continuity is considered, the complexity increases significantly when solving it as
an integral part of the RWA/RSA problem. When separating WDM-slot allocation from routing,
then referred to as Wavelength Assignment (WA), either a subgraph of available slots can be
determined before routing, or a slot may be selected after routing and checked for feasibility.
The latter option is the more common case with allocation strategies often relying on simple
heuristics such as “first fit” or “least used”. With the increasing flexibility of the optical layer
and the development of T-SDN there is an increasing interest in the optimization of routing on
short timescales [175].

2.2.4 Dimensioning and Reconfiguration

Network dimensioning refers to the problem of designing a network such that it features the
least amount of resources, while providing a given target capacity under given constraints.
This target capacity is typically based on forecasts regarding future traffic demands and often
includes ample overdimensioning to ensure that the network has sufficient capacity until the next
upgrade or replacement cycle. Network dimensioning is the central task of network planning,
which needs to solve a combined version of some or all of the previously mentioned sub-
problems. Accordingly, the complexity of network dimensioning emerges from combining the
complexities of its constituent sub-problems, such that dimensioning is very difficult to solve
for large networks. While dimensioning is typically an uncapacitated problem, there is also
a similar capacitated problem, which we will refer to as dynamic resource reconfiguration or
reconfiguration for short.

Resource reconfiguration is a task closer to network operation, where the network is to be
configured such that its resources fulfill the required traffic demands subject to a specific goal.
Such a goal may be to find the minimum amount of active hardware for a given set of traffic
demands with the intention of reducing OPEX or maximizing throughput given changing traffic
patterns. In contrast to the large time frames common in network planning, a dynamic resource
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reconfiguration may be required repeatedly to adjust to dynamically changing demands and
therefore may have stricter timing constraints.

While it is also possible to maximize the routable traffic in a dimensioning problem given a
fixed number of fibers, this would generally result in a maximization of NEs and by extension
CAPEX, which is not typically desirable in the network planning phase where limiting cost is
the main driver of optimization.

Inputs to the uncapacitated problems are the required point-to-point traffic demands and
the basic network infrastructure of node locations and potential physical links between them.
For the capacitated problem, there is typically a resource limit that cannot be exceeded when
minimizing the number of active NEs. If the goal of the capacitated problem is to maximize the
traffic throughput, then there is an additional input regarding the expected traffic growth, such
that a maximum can be determined, e. g., in the form of a scaling factor.

2.2.4.1 Subproblem Dependencies

Figure 2.8 shows a multi-layer network based on the dual-layer architecture and illustrates, how
the previously mentioned routing and topology design problems depend on each other and the
input values. The physical topology marks a subset of the link candidates of the infrastructure
and optical circuits can only follow the physical links. The virtual links correspond to the optical
circuits, such that they have the same source and destination nodes. Since circuits may use more
than one physical link, the virtual links can form a different topology than the physical links,
which is illustrated between the nodes A, B and D.

Furthermore, the virtual topology is agnostic regarding the exact circuit routing. Therefore,
a link in the virtual layer may actually not be routed on its corresponding physical link. While D
and F have a physical link candidate, it is not used in the physical topology and the virtual link
between them is realized by a circuit which connects D to F via E. This also allows for a bypass
circuit to add a virtual link between two nodes that do not have a link in the physical topology
such as between A and D.

The traffic routing is performed on the virtual links of the upper layer. The demands, which
are presented on the very top of the figure are just point-to-point capacity requests, such that they
are agnostic to both, the upper1 and lower layers. In order to utilize resources efficiently, several
traffic flows can be groomed into the same circuit when sufficient capacity is available. However,
this may lead to excessively long routes, which can be observed for the demand between A and
C. If this demand were to require a strict QoS limit on latency, then it would probably have to
be served on its own circuit.

Therefore, most approaches for network dimensioning and resource reconfiguration focus
on the traffic demands to mark the target quantity and use a top-down approach. The two
solution methods presented in the following chapters also fall in this category. One is based
on an uncapacitated upper-layer topology, the other uses an uncapacitated upper-layer routing
as starting points to determine where and how many circuits are needed. This information is
subsequently used to determine the amount and location of all NEs needed. The number of fibers
may be a fixed input-parameter or, in the case of an uncapacitated physical layer, may also be
determined as part of the network dimensioning.

1The exception being IPoDWDM without client traffic encapsulation, where intermediate IP nodes may be
visible to the client. For more information on IPoDWDM see Section A.2 in the appendix.
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2.2.4.2 Upper-Layer Resources
As explained in Section 2.1.2.1, client traffic arrives at tributary line cards. Their number only
depends on static information from traffic demands, since the number of connecting clients and
the sum of incoming and outgoing traffic are known a priori. Consequently, there is no potential
for alternative configurations exempting these line cards from optimization. The traffic demand
information also puts a lower bound on the number of required core-facing line cards and their
ports. Depending on traffic routing, there may be also be transit traffic, i. e., traffic which neither
originates nor departs at that node, but is simply switched from one core-facing port to another.
Since each line card may have several ports and traffic demands often require either more or less
capacity than is provided by one port, this opens potential for traffic grooming.

Furthermore, in case of flexrate-capable ports, where the line rate and reach on the lower
layer can be adjusted, there is potential for additional savings whenever smaller, but far-reaching
traffic demands cannot be groomed into existing connections. The number of line cards and
traffic flows could then be used to determine the number of required switching modules. Each
switching module and each line card require a slot in the modular chassis of the router. Therefore,
when TDR is solved, the information on the traffic volumes and their paths can be used to
dimension the entire upper layer resources.

2.2.4.3 Lower-Layer Resources
The lower-layer NEs and by extension the number of their shelves, either depends on the fiber
degree in the physical topology or directly relates to the upper-layer resources as established in
Section 2.1.2.3. For every port in a line card, a corresponding TXP is required and in turn every
TXP requires a client port in the WCS. Beyond that, the WCS needs a line port for each fiber
of the physical topology, which can be assumed to be at least one for each physical link. The
internal design of the WCS itself, while out of scope for this monograph, can also be derived
from the number of client and line ports required. The last major component of the lower layer,
the optical amplifiers, are installed on each line fiber to boost outgoing and incoming signals,
while the number of OLAs depends on the physical length of the fiber.

Each TXP can establish a circuit to another TXP which requires spectral resources on a fiber.
Having solved VTD and TDR provides information regarding which capacity is needed between
which locations. This data can then be used as input to RWA/RSA or ICR, which determine
the routes and spectral resources required by the circuits to deliver the requested capacity. The
circuit routing may either be constrained by a capacitated physical topology or the number of
required fibers and conduits can be determined as well.
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Chapter Summary
Within this chapter, a definition for multi-layer networks and their components has been given.
Based on this, a generic dual-layer architecture utilizing an abstract packet routing layer and
a circuit-switched lower WDM layer has been defined along with their respective Network
Elements (NEs) such as modular routers and transponders (TXPs). Furthermore, their respective
capabilities and limitations have been derived from commercial systems.

Several concepts relevant to network planning and dimensioning like bypass circuits, flex-
ible optics and grooming have been introduced and their potential merit regarding different
optimization goals has been motivated. In the second part, several problems arising in planning
and operation of multi-layer networks have been explained. Especially topology design, both
virtual (VTD) and physical (PTD), and routing for both, traffic demands (TDR) and circuits
(ICR and RWA), have been introduced and discussed based on the structure of known transport
network topologies and the properties of typically used NEs.

Finally, a number of common optimization goals pursued by NSPs and ISPs, such as resource
utilization and energy efficiency, are presented and their implications regarding requirements
and capabilities of NEs explored in the context of different optimization time frames. It has
been derived, that a SDN-controlled network can be dynamically reconfigured in order to create
opportunities that facilitate grooming and resource sharing. Thereby it is possible to increase the
utilization of NEs to improve throughput or reduce cost. However, multi-layer awareness is key
to maintain QoS guarantees, since excessive grooming can lead to larger delays.

Optimizing a network dimensioning or dynamic resource reallocation thus requires high-
performance algorithms which readily scale to support the increased complexity of future trans-
port networks.
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3 Network Optimization

The previous chapter has shown that a large number of complex optimization problems exist in
the context of transport networks. This chapter will provide a concise introduction to the formal
aspects and the methods commonly used to find optimal solutions for them. It will outline
the advantages and drawbacks of these methods with respect to common problem versions.
Special emphasis will be placed on Genetic Algorithms as they represent the primary focus of
this monograph, while also giving details on Simulated Annealing, which will later serve as a
reference method. The last part of this chapter will provide an overview on current research,
exploring where and how these methods are often integrated into larger solution approaches.

3.1 Introduction to Optimization
While the previous chapter has already introduced a more colloquial definition of optimization,
this section will provide a more formal approach.

3.1.1 Basic Definitions
In mathematics there exist several problem categories which can be related to the nature of their
solution. We will focus on decision, search and optimization problems. For a non-empty set of
all possible inputs SIn, there is a relation R(i,o) which associates an input i ∈ SIn to its possible
solution state o ∈ SOut(i), which may be empty. We will denote the set SIn as input space and
SOut , i. e., the union of all SOut(i), as output or solution space. The subset SC ⊆ SIn, where for all
elements i ∈ SC the corresponding solution set SOut(i) is non-empty, is called search space and
the corresponding elements are called feasible.

A decision problem asks for a function with a binary solution. In the case of the definition
above, an exemplary decision problem is stated by a function fd which maps elements x ∈ SIn
to 1 iff the element has a non-empty solution set SOut(x) and otherwise to 0. More intuitively,
an algorithm realizing fd answers the question, whether a given input state has a corresponding
solution.

A search problem requires the identification of a solution for a given input. Considering the
definitions above, a search problem is posed by a function fs.

fs : SIn→ SOut ∪{ε}, x 7→

{
y ∈ SOut(x) if SOut(x) 6= /0
ε otherwise

Therefore, an algorithm solving this search problem will provide a random solution for a given
input if such a solution exists. Obviously, it is related to the given decision problem since all
elements which fs maps to ε are exactly the ones mapped to 0 by fd .

An optimization problem is a special search problem which provides a solution to a given
input, which is optimal w.r.t a given cost or objective function. Optimal can then either mean that
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Figure 3.1: Illustration of different optimization problems

the objective value should be maximized, typically when the objective function is bounded from
above, or minimized, typically when the objective function is bounded from below. Since maxi-
mizing F is identical to minimizing −F , any maximization can be converted to a corresponding
minimization and vice versa. Again, based on the definitions above and given an objective func-
tion F : SOut → R+, a minimizing optimization problem or minimization problem is posed by a
function fo.

fo : SIn→ SOut ∪{ε}, x 7→

{
miny∈SOut(x)(F(y)) if SOut(x) 6= /0
ε otherwise

Note, that in the strict sense, solving the optimization problem fo implicitly solves fd , but not
necessarily fs, since it only provides the objective value.

3.1.2 Classification of Optimization Problems
Depending on the nature of SIn optimization problems can be further divided into discrete and
continuous problems with great relevance to applicable solution methods. If x ∈ SIn is a vector
such that x ∈ Rn, then fo is called continuous optimization problem, whereas if x ∈ Zn, then
it is referred to as a discrete optimization problem. Figure 3.1a and Figure 3.1b illustrate this
using a simple example of a convex objective function and n = 1, highlighting the respective
optimal values. Generally speaking, discrete optimization problems are considered to be much
harder to solve than continuous optimization problems [113, p. 7]. In the example shown in
Figure 3.1, knowing F to be convex and differentiable, one can apply simple methods from
function analysis to determine the optimum for the continuous case. For the discrete case,
however, it is neither immediately clear if one or two optimal values exist, nor how to directly
find them with analytical means. A common approach for many discrete problems is therefore to
convert them to a corresponding continuous problem if possible and solve this first. In the second
step, the discrete points closest to the optima of the continuous problem are then analyzed for
feasibility and objective value. This can in fact turn out to be a rather computationally intensive
task since for n-dimensional input vectors, there can be up to 2n candidate points in the search
space for each of the optima.

A special case of discrete optimization problems are discrete combinatorial optimization
problems, where the input space is defined by an underlying combinatorial choice, such as it
often occurs in graph-related problems [16, 137, 142]. For such cases, the input often consists
of a finite set of discrete structures [146, p. 1], which can be formally addressed by considering
the domain of x to be a finite index set to them. If x is a mere index, however, then it may reflect
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Figure 3.2: Illustration of different constrained optimization problems

no particular order of the structures identified by it, which can make it very hard to identify
potential optima. This is exemplified in Figure 3.1c, where the function values do not exhibit
any obvious pattern.

While optimization problems typically have a single objective function F , there exist prob-
lems where it is hard to formulate a comprehensive function due to the fact that the underlying
real-world problems have several, potentially conflicting design goals. Such multi-objective op-
timizations can be considered to consist of several coupled individual optimization problems. In
isolation, each could be solved to optimality, but in conjunction, their individual optima typi-
cally do not overlap. Therefore, the goal of such optimization is to identify the so-called Pareto
frontier [176] between the individual goals in the solution space feasible to all of the problems.

Another classification feature apart from the objective and the input space is the presence
of additional constraints, giving rise to the distinction between constrained and unconstrained
optimization problems. Such constraints are often given as a set C of equalities and inequalities
which directly or indirectly put restrictions on x and thereby reduce the number of feasible
solutions. Simple constraints may be no more than upper or lower bounds, but they can in fact be
arbitrarily complex functions, such that constrained optimization problems can often be defined
by sets of equations. Figure 3.2 shows the effects of adding 4 individual constraints for x to the
example problems from Figure 3.1, such that only the closed intervals I1 and I2 may contain
feasible solutions. For the continuous case in Figure 3.2a this means that the intersections of any
constraint and the objective function may introduce new optima, while in the discrete cases all
potential solutions have to be checked against the constraints.

Finally, there exists the difference between deterministic and stochastic optimization prob-
lems. In the former case, all relevant parameters are known beforehand and the problem is
fully deterministic. However, when modeling real-world problems some parameters may not be
known exactly but can be described by incorporating a stochastic process into the optimization
problems. The goal of such optimizations under defined uncertainty is to find solutions which
are robust to errors.

3.2 Properties of Multi-Layer Optimization Problems

All of the optimization problems introduced in the last chapter require selecting a combination
of discrete elements of graph structures with feasibility conditions to create solutions. For PTD
and VTD, a subset of physical or virtual edges respectively have to be selected from the set of all
feasible edges. For TDR, a number of virtual edges has to be combined into a sequence to form
a feasible path for each demand, whereas for ICR a feasible series of physical edges have to be



34 Chapter 3. Network Optimization

found to create the required circuits. All of these problems are therefore inherently constrained
combinatorial optimization problems.

3.2.1 Combinatorial Complexity
For PTD and VTD any possible edge available in the set of candidate edges Ec may be part of
the network to be designed. Therefore, the set of all solutions is initially the power set ℘(Ec),
such that the number of possible solutions is 2ne with ne := |Ec|. The set of constraints C will
likely include constraints which exclude some of these solutions, since it enforces that traffic
demands have to be fulfilled. Since transport networks typically have traffic demands between
all of their nodes, a solution will at least realize a spanning tree, such that the graph is connected,
resulting in nv−1 edges with nv := |V |.

This will immediately render all combinations with less edges infeasible, reducing the num-
ber of feasible solutions. The total number of these unconnected states |Su| is the sum of the
number of all combinations with less than nv− 1 edges. For a given number of i edges, the
number of combinations can be determined using the binomial coefficient. Therefore, an upper
bound on the number of feasible solutions can be determined by the following equation.

|℘(Ec)|− |Su|= 2ne−1−
nv−2

∑
i=1

(
ne

i

)
∈ O

(
2nv

2
)

(3.1)

While this reduction scales with the number of vertices, the increase scales with the number of
edges, which typically grows much faster with increasing graph sizes. Further constraints such
as 2-connectedness will further reduce the number of feasible solutions. However, this does not
necessarily make the problem any easier, since a reduction in the feasibility impacts the output
space, but may not automatically reduce the input space, such that the worst case remains in
O(2ne).

Routing problems such as TDR and ICR are much more complex, as they do not simply
require one set of edges, but rather a sequence of edges for each route. We can consider the
maximum number of paths between a pair of nodes in a full graph as an upper bound to the
number of possible paths for a given route in any graph. The number of distinct loop-free paths
is given by Equation (3.2) for a full graph of nv nodes1.

cpaths(nv) =
nv−2

∑
i=0

(nv−2)!
i!

(3.2)

Such a path is required for every demand d ∈D. The number of demands can scale quadratically
with the number of nodes and may be increased even further by the presence of QoS classes.
Therefore, we can determine an upper bound on the number of solution candidates according to
Equation (3.3), where Q is the set of all QoS classes.

cpaths(nv)
|D| ≤

(
nv−2

∑
i=0

(nv−2)!
i!

)nv·(nv−1)·|Q|

∈ O
(
(nv!)nv

2
)

(3.3)

This level of complexity is largely intractable for exhaustive search approaches even for unreal-
istically small network graphs. However, in most practical applications the number of relevant

1Cf. Section D.2 in the appendix for our proof of this equivalence
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paths is nowhere near this number, which may allow choosing a fixed number of path candidates,
much smaller than the number of all possible paths.

Determining a multi-layer network configuration requires solving a joint version of many
or even all of the problems above. Obviously, the resulting state space is excessively large
and difficult to approach by a single method in all of its complexity, such that some kind of
simplification is applied.

3.2.2 Modeling Accuracy and Tractability
A common approach to such multi-component problems is divide and conquer, meaning that
the problem is solved by solving its constituent sub-problems and assembling the full solution
from the individual sub-solutions. When a problem is separable, i. e., parts of it can be solved in
isolation and their optimum is always part of the global optimum, this is a very efficient approach,
especially when exact and fast algorithms are known for some or all of these sub-problems.
While multi-layer problems do contain several sub-problems, as outlined in the previous section,
they are typically neither separable, nor can they easily be solved.

Traffic routing can only be determined for a virtual topology, but any prior restriction to
the virtual topology will therefore also impact the routing. Physical topology and connection
routing in turn limit the virtual topology. The connection routing, however, determines the
capacity, which needs to be sufficient for the traffic routing. Since these sub-problems all depend
on each other, they cannot be solved individually such that the full multi-layer problem can
be solved to optimality based on this. Furthermore, even for these sub-problems, there are no
efficient and deterministic algorithms which could solve them. Exposing this full complexity to
any optimizer will most likely result in problems so complex, that they cannot be solved with
known computing resources in a time frame that is practically relevant. While such problems
may theoretically be solvable given unlimited time, e. g., by exhaustive enumeration, they cannot
be solved for any meaningful problem size. Problems of such complexity are called intractable.

In order to make large-scale problems tractable, they can be replaced by models of reduced
complexity. This can be achieved by omitting or relaxing constraints, treating sub-problems as
if they were separable, solving the problems using heuristics or even replacing them with more
simple search problems. A common approach to multi-layer optimization problems is therefore,
to replace the tight coupling of the layers by estimates and solve the individual problems using
heuristics, as if they were fully separable. For example, VTD may be wholly omitted and the
virtual topology statically assigned to be identical to the physical topology. For TDR, shortest
paths can be considered a viable heuristic, such that demands may sequentially be routed on this
topology. Rather than using all traffic demands individually, the total flow between neighboring
nodes can be determined based on such a routing and used as input to ICR and WA.

While every simplification reduces model accuracy and will mostly likely have a negative
impact on the solution quality for the overall multi-layer network, some aspects are more im-
portant than others. Routing traffic on shortest paths rather than using an optimized routing
will most likely detract less from the optimality of the original problem, than replacing a topol-
ogy optimization with a static assignment. However, traffic routing itself ultimately determines
where capacity is needed and how efficiently it can be groomed, such that research suggests that
an optimized traffic routing has more impact on the overall solution quality than an optimized
topology [129].

The importance of sub-problems is also related to other scenario parameters. If traffic is
very small compared to the circuit capacity, a regular hop-by-hop routing on shortest paths with
an optimized topology may find the optimum faster than a complex routing optimization on
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a dense, but fixed virtual topology. Similarly, a complex wavelength assignment may not be
necessary if only few optical channels are used on any fiber. While it is typically true, that a
reduced accuracy in modeling and solving will improve tractability, it is often difficult to assess,
how big the negative impact is.

3.2.3 Aspects of Objective Functions and Constraints
Regarding the cost functions and demands this work is focused on deterministic single-objective
optimization, noting that the fundamental approaches developed in this thesis are applicable to
most other scenarios as well. Out of the most common goals outlined in Section 2.2.1.2 resource
efficiency is the most universal aspect in network planning and will be used as the primary
component of all objective functions discussed in this work. This is typically measured as the
number of required network resources, especially in the form of NEs.

In terms of constraints, capacity is always considered, such that any demand shall receive
sufficient capacity on all the resources it traverses. Additionally, some or all traffic demands may
require specific QoS constraints, which will be given as a minimum amount of availability and
latency.

Generally, the structure and properties of the input and search space determine which solution
methods are applicable and how efficiently the problem can be solved. Especially interesting in
this respect is whether meaningful gradient information can be obtained and if the number of
optima can be bounded and how constraints are formulated.

For most combinatorial problems, including typical multi-layer problems, gradient informa-
tion is difficult or even impossible to determine for the entire state space. One of the reasons
for this is that when the combinatorial choice is represented as an index set, the index may be
chosen arbitrarily and not reflect any property of the structure it represents. Consequently, the
solutions of neighboring indices may have nothing in common and may feature vastly different
objective function values making any gradient information beyond the immediate neighborhood
purely coincidental.

Furthermore, a bad indexing scheme may also lead to a large number of local optima, i. e.,
points which are optimal for a subset of the input space forming a contiguous interval of F , also
known as a basin. Apart from the index, the structure of some combinatorial problems itself
may contribute to increasing the number of basins. Graph-related problems often contain many
symmetries, e. g., due to paths of equal length, which may lead to many structurally different
solutions of identical objective function values and therefore many optima.

For routing and topology design problems, changes to the chosen index value generally have
non-trivial effects on the overall objective value of the resulting network configuration, such that
a meaningful index with respect to the objective function is often hard to identify. Considering
a VTD problem as an example, the removal of a single virtual link that leads to a network
becoming disconnected, will potentially disrupt many traffic demands and make the solution
infeasible. On the contrary, removing a virtual link in the network’s periphery that is barely
used may have little to no effect on the objective value. However, it is impossible to determine
the importance of a virtual link without further assumptions on the scenario such as the exact
traffic routing and its reaction to changes. For routing problems, the length of a path is often a
very useful criterion in determining an index. A small-scale example visualizing the effects of
constraints and index ordering can be found in Section B.2 of the appendix.

Finally, in constrained optimization problems the input space may feature intervals, where
the objective function remains undefined, because a condition could not be met, rendering the
solutions within these intervals infeasible. The corresponding constraints, which decide on the
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feasibility, are called hard constraints. Depending on the exact nature of the constraints, these
intervals may be localized to an area of the input space, but without further knowledge, neither
their location, nor their number can easily be bounded.

In contrast to hard constraints, there are also so-called soft constraints. Not fulfilling a soft
constraint does not make a solution infeasible, but dramatically increases the objective function
value by a term, which typically dominates the original minimization goal. Since this term may
grade the degree of constraint violation, it is also referred to as a penalty function.

In order to facilitate an efficient search through the input space, it is possible to relax hard
constraints into soft constraints. Such a relaxation replaces undefined areas of the input space
by areas of very high objective function values. Infeasible areas are hard to search, because
infeasibility is a binary property and any two infeasible solutions are equally infeasible, such that
there cannot be any gradient approximation between them. However, if the solution candidates
are not infeasible, but rather result in high objective values due to penalties, these values can
be compared. Therefore, a gradient approximation can be determined, which can help point the
search towards areas of lower penalties.

For this monograph, we consider different constraints in different problems. However, all
problems under investigation share a demand capacity constraint. This means that any demand
is required to receive sufficient capacity on all the resources it traverses. Additionally, some or
all traffic demands may require specific QoS constraints, which will be given as a minimum
amount of availability and latency. Where not noted otherwise, all constraints are interpreted as
soft constraints, which are typically set up as dominating penalty terms.

3.3 Overview on Optimization Methods

While there exist very efficient methods for very specific problems, e. g., Dijkstra’s algorithm
for finding the shortest paths in a graph, general discrete optimization problems are much
more difficult to solve. If no special conditions can be exploited to formulate a domain-specific
approach, often only an exhaustive enumeration of all feasible points is guaranteed to find the
optima [113, p. 7]. Since combinatorial problems typically have very large solution spaces that
grow rapidly with increasing input size [115, p. 222], this is only a feasible approach for very
small problem instances. In order to use a more meaningful solution method, some additional
information about the problem needs to be available. This can be in regard to x, F , or C.

Ideally, F and C can be formalized as a set of closed-form expressions which form a system
of equations. While equation systems for general polynomial discrete problems are known to
be incomputable by a single algorithm, even down to quadratic constraints [121], there exist
different solution approaches for cases where the constraints remain convex or ideally even
linear functions.

3.3.1 Linear Programming

If F is a linear function of vector x with n components, it can be defined by its coefficient vector
p of n components. If each of the m conditions in C are such that they can be expressed as a linear
inequality of the form am

Tx≤ bm with coefficient vector am and value bm, then the conditions can
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be aggregated into a matrix A = (anm) and a vector b = bm such that the optimization problem
can be written as a system of equations as follows.

Maximize pTx
subject to Ax≤ b
and x≥ 0

Such systems of linear equations can be optimized by general solver algorithms and have been
an active field of operations research for a long time. They can be distinguished by the domain of
their variables as follows. For continuous, linear problems, abbreviated as LP, all variables are
real-valued, while the variables of Integer Linear Programs (ILPs) are integer. The designation
Mixed Integer Linear Program (MILP) is used to refer to a linear problem, where some variables
are integer, while others are not. Depending on the structure of the system, different algorithms
are applicable and many methods, ranging from Dantzig’s simplex algorithm [170] to interior-
point methods as well as more modern branch-and-bound, cutting plane and especially branch-
and-cut algorithms have been developed and successfully employed to solve different complex
optimization problems [194, pp. 160–168].

The great advantage of such solver algorithms is that they can provide exact solutions to
the equation systems, such that if an optimization problem can be expressed accordingly, the
optimal solution will eventually be found. The drawback is that the required runtimes may vary
from seconds to hours or even days depending on the structure of the equations, which can be
hard to determine a priori such that solvers are often run with time limits as termination condi-
tions. While the original simplex algorithm has a worst-case time complexity of O(2n) [112]
for n variables, more efficient algorithms have been developed for pure LPs that are able to
achieve low-order polynomial time complexity [115, p. 258]. When variables are integer-valued,
however, the problems become much harder. Solving ILPs is proven to be NP-complete [113,
ch. 18.1], such that problem instances quickly become intractable for relevant problem sizes.

Solvers for ILPs and MILPs often try to identify separable sub-problems, transform them
into corresponding LPs and try to solve these first and narrow down the possible integer solutions
by introducing cuts, based on previous results. The efficacy of such approaches depends on the
exact structure of the problem instance in rather non-trivial ways such that it is often difficult to
tell how hard a problem instance is to solve [194, p. 110].

Finally, a very interesting aspect of linear problem solving is the duality principle1. While a
solver is running, it may keep track of the so-called primal and dual solutions. From a simplified
vantage point, the primal solution can be considered to be the best feasible solution currently
known to the solver, while the dual solution is not a feasible solution to the original problem
but represents a lower bound. Therefore, in a minimization problem the primal solution will
improve over time by decreasing in objective value towards the dual solution, which in turn
increases over the algorithm’s runtime. The relative difference between the two values is known
as the duality gap. Based on this, it is possible to quantify, how much better the actual optimum
can at most be, although neither the exact optimum nor its value are known.

3.3.2 Heuristics and Numerical Approaches
When linear closed-form expressions for F and C cannot be defined, either heuristics or nu-
merical approaches need to be considered. These often exploit properties of the continuous

1Detailed information can be found in the books of Grover [115, pp. 231–235] and Schrijver [113, ch. 7.4].
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equivalent of F , similar to the relaxation done by ILP solvers. We will refer to this relaxed
objective function as F ′.

3.3.2.1 Approaches for Convex Problems
If the function F ′ is known to be strictly convex and differentiable, such that only a single opti-
mum exists, it is possible to exploit gradient information using gradient descent methods such as
Newton’s method to find the global optimum and check the closest integer points for feasibility
and objective value. Newton’s method generates a random starting solution x1, determines the
local value of Hessian matrix H and generates a better solution x2 by following the inverse
gradient, according to the following function.

xn+1 = xn−
(
HF ′(xn)

)−1 ·∇F ′(xn)

For n→ ∞ this approach is guaranteed to find the optimum of F ′ and recursive probing of its
neighborhood according to F will eventually yield the integer optimum.

If a continuous relaxation of F is either not differentiable or cannot be defined, neither the
Hessian, nor the gradient can be computed and heuristics are required to improve the objective
value. Heuristic approaches that are following the principle of iteratively generating subsequent
points xn+1 from a starting point xn can be categorized as trajectory-based methods. In this
case, a trajectory-based heuristic may utilize an approximation of a local gradient, determined
by a function fapp. For combinatorial problems, this often means that subsequent points are
determined according to a local search in the neighborhood1 Nd of xn, such that the step function
may become

xn+1 = xn−
(

fapp(xn)
)
= hF (Nd(xn))

with local search heuristic hF being able to evaluate F for the given points. There are various
ways how hF can choose the candidate value xc from Nd(xn).

Hill climbing chooses the first neighbor which improves the objective value and terminates
if none improve it beyond F(xn). Obviously, this approach has a much lower rate of convergence
since it lacks a global gradient and treats all dimensions separately. Steepest-ascend Hill Climb-
ing tries to improve upon this by exhaustively testing all neighboring points to determine the
one offering the largest improvement over F(xn), which can be computationally challenging for
high-dimensional problems. Stochastic Hill Climbing offers a middle ground by sampling the
neighborhood and accepting a candidate point xc with an acceptance probability p based on the
improvement in the objective value, e. g., such that

p = max
((

1− F(xc)

F(xn)

)
·ρ ,0

)
with xc ∈Nd(xn) and ρ ∈ ]0,1[ being a parameter which can be adjusted to match the problem at
hand. This offers a flexible tradeoff between an accelerated rate of convergence and fine-granular
search close to the optimum to avoid overshooting.

1More formally, we define the d-neighborhood Nd(x) of x ∈ Zn as Nd(x) = {p ∈ Zn | |(‖x‖1−‖p‖1)|= d}.
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3.3.2.2 Approaches for Combinatorial Problems
For typical combinatorial problems, the objective function is non-convex and therefore it may
have any number of local optima. This is problematic for the basic methods above since they
are only guaranteed to converge to the global optimum for convex functions. If F has several
local optima, then these methods will converge to the minima in whose basin the starting point
x1 is located. If the number of minima is known to be small, then Multi-Start Local Search
(MSLS) approaches [159] may be employed. These approaches sample the search space for
several starting points, such that several executions of the above methods may find different
minima and the global minimum among them can simply be identified by searching through the
local minima.

Often the exact number of minima cannot be determined a priori, such that there is no
guarantee that all minima are found. For such problems, where F is essentially a black box, only
exhaustive enumeration is guaranteed to find a global optimum. However, the distribution of
values in the search space is typically not random, since there is an underlying problem, which
typically has some inherent, yet unknown or excessively complex structure. This leaves three
possible groups of approaches to devise heuristics for these problems. The first is to approach
the problem by a reduced-complexity proxy model which is built to be conducive to one of
the approaches above. Especially devising models that can be optimized by ILP solvers is very
common and as such will be discussed in more detail with respect to multi-layer optimization in
Section 3.3.1.

The second group uses machine learning techniques such as Bayesian Optimization or
Neural Networks in the hope that these can learn the properties of the objective function and
minimize it accordingly. Especially Neural Networks can solve highly complex problems in-
cluding path searching [111] very quickly once they have been properly designed and trained.
This also highlights their drawbacks. For general combinatorial problems there is no single rule
on which neural network structure should be employed. Furthermore, most approaches require a
large amount of training data from which the targeted behavior can be learned. If such data is un-
available, approaches such as reinforcement learning can still be applied, but the training phases
may become prohibitive in duration due to the large complexity of combinatorial problems.

Finally, general assumptions about the distribution and relation of values in the search space
can be made and dynamically adjusted based on sampling the objective function to enable an
efficient and effective analysis of the search space. This is the domain of a class of techniques,
which offer generalized methods to approach black box objective functions, dealing with the
absence of gradient information and knowledge about minima by defining general rules for
sampling the search space on a global and on a local level, controlling the tradeoff between an
exploratory search of the entire search space and a refining search of reasonably good points.
Many such algorithms require only two problem-specific sub-algorithms. One for generating a
starting point in relation to the search space and one for transforming a given point into another
feasible point with some measure of distance in search space. These algorithms are known as
metaheuristic algorithms.

3.3.3 Metaheuristic Optimization Approaches
Since these approaches do not describe heuristics for specific problems, but rather a general meta-
approach to problem solving which needs further domain-specific adaptations, they are termed
metaheuristics. Metaheuristics can be classified along several axes including their memory
footprint and the amount of required adaptation, but the strongest distinction is between those



3.3 Overview on Optimization Methods 41

following a trajectory through search space and those examining multiple solution candidates
simultaneously.

3.3.3.1 Trajectory-based Metaheuristics
Among the basic representatives of this category are multi-start approaches like MSLS, which
utilize further heuristics to determine how the objective function should be sampled for mean-
ingful starting points. More advanced metaheuristic approaches incorporate knowledge obtained
from finding previous minima in both, the generation of starting points and guiding the refining
search process. An example is Iterated Local Search (ILS) [150]. After starting from a random
point, it finds the corresponding local minimum by iterative Hill Climbing. In the second step, it
performs a so-called perturbation of this local minimum, i. e., it generates a new candidate point
from that minimum according to a user-defined rule, which should ideally place this candidate
outside of the current basin. If this candidate point matches a user-defined criterion, e. g., it
covers a new search area or is a better solution altogether, then it is used as the new starting point
to repeat this process. In each iteration the local optimum is stored if it is better than the best
solution known up to this point. The algorithm terminates according to a user-defined criterion,
e. g., after a given number of iterations or a target cost has been reached.

Most trajectory-based metaheuristics follow this general approach but apply more specific
rules to perturbation and the selection criterion, since these are often difficult to define. For
example, Tabu Search methods exclude the neighborhoods of recently found minima in the
perturbation, such that if the excluded neighborhood is large enough, subsequent candidates will
be located in different basins. Another example are Simulated Annealing methods, which will be
presented in greater detail in Section 3.3.4. They allow the selection of intermediate candidates
that initially can have worse objective values than the previous ones and therefore move “uphill”
to escape the basins of local minima.

Figure 3.3a illustrates a very simple trajectory-based approach. The dots represent different
solution candidates, where darker dots have better objective function values than lighter ones.
The rectangles represent the inspected neighborhood from which the perturbation procedure
will select the next solution candidate. Colors roughly indicate the progression of perturbations
starting with the violet rectangle in the lower left. The approach always selects the best candidate
from its current neighborhood, which has not been visited before, and breaks ties among equal
solutions by choosing the one geometrically closer to the best-known dot so far. After 20 iteration
steps with one perturbation in each it has reached the global optimum.

3.3.3.2 Population-based Metaheuristics
A second class of metaheuristic approaches are the population-based methods. While the
trajectory-based methods move iteratively from one solution to the next, the population-based
methods keep a set of solutions, the so-called population, which they operate on. The advantage
of a population is that in determining new solution points, information from all known candi-
dates can be used. This is especially beneficial when the search space exhibits a macro-structure,
where several groups of basins exist in large distance to each other.

Figure 3.3b shows an approach that modifies the previous trajectory-based method to use
a population of four searches, which are run in parallel. After every iteration, the individuals
in locally bad neighborhoods are moved directly to the best-known positions among the set
of all neighborhoods of the candidates within the current population. This way, promising
regions can be explored quicker. This approach requires only 11 iteration steps to reach the
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(a) Single trajectory search (b) Population-based search

Figure 3.3: Exploration of a two-dimensional search space by different approaches

global optimum. However, since every iteration step now includes four individual perturbations,
their overall number has drastically increased to a total of 44. The number of perturbations per
iteration step therefore has an impact on the performance and has to be chosen carefully. Most
population-based metaheuristics therefore use very elaborate schemes to maximize the utility of
the information gained through the population.

Most prominent among these are evolutionary, Particle Swarm Optimization (PSO) and
Ant Colony Optimization (ACO) approaches, which all adapt bio-inspired modes of problem
solving. Evolutionary approaches are inspired by natural evolution such that they treat solution
candidates as individuals which compete for survival in a common ecosystem. They will be
elaborated upon in Section 3.4.

PSO [66] simulates the dynamic behavior of a cloud of particles, each representing a candi-
date point in search space. All particles have an initially large velocity in the solution space which
is subject to change over time. The best-known position of each particle and the best-known
position of all particles act as attracting forces which change the velocity vector of a particle,
such that ideally particles are directed towards optima. This approach is very powerful since it re-
quires very little adaption to the problem to be solved and the variable velocity naturally creates
pseudo-gradients between different minima such that search spaces with macro-structures can
be explored efficiently. The performance, however, depends on a good initialization of velocities,
their update rates and starting points. In the worst case, bad choices for these parameters can
prevent convergence altogether [25]. Furthermore, if a large number of similar local minima
exist, velocity information updates may not be effective in guiding the algorithm.

ACO [49] mimics the foraging behavior of ants that create pheromone trails during their
search to inform other ants about possible food sources. ACO typically works on graph repre-
sentations of the optimization problem. A population of independent agents, corresponding to
artificial ants, is created and each such agent follows the edges of the graph towards generating a
full solution. They choose edges with a probability proportional to the intensity of existing trails
on that edge, if possible augmented by a heuristic guidance. When their sequence of chosen
edges forms a complete solution, this sequence is updated with a pheromone intensity correlating
with the quality of the solution. A decay or evaporation factor constantly reduces the intensity
on all edges by a small amount such that the intensity on less beneficial routes is reduced over
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time and more beneficial routes are reinforced by the trails of increasing numbers of agents using
them. Obviously, this type of algorithm is immediately applicable to problems that can easily be
represented as paths in a graph. It works especially well when there is a straightforward guiding
heuristic like the Euclidean distance on a plane, which is given for the Traveling Salesman
Problem and its derivatives. For general combinatorial problems it’s harder to formulate choices
as a graph without that graph becoming excessively large.

3.3.3.3 Properties and Performance
Most metaheuristics share a number of traits. A termination criterion needs to be defined which
may depend on the method (e. g., number of iterations) or the problem (e. g., known acceptable
target cost). They all have their own set of parameters controlling their exact behavior (e. g.,
velocities for PSO or neighborhood size for Tabu Search). These metaheuristic-inherent parame-
ters can be referred to as hyperparameters to distinguish them from problem-specific parameters.
Furthermore, most metaheuristics require certain domain-specific adaptions or reformulations
of the original problem such that it becomes compatible with their method of operation. This
adaption can be simple as in the case of PSO, but also very complex as in the case of ILS,
which is more of a framework than an immediately usable procedure. Finally, all of the outlined
approaches begin from one or more random points in the search space. The selection of these
points can have a significant impact on the rate of convergence, especially if the search space
exhibits many local minima.

All of the metaheuristics mentioned above iteratively improve initial start solutions. This
is generally a good fit for combinatorial optimization problems, because solving the relaxed
search problem of identifying an arbitrary feasible solution is often relatively easy [115, p. 222].
Furthermore, metaheuristics can often easily be adapted and hybridized with other algorithms
and domain-specific heuristics. Rather than randomly generating a starting solution, one can
employ a basic heuristic to create an above-average quality solution. For example, considering
the Traveling Salesman Problem one can generate an initial solution by repeatedly choosing
the closest unvisited cities rather than having a random sequence of cities with arbitrarily long
distances between them. Similarly, perturbation may be designed such that subpar solutions are
avoided early on. The more information is known about the optimization problem, the better a
metaheuristic can be adjusted, such that the resulting approach may be much more efficient than
a generic one [137].

3.3.4 Simulated Annealing
Simulated Annealing [136] belongs to the trajectory-based metaheuristics and is related to
Stochastic Hill Climbing and ILS. Its core functionality is based on an adaption of the Metropolis-
Hastings algorithm [120, 161] which is a Markov Chain Monte Carlo method used to create a
sequence of samples which approximate an unknown distribution. Rather than randomly sam-
pling solution candidates, the algorithm follows a specific pattern inspired by the so-called
annealing process from metallurgy. It accepts a solution candidate according to a certain accep-
tance probability p according to the following function.

p = min
(

1,exp
(
−F(xc)−F(xi)

Ti

))
In this equation xi is the last solution in the trajectory and xc is a solution candidate. Depending
on the value of the virtual temperature Ti, xc may be selected even if its cost is higher than that
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Figure 3.4: Simulated Annealing trajectory in search space

of xi. This allows the algorithm to flexibly explore the search space without becoming stuck in
local minima.

The value of Ti is regularly updated during the runtime, such that following values are
monotonically deceasing, and Ti converges to 0. At this point, a candidate solution is only
accepted, if it provides an actual improvement in the objective function value. The sequence
of Ti is known as the cooling schedule and is one of the most important parameters for this
approach. Initially high values allow for a broad exploratory phase, while decreasing smaller
values result in a gradual refinement. Figure 3.4 shows an idealized trajectory through search
space, where the color of the arrows indicates the current virtual temperature.

New candidate solutions are created from the previous solution in the trajectory using the
so-called perturbation function, which is a problem-specific function that has to be defined when
adapting Simulated Annealing to a given optimization problem. The basic Simulated Annealing
procedure is shown as Algorithm 1. Simulated Annealing is typically very memory-efficient,
since it only needs to keep track of the best, the last and the next candidate solution. The
only potentially expensive operations in terms of computation are the cost evaluation and the
perturbation itself, but since both depend on the specific problem, no general statement can be
made.

Further information including a more detailed analysis of the properties and capabilities of
Simulated Annealing can be found in Section D.4 of the appendix.

3.4 Evolutionary and Genetic Algorithms

Evolutionary Algorithms (EAs) belong to the population-based metaheuristics. They are based
on the observation that natural evolution resembles an optimization process, where individuals
adapt to their surrounding ecosystem. More adapted individuals are more fit to survive in their
surroundings, such that the individuals of higher fitness have a higher chance to mate and
create offspring. The offspring inherit a mix of their parents’ traits and therefore have a chance
to exhibit an even higher fitness by combining different traits. Through natural selection, the
population will evolve over time to optimally adapt to its ecosystem.

EAs therefore try to mimic this behavior by interpreting individuals as solution candidates
and their fitness as their objective value. The population of solution candidates is then evolved
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Algorithm 1 Basic Simulated Annealing Algorithm
Require: Objective Function to minimize F
Require: Monotonically decreasing sequence of temperature values Tn ∈ R0

+

Require: Termination condition ct →{ true , false }
Require: Initial solution xs

procedure S I M U L AT E D A N N E A L I N G(F , Tn, ct , xs)
let i← 0 . Number of iterations
let xi← xs . Current solution in iteration i
let xbest← xs . Best solution currently known
while not ct() do

let xc← P E R T U R B AT I O N(xi) . Problem-specific procedure, cf. Section D.4.3
let r← R N D(0,1)
if r ≤min

(
1,exp

(
−F(xc)−F(xi)

Ti

))
then

xi← xc
if F(xc)< F(xbest) then

xbest← xc
end if

end if
i← i+1

end while
return xbest

end procedure

by iteratively applying evolutionary operators to create new solution candidates based on the
previous ones. High-quality solutions are fostered by exerting an artificial selection pressure
depending on their objective value.

The details of how offspring candidates are created by these operators and how the optimiza-
tion problem is represented vary significantly between different classes of these algorithms. For
example, in Differential Evolution [197] and Evolution Strategies [17], the individuals are typi-
cally real-valued vectors, which may represent solution candidates for difficult equation systems.
In Genetic [196], Evolutionary [68], and Gene Expression Programming [80], individuals are
computer programs intended to solve a given problem and the operators evolve their program
code or the parameters used in predefined code.

Genetic Algorithms (GAs) are closer to natural evolution. Their defining characteristic is that
their operators do not immediately work on the candidate solutions, but rather that all candidates
are represented by their genes to which the operators are applied. The genes are then used to
construct the actual solution candidates and their objective value can be determined. Thus, an
individual can be of arbitrarily complex structure, while the evolutionary operators can be kept
simple, since the complexity of the genes is far lower than that of the entire individual. This
monograph will focus on GAs and their extensions.

3.4.1 Definitions and Background

Any biological individual is largely defined by a sequence of genes which are carried in the
individual’s chromosomes. The position of a gene within this sequence is called locus. The
gene sequence consists of nucleotides that exhibit one of four discrete states for most biological
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creatures. Subsets of genes typically encode different traits. The genetic code of a trait is called
genotype, and the resulting trait is called phenotype. Figure 3.5 exemplifies these terms by
showing traits of a flower encoded in a chromosome structure.

The gene sequence of an offspring consists of contiguous subsequences of its parents’ genes
and therefore it can inherit phenotypes if the entire subsequences representing the corresponding
genotypes are present. The process of assembling an offspring’s chromosome from its parents’
chromosomes is called recombination or crossover. Furthermore, environmental effects lead to
changes in the states of individual genes, which can result in entirely new features which may
further improve or reduce the fitness. These random changes are referred to as mutations.

The set of individuals that may become parents is the population. While less fit individuals
are gradually removed from the population, they are replaced by more fit individuals from their
offspring. Which individuals become parents, which are removed, and which offspring enter the
population is subject to a selection process depending on their fitness. Therefore, the population
evolves from one generation to the next as shown in Figure 3.6.

3.4.2 Algorithmic Approach
The concepts for the original GA approach have been developed by John Holland and sum-
marized in his 1975 book [125] on the topic. It is one of the more literal adaptions of natural
evolution and does not interact directly with the solution candidates, but rather with a virtual
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genetic encoding that defines a solution by its virtual genes in a virtual chromosome. Initially,
it builds a starting population which is typically comprised of a number of randomly generated
chromosomes and evaluates these for their objective values. After that it iteratively executes the
evolutionary cycle as shown in Figure 3.6 using the basic genetic operators of parent selection,
recombination, mutation, and survivor selection. In each cycle it performs a predefined number
of such perturbations generating offspring solution candidates from two parent solutions. The
basic approach is shown in Algorithm 2.

Algorithm 2 Basic Genetic Algorithm
Require: Objective Function F
Require: Termination condition ct →{ true , false }
Require: Set of initial chromosomes C
Require: Number of evolutions per generation no ∈ N

procedure G E N E T I C A L G O R I T H M(F , ct , C, no)
let O← /0 . Offspring as set of chromosomes
let P←C . Population as set of chromosomes
let cbest← argminc(F(D E C O D E(c))) . Best solution known among c ∈C
while not ct() do . Termination condition

for i = 0 to i = no do
〈p1, p2〉 ← PA R E N T S E L E C T(P)
〈o1,o2〉 ← R E C O M B I N E(〈p1, p2〉)
O← O∪{M U TAT E(o1)}∪{M U TAT E(o2)}

end for
for all c ∈ O do

if F(D E C O D E(c)))< F(D E C O D E(cbest)) then
cbest← c

end if
end for
P← S U RV I V O R S E L E C T(P,O)
O← /0

end while
return D E C O D E(cbest)

end procedure

Originally, these virtual genes were simple bit strings, which made the design of genetic
operators simple and efficient to implement in computer systems. For example, the recombi-
nation could be realized as 1-point crossover, randomly determining a locus and setting all of
the offspring’s chromosome bits up until that locus identical to the bits of the first parent and
all subsequent bits identical to those of the second parent. The mutation operation could be
realized as a simple bit flip in a randomized locus. Since its beginnings, genetic encodings have
been extended to include real-valued and integer-valued vectors as well as abstract structures,
each with a wide variety of accompanying genetic operators. Especially interesting are so-called
hybrid and memetic genetic algorithms which combine the basic evolutionary approach with
additional heuristics and problem-specific knowledge.
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3.4.3 Theoretical Behavior
While it is hardly contested that evolution per se “works”, there are only few solid and gen-
eral findings as to how exactly operators and encodings need to be designed such that con-
vergence is probable, much less can be guaranteed. Holland had suggested the notation of
Schemata [125, pp. 66–74] which Goldberg summarized in his 1989 book on Genetic Algo-
rithms [107, pp. 41–45] as the Building Block Hypothesis. Simplified, it states that small sub-
structures of a chromosome contribute differently to the emergent overall solution fitness, and
it is suggested that recombination is an efficient operation for the proliferation and exploration
of combinations of such building blocks. Although numerous works with empirical evidence of
genetic algorithm performance exist, it has also been shown that the standard mutation operators
typically render the algorithms incapable of any proof of convergence [237].

Regardless of how exactly the operators can be formalized and parameterized, the population
itself may already provide a substantial benefit over purely trajectory-based approaches as well.
It allows for a broad sampling of the solution space and is more resistant to becoming stuck
in local minima since typically not all solution candidates will converge to the same local
minimum. Some algorithm variants, especially when using smaller populations due to external
constraints, employ diversity-control methods to restrict recombination of individuals with the
goal of maintaining a broader coverage of the search space. This can be done by fitness sharing,
such that only a limited number of solutions with identical objective values are admissible,
by crowding, where the number of genetically similar candidates is restricted, or by running
several entirely separate populations which only exchange chromosomes after a larger number
of generations.

3.4.4 Problem Adaption
Since the genetic operators are defined on chromosomes, it is required to find a meaningful
encoding of the problem and its solutions. Whenever problems can be described by numerical
parameters, it is a straightforward way to encode solutions as vectors containing these parameters.
Depending on the domain of the parameters and therefore the resulting vector, different genetic
operators can be used. For combinatorial problems, a choice of discrete structures may be
represented by a bit string where each locus corresponds to a structure and its value indicates if
it has been chosen. When there are multiple discrete realizations per structure, an integer vector
where gene values represent an index set are a possible choice.

Whenever the original problem is separable, this property should be exploited and may
be reflected directly in the coding and its processing. While this is not typically the case for
combinatorial problems, there may exist parts of the problem that may even be linked by com-
mon parameters, such that they can be solved by other, possibly fully deterministic algorithms.
In the biological analogy this would correspond to knowing a priori which subsequences of
a chromosome result in specific traits, such that only these traits are relevant, not their exact
genetic composition. This is the domain of memetic algorithms, where the genetic algorithm
only operates on these parameters, thereby significantly simplifying the original problem. Such
encodings, if they exist for specific problems, are typically highly domain-specific and often
difficult to find and inherently hard to generalize.

The difficulty in designing an encoding stems from that fact that one may easily under-
or overrepresent the actual solutions. A smaller search space is easier to explore, but when
the encoding is missing parts of the solution space, it might miss the actual optimum as well.
On the other hand, an overrepresentation may negatively impact performance, especially in
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combinatorial problems where a few redundant chromosome states easily lead to an exponential
growth of the search space. The sequence of genes in the chromosome should ideally also
represent some structural aspect conducive to the solution of the problem. If such an aspect can
be identified, its inclusion into the design of the encoding has a chance to significantly improve
the performance since recombination operates on sequences of genes.

3.4.5 Hyperparameters
Genetic Algorithms require a comparatively large number of hyperparameters, especially since
there are various genetic operators, many of which also require their own specific hyperparame-
ters. According to the mechanism they are attached to, they can be divided into the termination
condition, hyperparameters for the population, parent selection, survivor selection, mutation,
and recombination. Carefully controlling the effects of the genetic operators is imperative to
avoid divergent behavior.

3.4.5.1 Population and Evolution Rate
The size of the population has to be large enough to allow a sufficient number of differing
gene sequences to exist, such that a meaningful level of diversity is possible. If the number of
individuals in the population is too low, then only a small number of different traits can exist at
any point in time and improvements will result less from recombination but need to be evolved by
possibly many mutations. Furthermore, recombination may counteract the effects of mutation,
since the few existing good gene subsequences will enter all chromosomes quickly, which
can result in premature convergence. Larger and more complex chromosomes will therefore
also require larger populations to sufficiently explore the search space. A drawback of larger
populations is the increased memory footprint.

The population size also needs to be considered together with the number of offspring
created in each cycle, also known as the evolution rate. A large population and a very small
evolution rate mean that only few individuals are selected as parents and therefore large parts of
the population contribute little to the evolution process.

The evolution rate is the primary driver for change in the population and allows for several
different modes of operation in conjunction with the selection schemes. There exists the so-
called generational model in which all parents are automatically removed from the population
and replaced by an equal number of their offspring. In the steady state model evolution rates are
much lower and only a part of the original population is replaced by their offspring, which may
even need to compete with their parents for selection into the next generation of the population.

3.4.5.2 Parent Selection
The objective of the parent selection is to identify potentially good and bad individuals, selecting
the good ones as parents to perpetuate beneficial traits. Most selection processes in some way
utilize the objective value of individuals to determine the probability of selection. They may
determine the probability proportional to the rank, i. e., the index in a list of individuals sorted
by objective value, the difference in absolute or normalized objective values.

In parent selection, the most popular versions are Fitness Proportional Selection (FPS),
also known as Roulette Wheel Selection (RWS), Stochastic Universal Sampling (SUS) [8],
and tournament selection. FPS works by normalizing the objective values such that their sum
corresponds to the [0,1[ interval and all individuals receive a proportional share. It then proceeds
by generating a random number and adding the normalized objective values in arbitrary sequence
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Figure 3.7: Comparison of selection operators for a population of 10 candidates

until the sum is larger than this number, picking the individual that was added last. This is
analogous to spinning a roulette wheel and assigning circle segments to individuals such that the
length of their arc is proportional to their objective value, thus giving better individuals a higher
chance of being selected. This is illustrated in Figure 3.7a, where the individual c2, which has
the best objective value, has been selected.

SUS is closely related to FPS, but rather than selecting n individuals using n random numbers,
SUS draws a single random number r, selects the corresponding individual and then selects the
remaining n−1 individuals by taking evenly spaced steps from r, such that n multiplied by the
step size is 1. This is analogous to a roulette wheel with n arms as shown in Figure 3.7b, where a
single spin with n = 3 points to c1, c2 and c5. In fact, for this example it is guaranteed, that c1, c2
and any one of c3 to c10 will be selected, whereas RWS has roughly a 30 % chance of missing all
smaller segments in 3 consecutive spins. Therefore, SUS increases diversity by having less bias
towards the objective value, which can be helpful in scenarios where a dominating individual
represents only a local optimum.

Tournament selection has an additional hyperparameter specifying the number of contenders.
These are drawn at random from the population and “compete” pair-wise such that the better
objective value signifies the winner. There are also stochastic versions, where the winner is
picked proportional to the number of competitions it has won. By combining random draws and
fitness-based decisions, this approach can strike a good balance between diversity and rate of
convergence but requires more computation time.

Other GA variants also intentionally introduce additional bias to enhance the rate of conver-
sion. E. g., the Biased Random-Key Genetic Algorithm (BRKGA) divides the population into
an “elite” and a regular subpopulation, where the elite population contains the best individuals.
Here, parents are selected such that one is uniformly chosen among the elite and the other among
the regular population.

3.4.5.3 Survivor Selection
Just like in parent selection, the selection operators try to determine the quality of individuals,
but here the objective is to evict the bad ones from the population. They may use the same
methods of selecting them, i. e., based on a ranking system, absolute or normalized objective
values as before, sometimes with more aggressive parameters or cutoffs. Sigma Truncation, e. g.,
calculates the selection probability relative to the average objective value in the population, but
sets the survivor probability to 0 for individuals that are worse than a predefined number of
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standard deviations below the average. Additionally, the age of an individual, measured in the
number of generations it has maintained in the population, may also play a role for steady-state
approaches.

The most important strategies used are round-robin and stochastic tournament, replace worst,
(µ +λ ) and (µ ,λ ) selection. The tournament selection approaches are similar to their counter-
part in parent selection, but they work on the union of the parent population and their offspring.
For round-robin tournaments, all individuals compete with a fixed number of randomly drawn
individuals and the ones with most wins become the new population. For stochastic tournaments,
the number of contenders and tournaments is fixed and all contenders are drawn at random, such
that not all individuals may compete, which signifies the stochastic element.

Replace worst requires the population to be larger or at most equal to the number of offspring.
It first evicts a number of the worst elements of the population which is equal to the number of
offspring. Afterwards it adds all offspring to the remaining population. Obviously, if both are of
equal size, then the entire population is replaced by their offspring unconditionally, such that this
approach is heavily influenced by an individual’s age, rather than its fitness. (µ +λ ) selection is
similar to this but works by merging and sorting the current population and the offspring, before
evicting the worst individuals. This means that high-quality individuals of the last generation
can be transferred to the next generation if they are sufficiently good, which is not possible for
the simple replace worst-approach. (µ ,λ ) selection can be considered a middle ground between
the two. It requires the number of offspring to exceed the number of individuals in the present
population. All elements of the last generation are removed and only the best among the children
are selected for the following generation.

Finally, there is a special strategy known as Elitism. Generally, any individual, including the
one with the best objective value, may be evicted from the population with a certain probability.
Since this elite individual may be closest to the actual optimum, it is most likely detrimental to
remove it from the population entirely, since this may significantly lengthen the runtime. The
original version of Elitism therefore suggests that the best known individual should be able to
bypass survivor selection and remain in the population, possibly replacing the worst or a random
individual. However, when the elite individual is much better than the others, the population may
quickly evolve to reflect only small changes from this individual, although the actual optimum
may be vastly different. To prevent this premature convergence, a more advanced version of
Elitism considers not one, but several elite individuals and may even require them to exhibit a
certain genetic diversity to be eligible.

3.4.5.4 Mutation
The sheer number of mutation operators suggested in literature is well beyond the scope of
this work such that only the most well-known versions shall be introduced. The exact mode of
operation of the mutation depends on the genetic encoding. There exist versions for Boolean,
real-valued, integer-valued, and abstract permutation encodings. Common to all of them is that
mutation introduces a random change, which often consists of choosing one or more loci and
modifying the current gene value. As such mutation is closely related to the simple perturbation
operators of other algorithms.

The most basic mutation operator, which we refer to as Uniform Random Mutation (URM)
chooses a single locus and randomly changes its gene value to any other possible value with equal
probability. For a binary encoding this corresponds to a single bit flip in the chromosome. More
advanced versions offer additional hyperparameters, often regarding the number of affected
loci or, for real- and integer-valued genes, a restriction on the target gene value. For example,
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Figure 3.8: Comparison of mutation operators for a chromosome with gene values 1 to 9

when the genes are in the integer domain, the so-called creep mutation either increments or
decrements the previous gene value by a small value, typically with equal probability. The value
itself is randomized and bounded by the maximum step size, which is the hyperparameter for this
operator. Figure 3.8b shows this for a maximum step size of 1. In contrast to this, the Gaussian
mutation draws the new value of the gene from a Gaussian distribution centered around the
current gene value and takes its standard deviation as an additional hyperparameter.

Regarding the number of affected loci, the most common approaches are N-Point Mutation
(NPM) and Random Reset Mutation (RRM). NPM essentially applies URM to n uniformly se-
lected loci in the chromosome, while RRM applies URM to each gene with a uniform probability,
which marks another hyperparameter. This is equivalent to a distribution where the previous
gene value is more likely than the others as depicted in Figure 3.8e.

Figure 3.8 illustrates all of the aforementioned operators for a chromosome of 9 genes,
where each gene can take a value between 1 and 9. All mutations can be broken down to a
choice of affected loci (marked blue in the offspring) and a choice regarding the change in value
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Figure 3.9: Comparison of recombination operators for an integer-valued chromosome

(marked red in the offspring). The graphs representing these choices show exemplary probability
mass functions. Mutation can be a powerful driver in developing new traits, but the number of
changes and possibly the step size need to be chosen with care. There even exist versions of
genetic algorithms relying more or even solely on mutation (sometimes traditionally referred to
as evolutionary algorithms). Aggressive mutation can create new phenotypes more quickly but
may also disrupt existing ones more quickly as well.

3.4.5.5 Recombination
Many recombination or crossover operators exist in literature. The most common ones are uni-
form, cut and crossfill and N-point crossover. For the uniform or uniform random recombination
operator, which we shall refer to as UXO, there is a 50 % chance that any given gene comes
from parent 1 or parent 2. While this is a simple and efficient operation, it is not very conducive
to the concept of the building block hypothesis, since traits with large genotypes are likely to be
disrupted during random recombination. A more recent approach to UXO, called biased UXO
(BUXO), explores the possibility of selecting a parent gene using a different probability value
then p = 0.5. In this scheme, the genes are not split equally between the parents, but rather the
selection probability is increased for the more fit parent.

Cut and crossfill, also known as single-point crossover, is a widely used approach in which
a locus is randomly selected and all genes up to this locus are taken from parent 1 and all genes
beyond this locus from parent 2. This approach helps to pass on intact genotypes but may be
inefficient for very long chromosomes. The straightforward extension is the N-point crossover
where the hyperparameter n gives the number of loci to randomly select and the genes in-between
are alternately copied from parents 1 and 2. We shall abbreviate the former as Cut-and-Crossfill
Crossover (CNCXO) and the latter as N-Point Crossover (NPXO).

Figure 3.9 shows illustrations of the three major recombination operators. While all of these
show only positional choices, it should be noted that further operators exist, which also consider
gene values in recombination. E. g., when the values represent arbitrary integer variables, rather
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than an index to a finite set of categories, it can make sense to blend gene values by calculat-
ing average values. However, these are out of scope for this monograph, which is primarily
concerned with combinatorial choices.

Whenever there are clear structures emerging from subsequences, recombination is expected
to be most effective in combining these and evolving better solutions. When the order of genes
plays only a minor role and many discrete states exist, more aggressive mutation may be more
efficient in exploring the search space.

3.4.5.6 Termination
Genetic Algorithms can use the typical termination conditions relating to the solution quality,
but there are also a number of specific values. The number of evolutions of offspring or the
number of generations can be bounded. Furthermore, the genetic algorithm can only evolve
new solutions efficiently as long as there is sufficient genetic diversity in the chromosomes of
the population, such that the genetic diversity can be used as a termination criterion as well.
However, it should be noted that this may not be practical for very large populations if diversity
has to be determined by comparing all elements of the population.

3.4.6 Aspects of Implementation
Genetic Algorithms are inherently parallelizable since most of their operations occur in isolation.
Selection, Mutation, Crossover can be run in parallel. Only the survivor selection requires
a global view with exclusive access when interacting with the population. This is a highly
beneficial trait in times where computer architecture tends to scale out, rather than scale up.

The memory footprint of a genetic algorithm primarily depends on the size of the population
and its individuals since none of the common operators need much memory or processing. In
fact, depending on the underlying problem, executing the decoding function, or evaluating a
decoded individual for its objective value may be the most computationally intensive tasks. In
this case, it makes sense to store the objective values with the individuals in the population,
rather than repeatedly execute those procedures on the same chromosomes.

The largest problem in using genetic algorithms is finding a good genetic code for the
problem to be solved, such that a good compromise between performance and solution quality
is possible.

3.5 Solution Methods for Multi-Layer Problems

The three most common approaches to solving multi-layer problems are the following: The
classic method is to treat them as search problems and solve their constituent sub-problems
independently using exact and fast algorithms. While the algorithms are well-understood and
highly efficient, the solutions will most likely be of sub-par quality compared to a proper opti-
mization. The second approach is to simplify and linearize the original problem in order to find
a corresponding ILP. This requires a high degree of knowledge on the problem as well as on the
method. When both are given, high-quality solutions can be obtained, but the runtime may be
large. The third approach are metaheuristics, which are more simple to employ for large prob-
lems than linear programs and may find solutions better than the classic approaches at shorter
runtimes than an ILP-solver can. While other approaches using problem-specific heuristics do
exist, they typically are specific to certain scenarios or conditions.
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3.5.1 Classic Methods
This approach of sequential network design can be found in commercial network planning
software [38, 67] for offline use but is also at the core of control plane protocols for online
use. Typically, the control planes do not typically consider changes to the entire network for
reasons of performance and predictability but rather focus on solving local problems quickly.
A new demand will therefore be provided with a locally optimal solution given the already
established configuration. Offline planning tools may also sequentially route traffic in order to
stay compliant with control plane behavior, but may also determine static elements such that the
resulting configuration will be as efficient as possible. This includes defining weights for routing
algorithms, but also determining a fixed virtual topology facilitating an efficient routing.

3.5.1.1 Routing Algorithms
For traffic and connection routing alike, demands are often routed individually, mostly mak-
ing use of Dijkstra’s algorithm (e. g., in IS-IS [205], OSPF [207] and OSPF-TE [225]) or the
Bellman–Ford algorithm (e. g., in RIP [206] and BGP [53]), possibly enhanced to exclude paths
that are not feasible, e. g., due to known resource limitations or not being QoS-compliant, by
limiting the search graph to its feasible subset.

Furthermore, when disjoint paths are required between the same pair of nodes, there may
be the additional requirement of being link- or even node-disjoint paths, i. e., that the paths do
not include the same edges or nodes. While node-disjoint paths are rarely required in transport
networks, pairs of link-disjoint paths are often required to avoid single points of failure. There
exist specific algorithms for this task which are more efficient than the general approach of
running subsequent iterations of regular shortest path algorithms. Most notable among these
are Bhandari’s [18] and Suurballe’s algorithms [259]. The first can be considered to extend the
Bellman–Ford algorithm, while the second extends Dijkstra’s algorithm.

The advantage of the Bellman–Ford algorithm and by extension Bhandari’s is that they sup-
port graphs of negative edge weights, which Dijkstra’s and its derivatives do not. The advantage
of the latter algorithms, however, is an asymptotically smaller time complexity, which makes
these algorithms preferable when simple edge weights are sufficient. While all algorithms solve
their respective problems in polynomial time, Dijkstra’s and Suurballe’s offer a worst-case time
complexity of O(|V | · log |V |+ |E|) and the other two algorithms of O(|V | · |E|).

3.5.1.2 Approaches for Topology Design
Depending on the operating paradigm the virtual topology may either be statically pre-planned
or reactive. In the reactive model network resources are capacitated and a virtual topology is
mostly driven by the arrival or departure of connection requests from the upper layer, such that
the state of the topology itself is a product of the sequence of demands and the network state at
the time of arrival. For example, in an Automatically Switched Optical Network (ASON), the
upper layer may request bandwidth for a new traffic demand from the lower layer which in turn
triggers its own routing algorithm with these parameters to create a new circuit. The lower layer
may explicitly advertise the remaining unused capacity, such that the upper layer can partition
it into several traffic routes usable for future traffic demands. The drawbacks are that this may
lead to resource fragmentation over time and that network operators have a hard time to predict
where bottlenecks will emerge.

For transport networks, there is always traffic to be expected between any node pair and
the required bandwidth may even be forecast with a certain degree of accuracy such that the
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virtual topology can be preplanned. The maximum possible traffic flow between a node pair in
capacitated networks can be determined deterministically by polynomial-time algorithms such
as Ford–Fulkerson [84] and Goldberg–Tarjan [106], the latter achieving a time complexity of
O(|V |2 · |E|). However, this is only possible for a single node pair. If there is simultaneous traffic
between more than one pair, the overall optimization problem becomes much harder and either
linear programming or approximation schemes have to be used.

However, another more basic requirement can indeed be optimized. When the topology
design can be reduced to a connectivity problem, then the task is equivalent to identifying a
spanning tree. There are several well-known algorithms applicable, which yield a spanning
tree of minimal overall edge cost. Most notable among these are Prim’s [198] and Kruskal’s
algorithms [143] with a time complexity ofO(|V | log |V |+ |E|) andO(log |V | · |E|) respectively.

For virtual and physical topologies alike, there is no single algorithm known at the time of
writing which is guaranteed to solve the general design problem to optimality in polynomial time
and consequently, no such algorithm is known for general multi-layer design. A classic approach
may therefore use a greedy shortest path routing, e. g., routing more important traffic first, on a
minimum cost spanning tree, which is iteratively augmented by heuristics such as adding least
cost links first or adding new links to areas of emerging bottlenecks. Such a composite approach
is highly unlikely to find an actual optimum but is very efficient and may work reasonably well
for small problems. If high quality solutions for larger networks are required, other algorithmic
approaches are more viable.

3.5.2 Linear Programming
As explained in Section 3.3.1, there are very powerful solver tools for problems that can be
expressed as linear programs, which yield exact solutions even for very complex problems. In
fact, there exists a plethora of works solving multi-layer problems by formulating them as ILP
or MILP and using standard solvers to find solutions. While hybrid methods exist, where only
the more complicated sub-problems are solved by linear programming, the method allows a
complete multi-layer formulation integrating all sub-problems. While there are many benefits to
such approaches, such as exact solutions and information about the duality gap, there are also
a number of drawbacks: For example, the linear formulation needs to represent the multi-layer
problem with sufficient accuracy, and it needs to be small enough to remain tractable.

3.5.2.1 Problem Formulation
A problem commonly solved by using linear programming is the so-called Multi-Commodity
Flow (MCF) problem [11, pp. 2354–2361]. It consists of a connected graph, where each edge
has a finite capacity and there are several demands, called commodities, which have a source
node, a target node and require a specific capacity. The objective of this search problem is to find
paths between source and target nodes for each commodity, such that there is sufficient capacity
on each link traversed.

In the basic version of this problem, the link capacity is fixed, and the commodities can
be split arbitrarily and can therefore be routed on several paths simultaneously, explaining the
notion of a flow between source and target. Two common variations are enforcing a singular
path routing, such that demands cannot be split, and using modular capacities for links, such
that capacity is not fixed, but added in integer multiples of fixed quantities. For these search
problems there exist common optimization problems. Most relevant to dimensioning in multi-
layer networks is the so-called minimum-cost MCF problem, where each fraction of a flow
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incurs a cost for using an edge and the objective is to find the solution of minimal cost. For
modular capacities, the number of capacity modules typically contributes to the cost as well.

Such MCF formulations already capture the essence of a routing problem of traffic demands
in a network very well and the installed capacity modules can be used to determine if candidate
edges are actually used in the resulting topology or not. They can easily be extended by additional
constraints and cost-values, such that extended MCF formulations [167, p. 358] are commonly
used approaches to optimizing solutions to the RWA problem. This works well, since many
important criteria in networking have linear dependencies, such as transmission delay being a
linear function of fiber length.

However, there are limitations for the applicability of linear programming to optimization
in networking. Not all constraints of common multi-layer problems are easy to include in linear
programs and same may even be impossible to adapt [194, ch. 9.3.2]. For example, whenever
the original problem requires non-linear functions, they have to be relaxed into a linear approxi-
mation. This may occur on the physical layer, e. g., when determining the maximum data rate
for a given transparent reach of a symbol-rate variable transponder, but also on the upper layer,
e. g., when considering statistics for packet delay variations in routing.

Another example are problems, for which the number of integer variables becomes too large,
such that they may be relaxed into continuous variables or, in case of combinatorial choices,
reduced to a much smaller number of preprocessed choices. The latter is a common approach
in complex routing problems, where candidate paths may be precomputed and enumerated by
an index. Such relaxations can result in situations, where the linear program may be solved to
optimality, but its optimal solution might not be the optimal solution to the original problem
anymore [194, p. 404].

To illustrate this point, we can examine the “SNDlib” library [183]. It consists of a variety
of common, real-world network problem instances including combinations of TDR, ICR, VTD
and PTD along with cost functions for network resources. The accompanying website1 lists
optimal solutions different researchers found using various formulations and solvers. Out of the
39 problems that are listed as solved without any optimality gap there are 11 for which several
distinct optimal solutions exist. The objective values of solutions to the same problem instances
differ by up to 11.8 %2, although there can only exist one true optimal objective value.

3.5.2.2 Complexity and Scalability
Linear programming formulations can vary significantly in their tractability. As explained in Sec-
tion 3.3.1, pure LPs are much easier to solve than ILPs. This is also true for MCF formulations,
where purely linear versions can be solved in polynomial time, but if capacities are integer the
MCF is NP-complete [75]. The more integer variables an extended MCF or generally a MILP
formulation contains, the more demanding it can be to solve.

While this is not generally true for any problem instance, a correlation with this tendency
is visible in the SNDlib data as well. Out of the 335 problems for which objective values are
present, 64 have solutions with gaps smaller than 5 %. Among those 64 with small gap there are
47 solutions using continuous variables to assign traffic to links, 11 using integer fractions of
the traffic and only 6 using undivided, single routes for each traffic demand. For all problems
that are identical except for the treatment of traffic routing, the solutions with single routes per
demand always show larger or at least equally large gaps than the other two options. Furthermore,

1http://sndlib.zib.de, last accessed 2019-04-30.
2cf. problem “pdh–U-U-E-N-C-A-N-N”

http://sndlib.zib.de
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problems of modular capacity are also known to be quite hard to solve [194, p. 65] and within
SNDlib not a single problem using modular link capacities and single routes has been solved to
optimality.

A common way to reduce the complexity of the routing sub-problems is to employ a precom-
puted set of paths, such that the ILP or MILP formulations simply select among these. While
this can significantly boost performance and even make solving previously intractable problems
possible [167, p. 359], it also presents a restriction to the original problem and if the number of
paths is too small, it may even exclude the optimum [194, p. 404]. Another approach to tackle
large-scale problems using linear programming is to employ a divide-and-conquer approach,
where sub-problems are separated and individual ILPs and MILPs are formulated, such that the
solution to one problem provides the input to the next [232]. While such approaches allow for
very efficient problem-solving, they may also significantly detract from the quality of the attain-
able solution. Furthermore, when considering multi-layer networks, often additional constraints
need to be taken into account, such that the problems may become even less scalable and full
featured models may only be tractable for smaller networks.

3.5.2.3 Application Examples
There is a very large variety of problems in multi-layer networks, that have been addressed
with the help of linear programming. The book of Mukherjee [167] and the book of Pióro and
Medhi [194] list a wide variety of example formulations for many networking problems, in-
cluding multi-layer problems and sub-problems. Feller lists more than 20 different works [77,
tab. 3.1] which address resource-efficiency, energy-efficiency, and reconfiguration in multi-layer
problems among others. Rožić et al. [236] list 13 works which specifically address multi-layer
problems by integer linear programming or combined heuristic and linear programming-based
approaches. Ergün provides a large number of different examples and discusses in detail how
different formulations can be specifically designed for multi-layer problems [289]. Due to the
vast amount of works in the area, only a small number of exemplary works based on linear
programming formulations will be provided in the following along with the problem size inves-
tigated.

Risso [229] combined routing and protection switching optimization for a multi-layer net-
work in an ILP formulation. Their approach required a solving time on the order of seconds for
networks of 5 nodes or less. For larger networks, depending on the exact scenario, they needed
between a few seconds and several days of solver runtime and problems beyond 8 nodes turned
out to be impractical to solve.

Sousa et al. [57] developed methods to determine a network configuration and routing
which optimize the cost of the required bandwidth-variable transponders. They used a complex
transponder model with associated reach and abstract cost values and considered traffic scenar-
ios with on average several sub-rate demands per node-pair. They found that, while the basic
formulations where unable to achieve optimality gaps smaller than 5 % in 2 hours runtime for
a 12-node network, their extended approach including various preprocessing steps improved
the scalability and allowed solving the problem for a network of 17 nodes and 26 links with
gaps below 1 %. This is the largest network that has been solved to optimality for simple traffic
scenarios.

Feller [77] and Zefreh [291] both used MILP formulations to optimize the resource efficiency
of rather intricate multi-layer network models, where Zefreh used equipment cost and Feller
energy consumption as the measure of efficiency. To make the problems tractable, Feller used
path-preprocessing and Zefreh solved the entire routing problem with deterministic algorithms
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before passing these results to the MILP to perform the hardware allocation. Zefreh’s largest
network has 17 nodes and 52 links, while Feller’s approaches were viable even for the 22-node
Géant-network.

While linear programming is a very powerful approach, large networks with many constraints
are difficult to tackle and either require relaxations of the original problem [77, 291] or complex
and highly problem-specific adaptions [57].

3.5.3 Heuristic Approaches
Problem-specific heuristics and metaheuristics are used in multi-layer networking, when the
problem size becomes too large for linear problems, but solution quality is expected to surpass
the common approaches. Especially Simulated Annealing and Genetic Algorithms are poten-
tially a good fit, when modular capacities and singular flow routing are required [194, p. 515],
but others may be applicable as well.

3.5.3.1 Problem-Specific Heuristics
There is no single problem-specific heuristic for a holistic approach to multi-layer problems,
but there are several heuristics solving integral parts of multi-layer problems or act as part of
multi-layer frameworks. Some examples of such approaches are presented in the following
works.

Zhu et al. [295] have designed an auxiliary graph-based heuristic to groom traffic efficiently
into circuits. Kleekamp [138] uses an algorithm to define the virtual topology by increasing its
density according to given parameters and subsequently routing traffic and circuits. Martínes et
al. [157] use a constrained shortest path first algorithm with different metrics, depending on
the QoS requirements of traffic demands. Gkamas et al. [105] solve a very complex multi-layer
problem including rate- and spectrum flexible transponders using a very advanced path search
algorithm where virtual, physical, and inter-layer links are modeled separately and a combined
metric assigns cost values based on the connecting NEs among other values.

While a general statement about the limits of such heuristics is impossible, it can be argued
that they will typically produce good results on short time scales, but their result may be far
from a global optimum. In situations, where the difference in solution quality relative to the
global optimum is less important than the difference relative to the classic approaches, problem-
specific heuristics may yield acceptable results faster than metaheuristic approaches. However,
the drawback is that such heuristics need to be crafted for the specific problems at hand, since
they are often not readily generalizable to other problems.

3.5.3.2 Particle Swarm Optimizer
While PSO approaches are primarily associated with real-valued vectors, there are a sizable
number of scientific works successfully applying this approach to combinatorial problems in
multi-layer networks as well, as the following examples show. Tao et al. [262] use a PSO to
place regenerators in WDM topologies with the goal of minimizing the blocking of new traffic
demands. Their particle vectors are bit strings of possible candidate positions for regenerators.
Hassan et al. [119] use their approach to minimize blocking when solving a dynamic RWA
for individual connection requests. Their PSO encodes next-hop selection priorities as particle
vectors. Türk et al. [269] solve a complicated multi-period problem in which a multi-layer
network is evolved over several years with the goal of minimizing the total cost of ownership.
Their particles encode which number of NE at which layer are installed at each node for each
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step in time. Although this results in a large search space, they were able to obtain significant
improvements for a 17-node network using several different PSO versions.

While PSO is a very powerful tool, the adaptation to multi-layer problems with mostly
integer variables or even binary choices is not trivial. This is especially relevant when considering
the large effects of small-scale input changes in highly multimodal search spaces. If there is no
macro-structure to the search space, areas of good optima may be skipped too quickly when the
initial particle velocity is still very high. Furthermore, when very distinct solutions of similar
objective value exist, the global attractor may be shifted quite often, providing ambiguous
directions. Therefore, if the problem representation does not match this algorithm well, its
greatest assets in terms of guiding heuristics may contribute little to solving the problem beyond
a number of individual random walks.

3.5.3.3 Ant Colony Optimizer
Since ACOs work on graph representations of optimization problems, they are often a good fit
for problems with inherent graph structures. A number of such approaches have been developed
to address different flavors of single-layer RWA problems, such as presented, e. g., in the works
of Triay et al. [265] and Varela et al. [270].

However, while multi-layer networks are also built on graph-structures, the large combina-
torial design space makes a holistic representation difficult. Since representing all choices as
different edges will lead to very large state graphs, which are hard to explore with limited time,
most works in this area require more complex representations or update procedures. Zu et al.
[297] seem to approach this issue by introducing a hierarchical routing structure and reflecting
network link cost and available wavelength channels in the pheromone changes. Their experi-
ments on a 15-node network show increased resource usage at slightly decreased blocking ratios
compared to a regular shortest path algorithm.

Before Türk et al. had developed the PSO mentioned above, they had also been experi-
menting with solving their multi-period networking planning with ACO approaches [268]. They
encode the resources installed in the lower or upper layer at each node as states in the search
graph, which they prune by eliminating impossible state transitions. Furthermore, their search
procedure between subsequent states is not random, but uses predefined probabilities which
make drastic changes less probable. They found that their approach leads to reasonably good
results compared to a problem-specific heuristic in small networks, and drastically outperforms
the reference approach for a large, 67-node network.

When a meaningful and scalable representation can be found, ACO-based methods can solve
complex problems very efficiently since the virtual ants lend themselves well to a parallel imple-
mentation. Furthermore, solutions can improve rapidly as all subsequent ants can immediately
profit from beneficial choices of their predecessors. The drawback is that this can also lead to
premature convergence which has to be considered in the choice of parameters.

3.5.3.4 Simulated Annealing
A number of works have used Simulated Annealing to tackle multi-layer problems, both con-
cerning sub-problems as well as holistic formulations, which are especially easy to maintain
due to the comparatively small amount of adaption required. Pióro and Medhi use Simulated
Annealing for a number of networking problems throughout their book [194], including PTD
with candidates for different node types and links [194, pp. 241–244]. Closest to multi-layer
design problems, they solve an RWA with and without backup circuits [194, pp. 449–452] and
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compare the results to their ILP formulation. While the ILP achieves about 25 % to 45 % lower
objective values for a simple version of the problem, they found that when increasing problem
complexity by adding constraints and increasing the number of choices, the gap between the
results of both methods decreases and eventually the problems become intractable for the ILP
approach, while Simulated Annealing still obtains meaningful results.

In a similar comparison, Mukherjee [167, p. 295] solved a single-hop traffic grooming
problem using these methods and found that his Simulated Annealing outperforms his ILP
approach [167, p. 299]. Schnitter et al. [247] use Simulated Annealing to improve the routing
of traffic on the virtual topology of a global IP/MPLS-over-WDM network with the goal of
minimizing the impact of failure scenarios. They found that their approach was able to further
improve on the routing which had previously been optimized by a planning tool. Späth et al.
[255] promote Simulated Annealing for use in multi-layer planning tools and illustrate the
efficacy of their approach including VTD, TDR, RWA and PTD for a number of example
networks, where the approach is always either equally as effective as their reference method or
even better. Sadly, their paper does not detail much about their approach, nor about the test cases.
Kucharzak et al. [144] solved a multi-layer dimensioning problem including VTD and TDR
using several heuristics, including Simulated Annealing. Interestingly, in their evaluation of a 15-
node network with scenarios of increasing traffic, they found that their approach only performs
better than the simple heuristics based on Dijkstra’s algorithm when the traffic demands were
low compared to the link capacity. It should be noted that their temperature schedule has a rather
steep slope, and the approach terminates after only a few hundred iterations.

Finally, Feller [77] devised a Simulated Annealing- and a MILP approach to solve a complex
multi-layer network reconfiguration problem. Therein, the network has to be reconfigured every
15 min to suit time-varying traffic demands, such that the power consumption of installed NEs
is minimized. The reconfiguration requires solving VTD, TDR and ICR considering a complex
resource hierarchy and the dependencies to the previous configuration. The evaluation, which has
been performed mainly for the network topologies “Abilene” and “Géant” with scaled versions
of the traffic demands available in SNDlib [183], found that given sufficient time, the MILP
approach will result in lower objective values. However, the linear programming approach did
not scale arbitrarily and the 22-node “Géant” topology already showed instances, where a first
primal solution could only be obtained with a runtime of 1 h [77, p. 119]. While the results
of the Simulated Annealing approach were found to be consistently worse, it was only by a
comparatively small margin and both approaches outperformed the baseline algorithm in almost
all cases.

Since Simulated Annealing requires only a suitable perturbation function as problem adap-
tion, it can easily be used to represent any aspect of a multi-layer network configuration. As it
follows a trajectory along small-scale changes, it can explore multi-modal search spaces, but
this makes it also more difficult to explore large search spaces without macro-structure. In multi-
layer networks the number of neighboring solutions increases exponentially with the number
of nodes and links, such that it may take a long sequence of iterations to cover an area of the
search space. This effect cannot be efficiently counteracted by parallel implementations, since
the single-trajectory approach always requires information of the previous state to determine the
subsequent state.

3.5.3.5 Other Metaheuristic Approaches
A couple of other meta-heuristic approaches have been applied to multi-layer networking as well,
but an exhaustive enumeration of all such works and approaches would be well beyond the scope
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of this monograph, such that only a few examples are named in the following. Pióro and Medhi
solve several networking problems using a metaheuristic called Simulated Allocation [194,
pp. 173–176]. It is similar to Simulated Annealing but uses a state-dependent acceptance proba-
bility. They also suggest Tabu Search [194, pp. 176–177] as a viable method, which is also used
by many others, such as Ding et al. [61], who optimize CAPEX in multi-layer networks, and
Yao et al. [279], who employ Tabu Search to optimize traffic grooming, or Zhang et al. [292],
who have designed a multi-step approach that combines local-first and best-fit heuristics with
Tabu Search to optimize traffic grooming in reconfigurable multi-layer networks.

Valesco et al. [274] used Greedy Randomized Adaptive Search Procedure (GRASP) to opti-
mize CAPEX and OPEX of multi-layer networks. Holler et al. [126] minimize the cost of NEs
in the WDM-layer and found that their approach obtains results for networks of more than 100
nodes. Pedrola et al. [188] augment the regular GRASP approach by a path-relinking technique
which results in an algorithm able to outperform even their genetic algorithm implementation.

Various other approaches such as Harmony Search, Bee Colony Optimization and hybridiza-
tions of algorithms have been used to varying degrees of success.

3.6 Overview on Genetic Algorithm-based Network Optimization
Evolutionary and Genetic Algorithms have been used to solve almost all problems commonly
found in multi-layer networking. They share the parallel exploration and global information
sharing with ACO and PSO methods, but their operators are more flexible. They may be used
akin to Simulated Annealing, operating on small changes, but may also incorporate problem-
specific knowledge. While the advantages are compelling, Genetic Algorithms also require a
meaningful multi-layer problem representation just as PSOs and ACOs do, which may drive
or hamper performance. Similar to these metaheuristics, GAs also depend on a large number
of adjustable hyperparameters. This section will provide a short overview on methods for sub-
problems, as well as integrated solution approaches for entire multi-layer networks and their
methods of adapting the GA approach.

3.6.1 Research on Topology Optimization
Topology design problems like PTD and VTD are found in many domains of networking and
consequently a large body of works focused on finding optimal topologies exists. One way of
categorizing them is according to their intended level of connectivity. For many applications,
basic connectivity is sufficient, such that the goal is to find tree topologies, which are cost-
minimized, and which possibly need to fulfill additional constraints such as staying below link
capacity or node degree limits. This type of topology is often required in dimensioning PTD
problems, where the cost of establishing new links dominates most other costs. When virtual
topologies or QoS requirements are considered, sparse topologies may be insufficient to fulfill
constraints, such that there is no upper limit on graph connectivity. Nesmachnov et al. [173]
list more than 40 scientific works utilizing some form of evolutionary formulation to find tree
topologies for different kinds of communication networks. Many of the works in this area use
one of the following approaches to represent trees as chromosomes to encode the topology.

Direct edge encodings [15, 55, 192, 193, 250] use binary vectors to represent the presence of
possible candidate edges in the tree. The advantage of this approach lies in its simplicity since
it yields fixed-size chromosomes of length |Ec| and allows using most common mutation and
recombination operations designed for basic GAs with good heritability, which is the property
indicating how well traits can be transferred to the following generation of solutions. The
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primary problem for trees lies in the fact that a chromosome instance can reflect any topological
structure and valid trees are only a relatively small subset of all possible encodings. While
penalty functions can be used to guide the algorithm towards valid trees, research has shown that
repair functions lead to better results [203]. Repair functions are typically run after the genetic
operators and alter the offspring chromosomes in such a way that they become valid trees. The
drawback of these functions is that they may reduce heritability and increase the computational
effort.

Rather than using the large number of edges to directly encode a topology, node sequence-
based encodings represent trees by identifying a sequence of nodes that need to be decoded
into the proper tree structure. An example for this are encodings based on Prüfer sequences [23,
pp. 33–35], which can be found in many works [34, 37, 60, 102, 261, 294]. They represent span-
ning trees in an elegant and compact way as fixed-length integer sequences. The big advantage
of using Prüfer sequences is that they always encode a spanning tree, such that there are no
invalid topologies. However, there are two drawbacks. On the one hand, they require a separate
decoding algorithm with a runtime of O(|V | log |V |) on graphs with |V | nodes and, on the other
hand, they exhibit poor locality and heritability [109]. Later works proposed alternatives to
Prüfer sequences like the determinant encoding [1, 37], dandelion encoding [187], or network
random keys [234]. While these all improve on locality and heritability, they typically require
decoding functions of increased runtime complexity [203], often scaling with the number of
potential links, rather than nodes.

Weight-based approaches like link-bias [139, 204, 254] or Link and Node Bias (LNB) [185]
approaches introduce additional weighting coefficients which modify the original cost values of
links or nodes or both. The resulting weighted graphs are then used to run an algorithm such
as Prim’s or Kruskal’s, which identify the minimum spanning trees given the modified weights.
Often, these weights are not initialized randomly, but already biased towards graph elements of
lower cost or otherwise beneficial traits. The weights may be expressed as vectors of integer- or
real-valued numbers which form the chromosome. Depending on what is biased, chromosomes
may therefore consist of weight vectors for links, nodes, or both. The largest disadvantages of
such approaches lie in the combinatorial complexity of the vectors and the decoding effort given
Kruskal’s time complexity of O(|E| log |V |).

Finally, there is also an approach, which omits an abstract genetic encoding altogether1 and
works directly on sets of edges. These edge set approaches [118, 203] shift the complexity from
the encoding to the operators. Mutation and recombination operators are therefore specifically
built to operate on sets of edges. While this may increase the computational complexity of
operators significantly, the complexity of creating offspring using this system may yet be smaller
than the combination of having a complex decoding and potentially repair functions in addition
to simple genetic operators. The advantage is that this combination of custom operators and
omitting the decoding step can boost performance, but the operators may be fairly difficult to
adapt to more complex problems without excessive computational effort.

When topologies with a higher level of connectivity are required, attention in most works
shifts from intricate encodings with simple operators to simple encodings with intricate operators.
The reason for this is that when any arbitrary topology is a possible solution, a direct edge
encoding offers the least amount of combinatorial complexity with high locality and heritability.
The problem in communication networks is that unconnected topologies are undesirable and

1While it can be argued that such EAs cannot be considered as GAs per se, lacking their defining feature, the
presented approaches are otherwise identical to GAs and will therefore be considered as variants thereof within the
context of this work.
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need to be avoided. As mentioned before, this can be accomplished by adding penalties to
the objective function, when connectivity requirements are not met, but this may increase the
number of iterations the Genetic Algorithm needs to converge to a good solution.

Most works use repair functions or incorporate them within the operators in order to de-
terministically enforce connectivity [140, 141, 163, 246, 285]. These repair functions however
may vary drastically in their runtime, depending on the exact connectivity requirement, e. g.,
if simple reachability needs to be established or a number of alternative links is needed. Espe-
cially for more complex requirements, this may necessitate an algorithmic examination of the
decoded topology, such that other works also use edge sets or immediately work on the entire
data structure [36, 122, 191, 252], since the added complexity of their customized operators is
comparable to operators with added repair functions.

While this overview covers the most common approaches, there are also many works dealing
with more specific topology constraints and designs, such as networks of pre-defined hierarchies
or geography-specific constraints which may employ more specific encodings. The interested
reader is referred to the survey of Kampstra et al. [134], which lists 55 works solving general
topology problems and an additional 14 works solving topology problems with constraints from
different types of optical networks using various evolutionary computing methods, including
GAs.

3.6.2 Research on Routing Optimization
Since there are many efficient algorithms for point-to-point shortest path routing, typical appli-
cations of genetic algorithms in this area mostly focus on specific sub-types of routing. These
include, e. g., identifying efficient multi-cast trees, considering technology-specific constraints
or multiple link metrics, or dealing with variability on graph properties. The works cited in
the next paragraphs therefore tackle a variety of different routing problems and the common
factor highlighted is the form of genetic routing representation. Similar to the case of topologies,
there are also a number of encoding approaches that are used by the majority of works in some,
possibly adapted or hybridized form.

The direct encoding of candidate edges as binary vectors is a simple and straightforward
approach, that is used in a number of works [5, 100, 278, 283]. Most of these works optimize
single paths that are subject to complex QoS factors, such that they cannot be aggregated into
a single monotonously growing metric, thereby precluding the usage of deterministic shortest
path algorithms. Since this encoding offers a large number of codes that correspond to infeasible
solutions due to the fact, that selected edges may not form a contiguous path or contain loops,
repair functions and operators are required. While this scales reasonably well for single paths
in sparse networks [5], the encoding method suffers from the rapid increase of combinatorial
complexity in network-wide approaches, where all paths have to be optimized simultaneously.
Therefore, these approaches are mostly relegated to small graphs or single-route problems.

Node sequence encodings are a popular choice for routing problems [3, 29, 168, 290]. They
reduce the combinatorial complexity of representing all edges to the number of nodes in the
network, thereby improving the scalability for problems with high graph density. If the graph
is not a full graph, however, they still require some form of repair function to fix situations in
which two subsequent nodes are not connected by an edge. A big advantage of this method
is that routing loops are easy to detect, even without decoding the graph structure, simply by
checking the node sequence for repetitions. This can even be entirely avoided by operators,
which treat the node sequences as permutations of node identifiers and maintain this property.
The node sequence may be of variable length and only contain the nodes of the path, which
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requires problem-specific operators. Fixed-length encodings, on the other hand, may use more
simple operators and move runtime complexity to the decoding procedure. If the code is based
on permutations, this can be trivially accomplished by skipping the parts of the sequence before
the source node and after the destination node.

Precomputed path enumeration encodings follow the notions of precomputed candidate
paths also used in ILP formulations. Rather than determining the paths as part of the problem,
they are computed by a deterministic algorithm in a preprocessing step. This is a rather popular
approach used in many works [10, 108, 117, 164], especially when paths are subject to many
constraints or require a large number of links. Since the static path-specific constraints, such as
length- or hop-limits, can be evaluated in the preprocessing phase, the additional complexity
introduced by them can be removed from the optimization problem itself. Furthermore, this
encoding scales to very large networks, since for a constant number of precomputed paths,
primarily the preprocessing phase scales up. While this approach does not require any repair
function since all codes lead to valid routing configurations, the codes cannot reflect all possible
configurations.

Sets of routing weights can also be used to encode a routing configuration in combination
with a regular routing algorithm [74, 86, 186, 227, 245]. The encoded values may either directly
represent the link weights, or they may also correspond to bias terms which modify a preexisting
link weight system. This approach is often used with stochastic traffic models of sequentially
arriving and departing traffic demands. Since the routing algorithms, which are typically used,
only route one traffic demand at a time, the order in which the routes are determined may alter
the resulting routing configuration of the network. This needs to be specifically addressed when
using traffic models representing simultaneous flows of traffic between the nodes by establishing
a total order relation on the traffic demands. When this order is assigned statically, it may lead
to an inability of the coding to express all possible routing configurations. When the ordering
of demands is to be performed dynamically, it will be required to encode their order along
with the routing weights, which increases the number of combinatorial choices. Furthermore,
a QoS-diverse routing would require using different sets of routing weights for different QoS
classes or even for each demand, which will drastically impact the combinatorial complexity.

Finally, the approach of skipping the genetic encoding altogether and use custom operators
is also used in a smaller number of works [152, 251]. As with the topology problems before,
there is a reduction in runtime due to the removal of the decoding step, but the design of fitting
operators is more complex. While crossover can be achieved with good heritability, e. g., by
exchanging routes between the same source and destination between parents, mutation is often
more difficult. It should allow for any possible route, but not drift towards excessively long or
convoluted routes. Obtaining a good balance between exploration and refinement is essential, but
difficult without analyzing the effects of the decision beforehand by using additional heuristics
or restricting the possible solutions representable by the approach.

Similar to the case of topology design, there is a wide variety of works dealing with a
plethora of more specific constraints and properties. The survey of Kampstra et al. [134] lists
57 works using evolutionary computing techniques to solve general routing, restoration and
admission problems and an additional 20 covering routing in optical networks. It is interesting to
note, that a number of works use GAs to complement path-selection-based ILP approaches for
problem instances where the solver algorithms approach the limits of scalability. For example,
de Miguel et al. [164], who dimension a WDM network for maximum resource efficiency, found
that for their problem, their GA would sporadically outperform their ILP for networks with
more than 10 nodes, which does not yield results for networks with more than 14 nodes. Pióro
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and Medhi also used a GA-variant1 and compared its performance to ILP formulations for
concave network dimensioning [194, pp. 202–203] and for multi-hour network design with two
service classes [194, pp. 467–471]. They found that for their concave dimensioning problem,
where the ILP needs to approximate a non-linear function, the GA offers better results, albeit at
significantly higher runtimes. For their multi-hour design problem, they used networks between
7 and 50 nodes and found that a solver using a regular MILP formulation could only solve the 7
node problem, while their GA provided solutions to all of them.

3.6.3 Research on Multi-Layer Network Optimization
As explained in Chapter 2, a configuration of a multi-layer network, given its (potential) physical
topology, typically requires finding solutions for TDR, VTD, ICR, WA, and potentially PTD.
Since each of these problems is at least NP-complete, the overall combination of all of them
is also at least NP-complete and exhibits a very high level of combinatorial complexity. Most
works dealing with such networks therefore focus on its constituent subproblems in one of two
ways. They either optimize one of these aspects and deterministically solve the others based on
the optimization results or they optimize each of these problems individually using the results of
the previous subproblem as input to the following ones. A joint optimization approach, which
simultaneously considers all problem components, will most likely be intractable for real-world
network sizes and constraints [194, chap. 12.7.4].

The 2016 survey of Rožić et al. [236] categorizes a total of 38 scientific works dealing with
multi-layer network optimization, emphasizing, that the majority of these use either ILP-based
approaches or deterministic heuristics. Only 6 of these employ some form of metaheuristic and
among those only two, the works of Morais et al. [166] and Ruiz et al. [242], make use of GAs.
In addition to these two, a number of other works have since been published that address various
multi-layer problems using solution approaches that are either centered around or incorporate
some form of GA or EA. The following provides a short overview regarding such related works.

Morais et al. [166] present a complex multi-layer optimization environment in which they
separately optimize several sub-problems. They use a GA to solve the PTD [165] and based on its
results, they use an ILP to dimension node resources with a high level of detail down to individual
interfaces. After this, they use another ILP to reoptimize the traffic routing to determine, when
capacity extensions are required over the network’s lifetime. Their overall objective is to obtain
minimal CAPEX and OPEX in terms of power consumption, as well as physical footprint. The
GA uses a bit-string encoding of candidate links. Selection is performed either by RWS or
tournament, while crossover is performed either by UXO or CNCXO operators.

In their evaluations, they found the UXO operator to be consistently more efficient than
CNCXO and that RWS offered a smaller, but noticeable advantage over tournament selection.
The most interesting aspect about this work is the population generation. They use a modified
Waxman model [281] to create the initial population and compare this approach to a population
of randomly generated individuals. The figures of their evaluation on 9 different topologies
of 9 to 17 nodes, suggest that this initialization sometimes slightly decreased performance for
the small networks, but lead to significant improvements for the largest networks. After 100
generations, the gap to the optimal solution was 10 % or less for all instances.

Ruiz et al. [242] have developed a BRKGA to minimize CAPEX in terms of ports and
different router models while considering different failure scenarios. Both topologies, physical
and virtual, are fixed inputs to the routing of traffic and circuits, considering wavelength slots

1They refer to it as an EA [194, pp. 172–173], but their approach is consistent with a GA using (µ+λ) selection.
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on the fibers. BRKGA uses encodings based on floating point numbers in [0,1) and randomly
generates such numbers as keys for gene values. It inherently uses elitism with a large number
of individuals and performs a biased recombination, such that one parent is always selected
from the elite population and the other from the regular population. Mutation is performed
by removing a number of individuals from the population and replacing them by randomly
generated individuals.

Their encoding is an LNB approach with additional genes which provide the sequence in
which traffic demands are to be routed. The demands are ordered according to this index, the
bias-terms are applied to link and node metrics and a shortest path routing is performed using
the resulting values. The population is split such that the elite part represents 20 % of individuals
and the lowest 20 % of the population are replaced in the mutation phase. They evaluated their
approach in networks of 20 and 21 nodes and found that during the 10 hours of runtime, 80 %
of the overall improvement on the initial solution was obtained within 200 minutes.

Balasubramanian et al. [9] present a highly integrated GA approach to minimize cost in
IP/MPLS over WDM networks, which is in fact very similar to the objective of this monograph.
Their approach is scalable to large networks exceeding 100 nodes and considers a very detailed
hardware model considering IP, optical and regenerator ports as well as flexible optics. They
focus on different protection and restoration schemes and employ additional evaluations to
simulate failure scenarios and grade their solutions’ survivability. While the resource cost is the
primary metric, they also use penalty terms, e. g., for failing to provide traffic demands with
sufficient QoS. Their GA is augmented by several other algorithms, e. g., for dimensioning of
regenerators, but the work does not contain details, especially not on how exactly WA is solved.
It seems that TDR is generally addressed by regular shortest path algorithms using fiber length
as the metric.

The chromosome is divided into two parts, one for VTD and one for ICR. The virtual
topology is defined by a bit-string that represents the possible virtual links. The second part
defines, how these links are routed on the physical network and is referred to as a “tunnel path
directory”, which may suggest some form of path precomputation, but no further information is
given. While recombination is done by a CNCXO operator, information regarding the mutation
operators is very sparse. Some form of custom operators are used which analyze the parents and
perform mutations targeted towards improving utilization, protection and delay deficiencies. The
description places special emphasis on avoiding premature convergence through population man-
agement. This is performed by a number of techniques including special initialization algorithms,
injecting new candidates to increase diversity and evolving several independent populations in
parallel, which regularly exchange candidates using special operators. Their evaluations show
cost savings of 25 % and above, compared to their reference method.

Banerjee et al. [10] and Ghose et al. [103] developed GA approaches to solve different
capacitated networking problems. While both works consider delay in the form of propagation
and queuing delay, the first uses a multi-objective approach, combining minimization of delay
and resources, while the latter is a single-objective approach focused on delay alone. Regardless,
both works seem to use the same underlying encoding for the GA. They use a path enumeration
approach, where a fixed number k of shortest paths are precomputed between all node pairs.
The integer index of the path is expressed as a bit-string, such that dlogke bits are needed for
every pair of nodes. The GA is then used in two phases. First, ICR is solved, such that the genes
indicate a set of circuits, with the objective of maximizing the number of connected node pairs
without violating a wavelength limit. Following this, VTD is performed by adding edges for
each routed circuit and adding circuits on all links, that correspond to physical-layer links. Since
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the physical topology is defined as connected, the resulting virtual topology will be connected
as well. Based on this topology, the second GA is run in order to solve TDR, and a deterministic
heuristic is used for WA, such that now the overall optimization goal can be evaluated.

Both works use a specific NPXO-version to create their offspring chromosomes. They only
take full sequences of dlogke bits corresponding to a node pair, such that the path index value
is preserved. For each pair they seem to randomly choose, which parent contributes its bit-
sequence. The mutation operator is RRM and is only applied to the worst chromosome in
the gene pool, rather than the offspring. While all GA approaches use a rank-based RWS to
determine the parents, the single-objective version uses a linear ranking, while the other applies
a more complicated algorithm to account for both objectives. Finally, in survivor selection they
discard the worst individuals in the same number as new ones have been created to maintain a
steady population size.

Risso et al. [228, 230] use several different EA approaches to optimize IP/MPLS over WDM
networks for resource efficiency while including backup paths in traffic routing. They use a GA,
a parallel EA with distributed subpopulations and a hybrid EA. Their chromosomes encode the
capacity of logical links, the circuits and the traffic routes for active and backup paths. They are
split into two parts. One part addresses TDR by defining a primary and a backup route for each
traffic demand. The routes are given as individual node sequences. From this information, the
links required in the virtual topology and their capacity can be determined deterministically. The
other part of the chromosome encodes the paths for the circuits of the physical layer, such that
for each node pair there is one path. These paths are also encoded as node sequences.

The solution method includes a greedy deterministic algorithm that is used to initialize indi-
viduals for the population, but also to repair infeasible chromosomes generated by evolutionary
processes. It iteratively builds the routing genes and selects the next node in the sequence relative
to the connecting link’s cost and builds the physical layer genes accordingly. The evolutionary
operators are mostly problem-specific. The recombination operator creates a single offspring
by selecting routing genes individually from randomly selected parents and copies the required
physical-layer genes as well. If no parent can be selected for a routing gene such that the primary
and backup path are still disjoint, then the above repair algorithm is invoked.

The approach uses 5 different mutation operators which can be combined with different
probabilities. One changes both parts of a chromosome by randomly removing a virtual link
from all genes and rebuilds the chromosome using the repair algorithm. The remaining can
be split into two pairs. One pair primarily affects the traffic genes and the other pair primarily
affects the connection part of the chromosome. All four randomly choose a gene within their
respective chromosome parts and rebuilt it. The first operator of each pair uses an unspecified
randomized greedy process to do so. The second operator repeats the process a fixed number
of times and selects the best solution candidate among the resulting candidates. Risso et al.
show successful application examples for networks between 50 and 70 nodes, but due to the
large combinatorial complexity of the encoding, their single-threaded approach shows runtimes
around 100 h. Their parallel implementation consistently improves the average objective value
and reduces the runtime to between 30 and 40 h.

Saha et al. [244] present a rather holistic and detailed solution method to maximize the
throughput of capacitated packet-over-WDM networks. Given the physical topology and the
available hardware resources, they use a GA for VTD and different deterministic heuristics to
perform ICR, WA, and TDR. In a second run, they consider minimizing the overall delay as the
optimization goal. Delay consists of an upper-layer delay per node as well as the propagation
delay on the fiber. Their chromosomes contain a gene for each transponder at every node. The
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genes have integer values that represent a unique identifier for the target node. In this way,
a chromosome not only reflects the connectivity matrix of the virtual topology, but also the
capacity between connected nodes in terms of the number of circuits. To establish the initial
population, they use a randomly generated Prüfer sequence to create a spanning tree, such
that all solution candidates are guaranteed to yield connected topologies. When constructing
the spanning trees, they also ensure that the tree does not require nodal degrees for which the
nodes have insufficient transceivers. Their GA uses RWS as the parent selection mechanism and
CNCXO and RRM as evolutionary operators. They validate offspring candidates and apply a
repair function to ensure feasible solutions whenever possible. Survivor selection is performed
by sigma truncation, which eliminates solution candidates worse than a certain number of sigmas
from the average fitness in the population. Furthermore, they apply the elitism scheme by always
migrating the best two solutions to the next population. Their approach is tested on a rather
small network with only few transponders but outperforms their reference approaches.

Ahmad et al. [2] and the extension towards reconfiguration by Bonetto et al. [24] aim
to minimize the power consumption of transport networks. They refer to the networks as WR
(Wavelength Routing or Wavelength Routed) networks, stating that this is functionally equivalent
to WDM networks. In the first work they consider the power consumption of optical transceivers
and the upper-layer switching subsystem explicitly, while the second explicitly models line
cards, shelves, and the switching system between them, based on IP routers. The GA within
their solution methods solves the VTD problem including dimensioning in terms of the number
of circuits needed between the nodes, from which the required hardware resources are inferred.
Neither work details, how exactly traffic demands and circuits are routed.

The structure of the chromosome in the GAs is as follows. Each locus corresponds to a
source and destination node pair and the value of the gene then represents the number of active
circuits between them. Recombination is performed by the CNCXO operator and mutation is
performed uniformly on all genes, most likely by RRM, although this is not specified in detail.
When a solution candidate is created from the chromosome it is checked for feasibility and
discarded if not all traffic can be routed. In the first work, they compare the GA approach to
the best results from a MILP formulation with a solver runtime limit of 24 h, and a custom
heuristic. They determined that the GA is almost always better than the heuristic and often finds
the optimal results. Interestingly, their GA seems to struggle in low-load scenarios, where the
optimal topology is very sparse. In the second work, they suggest a new heuristic which yields
mostly better results than their GA at drastically lower runtimes.

Roy and Naskar [235] propose a GA-based approach to minimize the number of Syn-
chronous Optical NETworking (SONET) devices in a SONET-over-WDM network. Their chro-
mosome structure encodes the sequence of the traffic demands, which are all of identical granu-
larity such that they refer to them as “calls”. They use a framework of deterministic algorithms
which allocates resources and tries to route the calls on different shortest paths depending on
the already available resources and following the sequence established by the chromosome.
They initialize 5 % of the population with heuristically generated chromosomes to provide a
good starting point without having a negative impact on genetic diversity. Parents are selected
randomly, while survivors replace previous individuals with a certain predefined probability.
As evolutionary operators1 they only use CNCXO augmented by a repair function to prevent
repetition or omission of traffic demands in the sequence.

1Their work uses different terms, as they seem to refer to survivor selection as crossover and to crossover as
mutation.
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Alshaer and Elmirghani [4] suggest a solution approach for QoS traffic in IP over WDM
networks, adapting a differentiated services architecture to include resilience factors. Their traffic
model includes three priority classes and each demand requires a certain number of time slot-
based channels as well as a delay limit. They model heterogeneous nodes of different switching
granularities and use a deterministic algorithm to precompute routing tables of QoS-compliant
multi-layer paths. The genes of their GA representation then provide an index into this routing
table. Rather than working on integer numbers, they represent each gene by a fixed number of
bits representing the integer value.

They seem to employ a URM and most likely a 2-point crossover operator, while selection
is performed by RWS using elitism to preserve the most fit individual. They use another deter-
ministic heuristic to create good individuals for their initial population. In their evaluation they
used a topology of 20 nodes, but only 4 pairs of nodes have traffic demands between them. They
initialize half of the population with their heuristic and the other half is chosen at random. They
find that their GA and yet another deterministic heuristic, which they suggest in the same work,
outperform the reference methods.

Durán Barros et al. [65] suggest a GA to solve a capacitated VTD with the objective of
minimizing end-to-end delay. The delay is modeled as a combination of propagation delay and a
variable delay for packet processing in the upper layer according to a Jackson Network queuing
system. While they do not refer to their approach as applying to a multi-layer network, the
description of their "multi-hop scenario" bears all relevant properties to classify it as such. It
uses a sequence encoding of source–destination pairs, such that the chromosome consists of
|V | · (|V |−1) genes for a network with |V | nodes. A number of shortest paths are precalculated
for each pair and the chromosome defines the sequence in which circuits are routed on these
paths. If a circuit cannot be routed due to resource starvation, the respective gene is omitted. If
the resulting topology is not connected, a repair function is used that first establishes circuits
forming a Hamiltonian cycle and then continues adding circuits according to the chromosome.
After the VTD is found, WA is done by a first-fit heuristic and TDR is determined by a shortest
path algorithm using the number of hops as the distance metric.

Interestingly, they seem not to employ permutation-preserving operators. Parents are selected
by RWS and, depending on a probability, either copied without changes to the offspring pool
or by performing a CNCXO operation. The genes in the chromosomes are then uniformly
subject to mutation which interchanges the gene for another, randomly chosen gene, which
is not explained further. The population is initialized to have a single individual which is the
result of a deterministic heuristic. In their evaluation they use very small populations of 2 to
6 individuals, creating 6 to 14 offspring per iteration. They suggest to terminate the algorithm
after 10 000 iterations.

The methods used in the works outlined above are summarized in table Table 3.1. Most works
deal with resource optimization, and some even include delay as a secondary optimization goal
or constraint. However, to the best of our knowledge, there is no solution method incorporating
GAs that addresses QoS-diverse traffic in terms of delay and explicit availability figures in multi-
layer networks, such as will be presented in the next chapter. The works of Balasubramanian
et al. and Risso et al. are closest in terms of explicitly considering QoS and being intended to
scale to large, real-world networks. In contrast to this work, their primary focus is on survivable
networks, rather than dealing with diverse traffic demands, which provides an even more complex
challenge, especially in terms of routing scalability.
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Chapter Summary
In this chapter, we have presented a short introduction to the formal aspects of optimization.
It has been shown, that constrained combinatorial optimization problems are especially diffi-
cult to solve due to the absence of gradients and due to their complex search space structure.
Furthermore, we have established that typical multi-layer optimization problems fall into this
category. We have explored their properties in terms of combinatorial complexity, tractability,
and modeling approaches.

In the following sections, an introduction to common optimization methods, such as Integer
Linear Programs (ILPs) or hill climbing, has been given. The concept of a metaheuristic as a
largely domain-neutral solution framework has been explained and the most relevant approaches
from this category, both trajectory- and population-based, have been outlined. Special emphasis
has been placed on Simulated Annealing, as it is used as part of a reference solution method in
this monograph.

Genetic Algorithms (GAs) have been introduced along with the relevant biological terms.
We have explored the underlying theoretical constructs and presented the most common variants
in terms of the evolutionary operators regarding mutation, recombination, and selection. Among
others, this has included N-Point Mutation (NPM), Uniform Random Mutation (URM), Uni-
form Crossover (UXO), Cut-and-Crossfill Crossover (CNCXO) and as selectors Roulette Wheel
Selection (RWS) and its extension Stochastic Universal Sampling (SUS).

The last parts of this chapter have elaborated on different solution approaches to optimization
problems common in multi-layer networking. The penultimate section was focused on both,
legacy and scientific approaches based on the methods outlined before, and we have discussed
aspects pertaining to their scalability and complexity. While many researchers have tackled
different objectives in networking using GAs, the works that explicitly address multi-layer
network optimization with QoS are relatively few.

The chapter has concluded with a detailed overview on scientific works featuring such
integrated solution methods. They have been investigated and categorized regarding their exact
use and their approaches to adapting the GA framework. To the best of the author’s knowledge,
no prior work exists, which optimizes multi-layer network dimensioning and configuration
regarding latency and availability utilizing GA-based solution methods. This identifies the gap
that is filled by the approaches suggested within this monograph.
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In the previous chapter, combinatorial optimization has been introduced and basics of Genetic
Algorithms (GAs) and related approaches have been presented. While we have stated that the
mechanics of GAs are a good fit for combinatorial optimization problems such as they occur in
a multi-layer network context, we have also identified a lack of works focusing on different QoS
metrics by using more advanced adaptions and efficient encodings. This chapter will present
four different encodings together with specific operator adaptions and enhancements, as well as
several general-purpose mutation and recombination operators, which are then integrated into
an extensible solution method framework.

4.1 Requirements and Design Space Delimination
The goal of the developed approaches is to enable optimizing large multi-layer networks in
the presence of QoS traffic. These are especially challenging conditions due to the complex
interworkings of the individual layers with many degrees of freedom. Rather than finding a
chromosome able to encode all relevant parameters separately and run a basic GA version,
domain-specific knowledge should be incorporated into the encoding and the surrounding ge-
netic operators. The resulting approach shall be easily extensible to include additional conditions
and network models for ready application to related problems.

4.1.1 Network Abstraction
The basic network model is the dual-layer architecture as explained in Section 2.1.2. Summa-
rizing its key properties in short, every vertex of the graph is considered to be a PoP with the
same basic composition, always consisting of both, upper-layer and lower-layer resources. We
can identify each PoP by an ID, which, without loss of generality, we consider to be a unique
positive number. A virtual topology can be defined by connections on the lower layer and traffic
demands have to be routed on the virtual links of the upper layer. Connections and traffic can
be switched between links at each PoP without restrictions, as long as sufficient resources are
present at the node. For traffic, this requires line cards and ports, while for circuits, sufficient
spectrum on connecting fibers is required. The infrastructure of node locations and candidate
edges for physical links are always fixed and form a connected graph. Traversing links and
nodes incurs delay and links have known and static availability figures. Furthermore, we make
a number of additional, more specific assumptions regarding control, hardware, and physical
parameters.

4.1.1.1 Control Instance
The network is considered to be under the control of a central instance with global knowledge
on all aspects of the network. This may be an abstract planning tool for green-field deployments
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creating a data sheet of how to build the network, but it may just as well be an SDN controller
changing the network’s configuration during operation according to some external trigger. Inter-
actions between the actual NEs and this control entity are not part of the optimization, i. e., the
signaling part of the network is out of scope.

4.1.1.2 Hardware Model
For both layers, the basic components such as chassis and switching subsystems are always
present, regardless of the amount of traffic that is required, since any PoP will need at least the
capacity to maintain connectivity. We consider upper-layer NEs to consist of a chassis containing
a number of core-facing line cards with a number of ports. Tributary line cards are not explicitly
considered since they offer no room for (re)configuration and need to be dimensioned for the
expected peak in client traffic without any potential for optimization. The switching fabric in
the upper layer poses no restriction on the amount of traffic that can be switched between the
upper-layer ports.

These ports are connected to the lower-layer NEs, such that for every router port there is
a corresponding client port in the WCS. Since this is a fixed 1:1 mapping, it also extends to
potential TXPs. Under this assumption, there is no difference between the case of router ports
with DWDM interfaces to router ports that connect to the WCS via external TXPs from a VTD or
ICR perspective. The WCS in each node is considered to be monolithic and features connections
to all physical fibers which lead to the neighboring PoPs and there is no internal blocking or
wavelength contention. The exact internal composition of the WCS is out of scope and any port
of the upper layer may be forwarded to any of the long-haul fibers. The WCS and potential
TXPs are treated as being independent from potential shelves or other enclosures since these
have little to no influence on the metrics in question.

Furthermore, there is no explicit representation of OLAs, regenerators or other amplifiers.
OLAs and amplifiers scale with fiber lengths and fiber connectivity, which are fixed in the
infrastructure. Therefore, they can be considered as static costs for the dimensioning case or are
already installed and part of the fixed infrastructure for the dynamic case. While 3R regeneration
could be included, its effects would require using a more detailed level of intra-node hardware
dependencies. While this is possible using the algorithms presented in this chapter by including
a local routing heuristic, we shall omit their inclusion here, to focus on the effects of the genetic
algorithm design and implementation.

Given these assumptions, the resources that actually vary significantly in number depending
on the network configuration are the line cards on the upper layer and the transponders on the
lower layer. Additionally, for the green-field dimensioning case, the exact set of physical links
used is also an important aspect, since cost for different links may vary and this can result in
drastically different overall cost figures. We will therefore consider the number of line cards,
ports/transponders, and fibers as the primary contributors to our optimization goals. While the
latter assumptions are a simplification, they do not pose restrictions for the GA approaches
themselves, but only affect the surrounding solution method. A more complex representation
considering the full extent of these aspects would be possible with minor extensions to the
integrated solution methods.

4.1.1.3 Physical Parameters
The physical parameters largely influence two groups of factors. On the one hand, delay and
availability characteristics of physical components determine the attainable QoS figures for
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services. On the other hand, transparent reaches and corresponding data rates put bounds on the
density of the virtual topology and indirectly affect the number of ports and line cards needed.

The capacity of fibers is given as a fixed number of wavelength slots. Therefore, the number
of point-to-point fibers can be extracted from the sum of all wavelength slots needed between
two nodes. We consider the bidirectional lower-layer circuits to be aligned to the slot-width,
such that any circuit will need the same slot on any physical link traversed. Furthermore, we
consider all TXPs to utilize the same transmission formats, which we will model as a table of
transparent reach and data rate, which corresponds to the functionality of a flexrate transponder.

Processing and forwarding incurs a delay in upper-layer nodes, which represents a variable
component in the overall delay of real networks. However, for reasons of simplicity, we con-
sider this delay to be fixed for our studies and identical on all nodes, regardless of the exact
port location and traffic load. This is a reasonable assumption given that upper-layer nodes
in the core rarely ever experience excessive traffic bursts due to rate-shaping at the customer
connection [277, p. 2] and since they introduce only little delay compared to the transmission
delay.

The transmission delay on optical fibers, which is the dominating component in the overall
latency, is directly dependent on the fiber length and can be statically determined from node-
to-node distances. Lower-layer NEs do not add relevant variable delay, such that the overall
delay can be bounded and the remaining uncertainty is covered by the SLA. The same is true for
availability, which decreases with increasing fiber lengths. The availability of fibers, or rather
the lack thereof, is the dominating component in determining the overall availability, such that
we neglect the availability figures of all other NEs.

While other physical impairments are currently not considered, we expected them to have
a comparatively small impact on the resulting optimization goals presented in this work. Re-
gardless, a more precise model of physical constraints can be integrated into the simulation
framework without impact on the design of the methods under investigation.

4.1.2 Traffic Demands
We assume that the knowledge on all traffic matrices is available and sufficiently precise for the
intended optimization purposes. This may, for example, either reflect a recent measurement with
added safety margins for a dynamic resource assignment or a target specification from a NSP’s
tender for a planned green-field deployment.

As this work is primarily concerned with transport networks, we expect at least some traffic
to originate from and terminate at every node in the network. Furthermore, traffic is typically
expected between all node pairs, although this is not a strict requirement for transport networks.

We generally assume symmetric traffic demands, i. e., demand pairs where the source of
one is the destination of the other and vice versa. The NSP may require that such reciprocal
demands are routed on symmetric paths on identical links. Furthermore, such demand pairs
do not typically require identical amounts of capacity in each direction, which is an important
difference to circuit routing.

Traffic demands may be subject to SLAs and therefore require a certain QoS-class. We
assume all such classes to be known a priori. The required parameters are either an upper
bound on the delay or a lower bound on availability, or both. In accordance with the hardware
model and physical parameters, delay and availability bounds depend mainly on the used routes.
Increasing the availability of a path by providing additional backup paths is out of scope of this
work, though a very relevant candidate for future extensions.
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Finally, we assume that a demand cannot be split into smaller components that can be routed
independently, since these components would incur different delay figures, which can result in
out-of-order delivery of packets and can impact delay-sensitive traffic.

4.1.3 Optimization Goals
The optimization goal may be an arbitrary function based on the above model and its values, but
it should be driven by changing the virtual topology or the routing. For the presented cases we
primarily consider resource requirements and QoS fulfillment.

Resource Utilization
For uncapacitated problems reducing the amount of network resources capable of providing
the required capacity is an obvious goal. However, it is also a meaningful goal for capacitated
problems, since using the least amount of the limited resources immediately translates to saving
spare capacity for additional traffic demands. Without loss of generality, we will focus on
resource utilization as the primary goal in the investigated objective functions.

QoS Fulfillment
Regarding the fulfillment of all SLAs, we will prioritize availability over latency. This choice,
however, does not affect the design of the solution approach. The violation of QoS constraints
will be treated by penalty functions rather than hard constraints for two reasons. One is providing
a more smooth solution scape to the algorithm to facilitate the search process. The second reason
is that in actual deployments, it may be beneficial to route as many traffic demands as possible,
while finding out how many may miss their guarantees, rather than having the binary statement,
whether a traffic demand matrix is feasible or not.

4.1.4 Solution Formulation
The multi-layer network dimensioning and dynamic resource assignment problems are con-
strained by the physical parameters, hardware model, infrastructure and traffic demands with
their QoS requirements, as described in the previous sections. Under these assumptions, a solu-
tion candidate to these problems can be composed of the routes for each traffic demand and the
routes for each circuit. From this information, based on the layer-dependencies as explained in
Section 2.1.2.3, the precise hardware and fiber requirements, as well as the resulting QoS values
can be determined. Circuits can define the required spectral resources, the virtual topology, and
the resulting propagation delays on virtual links. They also provide capacity for the traffic routes,
such that the number of ports and TXPs and by extension the remaining hardware requirements
can be determined.

The traffic routes can then be overlaid on the hardware and circuits and evaluated regarding
capacity and other QoS fulfillment. The resulting detailed description of the network and its con-
figuration can then be graded regarding its quality with respect to the chosen objective function.
It should be noted that the dynamic resource assignment problem will require an additional al-
gorithm to determine the transition from the previous to the newly determined configuration and
additional conditions may be derived from the transition process and considered as secondary
objectives in determining the solution.

Since the complexity of the full multi-layer problem, i. e., jointly optimizing all of the afore-
mentioned aspects, is prohibitive to solving very large problem instances, our GA approaches
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will be designed to separately solve a subproblem. The result will in turn be used as input to
more traditional heuristics to solve the remaining parts and assemble a full solution to the entire
problem from these subsolutions. However, using different subproblems as the basis does impact
the multi-layer solution quality and scaling behavior differently. We therefore present several GA
approaches, which can be used to solve VTD and TDR and integrate these in a larger solution
method.

4.1.5 Aspects of Genetic Algorithm Design
The central aspect in adapting the GA framework to specific problems is finding a good genetic
coding strategy as detailed in Section 3.4.4. A good encoding is paramount in obtaining high
solution quality [37], while operators largely determine the rate of convergence.

The design strategy for encodings was therefore not to over- or underrepresent the solution
space whenever possible. However, there are some exceptions for specific applications which
will be explained later in this chapter. The second part of the design strategy was to facilitate the
usage of simple operators and provide good heritability and locality whenever possible.

The primary design goal of operators is efficiency. They should prevent infeasible solutions
and exhibit low computational complexity whenever possible. While generally, their function
should not impede the inheritance of any genes, in order to avoid excluding meaningful areas of
the search space from exploration, they may apply a controlled amount of bias towards specific
genes to accelerate the search by focusing on promising regions of the search space.

4.2 Genetic Algorithm Adaptations for Topology Design

The GA approaches in this section apply to topology design in general. As explained in Sec-
tion 2.2.2 and Section 3.2 of the previous chapters, VTD and PTD are very closely related and
their main differences lie in their constraints. While the terminology and constraints used in
the description of the following encodings is based on a VTD problem, the encoding itself is
applicable to PTD problems or even different topology design problems altogether.

The goal of these encodings is therefore to be as neutral to the technology as possible.
Regarding the ability to solve large problem instances, the goal is to enable a precise genetic
representation, which is conducive to general genetic operators, especially regarding locality
and heritability wherever possible.

4.2.1 General Aspects of Topology Formation
As explained in Chapter 2, the virtual topology is the topology of the upper-layer graph. Since
the virtual links do not have any capacity limits as they simply represent an adjacency in the
routing layer, the only information relevant to define are the source and destination nodes for
each virtual link. For networks without intermediate O-E-O regeneration, however, the virtual
links are constrained by the maximum transparent reach of the optical circuits used to implement
them.

Furthermore, it can be argued that it does not make sense to consider the virtual topology
to be a directed graph, since commonly used technologies do always maintain symmetrical
connections due to the fact that they need to collect channel information including timing which
would be problematic in directed graphs, where the connection in the forward-direction can be
arbitrarily longer than that of the reverse direction or vice versa.
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Figure 4.1: Example graph showing different effects on connectivity

It should also be noted, that when the topology design problem is part of a larger context,
where a subsequent traffic routing is required to determine the costs, e. g., as part of a dimen-
sioning problem, the effects of topology changes on the objective value may vary drastically.
This is caused by the fact that the presence or absence of a single virtual link may just as well
affect the entire traffic routing or have little to no effect at all, depending on a combination of the
present traffic demand matrix and the geographic properties of the underlying network structure.
Consider, e. g., the situation of a shortest-path traffic routing on the virtual topology as shown in
Figure 4.1, where the virtual link l1 in the center of the topology connects two well-connected
subgroups of nodes. Removing this link will most likely disrupt a large number of paths for
many demands, prompting a large change in the objective value. Adding link l2 on the other
hand will most likely have little impact on the overall solution, since it will mostly affect traffic
between the two nodes it connects.

However, if there were no traffic between the subgroups, then the impact of activating l2
would be larger than the impact of deactivating l1. Due to the wide range of possible effects
a topology change can manifest, an encoding that inherently considers such effects would be
highly desirable, but most often the precise results of activation or deactivation of individual
virtual links is difficult to predict a priori.

4.2.2 Virtual Topology Binary Encoding – VTB
This is the most simple topology encoding, which is able to reflect all possible virtual topologies.
It represents each potential link as an individual gene of a binary value. It is a regular direct edge
encoding, which is very common for pure topology optimization as explained in Section 3.6.1,
but rarely seen in the context of multi-layer optimization including traffic and connection routing.
Applying this encoding to VTD, we will refer to it as Virtual Topology Binary encoding or VTB.

4.2.2.1 Chromosome Structure
In a virtual topology scenario, this means that every possible virtual link is assigned a single gene
representing whether this link is active or inactive by a binary value. Possible virtual links in
this context can be considered to be any optically feasible virtual link. Any virtual link between
any pair of nodes is considered feasible if the maximum transparent reach is smaller or equal to
the length of the shortest path between the node pair within the physical topology. Considering
the extreme case of a network of nv nodes where the transparent reach exceeds the length of
all shortest paths the genetic code will consist of |Ec|= nv·(nv−1)

2 binary variables. As has been
shown in Section 3.2.1, the state space is of size 2|Ec|, which is in O(2nv

2
) for this case.

A chromosome is efficiently representable as a sequence of binary values that can be trans-
lated to edges by an array decodeArr : L→ Ec mapping each locus in L ⊆ N+

0 to the feasible
edge candidates Ec. While for physical edges in PTD, there may be an explicit cost per edge,
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Figure 4.2: Examples for the VTB encoding

this is not typically the case for virtual edges in VTD problems. For VTD there is no obvious
order for the links that directly relates to their effects on the cost function. We therefore order
them by length, since longer virtual links tend to use spectral resources on more fibers, which is
an indirect effect on network resources. Figure 4.2 shows two example topologies for a graph
of five nodes, where all virtual links are feasible candidates and active links are shown in blue,
while inactive ones are dashed and gray-colored.

4.2.2.2 Advantages and Disadvantages

The advantage of this formulation lies mainly in avoiding any duplicity in the search space and
that it allows for a very efficient and largely adaption-free application of all standard generic
operators as presented in Section 3.4. From the perspective of an isolated VTD problem, locality
and heredity are good, since a single bit-flip leads to the smallest change in the topology possible
and children inherit intact sub-structures. Furthermore, all possible topologies can be expressed
by this encoding such that it does not restrict the solution space for VTD problems. This means,
that an optimal solution can be found even in the presence of unlikely corner-cases, such as
when there is no traffic at all at one or more nodes.

The corresponding drawback lies in the fact, that many solution representations correspond
to unconnected topologies that are infeasible for typical traffic scenarios. While this does not
make it impossible to identify the optimal solution, it can have a significant impact on the
performance. This is especially true, when solving the VTD problem as part of a multi-layer
optimization problem. Following the explanation in Section 4.2.1, the VTB encoding can result
in a highly multi-modal search space structure which does not lend itself easily to gradual
refinements.

Similarly, it is difficult to predict, which groups of links form beneficial substructures, mak-
ing it impossible for generic recombination operators to exploit any advantages of a gene-
sequence since these do not have any clear semantic context relating to the cost values.

4.2.2.3 Evolutionary Operators

Since the chromosome is a simple bit-vector, all regular mutation and recombination operators
intended for binary vectors are immediately applicable. This includes URM, NPM and RRM
mutation operations as well as all recombination operators given in Section 3.4.5.5. We have
also developed an additional operator specifically for the VTB encoding, which we call Link
Block Crossover Operator (LBXO). Rather than exchanging contiguous sequences of genes
between chromosomes, it randomly chooses one or more nodes and exchanges all those genes
that represent links attaching to the chosen node. Since the number of links that are active for
a node can contribute to grooming and since already connected nodes retain their connectivity,
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this operator can provide for an inherently meaningful transmission of genes, which would be
impossible to encode in an arbitrary, contiguous sequence.

However, as explained in the previous section, a significant portion of the solution space
includes topologies that would be infeasible when using hard constraints. Ideally, operators
would only apply changes to a chromosome, such that it would result in a similarly fit solution,
but validating this by performing the decoding and the computationally more complex evaluation
procedures repeatedly, is hardly viable. This leaves two options.

The first is to employ a repair function that can fix issues with the configuration and mirror
the required changes back to the chromosome. This is also an approach found in works from
topology optimization [192, 246, 285], especially when feasibility is dependent on further con-
ditions such as lower bounds on connectivity. The second approach is to apply advance checks
of reduced computational complexity, such that infeasible chromosomes can be discarded early
on and replaced in a repeated generation procedure. This is especially useful in situations like
a multi-layer context, where the decoding and evaluation procedures require running other al-
gorithms to assemble a full solution, adding further computational cost, while the checks only
require a structural analysis of the chromosome itself.

As explained in Section 3.2.1, any connected topology will feature at least |V | − 1 edges
which are encoded by a corresponding number of 1s in the chromosome. The chromosome can
be checked rather quickly for a sufficient number of 1s with a worst-case time complexity of
O(|V |2). This is typically less then the decode function, which may have a worst-case time
complexity of O(|V |4) due to repeated path searches in the routing stages of a multi-layer
problem. While a minimum number of active edges is a necessary precondition for a connected
topology, it is in itself not sufficient to provide this property.

Since the graph with the full candidate edge set is known from the beginning and defines
the chromosomes’ structure, it is possible to run a preprocessing step before the actual GA, to
enable a connectivity verification directly based on the chromosome. To this end, the adjacency
matrix composed of all feasible links is computed and stored as an array in the preprocessing
step, which requires a worst-case runtime complexity ofO(|V |2). Afterwards, a feasibility check
for connectivity based on the chromosome values and this array can be performed in O(|V |2)
using a depth-first search approach, starting from the most well-connected node.

An evolutionary operator augmented by this check can therefore perform a self-healing
function. This can either be achieved by repeating the mutation process until a valid chromosome
is created or by adding links to make the topology connected and updating the chromosome
accordingly. While the first approach retains good heredity, there is no bound on the number
of required mutations to obtain a chromosome for a feasible solution. The second method may
reduce heredity by adding traits not previously present in either parent, but it is expected to
yield better performance. We follow this notation by implementing Algorithm 3, which uses the
adjacency matrix adj and the most well-connected node sstart to determine and return, whether
the graph is connected. If the Boolean variable brepair is set, it will alter the chromosome to
randomly add previously unused edges to unconnected nodes in order to obtain a structurally
similar chromosome, which represents a strongly connected graph.

4.2.2.4 Population Initialization
A regular randomized population initialization offers the largest diversity, but depending on the
sparsity of the graph of feasible edges, may not be particularly useful. In very sparse graphs,
this may again result in a large number of infeasible topologies, while very dense graphs may
feature an excessive number of edges. This can occur especially for virtual topologies in the
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Algorithm 3 VTB Chromosome Connectivity Check and Repair
Require: chromo is a binary array representing a VTB-coded chromosome
Require: adj is a bivariate map associating node pair ids to loci of corresponding links
Require: sstart is the id of the most well-connected node
Require: brepair is a Boolean value indicating the use of the repair function

function C H E C K A N D R E PA I R C O N N E C T I V I T Y(chromo,adj,sstart,brepair)
let Du←{1, . . . ,

√
|adj|} \{sstart} . Set of ids of unconnected nodes

let Ds←{sstart} . Set of ids of already connected nodes
let Er← /0 . Set of node id pairs representing repair edges
let w[1]← sstart . Map of node ids to inspect
let s← sstart . Next id to inspect
let i← 1 . Counter for remaining ids
while Du 6= /0 and i > 0 do . Connectivity check

s← w[i]
w[i]←⊥
i← i−1

for all d ∈ Du do
if adj[s][d] 6=⊥ then

if chromo[adj[s][d]] = 1 then
Du← Du \{d}
Ds← Ds∪{d}
w[i]← d
i← i+1

else
Er← Er∪{〈s,d〉}

end if
end if

end for
end while
while Du 6= /0 and brepair = true and Er 6= /0 do . Repair function
〈x,y〉 ← R N D(Er)
if x ∈ Ds and y ∈ Du then

Du← Du \{y}
Ds← Ds∪{y}
chromo[adj[x][y]]← 1
Er← Er \{〈a,b〉 ∈ Er|b = y}

else if y /∈ Du then
Er← Er \{〈a,b〉 ∈ Er|b = y}

end if
end while
if Du = /0 then

return true
else

return false
end if

end function
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presence of flexrate devices, which can drastically increase the number of realizable connections.
While the extension to the operators explained in the previous section can prevent the creation
of unconnected solutions, the initial population can also be built such that it already contains
meaningful individuals.

There are two topologies which are inherently meaningful to consider, although their objec-
tive values can be far from the optimal solution’s. The first applies to cases, where a meaningful
reference topology exists. In case of a multi-layer problem, this may be the topology where all
active virtual links correspond exactly to the available physical links. Including an individual
realizing such a topology means that the result of the overall optimization can never be worse
than this basic reference solution.

The second topology is the full graph of all candidate edges, such that all gene values are
set to “1”. While this may not in itself be a viable solution, especially not for graphs with dense
candidate edge sets, it will form a connected topology. Furthermore, it is guaranteed to include
all shortest paths, such that all QoS constraints are fulfilled, if this is at all possible. As such,
it may serve as a source of building blocks which can migrate into more sparse chromosomes
through recombination.

The least-connected meaningful solution candidates on the other hand always form spanning
trees due to the fact that all nodes in the network should be connected. In this way, every traffic
demand is guaranteed to be routable. While this is a necessary, but not a sufficient condition
to fulfill potential QoS targets, chromosomes representing spanning trees can represent a good
starting point for the integration of beneficial traits. Similar to Saha et al. [244], a population can
therefore be initialized using different randomized spanning trees to provide a certain level of
diversity. Contrary to the Prüfer sequence approach by Saha et al. [244], we have implemented
Algorithm 4, which works very similar to Prim’s algorithm. Rather than maintaining a list of

Algorithm 4 Randomized Spanning Tree Creation

Require: 〈V ,E〉 is a connected, non-empty simple graph
function R N D S PA N N I N G T R E E(V ,E)

let Ec← /0 . Set of candidate edges
let Et ← /0 . Set of edges in the emerging spanning tree
let vn← R N D(V ) . Random starting vertex
let Vw←V \{vn} . Set of remaining unconnected nodes
while Vw 6= /0 do

Ec← Ec∪{〈s,d〉 ∈ E|(s = vn∧d ∈Vw)∨ (d = vn∧ s ∈Vw)}
〈x,y〉 ← R N D(Ec)
Et ← Et ∪{〈x,y〉}
if x ∈Vw then

vn← x
else

vn← y
end if
Ec← Ec \{〈a,b〉 ∈ Ec|a = vn∨b = vn}
Vw←Vw \{vn}

end while
return 〈V ,Et〉

end function
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candidate edges ordered by their weight, it simply keeps track of the set of unconnected nodes
and randomly establishes an adjacency to one of these based on the available candidate edges.

However, most actual transport network topologies are much more well-connected than a
spanning tree, as shown in Section 2.2.2. A good solution candidate will therefore also exhibit a
higher level of connectivity than a pure spanning tree. To address this, we propose an initializa-
tion procedure that will add further edges based on an average target ratio of active to feasible
additional links, which presents an additional hyperparameter, we denote as pt. We will refer
to this procedure, which is shown in Algorithm 5, as Augmented Spanning Tree Initialization
(ASTI).

Additionally, an adapted version of Algorithm 5 can also be used, where the basic topology
is not a randomized spanning tree, but rather a known good topology. This approach is especially
useful when applied to a reconfiguration scenario, where the previously used configuration will
by definition include a good topology. In a multi-layer context and especially in partly dimen-
sioned scenarios, where the physical topology is fixed, it can also be used as the base. When
using the physical topology, we will refer to this approach as Augmented Physical Topology
Initialization (APTI).

By using one or more of the above strategies, the initial population will not only feature
reasonably good configurations, but also drastically decrease the number of evolutionary per-
turbations required to get to similar or even better states. While these approaches have a non-
negligible runtime complexity1, they are only executed once per individual during initialization,
such that the overall performance impact is relatively small.

1Worst case time complexity for a simple implementation is in O(n2 logn)

Algorithm 5 Augmented Spanning Tree Initialization (ASTI) Procedure

Require: 〈V ,E f 〉 is a connected, non-empty simple graph including all feasible edges
Require: linkToLocus is the mapping of links to loci
Require: pt ∈ [0,1] is the target ratio of active to inactive additional links

function C R E AT E I N I T I A L A S T C H R O M O S O M E(V ,E f , linkToLocus, pt)
let ng← |V | · (|V |−1) ·0.5 . Length of a Chromosome
let chromosomeArr : {1, . . . ,ng}→ B . Chromosome as Array of ng binary values
let nones← d(|E f |− |V |+1) · pte . Target number of “1” values
let Lzeros←{1, . . . ,ng} . Set of loci with gene value “0”
〈V ,Ec〉 ←R N D S PA N N I N G T R E E(V ,E f ) . Cf. Algorithm 4
for all e ∈ Ec do

chromosomeArr[linkToLocus[e]]← 1
Lzeros← Lzeros \{linkToLocus[e]}

end for
while nones > 0 and Lzeros 6= /0 do

l← R N D(Lzeros)
Lzeros← Lzeros \{l}
chromosomeArr[l]← 1
nones← nones−1

end while
return chromosomeArr

end function
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4.2.3 Centralized Spanning Tree Encoding – VTCS
For the regular operation of transport networks, the flat encoding’s primary disadvantage is
the fact that the genes can represent a large number of network configurations that are clearly
undesirable. Rather than mitigate this through the use of specific initialization procedures and
operators, an encoding may also be designed such that it cannot even represent unconnected
topologies. While some problems may require representations for these states, it is not mean-
ingful in a transport network environment, where client traffic may require transport between
any two nodes at any time. Therefore, the virtual topology of any transport network will always
contain a spanning tree, which we will consider as the basis for the VTCS encoding.

In very simple cases, any spanning tree alone can mark an optimal solution. E. g., when the
sum of the data rates of all traffic demands in a network is smaller than the circuit granularity,
while the only optimization goal is to achieve the least number of circuits. In this case, any
topology forming a spanning tree of minimal edge count is a resource-optimal solution in the
absence of further requirements. When additionally considering the number of NEs, e. g., line
cards with several ports, then only a specific subset of all possible spanning trees will remain
optimal solutions. More specifically, the subset where the number of links at any node does not
exceed the number of ports on a line card. This illustrates the point, that depending on the exact
problem, some spanning trees can be optimal, while others can not. Furthermore, when adding
QoS parameters, nodes will most likely require more direct paths due to latency constraints such
that no spanning tree alone can be optimal. Due to these considerations, an encoding which
combines a spanning tree with any combination of additional edges, can represent any optimal
solution to a VTD problem.

As outlined in Section 3.6.1, a standard approach to encode spanning trees for GAs is to
describe them as Prüfer sequences. However, this is not desirable for the present use case for two
reasons. First, it’s known not to be a good fit for efficient GAs due to problems with heritability
and locality [109], which may significantly impede performance. The second reason is that a
full representation of all possible spanning trees would significantly inflate the search space. To
illustrate this fact, one can consider adding a single link to a node in a spanning tree of n nodes.
The graph with the additional link could just as well be the product of a different spanning tree,
which had included this new edge in their original tree and to which another edge had been
added, which is part of first spanning tree. In the worst case of a topology that becomes a ring
after adding a new link, there are n− 1 spanning trees, which can be considered to be a part
of the ring topology. Therefore, an encoding based on arbitrary spanning trees may have many
representations for the same topology.

Cayley’s formula [31] states that for a fully connected graph of n vertices there are nn−2

possible trees. This gives us an upper bound for the number of spanning trees, which exceeds the
number of edges in this fully connected graph. Therefore, directly encoding a full enumeration
of spanning trees is not a promising approach since its combinatorial complexity exceeds that
of the flat encoding significantly, while many trees are redundant for most topologies. To make
a spanning tree-based approach viable, the number of spanning trees needs to be reduced to as
few relevant candidates as possible.

If the cost contribution of each link were known a priori, Prim’s algorithm could be used
to determine the subset of minimal-cost spanning trees, but, as has been previously explained
in Section 4.2.1, the exact cost contribution can only be determined once the full configuration
including all other edges is known. However, as the example of the same section has shown,
there are links which are intuitively more important than others, e. g., because the graph would
be unconnected without them. Given a heuristic quantifying this importance, edges could be
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assigned an artificial weight which could then be used to determine a minimum spanning tree
as likely candidates for cost-optimal trees. Furthermore, if a strict total order of edges could
be established based on this heuristic, such that no pair of edges have identical weights, the
resulting tree generation would always result in the same spanning tree for the same set of
weights.

While this importance is difficult to quantify, there are a number of properties, that can be
used to formulate a meaningful heuristic. While the closeness centrality used in Section 2.2.2.1
is an interesting candidate for this, it is purely based on the topology, which may be misleading
in scenarios with sparse traffic matrices. We therefore suggest an order relation based on be-
tweenness centrality [87], which reflects the number of shortest paths that use a given resource
in a graph. While regular betweenness centrality considers the shortest paths for all pairs of
nodes, we suggest omitting these nodes, that do not have any traffic demands between them,
should such nodes exist. In this way, we can reflect a link’s importance given both, topology and
traffic demand matrix.

Betweenness centrality measures exist for both, edges and nodes. We will explicitly not use
edge betweenness [151] but rather use the betweenness centrality of the nodes a link connects.
The reason behind this is to decouple the measure from the exact link representation. E. g., when
considering a full virtual topology, every shortest path will only contain the single link between
source and target, such that each of these edges have identical edge weights, rendering any
order based on edge betweenness ineffective. We therefore assign to each link the sum of the
betweenness centrality values of the nodes connected by the respective link. Furthermore, we
use the node’s unique identifiers as a tie breaker in order to establish a strict total order on edges.
While we expect a minimum spanning tree based on these edge weights to be a good candidate to
augment with additional links towards a full solution, it may still prevent more sparse topologies
from being representable.

Rather than relying on a single spanning tree obtained from Prim’s algorithm, we use a
gene value to encode a sequence of nodes, which form the spanning tree and use the heuristic
from above to determine, which link will be used to connect the selected nodes. In this way, the
number of spanning tree candidates is reduced and the resulting trees should reflect the most
important variations based on the heuristic. While it cannot be guaranteed, that optimal solutions
for all corner cases are encodable, we expect this to be a relatively rare event when applying
this scheme to multi-layered transport networks. Given the typical density of such networks it
is unlikely that the solution will hinge on the basic spanning tree without any augmenting links.
The exact encoding strategy is explained in the following section.

4.2.3.1 Chromosome Structure

The chromosome consists of two distinct parts. The first part encodes the spanning tree and the
following part encodes which of the remaining edges are used to augment the tree topology.
We will therefore refer to the genes of the first part as “tree genes” and to the genes of the
second part as “augment genes”. For this encoding a number of steps can be precomputed using
Algorithm 6. The algorithm applies a sort-function using the established strict total order relation
on the edges.

Furthermore, it computes nST Genes, the number of tree genes, nSTValues, which is the num-
ber of different gene values, and also nV LGenes, the number of genes to encode the remaining
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Algorithm 6 Spanning Tree Encoding – Initialization Procedure

Require: 〈V ,E f 〉 is a connected, non-empty graph
Require: �e providing a strict total order relation on E f

procedure S T G I N I T(V ,E f ,�E)
let edgeArr : {1, . . . , |E f |} → E f
let edgeMap : V ×V → E f
let sortedEdgeArr←S O R T(E f ,�E)
let nST Genes← |V |−2
let nSTValues← |V |−1
let nV LGenes← |E f |− (|V |−1)
for all v ∈V do

outEdgeSet←{〈s,d〉 ∈ E f |s = v}
for all 〈s,d〉 ∈ outEdgeSet do

edgeMap[v][d]← 〈s,d〉
end for
for all u ∈V do

if v 6= u and edgeMap[v][u] =⊥ then
edgeMap[v][u]←D I J K S T R A(〈V ,E f 〉,v,u)[0] . Cf. Algorithm 11

end if
end for

end for
let vstart ←M A X D E G R E E N O D E(V ,E f ) . Cf. Algorithm 13

end procedure

augmentation links. Therefore, the total number of genes in such a VTCS chromosome can be
determined according to Equation (4.1).

ng,VTCS = (|V |−2)+ |E f |− (|V |−1) (4.1)

Note, that nST Genes is smaller than |V |, because the last remaining node has to be added without
any alternative and the first node is statically assigned as the node with the highest nodal degree
in the graph of edge candidates. This results in a state space of size

(|V |−1)!+2|E f |−(|V |−1) ∈ O(|V |!+2|V |
2
) (4.2)

under the assumption of symmetric edges.
The most important part of the initialization procedure is the preparation of the edgeMap.

This array contains the first edge on a path between any pair of nodes. For neighboring nodes
this is their connecting edge, while for indirectly connected nodes, it is the first edge of the
shortest path between them. This information is used in the decoding procedure, presented as
Algorithm 7. This procedure creates the network data structure from the chromosome, based on
the initialization values. Figure 4.3 illustrates this process step by step.

The chromosome is decoded beginning from the starting node “S”, which is highlighted in
red, and using the given nextEdgeMap indicating choices for next links. The first gene with the
value 4 adds node 4 by using the link between “S” and 4 as highlighted in Figure 4.3b. This leaves
only three options for the next link, thereby reducing the number of entries in the nextEdgeMap.
Furthermore, node 2 can now be reached with a more direct link from node 4, such that the
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Algorithm 7 Spanning Tree Encoding – Decoding Function

Require: 〈V ,E f 〉 is a connected, non-empty graph
Require: sortedEdgeArr provides an ordered set of feasible edges
Require: geneArr provides the sequence of genes

function D E C O D E(V ,E f ,sortedEdgeArr,edgeMap,vstart ,geneArr,nST Genes)
let workEdgeArr← sortedEdgeArr
let workNodeSet←V \{vstart}
let itarget ← 0, i← 0, vcurr← vstart
let nextEdgeMap← edgeMap[vstart ]
let actEdgesSet← /0
for igene = 0 to igene = nST Genes−1 do

i← 0
itarget ← geneArr[igene]
nextEdgeMap[vcurr]←⊥
for all 〈v,〈s,d〉〉 ∈ nextEdgeMap do

if i≤ itarget then
vcurr← d
if vcurr ∈ workNodeSet and ∃〈n,〈s,d〉〉 ∈ workEdgeArr then

if i = itarget then
workNodeSet← workNodeSet \{vcurr}
workEdgeArr[n]←⊥
∃!〈m,〈d,s〉〉 ∈ workEdgeArr
workEdgeArr[m]←⊥
actEdgesSet← actEdgesSet∪{〈s,d〉,〈d,s〉}

end if
i← i+1

end if
end if

end for
U P D AT E(nextEdgeMap,vcurr,workNodeSet,edgeMap,workEdgeArr) . Algorithm 8

end for
∃!v ∈ workNodeSet . Only exactly one element remaining
vcurr← v
〈s,d〉 ← nextEdgeMap[vcurr]
∃!〈n,〈s,d〉〉 ∈ workEdgeArr
workEdgeArr[n]←⊥
∃!〈m,〈d,s〉〉 ∈ workEdgeArr
workEdgeArr[m]←⊥
actEdgesSet← actEdgesSet∪{〈s,d〉,〈d,s〉}
for all e 6=⊥ ∈ workEdgeArr do

igene← igene +1
if geneArr[igene] = 1 then

actEdgesSet← actEdgesSet∪{e}
end if

end for
return actEdgesSet

end function
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Algorithm 8 Spanning Tree Encoding – Subroutine to update nextEdgeMap for vcurr

procedure U P D AT E(nextEdgeMap,vcurr,workNodeSet,edgeMap,workEdgeArr)
for all v ∈ workNodeSet do . Update next edge table with new adjacencies
〈s,d〉 ← edgeMap[vcurr][v]
if d ∈ workNodeSet and ∃〈n,〈s,d〉〉 ∈ workEdgeArr and nextEdgeMap[v] 6=⊥ then
〈o, t〉 ← nextEdgeMap[v]
if (t 6= v and d = v) or vcurr = t or (〈o, t〉 �E 〈s,d〉 and t 6= v) then

nextEdgeMap[v]← 〈s,d〉
end if

end if
end for

end procedure
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(a) Decoding begins at starting node S
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(c) nextEdgeMap is updated with direct link “4–2”
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(d) Gene values change node assignment
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(e) Last node of spanning tree added automatically
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(f) Non-spanning tree links as binary encoding

Figure 4.3: Example of the VTCS decoding procedure

previous entry for gene value 2 is updated with the new link as shown in Figure 4.3c. The
decoding continues until we reach the situation illustrated in Figure 4.3e, where only one entry
remains in the nextEdgeMap, such that no choice is represented in the chromosome. Finally, the
remaining augmentation links are added in the same way as with the VTB encoding, which is
depicted in Figure 4.3f, where one additional link is chosen.

Figure 4.4 shows the two example topologies from the previous section describing the VTB
encoding and how they can be encoded using the VTCS approach. Note, that the binary genes
encoding the additional links change their phenotype depending on the spanning tree genes. This
is due to the fact that a spanning tree link is not allowed to be changed in subsequent genes and
is therefore removed from the binary part of the gene sequence.



4.2 Genetic Algorithm Adaptations for Topology Design 89

1

2 3

4

S1

2 3

4

S

00 0 04 2 2 00 0 10 0 2 3 1 1 1

Figure 4.4: Examples for the VTCS encoding

4.2.3.2 Advantages and Disadvantages

In comparison to the VTB encoding, the VTCS encoding has the advantage that all possible
chromosomes always result in connected topologies, such that no connectivity check or repair
functions are necessary. Both, the repair function described in Algorithm 3 and the decoding
procedure for VTCS exhibit worst-case runtime complexities within O(|V |2) making their per-
formance impact comparatively small. The advantage of the VTCS encoding compared to VTB
is that heritability can be improved in certain situations where the solutions are very sparse
graphs. For example, when the recombination of two VTB chromosomes results in a chromo-
some that requires many additional links to become connected again, the repair function may
add edges in a way that disrupts effective patterns in the parents. This can result in an offspring
with a much lower objective value that detracts from a more localized improvement.

While VTCS has an advantage in these situations, it also has a number of drawbacks regard-
ing state space, locality, and heritability. In situations where the starting node is the same as or
close to the one with the highest centrality, but the optimal solution consists solely of links on
remote, non-central or non-well-connected nodes, then the VTCS encoding may not be able to
represent this solution and a GA based on it is therefore unable to find it. It should therefore not
be used in situations where very sparse traffic matrices are expected.

Another drawback are overrepresentations in state space, i. e., the fact that the same topology
can be encoded in a number of different ways. While the VTCS decoding procedure and the
suggested order relation reduce the amount of representable spanning trees and thereby also
the amount of overrepresentation, an inflation of the state space will still occur, which becomes
increasingly worse for more densely connected graphs. Finally, there are also implications on
locality and heritability. As shown in Figure 4.4, any link used as part of the spanning tree is
removed from the binary genes in the chromosome. This means that a mutation in the spanning
tree genes can theoretically change the phenotypical meaning of all subsequent genes, such that
a small local mutation can lead to a large-scale change in the resulting individual. Similarly, this
can have a negative impact on heritability as well, since recombining genes from two parents of
different spanning trees can result in offspring where the inherited sequences result in different
phenotypes.

4.2.3.3 Evolutionary Operators

Due to the segmented nature of this chromosome type and especially the different domains, not
all regular operators are immediately applicable.
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Mutation
Regarding mutation, purely binary approaches cannot be used, but since binary numbers are
a subset of the integers, most1 regular mutation operators intended for integer numbers can
be applied to a VTCS-coded chromosome. This includes the Gaussian and Creep operators as
outlined in Section 3.4.5.4. However, using standard operators can result in reduced locality as
explained in the previous sections.

When the number of link candidates drastically exceeds the number of nodes and the muta-
tion rate is limited such that only one or two genes are altered, then the probability of changing
the tree genes becomes small enough that negative effects on locality remain small. However,
for less dense topologies, the reduction in locality can become problematic.

To remedy this aspect, we suggest treating the tree and augmentation genes separately in an
encoding-specific mutation operator. Any mutation will only affect either the tree genes or the
augmentation genes. The choice is performed randomly according to a configurable threshold.
For the tree genes we apply a Creep mutation with step size n = 1, while the augmentation genes
are altered by a variable secondary operator like URM or RRM. We will refer to this operator
as VTCS-Specific Mutation (VSM).

Recombination
Since the ranges of numerical values for the genes within a VTCS-coded chromosome are
static for a given candidate topology, any regular, non-reordering recombination approach such
as those outlined in Section 3.4.5.5 can be used. However, for these operators in general and
UXO in special, the previously explained negative effects of reduced locality and heritability
become manifest. Since the edges encoded within the spanning tree cannot be present in the
remaining genes, the loci change their meaning depending on the spanning tree. This effect is
partly mitigated by retaining the order according to the order relation, but the exact shift depends
on the chromosomes to be recombined and can be substantial.

We therefore suggest an alternate recombination operator, that is aware of the phenotypes
associated with the alleles in VTCS-chromosomes. We refer to this operator as VTCS-Specific
Crossover (VSXO). The recombination of tree genes has a high potential to disrupt any meaning-
ful patterns, since these only emerge as a combination of tree and augment genes. The suggested
recombination approach therefore tries to migrate intact subsets of links between chromosomes,
rather than flat gene values.

Since the association of phenotypes to genes is known for each parent, the recombination
algorithm can establish which genes result in equivalent phenotypes. This is illustrated in Fig-
ure 4.5a, where connected genes correspond to the same links in the resulting topologies. Two
offspring are created with tree genes that are identical to those of their parents, which means
that the equivalence of loci remains identical as well as shown in Figure 4.5b. Thus, the recom-
bination transfers the phenotypical associations of the parents to the children. In the following
step, augment genes that correspond to tree genes in the other chromosome need to be activated,
which can be seen in Figure 4.5c. Finally, all remaining augment genes are recombined accord-
ing to a fixed crossover probability p. In the example in Figure 4.5d, p is set to 1, such that the
resulting offspring each have the tree genes of one parent and the augment genes of the other,
where possible.

While heritability is significantly improved through this operator, it does not result in a
heritability equal to the VTB encoding, since there are certain phenotypes that cannot be passed

1Operators that reorder subsequences of genes, which are used for permutation encodings, are not applicable.
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Figure 4.5: Process of the VSXO recombination operator

on to the offspring. This occurs, for every link which is represented in the augment genes of one
parent and the tree genes of the other parent. When the augment genes require its absence from
the topology, but the offspring shares the same tree as the second parent, it cannot be removed
as this would contradict the offspring’s tree genes. This is visible in Figure 4.5c, where the 6th

gene of the upper offspring cannot have the value 0. Note, that this introduces an imbalance in
the heritability between 1 and 0 values in the binary genes, such that offspring topologies tend
to be increasingly dense, which may not be desirable depending on the problem at hand.

4.2.3.4 Population Initialization

Just like with VTB, a population can be seeded with a full candidate topology or randomized
spanning trees. To this end, we have implemented an adapted version of the ASTI approach,
such that it can be used to initialize populations for VTCS-coded chromosomes. The advantage
here, is that the random generation of spanning trees is very simple, since it only requires the
randomization of the tree genes. We have also developed an initialization procedure which is
analogous to APTI.

However, since VTCS does not allow all topologies to be encoded, the adapted APTI ap-
proach may sporadically add additional edges, when it is incapable of creating a chromosome
capturing the physical topology exactly. Therefore, the resulting topology may only be an approx-
imation of the physical topology. Since there typically exist several ways to encode a requested
topology, the suggested approach attempts to randomly find different encodings, to introduce a
meaningful amount of diversity. The full initialization approach is given as Algorithm 9, where
〈V ,Einit〉 should represent the physical topology in order to realize APTI.
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Algorithm 9 Spanning Tree Encoding – Augmented Initial Topology Initialization

Require: 〈V ,Einit〉 is a connected, non-empty graph
Require: sortedEdgeArr provides an ordered set of feasible edges

function C R E AT E I N I T C H R O M O S O M E(V ,Einit,sortedEdgeArr,linkMap,vstart,nSTGenes)
let workEdgeArr← sortedEdgeArr
let workNodeSet←V \{vstart}
let geneArr← 〈i,0〉 with i ∈ 1, · · · ,nSTGenes
let itarget ←−1 , vcurr← vstart , ncurr←−1
let nextEdgeMap← linkMap[vstart ]
let candEdgesArr
for igene = 1 to igene = nSTGenes do

itarget ←−1
candEdgesArr← 〈i,⊥〉 with i ∈ {1, · · · , |V |}
nextEdgeMap[vcurr]←⊥
for all 〈v,〈s,d〉〉 ∈ nextEdgeMap do

if d ∈ workNodeSet and ∃〈n,〈s,d〉〉 ∈ workEdgeArr then
itarget ← itarget +1 , vcurr← d , ncurr← n
if 〈s,d〉 ∈ Einit then

candEdgesArr[itarget ]← 〈n,〈s,d〉〉
end if

end if
end for
if ∃〈n,〈x,e〉〉 ∈ initEdgesArr and e 6=⊥ then
〈n,〈x,〈s,d〉〉〉 ← R N D(initEdgesArr)
itarget ← x , vcurr← d , ncurr← n

end if
geneArr[igene]← itarget
workNodeSet← workNodeSet \{vcurr}
workEdgeArr[ncurr]←⊥
∃!〈m,〈d,s〉〉 ∈ workEdgeArr
workEdgeArr[m]←⊥
U P D AT E(nextEdgeMap,vcurr,workNodeSet,linkMap,workEdgeArr) . Algorithm 8

end for
∃!v ∈ workNodeSet . Only exactly one element remaining
vcurr← v
∃!〈n,〈s,d〉〉 ∈ workEdgeArr
workEdgeArr[n]←⊥
∃!〈m,〈d,s〉〉 ∈ workEdgeArr
workEdgeArr[m]←⊥
for all e 6=⊥ ∈ workEdgeArr do

igene← igene +1
if e ∈ Einit then

geneArr[igene]← 1
end if

end for
return geneArr

end function
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4.3 Genetic Algorithm Adaptations for Traffic Demand Routing

This section details the encodings that are concerned with applying GA mechanisms to traffic
routing. While TDR and ICR are in essence both routing problems, as we have explored in
Section 2.2.3 and Section 3.2, we will not include any ICR-specific aspects. While most basic
approaches apply to both problem versions, ICR adds another layer of complexity due to its
relationship with the wavelength assignment problem, suggesting more specialized approaches
beyond routing. However, exploring this dependency and the integration of possible heuristics
in detail is well beyond the scope of this monograph, such that we will focus on TDR.

The goals regarding the genetic representations are the same as for the topology adaptions
in the previous section. They shall be able to support generic operators, provide good locality
and heritability, while also allowing for a computationally efficient decoding. However, when
it comes to large problem instances, the combinatorial complexity of routing problems quickly
becomes prohibitive. A full solution space representation is therefore unlikely to be solvable
in a feasible time frame for most problems, such that we will consider performance-enhancing
simplifications for the following encodings.

4.3.1 General Aspects of Routing Traffic Demands

Routing of a single traffic demand requires an underlying graph, that has sufficient connectivity
to permit a path between the demand’s source and destination. A solution to a TDR problem will
therefore consist of an assignment of paths through the given graph for all demands. Algorithms
solving TDR need to consider, whether demands are symmetric, require QoS-compliant paths
and if they are routable at all.

Routability may not only depend on the graph’s connectivity, but also on predefined capac-
ity limits. For capacitated problems, only a limited amount of demands can be carried on a
path, before it runs out of capacity and longer, alternative paths are needed, which may require
additional connections. Once resources on all possible paths are depleted, a demand becomes
unroutable. For uncapacitated problems, where resources can be added at further cost, all de-
mands will be routable, such that no solution can become infeasible, but the overall cost may
be excessive. In both situations, it can make sense to explicitly treat a demand as unroutable.
For capacitated problems this can, e. g., be meaningful for a best-effort demand of little revenue
and low penalties, when in its place a higher-revenue demand can be routed. A similar situation
may occur for uncapacitated problems, when the best-effort demand would require excessive
amounts of additional hardware, such that the costs exceed the penalties.

Symmetric demands, meaning that every demand will have a related demand in the reverse
direction, are a common occurrence, since most communication is inherently symmetric. Rout-
ing a demand and its opposite counterpart on different, non-symmetrical routes can be possible
for connectionless packet traffic, but depending on the client traffic or technological constraints
it may also be forbidden, posing an important constraint to routing. E. g., classical IP/MPLS is
not required to use symmetric routes, whereas MPLS-Transport Profile (MPLS-TP) includes an
explicit option to enforce it.

QoS-enabled demands effectively add constraints to the path search, which typically increase
the routing problem complexity. This is not only caused by compliance checks, which are likely
to increase the runtime, but also because the number of path computations increases. Without
QoS constraints, in most cases only one path per node pair needs to be computed, whereas
including the constraints will require a path per node pair multiplied by the number of QoS
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classes. This may also lead to very different network configurations, since the more diverse
paths may require additional or share different existing resources.

When it comes to encoding solutions to TDR, different aspects of a routing can be considered,
as explained in Section 3.6.2. The encoding may explicitly address all edges in each path
by individual genes, which is done by the direct edge and node sequence encodings. This
corresponds to the smallest possible difference between two TDR solutions and therefore allows
for very high locality and an exact representation of the search space, but it also entails a
high combinatorial complexity and hence limited tractability. Another category of encodings
indirectly represents the entire routing at once, using the genes to encode parameters for an
algorithm, which derives the routing from these values. An example for this is an encoding
of link weights, which are translated to a routing by shortest path algorithms. In fact, a VTD
encoding combined with subsequent shortest path routing can also be interpreted as a TDR
solution approach and would consequently also fall into the present category. Such encodings
are typically much more scalable, but lack locality and solution space coverage with respect
to the original degrees of freedom in routing. A compromise between these two categories are
the path enumeration encodings, which can be considered to trade locality and search space
coverage for tractability by varying the number of precomputed paths.

4.3.2 Compact Path Enumeration Encoding – RCPE
Path enumeration encodings are a very common approach used in both, ILP and GA, as ex-
plained in Section 3.6.2, and the suggested Compact Path Enumeration Encoding also belongs
to this category. For such approaches, a number of paths is precomputed for the required pairs
of sources and destinations and the optimization algorithms select among these paths. The pre-
computation is often based on k-shortest path algorithms with problem-specific metrics, which
may incorporate aspects such as the number of hops on a route, the costs or the lengths of the
constituent links. Including hops and length generally makes sense for QoS-enabled demands,
since longer paths tend to use more resources and incur higher QoS penalties in terms of delay
and availability.

Ideally, the selected paths should reflect the most promising candidates for the entire routing
solution, but this is difficult to predict a priori. Since the solution quality emerges as a combi-
nation of several paths, a path candidate may be essential for a single very good solution, but
detrimental to most other solutions. Consider, e. g., the grooming of two demands in a resource
minimization, where one takes a shortest path and the other a very long path, but this specific
long path allows the re-use of the short paths’ resources. Viewed in isolation, the long path
makes little sense, but in this combination that allows for grooming, it’s more efficient than to
use two shortest paths with dedicated resources on each.

While there is no simple metric to measure grooming potential, this observation still high-
lights two prerequisites. The first is, that considering shortest paths also makes sense when
several paths are involved, and the second aspect is, that the selection needs to contain suffi-
ciently long paths. When a very sparse demand matrix is present and the optimal routing may
result in a spanning tree, the paths may have to be very long to reflect such a topology. However,
when a full demand matrix is used and many QoS-enabled demands are present, the likelihood
that long paths are needed decreases, since the QoS demands require resources on short paths
anyway, which can be reused by the other demands. However, most real-world problems do
not present with such straightforward structures, such that determining, which path length is
sufficient, is very difficult. While complete enumerations of all paths are possible in theory, for
most larger scenarios it is not practical to consider arbitrarily long paths.
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The number of enumerated paths should therefore neither result in a drastic restriction on
the diversity of representable paths, nor the representation of a large number of excessively long
paths. To allow for a meaningful exploration of the search space, we therefore suggest scaling
the number of precomputed paths for each node pair 〈s, t〉 in a graph g according to a power law
related to the number of hops on the shortest path. This accounts for situations where, e. g., the
second-shortest path between two immediate neighbors in the topology will typically already
result in a relatively long path of dubious utility. Pairs with shortest paths of many hops, on the
other hand, will have a large number of paths of similar length, such that a larger number of paths
should be considered for enumeration. In RCPE we determine the number of paths according
to Equation (4.3), where km is a parameter providing an upper bound to keep the calculations
feasible for very large graphs, while a and b are adjustable parameters, where b should be chosen
above the average nodal degree. The function fHops(g,s, t) : 〈V ,E〉×V ×V → N0 returns the
number of hops on the shortest path.

fk(g,s, t,a,b,km) = min(km,a ·b fHops(g,s,t)) (4.3)

The effects of a hop-based path enumeration are especially important in the multi-layer
network scenario. Whenever short physical links occur in combination with a large transparent
reach, the feasible graph may contain a large number of single-hop paths, since the feasible
virtual topology can be very dense. In the case of multi-layer networks, we therefore suggest
to use the least number of physical hops a virtual link requires as the metric for scaling the
number of shortest paths in a virtual topology, i. e., we choose g in Equation (4.3) to represent
the physical topology.

For RCPE we use only one gene corresponding to a single selected path for each pair of
nodes, such that all demands between a given node pair are routed on the same path. This
makes sense, since the demands with same source and destination are an obvious choice for
resource sharing, but may lead to situations, in which the selected path may not meet the QoS
requirements of all these demands. For this case, we include a fallback mode to divert each
individual demand of violated QoS parameters from the selected path to a compliant path. We
do this in two steps, following the routing of all compliant traffic on the selected routes according
to the gene values.

In the first step, a necessary lower bound on the virtual topology is extracted from the
routing performed up to this point. More formally, the union of all edges used in any of the
chosen paths according to the chromosome, are used to form a set of links Et , which is used to
create a temporary graph gt = 〈V ,Et〉. The demands, which had previously violated their QoS
contract, are now rerouted on this virtual topology graph using a regular QoS-aware shortest
path algorithm based on the same metric as the precomputed paths. This allows for a maximum
of resource sharing with the existing routing and results in relatively small diversion from the
solution candidate corresponding to the chromosome.

However, this cannot generally result in a QoS-compliant routing for all cases since the
temporary topology might still lack essential links. This may, e. g., be caused by a scenario,
where there are only very few QoS-enabled demands, such that the majority of best-effort
demands suggest a very sparse topology. For this reason, there is a second step, which activates
additional links to guarantee a compliant route for those demands, where the first step did not
succeed. It simply chooses the shortest route, known to be compliant, which can be identified in
the original precomputation. This is more invasive, since it may require a larger number of links
to be activated, thereby reducing locality. However, it is computationally very simple, since it
can be performed using a lookup table with the index to the original enumeration. In this way,
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Figure 4.6: Examples for the RCPE encoding

best effort traffic can still be groomed, while as many demands as possible remain aggregated
and fulfill their QoS requirements.

4.3.2.1 Chromosome Structure
The chromosome represents the primary paths used between all possible node pairs in the graph.
Therefore, the length of the chromosome corresponds to the number of node pairs, such that any
given node pair can be assigned to one specific locus. The individual values of these genes are
an index to the path enumeration. Furthermore, an additional value can be included in the index,
which indicates that no demands should be routed between the respective nodes.

Figure 4.6a shows an example for different values for the third gene, which is assigned to
the paths between node “1” and node “2” in a symmetric routing scenario. The value 0 is used
to indicate that no routing is performed, while the values 1 through 3 indicate all possible paths
in order of increasing weight according to the metric. Ordering the index in this way increases
locality, since closer indices are more likely to be similar than two paths of distant index values.
A full solution candidate with km ≥ 4 is shown in Figure 4.6b, where the minimum amount of
links is used, forming a spanning tree. The demands between nodes “3” and “4” remain unrouted
as the respective gene is set to 0. Note, that the fourth gene has a value of 4, since there are 4
possible paths between nodes “3” and “2”, highlighting that the range of values can vary for
different loci.

The state space for this encoding reaches a size of at most (km +1)|V |
2−|V |. Although km is

a constant, it should be noted that it has to be chosen carefully in order to maintain a tractable
state space, while at the same time it should be selected large enough to match the given graph’s
structure in order to provide a meaningful number of alternative paths. Following Equation (3.2),
the number of possible paths between two nodes in a full graph increases on the order of |V |!
such that km has to be scaled drastically to retain coverage. For the extreme case of full coverage
in an asymmetric scenario the combinatorial complexity increases according to Equation (4.4).

∏
s∈V

∏
t∈V\{s}

( fk(g,s, t,a,b,km)+1)≤ (km +1)|V |
2−|V | ∈ O

(
|V |!|V |

2
)

(4.4)

4.3.2.2 Advantages and Disadvantages
The achievable solution quality of the RCPE encoding depends heavily on the correct choice
of a, b and km. If the number of paths is too small, then routing via long paths, potentially
allowing for grooming, may be impossible and therefore it may be impossible to find the global
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optimum. This is especially problematic for large graphs with many best-effort demands of
very low data rates, where grooming could drastically reduce the required resources. However,
if there is an excessive number of precomputed paths, such that any optimal solution requires
only much smaller values, then the rate of convergence can be significantly reduced due to the
unnecessarily increased combinatorial complexity. This occurs especially when the majority of
demands is of high volume and located between nodes in close proximity to each other, as they
warrant the usage of dedicated resources on their own.

Finding sufficiently large numbers of paths can also be problematic due to the limited
scalability of the routing approaches used in precomputing. As explained in the previous section,
km would ideally have to be drastically increased for larger graphs while simultaneously the
runtime of the k-shortest path algorithm increases exponentially with graph size as well. This
effect is much exacerbated in multi-layer scenarios with flexrate TXPs of large transparent
reaches, since they result in very dense feasible virtual topologies where a large amount of the k
shortest paths will not diverge significantly from the shortest path anymore, reducing grooming
potential even further.

Finally, the RCPE encoding provides only one selectable set of primary paths for all node
pairs. The QoS-compliant fallback search does not permit for longer paths, very close to the
QoS limits and therefore the grooming potential among QoS-enabled demands is reduced. The
advantage on the other side is, that a larger number of QoS classes does not result in an increase
in combinatorial complexity. Furthermore, in such situations, where QoS parameters are not
close to the limits of what the network can provide, routing the demands on the same path may
inherently lead to meaningful grooming between QoS-enabled and best-effort demands.

Another advantage of this approach is the relative simplicity of the decoding function. While
computing the required paths between all node pairs for large values of km is computationally
expensive, it can be done in a preprocessing step that will typically require only a fraction of the
runtime of the GA itself. The primary path will most likely remain compliant for all demands,
even for small values of km, since shorter paths provide better values for most relevant QoS
figures. Furthermore, very long paths are not overly likely to be part of good solutions in many
real-world cases and therefore the number of times the shortest path algorithm is invoked, is
typically small compared to the number of all demands, such that decoding a RCPE chromosome
features a reduced runtime compared to a virtual topology encoding which is followed by routing
operations for each demand.

Heritability is generally good, since any allele of any locus will result in the same phenotype
for all possible chromosomes. Locality is typically good, but it is dependent on the graph
structure. An increase in a gene value will lead to a longer path and paths of increasing length
are likely to consume more resources. If the index of a gene is so large that fallback routing is
required, the resulting changes are even larger. Locality with respect to a multi-layer scenario,
however, is better than for the VTB encoding, since paths can be changed individually, where
changing a virtual link can affect an arbitrarily large number of paths simultaneously.

4.3.2.3 Evolutionary Operators

Since the genes are integer-valued, all regular operators usable on integer vectors described in
Chapter 3 can be used in mutation and recombination.
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Mutation
The Creep-Mutation operator is immediately applicable to the problem without any further
adaptions but may be inefficient for large numbers of path candidates. Small step sizes require
a large number of mutations to cover the range of possible values, while large maximum step
sizes are more likely to miss small refining steps. The Gaussian mutation operator seems better
suited for this task, since it inherently provides a meaningful tradeoff between exploration and
refinement by randomly sampling step sizes from a normal distribution centered around the
previous value.

Since grooming often occurs in combination of one or more short demand routes together
with a long demand route as shown in Figure 4.6, a corresponding chromosome is expected
to have a similar distribution between small and large values. This suggests that an efficient
mutation for such chromosomes can explore values with large strides, but at the same time also
refine close candidates by taking small steps. A straightforward way to achieve this behavior, as
used in a number of works [104, 145, 288], is to combine two mutation operators of different
step sizes. Alternatively, the step size may also be scaled according to a customized distribution.
Our approach for integer-valued genes, which we call Longhorn mutation, falls in the latter
category and will be detailed in Section 4.4.1.

Recombination
Since all genes are integer-valued, all non-reordering regular operators outlined in Chapter 3
can be used. Since each gene represents a single path and since overlapping paths present
grooming opportunities, it can be expected that there are combinations of genes that contribute
significantly to an improvement in the objective value. This suggests that a bias toward the
more fit parent, which is scaled according to the difference in objective value, may be a good
choice to proliferate beneficial combinations. We have developed a simple approach for such a
recombination operator, which will be elaborated upon in Section 4.4.2.

4.3.2.4 Population Initialization
Every possible chromosome of the RCPE encoding is guaranteed to result in a valid network
configuration without any further enhancement. However, the argument from above, that good
solution candidates will most likely combine a larger number of short path indices with a smaller
number of longer path indices, is also noteworthy in the initialization phase. To provide initial
chromosomes with this property, we have developed a procedure called Randomized Dual-
Range Initialization (RDRI). For each locus it determines, if the gene value should be limited to
a uniform selection from either a low interval or a high interval of values. If the gene is selected
to be neither, it is set to its shortest path. To this end, it has four parameters cL, cH, pL and pH
that define the gene value limits and probabilities as follows. The low interval is [1,cL] and the
high interval is ]cL,min(cH,cmax)], where cmax represents the largest possible gene value for
the current locus. The probabilities are given by pL and pH and the remaining loci, are set to
the shortest path with a probability of 1− pL− pH. A more detailed description of the entire
procedure is given in Algorithm 10.

An alternate initialization approach with the goal of maximizing grooming potential, is to use
an adapted version of APTI or ASTI approaches from Section 4.2.2.4 to create basic topologies
and then select the fitting path indices, which result in these spanning trees. While individuals
generated in this way may not be particularly useful on their own, they can contribute building
blocks for efficient grooming to other individuals.
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Algorithm 10 Path Enumeration Encoding – Randomized Dual-Range Initialization
Require: locusToRangeArr is an array containing the maximum gene value for each locus
Require: cL is the limit of the lower interval with cL > 1
Require: cH is the limit of the higher interval with cH > cL
Require: pL is the probability for the lower interval
Require: pH is the probability for the higher interval with pL + pH ≤ 1

function C R E AT E R D R I C H R O M O S O M E(locusToRangeArr,cL,cH,pL,pH)
let nloci←max(I) with I = {i|〈i, j〉 ∈ locusToRangeArr} . Array Length
let geneArr← 〈i,0〉 with i ∈ 1, · · · ,nloci
let r← 0
for igene = 1 to igene = nloci do

r← R N D(0,1)
if r ≤ pH then

if cL < locusToRangeArr[igene] then
geneArr[igene]← R N D I(min(cH +1, locusToRangeArr[igene])− cL)+ cL

else
geneArr[igene]← R N D I(locusToRangeArr[igene])

end if
else if r− pH ≤ pL then

if pL > 1 then
geneArr[igene]← R N D I(1,min(cL, locusToRangeArr[igene]))+1

else
geneArr[igene]← 1 . Assuming that 1 represents the shortest path

end if
else

geneArr[igene]← 1 . Assuming that 1 represents the shortest path
end if
if geneArr[igene]≥ locusToRangeArr[igene] then

geneArr[igene]← locusToRangeArr[igene]−1
end if

end for
return geneArr

end function

Finally, a typically good, but not optimal candidate can very easily be generated by choosing
all indices corresponding to the shortest paths. Since the shortest paths are always included when
using this encoding, the results of the overall genetic approach can never be worse than a regular
shortest path routing, if elitism is used to ensure that the best solution is kept in the population.

4.3.3 Demand-Diverse Compact Path Enumeration Encoding – DCPE
DCPE is very similar to RCPE, but rather than enumerating multiple paths for each node pair, it
enumerates paths for each demand separately. This allows for a more fine-grained routing, since
using a longer path for best-effort traffic does not have any potentially negative impact on the
QoS-traffic demands. Furthermore, it is also possible for demands of different QoS classes to
be routed on separate paths. This also enables grooming different QoS classes in different ways,
e. g., in situations where a shortest path would use a very unreliable link, such that latency-, but



100 Chapter 4. Genetic Algorithm Approach

1
2
3

0

0

1
00 0 0000

21

43

(a) Alleles and phenotypes for genes 5 and 6

221 1 1 1 1 1 0

21

43

(b) Chromosome for 9 bidirectional demands

Figure 4.7: Examples for the DCPE encoding

not availability-critical demands can use this route, while the others use a longer path on more
reliable links.

The path selection for this encoding uses almost the same path reduction approach as RCPE
by scaling the number of enumerated paths according to Equation (4.3), but it does not need any
of the QoS fallback routing steps. Rather, for each QoS-enabled demand the paths are checked
for compliance in precomputing and can even be removed from the enumeration in order to
further reduce the search space to meaningful solutions. Again, determining the paths is part of
the precomputation and done once for every node pair, between which traffic demands exist.

4.3.3.1 Chromosome Structure

For this encoding, the chromosome length scales with the number of traffic demands. Depending
on the number of QoS classes and source–destination pairs, this chromosome may be longer than
that of the previous approach by a factor of the number of QoS classes, but if the traffic demand
matrix is sparse, it may also be shorter. The example in Figure 4.7a, again a symmetric routing
scenario, has three additional demands between node “1” and the other nodes that require lowest
latencies and are therefore represented as slightly shaded. The fifth gene is the best effort class
towards node “2” where paths of all lengths are admissible, but the sixth gene, representing the
lowest latency class between the same node pair, only allows for the shortest path showcasing
the option to remove non-compliant paths to reduce complexity. Figure 4.7b shows a solution
candidate where a spanning tree connects node “1” to all others since the low-latency demands
require all of these shortest paths offering a grooming possibility to the other best-effort demands.

For transport networks, where full demand matrices are common, the resulting search space
complexity will typically be much higher than for RCPE. Given a traffic demand as a tuple
d = 〈s, t,r,q〉 of its source node s ∈ V , destination node t ∈ V , data rate r ∈ R+ and QoS
class q ∈ Q and the set of all demands D, assuming that all paths are QoS-compliant, the
resulting combinatorial complexity can be described by Equation (4.5). This appears quite
similar to Equation (4.4), but replaces the multiplication over source and destination nodes by
multiplication over the number of demands, which in the limit becomes |V |2 · |Q| due to the
addition of the QoS classes1. Note, that |Q| does not scale depending on the graph structure, but
is an immediate result of SLA design. Because NSPs tend to keep their portfolios streamlined

1While we only consider exactly one r per tuple of node pair and QoS class due to the aggregation of traffic at
the core-level, it is absolutely possible to consider several data rates as well. For typical core networks this can be
expected to be a relatively small set following the same arguments as for Q.
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as outlined in Section 2.1.1.1, it can be expected to contain only a relatively small and constant
number of elements.

∏
〈s,t,r,q〉∈D

( fk(g,s, t,a,b,km)+1)≤ (km +1)|Q|·|V |·(|V |−1) ∈ O
(
|V |!|V |

2
)

(4.5)

It is to be expected, that traffic demands with QoS restrictions will most likely be routed
on shorter paths, while best-effort traffic may exhibit much larger path index numbers. When
considering availability, however, the choice depends heavily on the underlying model. If the
decisive component is not edge length, but rather another figure, e. g., a short path may use much
less reliable aerial fiber, while a longer path may use buried fiber, this may lead to increased path
index numbers. Due to such effects, given a sufficiently large km and restrictive QoS parameters,
the range of gene values can vary drastically between subsequent genes in the chromosome.

4.3.3.2 Advantages and Disadvantages

Many of the advantages and disadvantages of this encoding are identical to those of the RCPE
encoding. The concerns regarding the choice of b and km, as well as the remarks on heritability
are largely identical. Decoding efficiency is expected to be better for DCPE since it does not
require any fallback routing. The main advantage of this encoding is that it can offer grooming
for any combinations of demands. However, if there is no meaningful grooming potential among
QoS-enabled demands, it cannot offer a significantly better solution quality than the previous
approach. In fact, for the case of a full traffic demand matrix without any QoS-enabled traffic
RCPE and DCPE become identical. If QoS demands are present, but the resulting problem is
inherently devoid of any grooming potential for these demands, then using DCPE will most
likely only result in severely degraded performance, since the search space is significantly larger
without containing any better solutions, compared to RCPE.

A second advantage, albeit one less relevant to transport networks, appears in case of re-
sources showing conflicting and considerable non-uniform impacts on different QoS metrics,
such as an aerial fiber of low availability, but also low delay. Since DCPE is able to explicitly
address such situations, it is able to provide better results than other approaches. While the
fallback-option of RCPE can mitigate the effects as well, it is restricted to the shortest compli-
ant path, which may lead to non-optimal solutions. Locality can be considered to be slightly
improved compared to RCPE, since a single change in a gene value will have an even smaller
effect on the overall routing, as the average amount of traffic being diverted becomes slightly
smaller in most cases.

The biggest drawback of DCPE, however, is its typically much larger search space. While
in fact both, DCPE and RCPE have the same asymptotic worst-case time complexity class, the
average search space will increase by an exponent of |Q|. Even though this value can be expected
to be smaller than 10, the increase is large enough, to drastically reduce tractability, such that
this approach does not scale easily to large networks.

4.3.3.3 Evolutionary Operators

Given DCPE’s similarity to RCPE, both approaches can use the same integer-compatible opera-
tors for the same reasons. Therefore, further explanations in this chapter will mostly focus on
aspects, where a difference between the two emerge.
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Mutation

While Gaussian and Creep mutation operators are applicable, the Longhorn mutation operator,
detailed in Section 4.4.1, is expected to yield especially good results for this encoding. This
operator was specifically designed to facilitate grooming, which is the primary driver behind the
present encoding. A fast and efficient exploration of alternative paths is all the more important
given the increased search space.

Beyond that, the mutation operators are required to support vastly different ranges of values.
Since km may be chosen to be very large, but the number of contained QoS-compliant paths
may be small, the mutation operators will have to support large gene value ranges as well as
small ranges within the same chromosome. While differing ranges may always exist for any
path enumeration encoding in non-complete graphs due to shortest paths of different lengths,
QoS requirements may drastically reduce the number of available paths.

There are several ways how to accommodate this property in a mutation operator. While
manual tuning of parameters for each gene is possible, it will typically not be feasible, as any
combination of QoS requirements and graph properties may result in entirely different ranges. It
is suggested to either automatically scale the parameters or to provide a meaningful wrap-around
function.

Recombination

Operators applicable to RCPE can just as well be used for DCPE. As the assignment of demands
to loci is fixed, any recombination that maintains this assignment will result in valid offspring,
such that the differences in range are not important to such recombination operators.

4.3.3.4 Population Initialization

All the initialization options outlined for RCPE can also be applied to DCPE. Regarding RDRI,
it should be noted that the differing gene value ranges can make the choice of parameters
more difficult. While this can motivate an extension, where the limits can be scaled, e. g., to
represent a proportional selection from the range of available values, we found that Algorithm 10
remains effective for the investigated range of problems. This is due to the fact that for loci of
drastically restricted ranges, only little room for different choices is possible, such that any
intended distribution between high and low ranges cannot be established in a meaningful way.

Another seemingly obvious choice for an initialization routine would be to exploit the
semantic context of genes in the DCPE encoding. Since demands between the same source and
destination nodes, can potentially share the same route, this can create grooming opportunities.
However, it cannot be generally stated, that explicitly treating such genes identically will present
an advantage. Furthermore, this is not always possible given different QoS requirements and
link properties.

Rather than explicitly identifying matching path values, we implicitly exploit this oppor-
tunity through the adapted ASTI and APTI initialization procedures. In this way, we can not
only provide grooming potential for demands between the same nodes, but also to demands of
different node pairs. A straightforward example for this are demands on short paths, where these
paths are also part of longer paths between other nodes.
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4.4 Genetic Operator Adaptations

While most encoding approaches have been designed with compatibility to standard operators in
mind, more specific and problem-oriented operators have the potential to accelerate the search.
To this end, we have developed two further operators, which can be expected to fit the explained
problem structures better than the standard operators, while still being sufficiently generic to
be applicable to other problems and GA variations as well. The first is a biased recombination
operator based on URM, while the second is a mutation operator which combines several step
sizes.

4.4.1 Longhorn Mutation – LHM

We have developed the so-called Longhorn operator to address a number of shortfalls of common
mutation approaches, which seek to efficiently combine refining and exploratory changes to a
chromosome. Such approaches can be especially useful for combinatorial problems of large
search spaces. This includes path enumeration encodings for problems, where grooming is
important to achieve the optimum, such that we expect the corresponding chromosome to feature
a combination of many small and few large path index values es explained in Section 4.3.2.3
and Section 4.3.3.3. Therefore, a mutation operator that can provide a combination of small
steps for fine-grain adjustment and large step sizes for exploratory mutations, may yield better
performance than settling for a single intermediate step size.

The balance between refinement and exploration can be controlled by deterministic or prob-
abilistic means. E. g., a deterministic approach might set a ratio, such that a fixed number of
small steps and a single large step are taken in alternation. A probabilistic one might define a
probability p for small steps, such that large steps are taken with probability 1− p and draw a
random number upon each decision. As already mentioned in Section 4.3.2.3, a straightforward
combination of two standard mutations with different step sizes is used in a number of works to
achieve the aforementioned properties. As such, versions of both, the Creep [54, p. 263][104]
and Gaussian [145] operators, have been developed that consist of two separate mutations with
different step sizes or standard deviations, respectively. We will refer to them as Small/Large
Creep Mutation (SLCM) and Small/Large Gaussian Mutation (SLGM) operators.

However, both of these approaches have their drawbacks. SLCM is computationally very
efficient but allows only for uniform choices within the small and large step sizes. Since SLGM
uses the Gaussian normal distribution, it can scale priorities through the standard deviations,
but it is incapable of combining a slightly larger probability for very large steps with a very
large probability of very small steps. Beyond that, SLGM is computationally more complex
than SLCM, since there is no closed-form description of the quantile function to the normal
distribution, such that a generating approach needs to resort to other means such as series
expansions of the Gauss error function or the Box–Muller transform [28].

We therefore envisage a mutation operator that combines the efficiency of SLCM with a
more flexible probability distribution-based approach similar to SLGM. Our approach uses a
small number of low-order polynomials to create a simple generating function from which a
distribution of values can be sampled. This distribution can be customized with few parameters
and provides high probabilities for small increments and low probabilities for large increments,
while within the large increments, the low and high ends receive slightly increased probabilities
as well.
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We define this generating function as

fLH(x, p,vl ,vh) =


−a · x3 +b · x2 + c · x+d if −1≤ x <−p
vl
p2 · x2 if − p≤ x≤ p

a · x3 +b · x2− c · x+d if p < x≤ 1

(4.6)

with
a =

vl− vh

α +β · γ
b = γ ·a
c = 3 ·a+2 ·b
d = vh−a−b− c

α = p3−3 · p+2

β = p2−2 · p+1

γ =
3
2
· p2−1

1− p
and

x ∈ [−1,1]
p ∈ (0,1)

vl ,vh ∈ R+

vh > vl

such that fLH is continuous in [-1,1], albeit not differentiable for x =±p. The value p controls
the balance between smaller increments, which are derived by the second-order polynomial,
and larger increments, which are determined by the third-order polynomials. The parameter vl
marks the upper limit for the small increment size, while vh bounds the large increments from
above. A single random variable x with a uniform distribution in [−1,1] can then be used to
create increments following the intended distribution.

In our testing phase we found that, while the choice of these parameters depends heavily
on the problem at hand, we still could narrow down the ranges for parameter combinations
such that reasonably good results can be expected. We suggest selecting p from [0.6,1) to allow
for a meaningful tradeoff. The parameter vl should be chosen at least as large as the smallest
meaningful value that leads to a change in the chromosome, but not much larger than 10 times
this value. Finally, we chose vh, such that it is at least 10 times larger than vl and about 5 % to
25 % of the total value range for the respective gene.

Figure 4.8 shows a visualization of this function, which we call Longhorn function since the
shape of its graph resembles the horn shape of Longhorn breeds of cattle. The right half-plane
of the graph corresponds to the quantile function of the intended probability distribution. In
this example the parameters are p = 0.8, vl = 5 and vh = 100. Intervals I2 and I3 result in small
increments for refining steps, whereas I1 and I4 result in large increments for exploratory step
sizes. In the latter intervals, the function is tapered towards x =±1 and x =±p, such that these
increments have higher chances, than those in the middle of the intervals. We consider this
property helpful, since larger values are good for exploration and lower values for refinement,
but intermediate values are neither the first, nor the latter.

The LHM operator around this function now simply generates x ∈ U(−1,1) and uses the
Longhorn function to determine the increment. The real-valued increment is then rounded to
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Figure 4.8: Visualization of the Longhorn function

obtain the actual step size, while ensuring that it is non-zero. The step size may have to be
wrapped if it exceeds the maximum value for the gene being mutated. To slightly improve
efficiency, all constants used in the Longhorn function can be precomputed.

4.4.2 Exponentially Biased Crossover – EBXO
An interesting aspect in accelerating the performance of genetic algorithms is the introduction of
bias. This can be especially helpful in large search spaces, where otherwise too much time might
be dedicated to exploring regions of generally lower solution quality. However, applying too
much bias quickly reduces genetic diversity and may overly restrict the exploration to smaller
areas of the search space, potentially missing optima in regions of vastly different individuals.
In Section 3.4.5.2 we have already touched on the subject of explicitly marking and maintaining
elite individuals, i. e., such of above-average fitness, in populations and in Section 3.4.5.5 we
have introduced the concept of biased recombination operators.

Elite individuals or sub-populations are an effective way of providing a relatively small bias
without significantly interfering with the GA’s other mechanisms. Biased recombination, on the
other hand, is a more aggressive approach, because it affects all recombinations and not just those,
where elite individuals are concerned. If the bias is too strong, many sub-par individuals will be
evicted rather quickly from the population threatening diversity. A very effective compromise
is presented by the BRKGA approach, where every mutation is between an elite and a non-elite
individual, which have equal chances of passing on their genes, combining diversity with known
good solutions.

The drawback is that the standard BRKGA cannot immediately combine two elite individ-
uals, which may not always be beneficial in complex combinatorial problems. E. g., in cases,
where it can take many attempts to create a non-elite individual, that can be recombined with
an elite individual of orthogonal traits, the performance may be decreased. This is especially
troublesome, when the problem at hand is so excessively complex, that the GA will most likely
encounter only local optima anyway, because the chances of finding the global optimum are
very slim.

We therefore suggest a version of the BUXO operator that is adaptive. While approaches
exist that scale the hyperparameter p over the runtime of the GA [189], it cannot be guaranteed,
that the runtime is matched well to the exploration of the search space due to the inherent
randomness of the GA approach. Our approach therefore compares the cost values of the two
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individuals and decides based on their relative difference, at which rate genes are passed on.
Similar approaches already exist, e. g., [248], but they often rely on more complex evaluations.

The suggested Exponentially Biased Crossover (EBXO) is of very low complexity and
therefore does not impede overall computational performance. It uses an exponential weighting
of the relative cost difference between the parent individuals according to Equation (4.7).

fEB(cA,cB,w, pl) = min
(

0.5+0.5 ·
(

1− cA

cB

)w

, pl

)
(4.7)

In this equation, cA is the cost value of the more fit parent and cB the cost of the other parent.
Among the hyperparameters, the weight w scales the bias and the probability limit pl places an
upper bound on the resulting value. This limit prevents the operator from simply cloning very
fit individuals in case of vastly different parent cost values. The exponential weighting means
that the genes of equally fit individuals have equal chances to be passed on, while more genes
are inherited from the more fit parent, the larger the cost difference is.

We also included this weighting approach in our VSXO and LBXO operators, such that
exponential bias can be introduced if an activation parameter is set. For LBXO, the number of
selected nodes is scaled based on the EBXO approach. For VSXO, the probability according to
Equation (4.7) is first used to determine, if both offspring should be using the same spanning
tree of the more fit parent or if the offspring retain the trees of both parents. Following this, the
EBXO approach is applied for all the remaining genes, which are not part of the spanning trees.

4.5 Integrated Solver
As outlined in Section 2.2, multi-layered networks combine topology design and routing at each
layer, such that the routing of the lower layer contributes to the topology of the upper layer. An
integrated solver for multi-layer problems therefore provides a holistic solution encompassing all
of these aspects. However, solving this as a single monolithic problem formulation is suggested
to be intractable for real-world problem instances, such that integrated solvers typically work
by separating sub-problems. In this section, we describe how the suggested algorithm adaptions
can be implemented as components of an integrated solving approach for multi-layer networks.

4.5.1 Sub-Problem Focus
In Section 3.6.3 various approaches have been introduced, which solve these problems by ad-
dressing the layer coupling in different ways. Rather than exposing the full complexity of all
decisions to an optimization algorithm, sub-problems have been separated and solved indepen-
dently for reasons of tractability, as explained in Section 3.2.2. To further improve tractability of
large-scale problems, integrated solvers typically only optimize a single sub-problem and then
use its results as inputs to other more simple algorithms to obtain solutions for the remaining
sub-problems. The resulting partial solutions are then assembled into a full solution.

While this is often the only way to address very complex and large problems, the drawback
is that the objective value of this full solution may not be optimal for the original multi-layer
problem. This is due to the fact that the sub-problems are typically not separable in such a
way that the combination of their individual optima leads to a global optimum of the entire
multi-layer problem as has been explained in Section 3.2.2. It is therefore imperative to select
a sub-problem for optimization, which has the largest influence on the overall objective value,
while still being tractable, such that the margin of deviation for the remaining heuristics is as
small as possible.
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Following the design space outlined in Section 4.1, we assume the infrastructure to be
fixed in terms of locations and feasible links, thus leaving four major sub-problems in the form
of TDR, VTD, RWA (or ICR with WA) and PTD. Furthermore, we are primarily concerned
with determining the minimal requirements in terms of line cards and TXPs. Solutions to PTD
problems have an immediate effect on physical link costs, but only an indirect effect on the
hardware requirements at the nodes, which is directly related to the amount of traffic that
terminates or passes through a node.

While RWA and ICR/WA are directly related to the number of TXPs and line cards, they
require the amount of point-to-point capacity for traffic as an input, which is typically the result
of a previous traffic routing. Consequently, the number of these devices is already defined by
the traffic routes and RWA or ICR/WA are mostly concerned with an efficient management of
optical resources in terms of optical spectrum and hardware in terms of amplifiers. Therefore,
among the aforementioned sub-problems, VTD and TDR have the most immediate effect on the
required amount of line cards and TXPs. Selecting one of the upper-layer sub-problems as the
center of an integrated approach is therefore expected to yield better results for this purpose,
than starting from a lower-layer optimization [77, 129].

TDR requires a virtual topology as input, which can be determined by VTD or assigned
statically. When using the full feasible topology, all states representable by any virtual topology
are part of the search space of the TDR problem. For this reason, using TDR offers the greatest
amount of flexibility and the highest potential for optimization, but also the largest combinatorial
complexity. In contrast to this, VTD has a much smaller search space, but requires an additional
step to solve the traffic routing. This can be accomplished very efficiently by classic shortest
path algorithms as explained in Section 3.5.1.1, but this may restrict the achievable solutions
and possibly exclude the actual optimum. The choice between focusing on TDR and VTD is
therefore based on a tradeoff between manageable tractability and attainable optimality.

4.5.2 Integration of Genetic Algorithm Adaptions
We have developed four different encoding schemes, VTB and VTCS primarily for VTD with
possible applications in other topology design problems and two encoding schemes, RCPE
and DCPE, geared towards TDR problems, along with several evolutionary operators with
varying degrees of problem-specific adaptions. Since an important asset in using GAs is that
they present a particularly malleable type of framework, an integrated approach should retain this
flexibility and allow for a toolkit-like implementation that enables to mix and match components
as required by the problem.

4.5.2.1 Encodings in a Multi-Layer Context
When considering the developed encodings in the context of solving multi-layer problems,
computational complexity and solution space coverage have to be re-evaluated in this context.

VTB and VTCS both determine the virtual topology for the multi-layer problem. An in-
tegrated approach based on the virtual topology restricts routing, such that not all possible
solutions to the multi-layer problem may be representable, especially when using classic al-
gorithms for traffic routing. Hence, the optimal solution space coverage VTB achieves for the
isolated VTD problem translates to a reduced solution space coverage for the full multi-layer
problem.

VTB and VTCS require additional path search algorithms for TDR, which significantly
impact the computational complexity of an integrated approach. This is especially troublesome
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Figure 4.9: State space size for suggested encodings assuming a full graph

for VTB, which on its own only requires inspecting O(|V |2) genes for activation, while the
subsequent traffic routing has a worst-case time complexity in O(|V |4), since the algorithms for
point-to-point paths are typically inO(|V |2) and need to be run for a potential maximum of |V |2
demands times the number of service classes.

Using TDR as the basis of an integrated approach, does incur less secondary costs by
other supporting algorithms, because the virtual topology is implicitly defined by the set of
all links used in all paths of all demands. This makes the assembly of a full multi-layer solution
computationally more efficient than the VTD-based approaches. The drawback is that a path
enumeration-based encoding cannot precompute all possible paths for reasonable problem sizes.
To keep combinatorial complexity in check, the number of paths has to be drastically reduced,
which detracts from the attainable optimum.

Figure 4.9 illustrates this issue by showing the state space size for different encodings over
the number of nodes in a fully connected graph. The state space of the DCPE encoding including
all paths for a graph with 10 nodes and 3 QoS classes has about the same size as VTB for a graph
of 110 nodes. While limiting km to small numbers increases tractability, it is still dramatically
lower than for the VTD-focused encodings. It is therefore to be expected that the advantage of
the extended search space coverage a path-enumeration encoding can provide, will eventually
be nullified by intractability.

Apart from computational complexity and solution space coverage, locality and heritability
can also be evaluated in a multi-layer context. As briefly mentioned in the previous sections on
the encodings, locality of VTD-based approaches will typically be much lower, than for routing
approaches, since a small change in the topology can have a very large effect on many traffic
flows and circuit routes. This is closely related to heritability, which in most cases is subject to
the same effects as locality. The only property remaining unaffected by the integration is the
amount of infeasible representations, since an infeasible solution to VTD or TDR will also be
infeasible for the surrounding multi-layer problem.

Table 4.1 provides a qualitative comparison, which summarizes the aforementioned consid-
erations under the assumption that the routing approaches can cover all possible paths. The
summary shows that there is not one approach which dominates all others in its prospective
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Table 4.1: Qualitative comparison of encodings for multi-layer network optimization

Aspect Coding
VTB VTCS RCPE DCPE

Combinatorial Complexity + ++ − −−
Time Complexity – Initialization + © −− −−
Time Complexity – Decoding − −− © +
Solution Space Coverage © − + ++
Infeasible Representations − ++ © ++
Locality © − + ++
Heritability © − + +

Legend
++ Best + Good © Intermediate − Bad −− Worst

efficacy regarding multi-layer network problems. For smaller graph sizes or densities, where
moderate numbers of enumerated paths lead to very good solutions, routing approaches seem
favorable. For large-scale graphs and very dense feasible topologies, VTB or VTCS may remain
tractable and yield good solutions. Therefore, a flexible, component-oriented implementation
offers the largest potential benefit.

4.5.2.2 Genetic Algorithm Components
In order to obtain the most amount of flexibility and be able to customize the integrated approach,
we have implemented the GA’s constituent parts as components. In this way, basic GAs can
be configured just as easily as more modern and intricate versions. In addition to our more
specific approaches introduced in this chapter, we have also implemented a variety of more
generic evolutionary operators and selection strategies. However, while selection is mostly
encoding-agnostic, not all of the other components are readily interchangeable, since some are
specific to certain encodings and parameter choices. Table 4.2 shows, which of the implemented
initialization schemes and genetic operators are applicable to the genetic encodings as presented
in this chapter. Combined Augmented Topology Initialization (CATI) refers to a combination of
the ASTI and APTI methods. Feasible topology and physical topology initialization means that a
single individual corresponding to either the feasible or the physical topology is included. These
approaches can be combined with the others and ensure that the end result cannot be worse than
what a regular shortest path algorithm would achieve. Note, that the physical topology may not
be exactly representable in some rare cases for VTCS and for RCPE and DCPE if the number
of paths is too limited.

The distribution initialization is only meaningful for integer-valued chromosomes. It creates
a chromosome structure where the sequence of genetic values follows a Gaussian distribution
with an expected value uniformly selected among the loci. The distribution is wrapped at the
end of the chromosome, and it’s always scaled such that the highest point corresponds to the
largest value a gene can take at the center locus. Therefore, the standard deviation should be
chosen small enough such that the integer-rounded values do not overlap.

For parent selection we have implemented the well-known RWS and SUS as well as uniform
and tournament selection as described in Section 3.4.5.2. For survivor selection, we have also
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Table 4.2: Implemented initializations and evolutionary operators

Component
Coding

VTB VTCS RCPE DCPE

In
iti

al
iz

at
io

n

Random X X X X
Distribution X X X X

APTI X X X X
ASTI X X O O
CATI X X O O
RDRI X X X X

Feasible Topology X X X X
Physical Topology X O O O

R
ec

om
bi

na
tio

n

UXO X X X X
CNCXO X X X X
BUXO X X X X
EBXO X X X X
NPXO X X X X
LBXO X X X X
VSXO X X X X

M
ut

at
io

n

RRM X X X X
URM X X X X
NPM X X X X
VSM X X X X
Creep X X X X
SLCM X X X X

Gaussian X X X X
SLGM X X X X
LHM X X X X

Legend
X Applicable O Parameter-dependent X Not applicable or not meaningful
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considered a number of common approaches. Apart from (µ ,λ ), round-robin and stochastic
tournaments as explained in Section 3.4.5.3, we also included a generation counter system.
This can either be used for generational model GAs or as a biasing factor in other selection
approaches.

Furthermore, we have also included different standard scaling approaches for the cost values
of individuals including proportional and exponential as well as rank-based classification. To
increase selection pressure, i. e., emphasize the advantage of good individuals, we can also
employ sigma truncation as well as a normalization to the lowest cost value of the current
population. We also use a basic elitism approach, where we ensure that the fittest individual of a
population always migrates to the following generation.

To maintain diversity, we can also employ a crowding approach [56] to population manage-
ment. Crowding attempts to use a chromosome structure-based similarity measure to monitor
which offspring replace which parents. Our approach divides the population into subgroups of
chromosomes featuring high similarity values. When the offspring all result in similar chro-
mosomes, crowding admits only the ones with an actual improvement within their subgroup
to compete with the remaining population for survival. The group assignment is dynamic and
repeated for each generation in order to avoid the situation that the majority of sub-groups are
forced to represent groups of excessively bad quality.

All of these individual components can be rearranged and customized in order to achieve
the best performance for a given problem. To meet this goal, the two integrated approaches
presented in the following sections, start from one of the developed encodings and can utilize
all compatible components in a highly flexible manner.

4.5.3 Virtual Topology-Based Configuration
The first of the integrated approaches is based on an optimization starting from the virtual
topology in a top-down fashion and is derived from a framework developed in prior works of
Feller [77, 78, 79] and the author of this monograph [12, 13, 72]. It first solves an uncapacitated
VTD problem and uses the resulting virtual links together with the traffic as input to an unca-
pacitated TDR, which results in an assignment of required capacity to virtual links. This in turn
is input to a partly uncapacitated ICR and WA, where the required capacity is broken down into
individual circuits, which are routed according to a shortest path metric. From the number and
location of circuits, the required number of TXPs can be extracted, which can then be used to
assign a sufficient number of upper-layer NEs.

The original framework from prior works mentioned above used Simulated Annealing to
solve VTD for reconfiguration problems with a single demand between each node pair, given
a physical network structure with unlimited wavelength conversion capability, i. e., wavelength
conversions can be provided by dedicated hardware at any node when necessary as explored in
Section 2.2.3.2. The extended framework, which has been developed as the basis for the inte-
grated approaches presented in this monograph, retains the Simulated Annealing implementation,
which makes it ideal for performance comparisons. While the focus of many developments lead-
ing to the new version was on the handling of multiple QoS-diverse demands per node pair, the
optical layer has also been subject to further extensions. The presented version includes addi-
tional heuristics for flexible TXPs [12], as well as a WA component, augmenting the original
resource assignment algorithm given in Feller’s work [77, ch. 4.4.1].

The entire Virtual Topology-Based Configuration process is illustrated in Figure 4.10, where
blue colors indicate GA-specific functions. While the coding is either VTB or VTCS, the indi-
vidual functions can be realized by the different components according to Section 4.5.2.2. Green
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colors indicate functions using heuristics, while orange-colored blocks represent algorithms
without any heuristic parts. The first step in the top left corner is to determine the optically
feasible topology based on the infrastructure and hardware parameters, such as fiber lengths,
available TXP capabilities and maximum transparent reach, given as part of the problem defini-
tion. The resulting feasible links are then used to initialize the chromosomes, e. g., by mapping
genes to links for VTB.

The following step is the population initialization, where chromosomes are created according
to one of the explained algorithms such as ASTI or APTI. Since the objective function typically
requires information of the entire solution, the chromosome is decoded and a full solution is
assembled from the results of the individual heuristics. First, a traffic routing is done by finding
a shortest path using Dijkstra’s algorithm for each demand individually. As the metric we use
the number of hops in the upper layer biased by the number of hops on the shortest circuit of
the lower layer with absolute distance as a tie-breaker. This metric emphasizes minimizing the
intermediate terminations, while the bias also allows to include physical-layer properties.

The resulting route is then checked against the demands’ QoS constraints. If it does not meet
the requirements, a second path search is triggered, which looks for the shortest compliant path.
This can be done based on Martins’ algorithm [158] or extensions of k-shortest path algorithms.
We use the latter approach, since we do not require the entire Pareto front, but only one shortest
path. It may seem counter-intuitive to start with Dijkstra’s algorithm, rather than to directly
compute the compliant path, but we found this approach to be more efficient. Algorithms that
consider additional measures often run slower than pure shortest path algorithms considering a
single metric. Since the shortest path in terms of distance is very often a compliant path when
considering latency and availability, which scale with distance, the drawback of running a second
algorithm for a few cases is often smaller than running a more complicated algorithm every time.

Once the traffic routing is completed, the amount of capacity on each virtual link is known
and ICR begins by sequentially routing circuits, starting from the shortest virtual link, until the
required capacity is met. Yen’s algorithm [286] is used to find a shortest path on the physical
topology, where the hop count is used as a metric with fiber distance as a tie breaker. After a
path has been found, the largest possible circuit capacity is selected, and WA is performed by a
simple first-fit assignment. If there are no free channels on a fiber, it is removed from the search
graph and the search is repeated. If the fibers in the path do not have overlapping free spectrum,
such that a single contiguous channel cannot be found, the path search is repeated with the next
shortest path. This is certainly not the most efficient implementation for this task, since cases of
resource starvation will drastically reduce performance, but such cases are not the primary focus
of this work and the framework is sufficiently flexible to use a different RWA implementation,
should it be required.

Once all optical circuits have been set up, the hardware assignment function determines the
required amount of TXPs and infers the required amount of line cards and other upper-layer
components. While this is a simple counting algorithm, the function block in the diagram is
considered as a heuristic, since a second component, originally developed by Feller for use in
reconfiguration methods [77] can also be used. When considering a multi-period or reconfigura-
tion problem, NEs like line cards, ports and TXPs may be partly occupied by a previously active
configuration and therefore pose the additional question, which of the available NEs should be
used. Feller’s heuristic approach tracks usage over time and preferably assigns NEs which show
high utilization values. However, since such investigations are largely outside the scope of this
work, we will not go into further details.
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Once an entire population has been created and its individuals evaluated, the evolutionary
cycle starts and is repeated, until the termination condition is fulfilled. We use three such condi-
tions that can also be combined to terminate when any of the three is met. There is a limit on the
number of solution construction processes, a simple time duration limit for the overall algorithm
and a target cost limit for the best solution. Following the genetic operators through selection,
recombination and mutation, the process arrives at the Squash/Repair block. When VTB is used,
this block can either perform an advance check or repair an unconnected chromosome using
Algorithm 3. If the repair-function is inactive and the chromosome is found to be unconnected,
it is squashed, i. e., no solution construction is performed and the chromosome is immediately
discarded.

A resulting individual is then subjected to the population management algorithms. The
crowding algorithm determines the respective population sub-group based on chromosomal
similarity and compares the evaluation’s result to the values within this sub-group as explained
in Section 4.5.2.2. If a new chromosome underperforms, it can be excluded from the offspring
and the evolutionary cycle has to be repeated. If a sufficient number of offspring has been
computed, survivor selection determines the population of the next generation including the elite
individual. The result is then reclassified by the crowding algorithm, before either continuing the
evolutionary process or meeting a termination condition and returning the best solution found.

In terms of performance, the repeated execution of the solution construction process is the
most time-consuming part of the entire approach, due to the necessity of repeatedly determining
shortest paths for demands and for circuits. This is especially noteworthy, since the initialization
phase is typically finished relatively quickly, when considering that the evolutionary cycle is run
thousands of times. In order to accelerate some of these processes, the solution construction is
supported by path caches and preloaded data structures for the constant parts of the network,
but the computational effort is still large. Memory on the other hand is less of an issue, since
the individuals are relatively compact, even for large networks. This allows for very large
populations.

As explained in the context of VTD and TDR, this integrated approach is expected to be
much more scalable than a routing-based one, but the attainable solution quality may be lower.
However, a second drawback with respect to high levels of traffic has to be expected even in
smaller networks. When traffic volumes increase, more and more circuits have to be employed
to match all demands. Whenever nodes can be bypassed by well-utilized circuits, the conditions
are favorable for an improvement in resource efficiency by optimizing VTD. However, when
traffic demands between node pairs grow far beyond the circuit capacity, eventually all realizable
virtual links are part of the optimal solution. At this point a pure connectivity-based optimization
cannot find the optimal network configuration anymore. However, at the same time, the potential
benefits in terms of resource efficiency improvements are subject to diminishing returns since
the majority of circuits already runs at full utilization.

Not only do the extent and density of the fiber infrastructure, as well as the technological pa-
rameters defining the feasible topology exert great influence on the algorithm, but also the traffic
demands themselves. This highlights that, while the Virtual Topology-Based Configuration can
be applied to many multi-layer problems, the exact scenario has a large influence on both, the
efficacy and efficiency of the approach.



4.5 Integrated Solver 115

4.5.4 Compliant Routing-Based Configuration
The second integrated approach uses the same basic layout as the previous one, but rather than
focus on the topology, it uses one of the path encodings to create an optimized traffic routing
from which the full solution is derived. The uncapacitated TDR solved by the genetic algorithm
uses the full feasible topology to determine the routes, thereby entirely omitting VTD. Just like
with the previous approach, this is followed by a partly uncapacitated ICR and WA to determine
the circuits and their capacity and from this, the required number of TXPs and other NEs is
determined.

Figure 4.11 shows an illustration of the entire process of the Compliant Routing-Based
Configuration. The function blocks’ colors have the same meaning as in Figure 4.10, i. e., GA-
specific blocks are blue, other heuristics green and other ancillary functions orange. Since this
approach is based on an encoded routing, either RCPE or DCPE can be used for the GA, along
with the compatible evolutionary components as explained in Section 4.5.2.2. The approach
begins in the top left corner of the illustration by establishing the optically feasible topology.
Based on this, it determines shortest paths for each pair of nodes using Yen’s algorithm and
uses these to initialize the chromosomes. The metric is identical to the last approach, i. e., using
upper-layer hops, biased by lower-layer hops with distance as a tie-breaker. Depending on the
choice for km and the density of the underlying feasible graph, this can be a very computation-
and memory-intensive endeavor. The resulting paths are stored in a lookup table accessible
by the chromosome decoding functions. For DCPE a local index is created for genes which
correspond to QoS-enabled paths, which automatically excludes all non-compliant paths.

After these preparation steps, the population initialization creates the population based on
the selected initialization algorithms. Constructing a full solution is slightly different than for
the Virtual Topology-Based Configuration. Since VTD is not needed and path computation is
mostly relegated to the early preparation steps, determining the entire traffic routing is now
done by retrieving paths from the lookup table. The only exception being that for RCPE the
selection via any gene value may initially point to a non-compliant path and therefore may
trigger an additional search for QoS-compliant paths. However, due to the distance-correlation
of availability and delay figures, this can be expected to be only a sporadic occurrence as outlined
in Section 4.3.2. Every used path flags the virtual links it uses as active and stores the required
capacity. Following the traffic routing, the required virtual link capacities are then extracted by
iterating over the used virtual links, which now implicitly define the required virtual topology.

After this, ICR sequentially routes circuits considering the required capacity and connectiv-
ity using Yen’s algorithm, followed by a first-fit WA and hardware assignment, exactly identical
to the virtual topology-based approach. The remaining compliant routing approach also follows
the same steps as the virtual topology approach, going through parent selection, recombina-
tion, and mutation, before the potential offspring are subjected to the population management
algorithms and survivor selection is applied, after which the results are checked regarding the
same termination conditions. In terms of differences, the solution construction follows different
steps, as explained above, and the choice of evolutionary operators is different, as summarized
in Section 4.5.2.2. Furthermore, there is no squash or repair option in this approach, since all
chromosomes exclusively encode compliant solutions.

For this approach, there can be two performance bottlenecks. The path enumeration lookup
table and the population of full solutions. Regarding memory requirements, the path enumeration
can rival the population. A larger number of possible paths immediately results in an increased
state space and consequently a more diverse and therefore potentially larger population may
have to be used. This implies a certain relationship between km and the population size, such that
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severely limiting one parameter to allow for a larger value of the other may not yield the desired
results, such that the tradeoff needs to be carefully adjusted. In terms of computational effort,
the full solution construction is more lightweight than for the virtual topology-based approach,
but it still requires a large number of path searches for ICR. The initial path enumeration also
requires a large number of path searches, which may contribute in large parts to the overall
runtime. Depending on the exact scenario, however, a reusable precomputation of the paths
may be able to drastically reduce the impact. E. g., when considering a continuous network
reconfiguration reacting to changes in the traffic demands, the path enumeration needs to be
computed only once for all such problems, as long as the physical parameters do not change.
However, when a routing is to be optimized for a continuously changing feasible topology, then
the route enumeration has to be recomputed every time. This is also the primary reason, why
using VTB or VTCS in conjunction with a subsequent optimization by RCPE or DCPE is not a
promising approach.

When considering the scalability of the approach, the arguments regarding RCPE and DCPE
made in Section 4.3.2 and Section 4.3.3 respectively, also hold true: Given sufficiently large
values of km, the solution quality can be expected to be higher, but the required runtime to
sufficiently explore the state space will increase drastically and approach intractability rather
quickly. Sadly, there is no universal rule of thumb, regarding the choice of km, such that it will
have to be empirically determined. This is especially difficult in scenarios incorporating flexrate
devices of large reach, since many shortest paths are likely to use long-reach, but low-rate modes,
such that the enumeration may miss significant grooming potential.

Just with the virtual topology-based approach, the scenario parameters have a very signif-
icant impact on the achievable solution quality. The feasible graph density, as defined by the
physical topology and the technological parameters, is even more important for the routing-
based approach, as it does not only affect solution quality, but tractability as well. It is therefore
especially important for the Compliant Routing approach, to exploit the inherent parallelism of
the GA approach by a suitable implementation.

4.5.5 Parallelization Approach
Since GAs are inherently parallel processes and scaling out computing hardware is currently
much easier than scaling up, a parallel implementation of GA-based approaches promises im-
proved scalability towards larger problems. In order to provide the most acceleration, compo-
nents executed in parallel should not only handle the most computing-intensive tasks but should
also be largely decoupled to avoid synchronization delays. The algorithms within the evolu-
tionary processes as shown in the right-hand side boxes within Figure 4.10 and Figure 4.11
consume the largest share of the overall computation time, making them suitable for paralleliza-
tion. Between the selection of parents and the admission into the population, all function blocks
do not require to exchange any information between each other, such that there is no need to
synchronize any recombination, mutation or solution constructing functions.

In contrast to this, the survivor selection function necessarily requires a global view of
the current population and offspring, in order to run comparisons between all individuals and
establish the next generation of the population. The population management functions, which are
run together with the survivor selection, also include the classification analysis, which is needed
for the crowding-based admission control mentioned in Section 4.5.3. The actual admission
decision for population management, however, can be separated from the survivor selection and
population evaluation. It can be run in parallel following the evaluation, since it requires only
read access to the population, which does not change before survivor selection.
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Finally, in case of the Compliant Routing Configuration, there is the computationally in-
tensive path computation in the early initialization phase. This is completely separated from
all remaining function blocks, as it cannot be run without the input of the previous block and
its entire output is a prerequisite for the coding initialization. Since the interface to the other
processes is very lean, as it only requires read access to the search graph representing the feasible
topology and the output of each path search is not dependent on any other, it also presents itself
as a candidate for parallelization.

Due to this partitioning of data flows, we used a master–slave concept for the parallelization,
where a master process runs all central functions and instructs other worker processes regarding
their tasks. The blocks termed “evolution process” in Figure 4.10 and Figure 4.11, followed by
the admission control checks, are handled as an individual task. The main process checks the
termination conditions and if they are not yet fulfilled, it organizes the evolution of the next
generation. It first determines, how many such tasks have to be run in total to meet the given
number of offspring and then it evenly divides these among a preset number of worker processes.

Each of these workers maintains their exclusive copy of the graph and evaluation data struc-
tures. These data structures can therefore be used over the entire runtime of the Configuration
algorithm, such that there is no additional overhead due to frequent allocation and deallocation
of memory after every generation. The main process starts the workers and remains suspended,
until each of the workers signals their termination and hands over the new individuals, which
can then be organized in the survivor selection function by the main process.

Furthermore, the main process also runs the classification for the crowding and the initial
path computation for the Compliant Routing Configuration in parallel. For these tasks it uses
lightweight temporary worker processes, since — in contrast to the worker processes for the
evolution — these do not require maintaining complex data structures and can be discarded after
a single use, to better manage resources.
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Chapter Summary
The focus of this chapter are the genetic algorithm adaptions with their prerequisites, design
considerations and integration into solution methods. We have presented, how the hardware
abstractions developed in Chapter 2 determine our design space and following from this, we
have detailed, what constitutes a solution to the established multi-layer problems explained in
Chapter 3. We have further laid out a number of aspects to consider in the design of genetic
algorithm methods, including computational efficiency, coding complexity, genetic locality, and
heredity.

We have presented four different genetic encodings that we have developed for multi-layer
optimization, two for Virtual Topology Design problems and two for Traffic Demand Rout-
ing problems. The first encoding, which we denote VTB, is a simple binary link-encoding,
augmented by specialized initialization algorithms, advance checks and repair functions. The
second is a topology-oriented encoding, called VTCS, which combines the resource-efficiency
of special spanning trees, constituted by integer-encoded edges of high centrality, with addi-
tional augmentation links encoded as binary values, which provide shortcuts indispensable for
QoS-enabled demands.

For traffic routing, the RCPE and DCPE encodings have been suggested. While both are
based on path enumeration principles, the former tries to enumerate paths between all nodes
using an integer-valued index, splitting off and rerouting QoS-enabled demands from non-
compliant routes. The latter encoding considers each demand individually and enumerates only
compliant paths, such that the resulting solution is always compliant as a whole. We combine
these encodings with different initialization schemes, as well as our Longhorn Mutation and
exponentially biased crossover operators, which have specifically been crafted to increase the
rate of convergence for these encodings.

For each approach, we have discussed how and why they can meet the design criteria estab-
lished in the beginning of the chapter. Following these individual analyses, we comparatively
highlight the implications of integrating these encodings in a multi-layer network context and
present an overview on the implemented genetic algorithm components, also including many
well-established approaches for reference. It has been explained, how these components have
been integrated into a larger, parallelized framework together with other heuristics in order to
efficiently solve complex multi-layer configuration problems, highlighting advantages and draw-
backs of each approach, which we will evaluate regarding their performance in the next chapter.
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5 Evaluation

The focus of this chapter is on the performance evaluation of the two integrated multi-layer
network configuration approaches, introduced in the last chapter. One of these is based on the
virtual topology, one based on routing and each of these can use two different encodings and
several GA components in a flexible framework. While the analysis of the last chapter was based
on general properties of individual components, the evaluation in this chapter will use several
exemplary scenarios to gauge different aspects of performance.

5.1 Methodology

Chapter 4 has already provided a theoretical exploration of the methods’ properties, especially
regarding scalability of the state space. A further analytical evaluation in the context of specific
applications, however, is difficult due to the problem dependency and the Monte Carlo-nature
of GA-methods. We will therefore experimentally evaluate the performance of the suggested
approaches in a number of indicative and representative scenarios, focusing on solution quality
and runtime.

Given the flexibility of the framework and the large number of hyperparameters associ-
ated with the various components, it is beyond the scope of this monograph to investigate the
entire parameter space. Furthermore, due to the considerable influence of the exact problem
scenario, it is also difficult to provide a singular set of components and parameters that can be
expected to perform well in all scenarios. We have therefore designed a number of scenarios,
each highlighting different effects.

5.1.1 Scenario Design
To provide the most general perspective, we will investigate our approaches in several steps.
Initially, we will validate core functionality and design parameters using a number of artificial
scenarios with small graphs and reduced scenario complexity. These problems are designed to be
small and simple enough that not only can their optimal solution be determined by an exhaustive
solution enumeration, but also that they are still readily comprehensible. This is intended to
evaluate, whether the suggested methods are in fact able to achieve fundamental goals such as
fulfilling QoS constraints and exploiting grooming potential.

The second evaluation is based on a known, albeit less complex reference problem, for
which a lower bound to solution cost is known. For this evaluation, we do not focus on the
performance-enhancing effects of different parameters, but rather we employ a very long runtime
in order to see, what the lowest attainable cost values are for a given encoding in a basic
setting. We compare the results to those obtained from a shortest path routing and a comparable
Simulated Annealing approach, known to be effective for multi-layer network optimization. The
comparison therefore indicates, if the suggested approaches provide an improvement over much

121



122 Chapter 5. Evaluation

simpler legacy approaches and if they can compare to an established optimization approach,
thereby demonstrating their viability for solving general networking problems.

The third evaluation is concerned with the performance of the entire framework in a full
multi-layer configuration setting. For this we use a complex network scenario including all rele-
vant features and parameters with a relatively short runtime limit on the order of minutes, which
is closer to operational time frames as explained in Section 2.2.1.1. In this scenario we compare
the influence of using different components. We analyze the effects on both, performance and
attainable cost values, while providing the results from Simulated Annealing and the legacy
approach as a reference. This investigation demonstrates two things. First, it shows that the
developed approaches are in fact capable of optimizing multi-layer problems of the intended
level of integration including QoS-enabled demands and flexrate TXPs. Second, it highlights,
which components of the framework provide the largest contribution to performance, and which
turn out to be ineffective.

The final evaluation is focused on demonstrating scalability. It is based on a large-scale
scenario, which is inspired by a real transport network of relatively high density and large
geographical coverage. Again, we will provide results obtained from the Simulated Annealing
and legacy approaches as reference in order to determine the applicability to such real-world
problems.

5.1.2 Simulation Environment
In order to experimentally evaluate the GA-based framework we have implemented it in Java.
This implementation is derived from a preexisting network optimization and simulation tool,
originally developed by Feller throughout the STRONGEST [58] and SASER [199] projects
and extended by the author of this monograph and others [12, 72, 73]. The original tool provides
a network and hardware abstraction along with a traffic demand simulation. Both, the original
tool and our version, rely on two further libraries, the IKR SimLib and JGraphT. The IKR
SimLib [130, 253] is a library for event-driven network simulation and performance analysis, of
which we use version 4.0.0. JGraphT [162, 172] is a library providing graph abstractions and
algorithms, which we use as version 1.4.0 with a few custom extensions.

For random number generation we use a customized version of the Mersenne Twister [160],
which allows creating independent instances per thread based on an initial seed value from which
the seeds for the independent instances are then derived. We use Java 1.8 with parallel garbage
collection and manually tune heap sizes to provide sufficient memory for the entire simulation
in order to avoid unnecessary garbage collection or heap resizing events, which would otherwise
introduce stochastic delays.

There are several other sources of stochastic effects that may influence the evaluation. A
computer system’s load situation outside of the simulation and evaluation environment may also
impact measurements, since the simulation may be interrupted by high priority tasks, introducing
delays. To somewhat mitigate this effect, we run simulations involving time measurements on
computers that run no other background tasks than strictly required for the operating system and
the evaluation framework. All time-sensitive simulations have been performed using systems
with dual-socket Xeon E5-2640 v4 processors with 10 cores and a maximum frequency of
3.4 GHz.

Apart from these environmental effects, there may also exist a dependency on the exact seed
values used for the random number generators. In order to account for the mentioned and other
stochastic effects, we will run 10 independent repetitions with different seeds of each scenario
and present the resulting deviations.
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5.1.3 Reference Methods
We use two basic reference methods to compare our approaches against. The first is based on
a simple shortest path routing, representing an upper bound to the solution quality. The second
is based on Simulated Annealing, which is a comparable metaheuristic. Ideally, we would also
provide an optimal solution, or at least a lower bound, but for complex and large-scale scenarios,
we do not have access to reference problems or exact methods that are sufficiently scalable.

5.1.3.1 Shortest QoS-Compliant Path Routing
To create the shortest path routing reference, we took our framework for the virtual topology-
based encodings and removed all GA-functions, except for the initialization. Therefore, it uses
the same routing metric and support functions as our GA-based approaches, which avoids
unwanted bias, which could be caused by different ICR or WA implementations. We use the
initialization function to create two virtual topologies for the routing. The first is the regular
physical network topology without any bypass links. This is the baseline that we consider to be
obtainable by all legacy approaches. The second is the full optically feasible topology.

This is illustrated in Figure 5.1 using a small example network of three nodes. The left side
shows an abstract view of the topologies while the right side shows a hardware realization for
these topologies regarding TXPs. The thin lines in Figure 5.1a show available fibers without
active virtual links and consequently Figure 5.1b shows only “empty” fibers without any TXPs
installed and therefore no virtual links at all. The physical version shown in Figure 5.1c, where
thick lines indicate virtual links, and Figure 5.1d uses one virtual link on each fiber with the
minimum number of TXPs to achieve this. For the full feasible topology, as seen in Figure 5.1e,
we assume that node 1 and 3 are within transparent reach, such that there are virtual links
between all nodes at the expense of a higher number of TXPs. The thick line between node 1
and node 3 is bent towards node 2 to indicate the actual wavelength routing through the fibers
as shown in Figure 5.1f.

When flexrate TXP of very large reaches are used, the feasible topology will most likely
result in low quality solutions, since using every possible bypass link requires a large number of
TXPs and corresponding upper-layer NEs. The physical topology-based routing is therefore the
baseline, any optimization has to improve upon in order to be viable. The virtual topology-based
routing gives an exaggerated upper bound, that can be considered the most costly of feasible
solutions and helps to gauge the extent of influence flexrate devices have on the solution.

5.1.3.2 Simulated Annealing Reference Methods
Our main reference method is a Simulated Annealing-based approach, which we have already
found to be effective in optimizing multi-layer network configurations including flexrate de-
vices [12]. This approach has been extended from Feller’s original reconfiguration solution
method, that he had determined to be superior to other metaheuristic approaches for multi-layer
network problems [77, ch. 4.4.3]. We have integrated it in our virtual topology-based framework,
such that it uses exactly the same supporting algorithms and cost functions as our GA, enabling
a direct comparison of the optimization method adaptions.

We use two different versions of the Simulated Annealing approach. SVT perturbates the
virtual topology by adding or removing links and then performs the entire traffic routing. This is
directly comparable to the virtual topology encoding approaches we have developed for our GA.
The second version, called SVTR, uses an adapted version of Feller’s perturbation approach [77,
pp. 100–101], which supports QoS traffic and flexrate devices. The advantage of SVTR is that
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Figure 5.1: Fiber topology example and corresponding virtual topologies used as reference

it maintains the previous network configuration and only performs essentially required changes
as follows. If it activates a virtual link, it checks for all demands if shorter routes have become
available and only replaces the old one, if it is shorter than the previous one. If it deactivates a
link, it reroutes only the traffic demands, which had previously used this specific link. Therefore,
it is able to passively optimize parts of the routing for paths of equal lengths and since it alters
only part of the data structures, it requires less traffic routing operations.

Similar to the shortest path routing, we also provide the entire feasible topology, the physical
topology, or a random topology as initialization for Simulated Annealing in order to provide a
level ground for the evaluation. We know from Feller’s and our own studies that the approach is
effective for multi-layer networks and Feller has demonstrated that it can be expected to scale
better for large and complex problems than ILP-based approaches. Therefore, we can use it as a
reference for both, scalability and solution quality obtainable by metaheuristics.

5.2 Core Function Validation

In this section we will investigate a number of test cases that exemplify basic principles and core
functionalities that contribute to improving the overall solution quality towards the optimum
for a generic type of multi-layer network problem. This will highlight, which of the suggested
approaches can make use of such principles as part of their optimization process. This is by no
means exhaustive and does not guarantee that the underlying principles will be utilized to their
full extent in arbitrary scenarios, nor is it guaranteed that a combination of these principles will
always lead to an optimum for every type of problem. However, it is sufficient for a basic valida-
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Figure 5.2: Topology 5N8L

tion, which highlights specific limitations of the presented approaches, that give an indication
on the scope of problems that cannot be solved to optimality and the reasons for this.

5.2.1 Scenario Parameters
5.2.1.1 Network Topology
To increase the visibility and aid a ready understanding of the intended and measured effects, we
demonstrate them using a small model network topology we will refer to as 5N8L as it consists
of 5 nodes and 8 bidirectional links as shown in Figure 5.2. This generic representation may be
regarded as a PTD problem with potential links or a VTD problem with existing physical links.

Table 5.1: Parameters of the basic 5N8L topology

Topology Nodes Links Density Degree Closeness Betweenness
Max. Avg. Max. Avg. Max. Avg.

Basic
5

8 0.8 4 3.2 1 0.84 4 2.4
Full 10 1 4 4 1 1 0 0

Since this topology is artificial, there are no actual link lengths associated with the edges of the
graph. 5N8L is already a relatively dense topology compared to the corresponding full topology
for five nodes, such that there is only a small difference in the resulting complexity. The basic
parameters of this topology and the corresponding full topology of all possible links are given
in Table 5.1.

5.2.1.2 Physical Parameters
Traversing links and nodes adds a fixed amount of delay and links can have a real-valued
availability figure between 0 and 1. While the topology itself does not have any lengths, we
arbitrarily1 assign a value of 10 time units and an availability of 0.5 to the horizontal and vertical
links and, following the proportions of a 2D-plane, a value of 7 time units and an availability
of 0.8 to the diagonal links. A data-carrying connection between two points requires a terminal
device at each of those nodes. To simplify the description, we will use the terminology of VTD,
such that a connection represents an optical circuit and a terminal device is a single-port line
card with integrated TXP. For these tests we only consider circuits of a fixed, singular circuit

1Please note, that in this artificial example the numbers are chosen for reasons of clarity and readability. Real
fibers can be expected to have much higher availability figures.
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capacity and disregard the wavelength continuity constraint. Depending on the test case, the
transparent reach is either only sufficient for all physical links or additionally allows for the
bypass links N1 to N4 and N2 to N3.

5.2.1.3 Traffic Demands
The traffic in each of the following test cases is purely artificial and designed to result in specific
optimal solutions, which serve to demonstrate specific effects. For this part of the evaluation,
we consider all traffic demands to be unidirectional. This makes for a clearer scenario and does
not reduce the generality, since any bidirectional demand can be considered to consist of two
unidirectional demands. We denote each individual traffic demand as ds,d with source vertex s
and destination vertex d. Every demand requires a certain capacity, which we give relative to
the circuit capacity, i. e., a demand with 0.5 capacity units uses 50 % of the capacity of a single
circuit. Splitting of a demand is not permitted. Demands may or may not have QoS-constraints,
which will be indicated by a superscript, where the prefix “L” indicates a latency and the prefix
“A” an availability constraint. E. g., the demand dL8

1,3 originates at node N1, is destined for node
N3 and requires a delay of at most 8 time units.

5.2.1.4 Optimization Goal
The optimization problems to be solved have an objective function that minimizes the number
of required line cards and heavily penalizes any unrouted demands. Depending on the exact test
case, the objective function also has a secondary objective. For cases where no QoS-constraints
exist, FmLat minimizes the average latency of all demands, whereas for cases including explicit
QoS figures, the secondary goal of FQoS is simply to fulfill all such constraints. Beyond these
points, no other constraints exist, such that the problem can be considered to be of the uncapaci-
tated1 category. The objective functions are defined as follows.

FmLat(s) = ∑
v∈V

(nLC,v ·α)+nUD ·β +
∑d∈D flat(d)
|D|

· τ (5.1)

and
FQoS(s) = ∑

v∈V
(nLC,v ·α)+nUD ·β +nAV ·φ +nLV ·ψ (5.2)

with
β > |V | ·mLC ·α

α >

(
∑
e∈E

δ f · flen(e)+ ∑
v∈V

δh

)
· τ

α > |D| ·φ
φ > |D| ·ψ

α ,β ,τ ,ψ ,φ ∈ R+

where s is a solution candidate. Lower case Greek letters without indices are scaling parameters
to adjust the importance of the functions’ components. In these equations nLC,v is the number
of TXPs present at node v and mLC is the maximum number of TXPs installable per node.
nUD is the number of unrouted demands, nAV represents the number of demands which miss

1Note that demands can still be unroutable in this case if the topology of the candidate solution is not sufficiently
connected to enable the required reachability as explained in Section 4.3.1.
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their availability requirements, whereas nLV is the number of demands exceeding their latency
requirements. δ f is the latency per km and δh the latency per hop. Finally, the function flen
returns the physical length of an edge and the function flat(d) gives the latency experienced by
demand d. The inequalities ensure that there is a total order on the precedence of the components
within the functions, e. g., for FmLat the maximum accumulated penalty from α cannot exceed
the least penalty from β and the maximum accumulated penalty from τ cannot exceed the least
penalty from α .

5.2.1.5 Algorithmic Parameters
Due to the small size of the problems, we chose very basic components without any specific
performance enhancements and we did not use the shortest path reference approach, since this
evaluation is not about performance, but functionality. The parameters chosen for the Simulated
Annealing are a more simplified version of the ones suggested by Feller [77, Ch. 5.2.3], where the
change between temperature values is either caused by a maximum of iterations per temperature
or by the number of accepted candidates per temperature. The exact values are given in Table 5.2.
For the GA-approaches we also used a very modest set of parameters, which are given in

Table 5.2: Simulated Annealing hyperparameters for core function test cases

Type Initial
Topology

Initial
Temp.

Cooling
Factor

Iterations
per Temp.

Accepted
per Temp.

SVT Physical 1 0.95 1000 100
SVTR Physical 1 0.95 1000 100

Table 5.3, where the Creep operator uses a step size of 1. Regarding performance enhancements
it should be noted that we always use basic elitism, i. e., we migrate the best individual into the
next generation. For all approaches we use the same termination conditions. The algorithms

Table 5.3: Genetic Algorithm hyperparameters for core function test cases

Type Population Selection Recomb. Mutation
Init. Size Offsp. Control Parent Survivor

VTB Random 10 4 No RWS (µ +λ ) CNCXO URM
VTCS Random 10 4 No RWS (µ +λ ) CNCXO Creep
RCPE Random 10 4 No RWS (µ +λ ) CNCXO Creep
DCPE Random 10 4 No RWS (µ +λ ) CNCXO Creep

immediately terminate, once the intended solution has been found, which we have validated to
be the optimum using exhaustive enumeration. The second condition is a maximum runtime of
60 s, which is ample enough to perform a vast number of full enumerations.

5.2.2 Evaluation
Test Case 1 Shortest Path Routing in Virtual Topology

This is the baseline test that simply requires to find the shortest path and therefore replicates the
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Figure 5.3: Illustration of Test Case 1 showing shortest path baseline
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Figure 5.4: Illustration of Test Case 2 showing bypass circuit via N5

behavior of an algorithm such as Dijkstra’s, where the edge weights correspond to the link delay.
There is a single demand d1,4 from node N1 to node N4 which requires the capacity of one circuit
and has no further constraints, such that FmLat is used. The transparent reach does not allow any
bypass circuit, thus allowing for virtual links as indicated by the dashed lines in Figure 5.3a.

A resource-minimal solution requires 2 circuits, one from N1 to an intermediate node, i. e.,
any one of N2, N3, or N5, and another circuit from the intermediate node to N4 resulting in
3 different solutions each of 4 line cards in total. The optimal solution, however, additionally
minimizes latency and therefore chooses the path with the least accumulated delay. As shown
in Figure 5.3a, the paths with N2 and N3 as intermediate node each induce 10 units of delay per
link and 1 unit per node for a total of 21 units each. The optimal choice is the path with N5 as
shown in Figure 5.3c, since it adds only 7 units per link, resulting in a total latency of 15 units.
All algorithms and encodings reliably find the optimal solution.

Test Case 2 Bypass Circuit in Virtual Topology
This test uses an increased transparent reach and therefore requires the approaches to extend the
basic topology to consider the full graph as a feasible topology as shown in Figure 5.4a. The
demand d1,4 in this scenario is identical to the previous case, i. e., requires a route from node N1
to node N4 with the capacity of one circuit.

Using FmLat, a resource-minimal solution therefore requires just one diagonal circuit from
N1 directly to N4, bypassing any intermediate node and thereby reducing the number of line
cards to 2 in total. In addition, this also improves the secondary objective by avoiding the node
delay of one unit, such that this bypass link is better than any of the others in the sense of the
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Figure 5.5: Illustration of Test Case 3 showing demand grooming

objective function, making it the optimum, which is shown in Figure 5.4c. All algorithms and
encodings were able to determine this optimal solution.

Test Case 3 Grooming of Traffic Demands into Circuits
Grooming, i. e., aggregating demands of fine granularity efficiently into services of coarse gran-
ularities (cf. Section 2.1.2.3), is a very potent approach to increase efficiency in networking. To
illustrate this principle, we need several demands requiring sub-circuit capacity, such that they
can be multiplexed into the same circuit. We use three traffic demands that each require half of
a circuit’s capacity. These are d1,2, d2,4 and d1,4. The feasible virtual topology is the full graph
and FmLat is the objective function.

This scenario creates a conflict between resource efficiency and minimum latency. When
starting from the first two demands, they can be routed directly on circuits between their source
and destination to achieve minimal resources and minimal latency. The third demand experiences
the least amount of delay on a third bypass circuit from N1 to N4. The resource-optimal routing,
would groom it onto the circuits of the other two demands, thereby making use of spare capacity
at the expense of increased latency. Since the primary goal of FmLat is resource efficiency due to
the choice of α , the optimal solution is the latter, yielding a solution of 4 line cards.

It should be noted that there exist more solutions of the same amount of line cards. When
starting from d1,4, one could establish a bypass circuit directly to N4 and the second circuit
either between N1 and N2 or between N2 and N4. In the former case, d2,4 would be groomed
into this link in reverse direction and then groomed into the bypass. In the latter case, d1,2
would be groomed into the bypass and then into the other circuit. However, these solutions are
inferior, because the average demand latency for both is 16.3, whereas in the optimal case above
it’s only 13.7 units. As before, this test case is solved to optimality by all methods, but there
exist variations of this scenario, where some of the algorithms will fail to do so, which will be
highlighted in the following cases.

Test Case 4 Grooming of sparse and remote Demands
This case is specifically designed as a scenario in which the VTCS encoding is not able to
represent the optimal solution. The demands are identical to the previous case and the same
objective function is used, but the virtual topology is now limited to those subsets of the physical
topology, that do not include the links between N1 and N3 and between N3 and N4. Since these
links were never part of the optimal solution to case 3, their omission does not have any impact
on the optimal solution, such that it remains identical. All methods solve this case to optimality,
except the VTCS encoding, which can neither find the previous optimum, nor any configuration
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Figure 5.6: Illustration of Test Case 4 with comparison of solutions

with an equal number of circuits. By its design, this encoding assumes traffic between all nodes
and is therefore generally not well-suited for this test case, where only few nodes have traffic
between them, such that no spanning tree can be part of the optimal solution. For all previous test
cases this encoding worked nonetheless since the integrated approach does not create circuits
where there is no traffic and therefore it could still determine the optimal solutions.

However, the VTCS encoding does not permit all possible spanning trees, relying on the
assumption that nodes, which are central in the feasible virtual topology, should also be central
in the spanning tree. Due to the omission of the aforementioned links in the feasible virtual
topology, N5 has become an articulation vertex1 in the remaining graph and exhibits drastically
increased centrality such that it becomes the center of any spanning tree representable by the
VTCS encoding. Although there is no traffic for which N5 is either source or destination, the
resulting spanning trees would still be routing traffic via this node, such that a total of 3 circuits
would be used as shown in Figure 5.6b. While this is a drawback for generic problems, it is a
deliberate design choice since such topologies with barely any traffic, which occurs nowhere
near to any central nodes, is a highly unlikely occurrence in real-world transport networks.

Test Case 5 Alternative Routes and Grooming
This case has a total of 5 demands and uses FmLat. The demands d1,2, d2,4 and d1,4 are identical
to test case 3, and therefore each one requires half a circuit capacity. The new demands are
d1,5 and d5,4 and they both require the capacity of an entire circuit, which is indicated by the
bold arrows in Figure 5.7b. The feasible virtual topology corresponds to the physical topology
without bypasses. Since the last two demands each require their own circuit, they leave no spare
capacity, such that grooming is impossible for them. Therefore, these circuits can be set up on
the direct edges from the demand’s sources to their destinations. For the other three demands the
same reasoning as in test case 3 applies, resulting in 2 more circuits and therefore the optimal
solution has a total of 4 circuits and 8 line cards.

All of the route-altering algorithms, including SVTR, successfully find the optimal solution
to the problem. All algorithms which rely only on a full shortest path routing in an optimized
topology fail to find the optimum. The reason for this is that for all demands with the exception
of d1,4, a direct circuit is optimal for resources and latency, such that they already require the
optimal circuit layout shown in Figure 5.7c on their own. This allows for two different routes for
d1,4 in the resulting topology. The route via N2 allows for grooming and is therefore resource-
optimal. The alternative route via N5 prevents grooming, but it is shorter and therefore preferable

1An articulation vertex in a connected graph is defined as a vertex whose removal disconnects the graph.
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Figure 5.7: Illustration of Test Case 5 showing advanced grooming

to shortest path algorithms. As the integrated approaches establish the number of circuits only
after routing demands in the virtual topology, they can only make a local decision on routes
based on the number of hops and the delay incurred. The virtual topology-driven approaches are
therefore incapable of finding the optimum for this test case.

Test Case 6 Traffic Demands with Latency Constraints
This case is similar to test case 3, such that we have 3 demands that each require 0.5 circuit
capacities and the virtual topology corresponds to the full graph. While d1,2 and d2,4 are identical,
the difference is that the demand from N1 to N4 now has a SLA specifying a worst-case latency
of 18 units, which is indicated as dL18

1,4 . In the previous examples we considered an intermediate
node to contribute 1 unit of delay. More precisely, we now consider the line cards to be the
source of this delay, such that the delay at intermediate nodes can be divided into 0.5 units for
the incoming and 0.5 units for the outgoing line card. Consequently, demands now experience
0.5 units of delay at their line cards of origin and destination as well. For this case the objective
function is FQoS.

Therefore, in contrast to case 3, the conflict between resource efficiency and minimum
latency should now be decided in favor of latency by using a bypass circuit. The resource-
optimal route via N2 violates the latency constraint of 18 units since it incurs 10 units per
circuit through propagation delay, 0.5 units at the source and at the destination line cards and
1 additional unit for processing and forwarding at N2, totaling 22 units. A route terminating at
N5 as intermediate node would reduce the delay significantly, as the diagonal links only result
in 7 units of delay. This would result in an overall delay of 16 units. Using the bypass circuit,
however, not only reduces resources at N5, but also eliminates the associated delay leading
to a total latency of 15 units. Since honoring SLA-parameters is valued higher than resource
efficiency in FQoS, usage of the diagonal links is mandatory for all optimal solutions.

This changes the situation for the remaining two demands. As they do not have any latency
constraints, routing each of them on their own circuits, like before, would be a waste of resources.
Consequently, the algorithms should create only one additional circuit, either between N1 and
N2 or between N2 and N4. The other demand should be groomed into the existing circuits using
the remaining capacity; thus, there are two optimal solutions of 4 line cards each. Figure 5.8c
illustrates the latter solution. All algorithms and encodings succeed in finding one of these
optima.

Test Case 7 Traffic Demands with Availability Constraints
This scenario differs from the previous by added availability constraints. As before, there are
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Figure 5.8: Illustration of Test Case 6 showing effects of a latency-constrained demand
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Figure 5.9: Illustration of Test Case 7 showing effects of a availability-constrained demand

three demands that each require 0.5 circuit capacities. The demand dL18
1,4 remains unchanged. The

demands dA.6
1,2 and dA.6

2,4 require an availability figure of at least 0.6. The virtual topology and the
delay figures are identical to test case 6. All physical links connecting to N5 have an availability
figure of 0.8, while all remaining links have a value of 0.5. Potential circuits bypassing N5
would need to traverse two diagonal links leading to a circuit availability of 0.64 as shown in
Figure 5.9a.

The low availability of the direct links between N2 and N4 as well as between N1 and N2
now prevents the previous solution from test case 6. The latency-sensitive demand still needs
to remain on one of two diagonal routes. Since both, the bypass circuit via N5 and two separate
circuits with an intermediate termination at N5, are below the latency limit of 18 units, the
better choice is the one that offers more grooming potential. Therefore, the optimal solution will
terminate at N5 since both circuits can be shared with the other demands, leading to an optimal
solution with 3 circuits and therefore 6 line cards as illustrated in Figure 5.9c.

Once more, all algorithms and encodings succeed in finding the optimum.

Test Case 8 Multiple QoS-compliant Paths per Source–Destination Pair
In this case there exist several demands of differing QoS constraints between the same node
pair. For reasons of simplicity this is demonstrated using only latency constraints. There are four
demands in total. The demands dL12

1,2 and dL12
2,4 are required to have latencies of at most 12 units

and a data rate equivalent to half of the circuit capacity. The remaining demands both originate
from N1 and are destined for N4, but dL18

1,4 requires at most 18 units of delay and the capacity of
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Figure 5.10: Illustration of Test Case 8 showing effects of QoS-diverse demands

one circuit, whereas d1,4 has no latency constraint and needs only half a circuit as illustrated in
Figure 5.10b. The feasible topology corresponds to the full graph and FQoS is used.

For the first two demands there is no feasible alternative to using a direct circuit for each,
due to their stringent latency requirements. The third latency-constrained demand requires an
entire circuit, which offers no room for grooming, such that only a direct circuit fulfills latency
and resource goals. Finally, the unconstrained demand d1,4 should be routed such that savings
through grooming are maximized. This is the case when routing it on the path via N2 since the
existing circuits there have spare capacity, yielding an optimal solution of 3 circuits and 6 line
cards as shown in Figure 5.10c.

All of the topology-based algorithms cannot solve this problem to optimality, since their
routing algorithms favor the shorter routes. While they are able to differentiate between service
classes and can rule out edge weight-minimal paths when they do not conform to the QoS con-
straints, they are unable to make a local decision to distinguish between demands on compliant,
but longer paths to facilitate a global optimum. In the present example, any feasible route for
dL18

1,4 is also a feasible route for d1,4, such that they will use the same path.

The Simulated Annealing-version incorporating the routing optimization also fails to find
the optimum, since there is no sequence of activation and deactivation actions, that can lead
demands of the same metric between the same nodes on compliant routes of different weights.
To illustrate this point, one can consider the case that two such demands exist, but no route has
been found yet. When activating virtual links and a path is found such that the QoS constraints
are fulfilled for both demands, both will be treated identically and routed on the same path and
both will be removed when one of these links is removed. When activating virtual links such
that a path emerges that fulfills the constraints of only one demand, while the more stringent
constraints of the other are not fulfilled, the demands will at first be treated separately, by routing
only the first. However, as soon as a an additional activation allows for a path fulfilling the
constraints of the unrouted demand, this same path will also be a more beneficial path in the
sense of the routing metric to the first one, which will then also be rerouted onto this path as
explained in algorithm 4.5 of Feller’s dissertation [77].

It should be noted that this effect does not occur for all combinations of possible QoS-
parameters and link weights. There may exist situations where other factors cause a sufficiently
significant difference in routing options; e. g., consider a node pair with a short path of low
availability and a long path of high availability, which may occur when comparing aerial fiber
deployments with buried lines. However, availability, latency and edge weights are typically
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strongly correlated, since the longer a fiber is, the larger is the risk that it may suffer a fiber cut,
the larger is the propagation delay and the larger are deployment and usage costs.

5.2.3 Summary of Results

Table 5.4: Overview of core function test results

Test Case SA GA
Nr. Scenario SVT SVTR VTB VTCS RCPE DCPE
1 Shortest Path X X X X X X
2 Bypass Circuit X X X X X X
3 Grooming 1 X X X X X X
4 Grooming 2 X X X X X X
5 Route Grooming X X X X X X
6 Latency X X X X X X
7 Availability X X X X X X
8 QoS-Multipaths X X X X X X

Legend
X Successfully finds optimal solution
X Cannot find the optimal solution

The results of the test cases are summarized in Table 5.4. All proposed GA-based approaches
and the Simulated Annealing reference methods generally succeed in finding paths while con-
sidering QoS constraints, establish bypasses and perform some level of grooming for typical
problem structures. Therefore, they are not only capable of finding solutions equal to a regular
QoS-enabled shortest path routing, but also of finding solutions closer to a global optimum,
due to their ability to utilize these principles. However, there are specific scenarios where some
approaches only find sub-par solutions. For the VTCS encoding there exist scenarios where it
is not only unable to determine the optimal solution, but in fact, may be outperformed by the
trivial shortest path solution. This may occur when the topology and demand matrices become
very sparse, such that a connected graph is not necessary for the optimal solution. Since this
encoding has been designed for connected graphs of high density, it should not be used in such
scenarios.

Further differences between the approaches emerge in the more advanced cases. Especially,
when either the routing has to be adapted to create the optimal solution or when multiple
demands of different QoS classes exist between the same node pairs. For SVT, VTB and VTCS,
which rely on an optimization of the topology alone, the routing is not an immediate part of
the optimization. Therefore, these approaches are not suitable for the more advanced scenarios,
although they can still be expected to yield results, which can outperform the shortest path
solution. In the scenarios where multiple routes per source–destination pair are necessary, even
SVTR may be unable to obtain the desired results.

While these test cases provide a validation of core functions, they cannot be used to assess
runtime performance for realistic scenarios, nor do they indicate that a meaningful level of
optimization is possible for such scenarios. While improvements in runtime performance largely
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depend on the genetic operators and initialization mechanisms, the encodings need to cover the
search space sufficiently to include good solutions. We know the optima to the presented test
cases by design, but these are of small scale and high symmetry. In order to provide a better
indication towards the representable and attainable solution quality, more realistic scenarios
have to be considered.

5.3 Solution Quality for Reference Scenario
In order to assess the capability of the proposed frameworks to achieve high-quality results at
meaningful cost values for common network optimization problems, we investigate a common
type of networking problem, which features a higher node count and asymmetries in the topology
and traffic demands. If the optimal solution to such a problem is known, the results from the
approaches can be compared to the optimum and the result of the shortest path-based approach as
an upper bound. However, such problems are typically too complex to be solvable by exhaustive
enumeration or other exact solution approaches.

In order to obtain a representative scenario, for which a lower bound can be given, we sur-
veyed the SNDlib database introduced in Section 3.5.2.1 for problems and results from other
researchers to compare against. As we have already explained in Section 3.5.2.2, there is no
problem instance using modular link capacities and single routes for demands, that has been
solved to optimality. However, there exist optimal solutions for some networks with arbitrary
flow distribution, which represent dual solutions and therefore lower bounds to the problem
type required for this investigation. We have selected the problem called france--D-B-M-N-S-
A-N-N, for which such a dual solution exists, since it features a reasonably large topology size,
fitting traffic and circuit parameters and is based on WDM planning data of a French network
operator [183]. While this problem does not include the full intended network complexity, as it
does not separate network layers, nor contain flexrate devices or QoS constraints in terms of la-
tency or availability, it is still a viable problem to demonstrate solution quality for representative
problems.

5.3.1 Scenario Parameters
5.3.1.1 Network Topology
The network topology shared by all problems named France in the SNDlib describes a physical
topology of a nationwide French WDM network with 25 nodes and 45 links and is therefore a
good fit for the physical layer of a transport network. The graph is shown in Figure 5.11 and an
overview of typical properties is shown in Table 5.5.

Table 5.5: Parameters of SNDlib’s France topology

Nodes Links Density Degree Closeness Betweenness
Max. Avg. Max. Avg. Max. Avg.

25 45 0.15 10 3.6 0.585 0.394 313.5 38.9

The problem description does not contain actual link lengths, and instead of geographical
coordinates, the node locations are given as x and y integer values. We therefore infer abstract
link lengths using the regular Euclidean metric. Interestingly, the graph is not a planar graph.
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Figure 5.11: France topology from SNDlib

5.3.1.2 Physical Parameters
SNDlib assigns capacities in the form of abstract modules, which can be installed on physical
links. Each module for the france problems has a capacity of 2500 units and comes at a cost
of 250 units. Since there is no limit on installable modules, such problems can be interpreted
as uncapacitated and therefore can be classified as dimensioning problems including VTD and
TDR, or alternatively PTD with TDR.

As SNDlib problems have no notion of wavelengths and modules can only be installed
directly on physical links without any bypass options, ICR collapses to finding routes to next-
hop neighbors, which trivially are always circuits corresponding to the direct link between these
neighbors. Due to these limitations a virtual topology can only be a subset of the physical
topology and therefore, VTD and PTD converge to the same problem in the absence of other
constraints.

5.3.1.3 Traffic Demands
The france--D-B-M-N-S-A-N-N problem contains 300 unidirectional traffic demands, which
are not allowed to be split between different routes. The sum of all demand capacities is at
99 830 units, while the average demand capacity is 332.77 units and the maximum 1808 units.
The exact distribution is illustrated in Figure 5.12. No QoS features are required by any demand.

5.3.1.4 Optimization Goal
SNDlib contains minimization problems, where costs may be incurred from routing, modules,
and links. The problem france--D-B-M-N-S-A-N-N requires all demands to be routed and costs
are determined by the sum of the costs of all installed modules. We designate this cost function
as FSND. For this particular problem there is only one type of module with a cost of κmod = 250
as mentioned above. We consider such a module to be equivalent to our single-port line card
with integrated TXP. We also relax the hard demand routing constraints into soft constraints
to facilitate search space exploration as explained in Section 3.2.3. The relaxed cost function
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Figure 5.12: Distribution of capacities for traffic demands in france--D-B-M-N-S-A-N-N

FRSND heavily penalizes the number of unrouted demands nUD and the sum of all unrouted
traffic capacities nUC separately. We will therefore use FRSND as the objective function for
the optimization, but we will give the results as the value of FSND. If all demands are routed
successfully, the values of both cost functions will be identical. The objective functions are
defined as

FSND(s) = ∑
v∈V

nLC,v ·κmod (5.3)

and
FRSND(s) = ∑

v∈V
(nLC,v ·κmod)+nUD ·α +nUC ·β (5.4)

with
α > β

β > κmod

α + rmin ·β � |E| ·κmod

α ,β ∈ R+

such that the penalty of not routing the smallest demand capacity rmin is always higher than the
cost for the longest possible path.

5.3.1.5 Algorithmic Parameters
Since we focus on high solution quality, we provide each of the metaheuristics ample time to de-
termine the best solution possible and refrain from utilizing any performance enhancement, that
may compromise search space exploration. All heuristic approaches use the same termination
condition, which is a runtime limit of 12 h.

For this test we also include the shortest path reference approach, which does not require a
time limit. We employ it in two different versions by altering the metric for the routing algorithm.
The first metric is the regular one also used in the virtual topology-based approaches, where we
employ the number of hops with the length of the path as a tie breaker. Henceforth we shall
refer to this as the default metric. For the second metric, we used only the number of hops, but
randomized the iteration order of the edges. Since many paths have identical number of hops,
the randomization can lead to very different solutions. In contrast to the other approaches, we
did this not for 10, but for 1000 randomizations.
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For Simulated Annealing, we did a large number of tests to obtain good hyperparameters
for both approaches. Given the very long runtime, the cooling schedule has to be drastically
increased to divide the time meaningfully between the more exploratory and more refining
stages. This highlights another difficulty in employing Simulated Annealing with runtime limits.
Interestingly, we found that the SVT approach required a much slower cooling schedule than
the SVTR approach to provide the most consistent high-quality solutions. The exact values used
for both are given in Table 5.6.

Table 5.6: Simulated Annealing hyperparameters for SNDlib scenario

Type Initial
Topology

Initial
Temp.

Cooling
Factor

Iterations
per Temp.

Accepted
per Temp.

SVT Physical 4000 0.9999 10000 1000
SVTR Physical 2000 0.95 6000 400

The GA-approaches were also tested using a wide variety of parameters. We chose large
populations and numbers of offspring to facilitate a thorough exploration of the search space.
Due to the long runtimes, we also included an age-bias factor in the survivor selection scheme,
which favors removing older individuals when cost values are very similar. The best individual
is preserved by the elitism rule. Furthermore, all approaches use sigma truncation with 2 sigmas.
The simulation software runs the evolutionary tasks on 20 threads in parallel. VTB uses the
advance check mechanism without repair and RRM with a mutation rate of 0.02. The path
enumeration approaches do not employ any scaling techniques, such that each uses km = 1000
shortest paths. The chosen parameter combinations are summarized in Table 5.7, where Creep
uses a step size of 1 and NPXO uses 3 crossover points.

Table 5.7: Genetic Algorithm hyperparameters for SNDlib scenario

Type Population Selection Recomb. Mutation
Init. Size Offsp. Control Parent Survivor

VTB ASTI 1e4 1000 No Tourn. 10 (µ +λ )+A NPXO RRM
VTCS Rand. 1e4 1000 No Tourn. 5 (µ +λ )+A NPXO Creep
RCPE RDRI 1e4 1000 No Tourn. 10 (µ +λ )+A NPXO Creep
DCPE RDRI 1e4 1000 No Tourn. 5 (µ +λ )+A NPXO Creep
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Figure 5.13: Cost function values for different methods after 12 hours of optimization

5.3.2 Evaluation
Figure 5.13 shows the best obtained cost values for each of the approaches, visualized as box
plots1. The upper, red line marks the result of the shortest path reference approach using the de-
fault metric as explained in the previous section. The lower, green line is the dual bound solution
obtained from the SNDlib database. The results of the randomized shortest path approach show
significant deviation, which is in fact larger than for any of the metaheuristic approaches. Inter-
estingly, there were even routings which surpass the default metric in solution quality, although
not by a large margin. A second observation is that controlling the sequence, in which shortest
paths are routed, as used as the core of optimization by some works, is not very promising for
the given problem.

Both Simulated Annealing approaches achieve better cost values than any of the shortest
path routings. SVT is more consistent than SVTR, but the solution quality is lower. More than
half of the simulations converged at a cost value of 15 000, but the single outlier at 14 600 shows
that there is still room for improvement for a purely topology-based method. The much better
performance of SVTR may be explained by the fact that it can also affect routes, covering a
larger area of the search space including these better solutions. However, it is more likely that
the reduced amount of changes from one perturbation to the next allows for a more gradual
refinement, where small improvements point towards more beneficial areas. While the median
value of 14 200 is only a 10 % improvement over the shortest path reference, it already exploits
almost half of the theoretical improvement potential towards the lower bound.

The results for all GA-based optimizations are very consistent. Most remarkable in this
respect is the result of the VTB encoding, where all independent runs converged to the same
cost value of 14 000. VTCS shows, that this value is still not the lowest for a topology-based
encoding, as it manages to reach a value of 13 800. Both GA-based topology optimizations show
better median values than SVTR, but the latter included the best solution of the topology-based
approaches.

1For more information on reading and interpreting box plots, see section D.3 in the appendix.
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Figure 5.14: Duration until the optimization could not further improve the objective value

Finally, the routing optimizations using GA yield the best results among all of the approaches,
with their median values surpassing the medians of all other approaches. In fact, the best result
for RCPE is less than 10 % worse than the unachievable dual bound solution, exploiting the
largest share of the headroom. However, it should be noted that the best results for the topology
optimizations can compete with the worse results from the routing approaches. Surprisingly,
DCPE underperforms compared to RCPE, although in the absence of QoS parameters and the
number of demands corresponding to the number of node pairs, both of these approaches should
have almost equal performance.

Figure 5.14 shows the duration after which the individual approaches first encountered a
solution of an objective value equal to the final value after 12 hours. The left figure shows the
full range of 12 hours, while the right figure shows a zoomed view of the initial 30 minutes of
these 12 hours. Since the purpose of this analysis was to obtain the best solution quality, the
algorithm parameters have not been tuned for short runtimes, but rather to make the most of the
given 12-hour interval.

For Simulated Annealing this means using a very slow and steady cooling schedule to avoid
premature convergence. Consequently, the corresponding optimizations show higher median
values for convergence time, especially for SVT, which utilizes a slower schedule than SVTR.
Another explanation for the difference might also lie in the full rerouting SVT needs to perform
in every perturbation. This can make the search space more uneven and harder to probe, such
that SVT is more susceptible to local minima making premature convergence more likely, while
also requiring more steps to refine a good solution. While the best solution found exhibited the
largest runtime, most other good solutions were below the median time. For SVTR the best
solutions are close to the median time, while the outlier in time is about average in result. Note
that SVTR is not visible in Figure 5.14b, since its smallest value is larger than the scope of the
figure.

The GA-based approaches have a tremendous advantage in runtime due to their parallel
execution. Their drawback is that they cannot converge very early in case of simple problems,
because initializing the population also takes time. For the relatively large populations in the
present example, this amounts to about 300 s for VTB, 1200 s for VTCS, 100 s for RCPE and
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Figure 5.15: Number of evaluations until the optimization reached the final objective value

120 s for DCPE. Remarkably, the median convergence time for VTB, VTCS and RCPE is
less than 30 minutes, with the maximum for VTB being below 10 minutes. However, VTCS
and RCPE have outliers reaching almost 3 and 11 hours, respectively. Very surprising is the
comparatively long runtime of DCPE. While the median runtime is still on par with the Simulated
Annealing approaches, the large distribution of values suggests that convergence is difficult to
achieve for this approach.

Figure 5.15 provides a different perspective on the computational effort by comparing the
number of evaluations until the solution cost could not be improved any further. For Simulated
Annealing every perturbation comes with an evaluation, whereas for the GA approaches, two
evaluations are performed for each execution of the evolutionary process, such that one gener-
ation requires an evaluation for each offspring. This perspective removes the overhead of the
population initialization, but it allows to compare Simulated Annealing and GA approaches
without any distortion from the parallel execution.

This shows some interesting differences to the runtime graphs. Comparing SVTR to VTB in
Figure 5.15b, we can notice that the first approach actually requires less evaluations than the GA-
based one, although it has a drastically higher runtime as shown in Figure 5.14a. Considering
that a single decoding and evaluation for VTB is much more computation-intensive than a SVTR
perturbation, indicates the level of acceleration contributed by the parallel execution alone.

Comparing VTB to VTCS we can also observe an inverted behavior to the runtime statistics,
where VTCS requires much fewer evaluations, but the more complex decoding results in a larger
runtime. Note, that Figure 5.15a is a log scale plot and that the zoomed view in Figure 5.15b
does not show all outliers, nor does it include the routing approaches, which require much larger
numbers of iterations to converge.
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5.3.3 Summary of Results
The evaluation using the reference scenario has shown, that the suggested approaches are appli-
cable to scientifically relevant network optimization problems. Furthermore, all metaheuristics
employed are able to surpass the solution quality of the shortest path reference approach. Even
the best hop-oriented routing solution is still worse than the worst metaheuristic solution, demon-
strating the superiority of optimized configurations. The suggested GA-based encodings were
consistently able to obtain better results than a simple Simulated Annealing approach and were
either on par or even better than the more advanced SVTR approach, which has been proven to
be effective in complex multi-layer scenarios.

The routing-based optimizations showed the best overall cost values, as expected. RCPE
obtained the best cost value, which is within 10 % of the unobtainable dual bound solution, such
that the headroom for improvement can be expected to be well-exploited. It should also be noted
that the virtual topology approaches are rather close to the route encodings in cost values, but
achieve this within a much lower time frame, hinting at their potential for scalability.

The acceleration by parallel execution of the evolutionary process within the framework,
greatly boosts performance. This is especially clear for VTB in comparison to SVTR, given that
the GA approach needs more evaluations, but only a fraction of the runtime of the Simulated
Annealing approach. However, VTCS seems successful in exploring the search space efficiently,
such that it would outperform SVTR even without a parallel implementation. Finally, we also
found the parameter tuning for the GA less complicated than for Simulated Annealing. While
the GA approaches have a larger number of parameters, their effects are more localized, whereas
adjusting the cooling schedule ideally requires knowledge on the entire runtime of the algorithm
to get consistent results without premature convergence.

5.4 Performance Improvements for QoS-enabled Scenario

While the framework and the developed encodings have proven to be capable of working with
QoS constraints and capable of achieving good results in a reference scenario, the next step is
to combine a realistic scenario with realistic constraints. To the best of our knowledge, there
are no comprehensive reference scenarios that include all the parameters required for this type
of evaluation. We have therefore defined such a scenario, consisting of a network topology,
based on an actual transport network, traffic demands, based on an established forecast of traffic
patterns, and a flexrate TXP, based on data of commercial TXP.

Since this part of the evaluation is more focused on runtime performance, we have set
a more rigorous time limit of 1000 seconds, which is closer to the time scales of network
operation as explained in Section 2.2.1.1. In order to determine the relative performance gains
of the suggested approaches, we will vary the selection of components used in the framework.
Starting from a baseline GA approach, we apply each of our suggested mechanisms individually,
followed by a combination of the most successful components. We also show the results obtained
from the three reference methods, demonstrating that relevant gains in objective values are
possible even in the given time frame.

5.4.1 Scenario Parameters
5.4.1.1 Network Topology
We have designed two transport network topologies based on publicly available data on different
networks of a large NSP [32]. The network topology CL–DC connects 19 core locations, at
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Figure 5.16: CL–DC topology spanning the continental USA

which the NSP operates data centers1. The links have been derived from fiber infrastructure data
of the same NSP. The resulting topology is shown in Figure 5.16. Since the available data does
not contain information on fiber lengths, we based the lengths of our links on the orthodromic
distance between the city centers. More information on the design process can be found in
Section B.3 of the appendix.

We compare the basic parameters for the physical CL–DC topology with that of a full graph
of the same nodes in Table 5.8, since the virtual topology can indeed become a full graph. Note,
that betweenness centrality is zero for the full graph, since any shortest path never needs to
incorporate any other node than source and destination. When considering the other known
transport networks from Section 2.2.2.1, it is very similar, although it remains on the lower end
in node count, while featuring slightly elevated degree and centrality values.

Table 5.8: Parameters of the CL–DC topology

Topology Nodes Links Density Degree Closeness Betweenness
Max. Avg. Max. Avg. Max. Avg.

Physical
19

35 0.2 6 3.68 0.529 0.402 90.8 27.7
Full 171 1 18 18 1 1 0 0

The proposed CL–DC topology is not only realistic, because it is based on a real network,
but it is also a good candidate for a QoS-based optimization, since inter-data center traffic flows
are likely to carry business-relevant traffic. Since the topology also covers a large, geographically
diverse area, it offers interesting opportunities for bypass links and routing alternatives alike,
since longer routes will result in noticeable differences in latency and availability. Figure 5.17
shows the potential virtual links of the full graph in blue, while the links of the physical CL–DC

1The NSP actually operates a total of 57 data centers, but metropolitan areas have been aggregated.
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Figure 5.17: Distribution of link lengths in the CL–DC topology

topology are green in color. Note, that the indicated delay is purely based on propagation delay
in the fibers. Any intermediate termination would add additional delay.

5.4.1.2 Physical Parameters
This scenario includes both, latency and availability figures. As explained in Section 4.1.1, we
incur a delay proportional to the fiber distance and a fixed delay for every node traversed. We
chose the fiber delay to be δ f = 4.8985µs/km, based on values for a common fiber brand [51],
and the delay per hop δh = 1ms, which we consider to be a meaningful upper bound for what
can commonly be expected1.

The availability of a fiber is also determined by a factor, which scales the figure with distance.
We set this factor to a f = 2.55e−6km−1, which translates to an availability of 0.99745 for
1000 km of fiber. This value is based on the observation that long-haul networks like transport
networks suffer about 1 to 5 fiber cuts per 1000 miles annually [62, 167, 263] with a reported
mean time to repair of 12 hours [263].

Regarding hardware, we consider a line card to be able to serve up to four TXPs. We consider
full band-tunable flexrate TXPs as explained in Section 2.1.3 and that every fiber can support
80 wavelengths. Based on the data rate and transparent reach values of the different commercial
devices shown in Figure 2.5, we define the different modes of the TXP under consideration as
listed in Table 5.9.

Table 5.9: Flexrate modes of the suggested TXP

Data Rate in Gbit/s 50 100 150 200 250
Transparent Reach in km 8000 4000 2000 1000 500

Active for % of Virt. Links 7.6 42.1 32.2 12.8 5.3
Active for % of Phy. Links – – 28.6 45.7 25.7

The percentages in the lower half of the table show the fraction of links for which the
given mode has the highest possible transmission rate. The color code of the table matches the

1Cf. Section 2.2.3.1 for details on sources and magnitudes of delays in NEs.
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Figure 5.18: Capacity distribution for traffic demands of different QoS classes for CL–DC

background of the respective links in Figure 5.17. Note, that the lowest data rate for any physical
link in CL–DC is still 150 Gbit/s and that the maximum transparent reach of 8000 km permits a
full graph as the virtual topology.

5.4.1.3 Traffic Demands

In order to obtain meaningful traffic demands, we have utilized a traffic generation method
developed by Enderle and the author in previous works [72]. It considers expected traffic shares
derived from Cisco’s estimates [39, 40] and results [240] of the DISCUS project [241], as well
as population data [6, 7], and time zone information.

We chose to use three different QoS-classes for this evaluation, one with a latency constraint
of 10 ms, one with an availability constraint of 0.99 and a best-effort class. This results in 812
unidirectional demands, which can also be considered as 406 bidirectional traffic demands with
non-symmetrical data rates. Splitting of demands is not allowed in routing. The sum of all
traffic demands amounts to 47.4 Tbit/s. With 59.3 %, best-effort traffic marks the largest share
of the overall capacity, followed by 23.3 % latency and 17.4 % availability-constrained traffic.
Figure 5.18 shows the demands, grouped by a connection index, i. e., a unique index for each
pair of source and destination nodes corresponding to the unidirectional flows. The index is
ordered by ascending capacity requirements for demands between the pairs in the best effort
traffic class. Note, that Figure 5.18c does not feature demands for each possible interconnection,
since there are node pairs for which a latency of 10 ms is impossible to achieve due to their
distance and accordingly long fiber lengths.

5.4.1.4 Optimization Goal

The objective function for CL–DC is FQoS, defined in Equation (5.2), from the initial small-scale
example. While the scenario includes the hardware previously explained, there is only little
to gain from including line cards explicitly here, since we treat the present problem as being
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uncapacitated, such that fractured resource configurations are only a minor issue, applying to at
most one line card.

5.4.1.5 Algorithmic Parameters
Since the present problem is limited to a runtime of 1000 seconds, the parameters of the Simu-
lated Annealing reference approaches have been adjusted to provide a cooling schedule matching
this time frame. However, we will add a second version to each approach, where we use a ran-
domly generated initial solution. The purpose of this is to highlight the influence of this starting
point. The exact parameters are listed in Table 5.10, where the version column contains a name
for the respective parameter set.

Table 5.10: Simulated Annealing hyperparameters for QoS scenario

Type Initial Initial Cooling Iterations Accepted
Approach Version Topology Temp. Factor per Temp. per Temp.

SVT Rnd Random 1 0.95 1000 100
SVT SPR Physical 1 0.95 1000 100

SVTR Rnd Random 1 0.95 1000 100
SVTR SPR Physical 1 0.95 1000 100

For the GA-based approaches we will investigate the effects of the initialization, mutation
and, recombination, as well as a combination of the most successful components. Each will be
evaluated against the combination of basic components. We used known good hyperparameters
for each component, which will be detailed in the evaluation part. The basic hyperparameters
for the GA are chosen to be identical for each of the combinations. The population size is fixed
at 400 individuals, from which 100 offspring are created with every generation in a steady-state
model. Parent and survivor selection are both performed by tournament selection, each held with
10 contending individuals. All other hyperparameters and components are subject to variation
for evaluation.

5.4.2 Evaluation
All encodings are paired with different genetic operators and other components in order to
gauge their individual efficacy and contribution to the attainable solution quality in isolation,
before considering the effects of combinations of such components. The hyperparameters for the
individual components are chosen identically for each component to enable a fair comparison.
They were determined by prior parameter exploration and are the best known to us.

Virtual Topology Binary Encoding
First, we present the results for different combinations of the VTB encoding. The exact com-
bination of the primary components is listed in Table 5.11, where the version column provides
a concise designation for the respective combination. The column entitled “Control” indicates,
whether population diversity control measures are active. The hybrid initialization uses a mix
of ASTI and APTI with an activation probability of 70 %, while also including a solution only
consisting of the physical links and another solution considering all virtual links to be active.
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Table 5.11: Genetic Algorithm hyperparameters for the VTB encoding

Type Population Recombination Mutation Squash Repair
Enc. Version Init. Control Type Param.
VTB Basic Random No NPXO 3 RRM No No
VTB Squash Random No NPXO 3 RRM Yes No
VTB SqRp Random No NPXO 3 RRM Yes Yes
VTB EBXO Random No EBXO 2, 0.95 RRM No No
VTB LBXO Random No LBXO 2, 0.95 RRM No No
VTB H-Init Hybrid No NPXO 3 RRM No No
VTB E/R Hybrid No EBXO 2, 0.95 RRM Yes Yes
VTB E/R/C Hybrid Yes EBXO 2, 0.95 RRM Yes Yes
VTB L/R Hybrid No LBXO 2, 0.95 RRM Yes Yes
VTB L/R/C Hybrid Yes LBXO 2, 0.95 RRM Yes Yes

Including the physical topology solution means that the results of the GA can never be worse
than the shortest path reference solution based on this topology. Regarding crossover operators,
the parameter for NPXO is the number of crossover points, while for EBXO and LBXO the
parameters given are w and pl .

Figure 5.19a shows the average cost values for each combination during the first 20 000
candidate evaluations out of a total of between 550 000 and 660 000. The difference in the
number of total iterations is caused by two effects. The optimization was run with a time limit
and faster approaches can test more candidates in the same time frame. The second effect is
that an evaluation is not a constant time operation, e. g., due to solutions with larger number of
virtual links resulting in more complex traffic and circuit routing tasks.

The large difference in cost value between the first random initializations and the shortest
path reference solution, which is indicated by the red line “SP-Ref” at a cost value of 336, is
caused by the fact that many random topologies incur penalties for violated QoS limits. Due
to the high number of potential virtual links in relation to the number of nodes, all random
topologies happened to be connected, but this is generally not guaranteed.

It can be observed in the first magnified area of Figure 5.19a, that all approaches outperform
the shortest path reference solution within these first iterations. The sole exception is LBXO,
which catches up with the shortest path solution after an average of about 26 500 evaluations.
The versions Basic, SqRp and Squash are exactly identical in the shown area and only diverge
after about 23 100 evaluations on average. As can be seen in the second magnified area, the
E/R/C combination is initially the best among the ones using the hybrid initialization.

Figure 5.19b shows the final cost values obtained after the entire runtime. The basic variant
turns out to be the most consistent with all runs having either 304 or 302 as the final cost value.
Squash and SqRp show better median values, but less consistency. The approach also seems
successful in terms of evaluation performance, as Figure 5.19d shows that it generally increases
for Squash, while additionally using the repair function in SqRp reduces this gain.

EBXO accelerates early improvements as expected, with the average outperforming all
other randomly initialized combinations as shown in Figure 5.19a, but it can lead to premature
convergence. The LBXO operator seems more balanced and improves upon the cost values of
the basic version, moving the median value to 302, but it is incapable of reaching lower values on
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Figure 5.19: Evaluation results for combinations of the VTB encoding

its own. When combined with the hybrid initialization and the squash/repair feature within L/R,
however, it shows the best evaluation performance and when additionally including population
diversity control, then designated as L/R/C, it shows very good and consistent cost values at the
drawback of a less consistent convergence time1 as shown in Figure 5.19c.

Centralized Spanning Tree Encoding
For VTCS we have a larger choice of components and consequently a larger number of com-
binations, which are listed in Table 5.12. The parameters for EBXO and VSXO are w and pl .
Regarding mutation parameters we specify the increment for the Creep operator and for VSM
the underlying mutation operator and the tree-to-augment ratio. The hybrid initialization uses the
same mix as in the case of VTB, but depending on the exact graph and the resulting betweenness
values, there is a chance that it is impossible to represent the physical topology as explained

1Note, that in the context of this evaluation, convergence time is the time until no further improvement in the
objective value was possible within the limited runtime.
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Table 5.12: Genetic Algorithm hyperparameters for the VTCS Encoding

Type Population Recombination Mutation
Enc. Version Init. Control Type Param. Type Param.

VTCS Basic Random No NPXO 3 Creep 1
VTCS EBXO Random No EBXO 2, 0.95 Creep 1
VTCS VSXO Random No VSXO 3 Creep 1
VTCS VSM Random No NPXO 3 VSM URM, 0.15
VTCS H-Init Hybrid No NPXO 3 Creep 1
VTCS E/C Hybrid No EBXO 2, 0.95 Creep 1
VTCS E/C/C Hybrid Yes EBXO 2, 0.95 Creep 1
VTCS E/V Hybrid No EBXO 2, 0.95 VSM URM, 0.15
VTCS E/V/C Hybrid Yes EBXO 2, 0.95 VSM URM, 0.15
VTCS V/C Hybrid No VSXO 2, 0.95 Creep 1
VTCS V/C/C Hybrid Yes VSXO 2, 0.95 Creep 1
VTCS V/V Hybrid No VSXO 2, 0.95 VSM URM, 0.15
VTCS V/V/C Hybrid Yes VSXO 2, 0.95 VSM URM, 0.15

in Section 4.2.3.4. Therefore, it cannot be guaranteed that the results of the GA will always be
equal or better than the shortest path solution, contrary to the situation for VTB.

Figure 5.20a shows that even the random initialization provides candidates of much better
solution quality than the random initialization for the VTB encoding. It does not only inherently
ensure connected topologies, avoiding unroutable demands, but the node betweenness-based
order relation also happens to successfully create topologies as intended, where all demands
can fulfill their QoS requirements. All three custom approaches, VSM, EBXO and VSXO,
show a lower average cost value than the basic approach after only about 2000 evaluations.
The recombination approaches seem to have a larger impact than VSM and VSXO is showing
the steepest decrease in average cost value. As shown in the first magnified area, V/C and
V/V along with their diversity-controlled variants show the fastest improvement among the
hybrid initialized approaches. The second magnified area shows that the average value for
E/V eventually catches up and is able to surpass the others. However, the final cost values in
Figure 5.20b show a more ambiguous result. The Basic variant is once more the most consistent
with an even lower median cost value than for VTB. EBXO and VSM, while initially showing
promising values, result in worse final cost values than observed for Basic. Surprisingly, Basic
results in slightly better cost values than H-Init alone.

Among the combination approaches, E/C/C is the most consistent with a solution quality
slightly better than for Basic, but at a 29 % lower convergence time as shown in Figure 5.20c. The
V/V and E/V versions obtained the best results at a cost value of 298, identical to the best value
of VTB. Remarkably, E/V showed a 33 % lower median in convergence time than V/V, although
it has a lower evaluation rate as shown in Figure 5.20d. The inclusion of diversity control
mechanisms reduces the evaluation rate of the respective combination due to the computational
overhead as expected, but it also has a surprisingly strong negative impact on the solution quality
for V/V/C. A possible explanation for this is that V/V is too aggressive in focusing on the
current best individuals, which would also explain its relatively large span of cost function
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Figure 5.20: Evaluation results for combinations of the VTCS encoding

values in Figure 5.20b, such that the presence of a diversity control mechanism slows the rate of
convergence drastically, since it prevents overly rapid exploitation of current good solutions.

Compact Path Enumeration Encoding

For the RCPE encoding we chose the same values for all combinations. For the basic path
enumeration we use km = 5000, a = 18 and b = 6. The choice for km is based on a previous
analysis which showed that realizing the physical topology requires a minimum of 4630 paths.
By exceeding this number, it can be guaranteed that the shortest path reference solution can
be included in the population initialization. The values for a and b have been derived from
experiments.

Table 5.13 lists the combinations of components used for this evaluation. The parameter
for the Creep mutation is the stepsize, while SLCM and SLGM each receive three parameters,
one for the small increment, one for the large increment and one for the ratio of small to large
increments.
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Table 5.13: Genetic algorithm hyperparameters for the RCPE encoding

Type Population Recombination Mutation
Enc. Version Init. Control Type Param. Type Param.

RCPE Basic Random No NPXO 3 Creep 1
RCPE EBXO Random No EBXO 2, 0.95 Creep 1
RCPE SLCM Random No NPXO 3 SLCM 1, 800, 10
RCPE SLGM Random No NPXO 3 SLGM 1, 800, 10
RCPE LHM Random No NPXO 3 LHM 2, 200, 0.8
RCPE RDRI RDRI No NPXO 3 Creep 1
RCPE H-Init Hybrid No NPXO 3 Creep 1
RCPE E/L Hybrid No EBXO 2, 0.95 LHM 2, 200, 0.8
RCPE E/L/C Hybrid Yes EBXO 2, 0.95 LHM 2, 200, 0.8

For LHM the parameters are p, vl and vh. The values for NPXO and EBXO are identical
to the ones used for the previous encodings. The hybrid initialization uses a mix of APTI and
ASTI and includes the physical topology reference solution as before. Additionally, it includes
a solution where only the shortest paths are used.

Figure 5.21a shows the comparison of these combinations during the first 20 000 of between
18 000 and 700 000 evaluations. The difference is even larger than for the virtual topology-based
approaches, because all approaches that do not use the hybrid initialization evaluate excessively
complex network configurations over the entirety of their runtime. Some of the SLGM and
SLCM runs do not reach 20 000 evaluations, which is visible in the top right, where their graphs
end prematurely.

The average values of the SLCM, SLGM and LHM mutation operators show little difference
in the early stages and initially the basic version achieves better cost values as shown in the first
magnification of Figure 5.21a. The second magnified area shows that this also holds true when
comparing H-Init against combinations of these operators with the same hybrid initialization.
The RDRI approach is successful in providing initial candidates, which show better cost values
than the randomly initialized ones, but it is still insufficient compared to the hybrid initialization.

Figure 5.21b shows that the distribution-based mutation operators, SLGM and LHM, ulti-
mately deliver better cost values than the basic version, but they are still far from the shortest
path reference solution. EBXO is once more successful in accelerating the cost value improve-
ment beyond the capabilities of the mutation operators but is also insufficient to reach relevant
cost value ranges on its own.

Figure 5.21c shows that the last improvement in solution quality happens immediately before
the time limit is reached, which indicates that the time limit is much too low for these approaches
and the complexity of the solution candidates. This is especially evident in Figure 5.21d, where
the inset shows that only about 25 evaluations per second could be performed. Only the combi-
nations using the hybrid initialization, which are H-Init, E/L and E/L/C show evaluation rates
comparable to the virtual topology approaches.

While they manage to obtain cost values below the shortest path reference, as shown in the
inset of Figure 5.21b, the improvement in cost value is less than for the virtual topology-based
approaches.
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Figure 5.21: Evaluation results for combinations of the RCPE encoding

Demand-Diverse Compact Path Enumeration Encoding

For the DCPE encoding we use the exact same parameters for the path enumeration and for all
of the individual operators and their combinations as for the RCPE encoding with the same ra-
tionale. Figure 5.22a shows that the randomly initialized values start at slightly higher costs than
for RCPE, which is caused by the fact that RCPE’s fallback routing mode implicitly improves
grooming by rerouting demands from non-compliant routes onto existing links. The drawback
of this mode is clearly visible in Figure 5.22d, where the randomly initialized versions of DCPE
show a drastically higher evaluation performance as compared to the inset in Figure 5.21d, as
DCPE only performs table lookups for all demands, where RCPE needs to run a QoS-aware
routing algorithm for each non-compliant route.

Generally, the results and relative performance of the different combination versions is
very similar to the results for RCPE. EBXO seems to be slightly more effective in the early
stages and the mutation operators present larger differences in the late cost values, which may
be attributable to the slightly increased locality and heritability of DCPE compared to RCPE.
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Figure 5.22: Evaluation results for combinations of the DCPE encoding

Somewhat surprisingly, E/L and E/L/C show no clear improvement over the more basic H-Init
version, as shown in the inset in Figure 5.22b.

Figure 5.22c shows wide distributions of improvement increments over time, which can
be attributed to the fact that the increased combinatorial complexity reduces the chances of
improvement per mutation. For the randomly initialized versions, the more complex SLGM
and LHM mutation operators seem to be more effective, as they deliver improvements up until
the time limit and result in better final cost values than the others, despite a virtually identical
evaluation rate as shown in Figure 5.22d.

Genetic Algorithm and Simulated Annealing Comparison
The previous sections have shown that there are several combinations which can considerably
improve the performance of the basic approaches. However, not all were able to compete with
the shortest path reference solution in the given time frame of 1000 seconds. Figure 5.23 shows
the final cost values for a selection of the most successful combinations of components for
each encoding and compares them to the results obtained from the two Simulated Annealing



154 Chapter 5. Evaluation

SVT
SPR

SVTR
SPR

VTB
Basic

VTB
L/R/C

VTCS
Basic

VTCS
E/C/C

VTCS
V/V

RCPE
E/L/C

RCPE
E/L

DCPE
E/L/C

DCPE
E/L

300

310

320

330
Shortest Path Solution

C
os

tf
un

ct
io

n
va

lu
e

Figure 5.23: Final cost values for selected GA and Simulated Annealing methods

approaches, which have also been initialized with the physical topology solution to provide a
level comparison. The best overall cost value found was 298, which was obtained by VTB in
the L/R and L/R/C combinations, as well as by VTCS in the E/V and V/V combinations. The
path enumeration-based encodings already suffer from the combination of the short time limit
together with the complex problem structure, such that their cost values are much worse than
for the virtual topology-based encodings, especially for DCPE, which has an even larger state
space than RCPE. When only basic operators are used, VTCS shows slightly better results than
the more simple VTB encoding.

When comparing them to the Simulated Annealing versions, most GA approaches result in
substantially better cost function values. In fact, the median solution value of both Simulated
Annealing versions is exactly the initial shortest path reference solution at a value of 336, such
that for these cases no improvements were made. Surprisingly, both versions result in the same
distribution of values, where the best result obtained was a value of 332, for exactly one run for
each. The more complex SVTR method with its faster permutation scheme and passive routing
optimization shows no advantage over the basic SVT.
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Figure 5.24: Cost function values over evaluations for basic metaheuristic approaches
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Figure 5.25: Cost function values over evaluations for advanced metaheuristic approaches

However, this raises the question if the GA approaches are only superior due to their parallel
execution which allows a higher number of candidate evaluations within the time limit. To
investigate this, Figure 5.24 shows the cost improvement over the number of evaluations for
all basic methods, such that effects of the evaluation rate and time limit are largely irrelevant.
Note, that the ordinate is not only log-scaled, but also transposed such that the lowest value
shown is 400. The initial 500 evaluations are required by the GA to create and evolve its initial
population, such that there are no earlier values available, while the Simulated Annealing has
already improved upon its initial value. The figure shows average values with the shaded areas
representing the minimum and maximum deviation of all recorded runs.

Within the first 1000 evaluations, the deviation of SVTR Rnd, SVT Rnd and VTCS are
very large, but shrink significantly after that. However, this also marks the point from which the
Simulated Annealing approaches do not improve in cost value anymore until termination. Inter-
estingly, for the random initialization, SVTR does have a slight advantage over SVT. Despite
the continuous improvement obtained by the RCPE and DCPE methods, their high complexity
prevents them from competing with the Simulated Annealing methods. Basic VTCS and VTB
both eventually outperform SVTR Rnd and SVT Rnd, but VTB needs almost five times as many
iterations as VTCS to achieve this.

Figure 5.25 shows a similar comparison of the combined approaches which are all initialized
with the shortest path reference solution. As has already been shown, SVT SPR and SVTR
SPR only slightly improve upon the initial solution, but interestingly, this improvement happens
within the first 20 evaluations. The routing-based GA approaches require a very large number
of iterations, before they can significantly improve upon the initial shortest path solution. In the
early stages, VTCS with V/V provides the best cost values, before eventually VTB using the
L/R combination obtains better average results after about 100 000 evaluations.

5.4.3 Summary of Results
The evaluation has shown that the developed encodings, methods, and operators are effective in
either improving the rate of convergence or the final cost value in most of the cases. The largest
influence in all cases was observable for the hybrid initialization, which saved about 11 000
evaluations for the virtual topology-based approaches and allowed the path enumeration-based
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ones to outperform the Simulated Annealing and shortest path reference approaches. When
comparing the results to the france scenario, it is important to note that the runtime limit was
shortened from 12 hours to the present 1000 seconds. At the same time the present problem’s
complexity is much higher, due to an increased number of links and therefore the routing
approaches did not stand much of a chance.

Regardless, they were still able to achieve improvements upon the shortest path solution
using select combinations of the developed components. However, none of them were able
to compete with the virtual topology-based methods. VTCS was most successful in quickly
improving upon the objective function early on, while VTB, which profited the most of the
problem-specific adaptions, gave the best average and most consistent results in the L/R/C
combination. Both encodings were able to achieve a reduction of 10 % in cost function value
relative to the shortest path reference, which corresponds to an according reduction in hardware.
The best solution found requires 298 TXPs and 81 line cards compared to 336 TXPs and 91
line cards for the reference solution, while fulfilling all QoS requirements. This means that
the suggested approaches can achieve significant improvements over the legacy method even
within a very short time frame and furthermore, outperform established metaheuristics such as
Simulated Annealing.

5.5 Scalability towards Large Networks

The previous section has demonstrated that the developed framework and its GA-based compo-
nents are able to solve a realistic, full-featured multi-layer problem in a constrained time frame.
Although the example presented by the CL–DC topology is already of high complexity, the basic
graph itself features a relatively small number of nodes, which is slightly below the average of
the transport networks presented in Section 2.2.2 and certainly below what can be expected from
future developments as outlined in Section 1.5.

While the path enumeration-based approaches had shown superior solution quality in the
france scenario, they had already approached the limits of their scalability in in the CL–DC sce-
nario. The virtual topology-based encodings however had mostly achieved their final results after
about five minutes, suggesting that larger problems may still be solvable by these approaches.
In order to test the limits of their scalability, we have developed a very large topology, based
on the same data as the CL–DC topology, but with a drastically increased number of nodes and
physical links.

5.5.1 Scenario Parameters
5.5.1.1 Network Topology
We designed a network topology, we refer to as CL–Max, as a scalability benchmark. With its
149 nodes and 206 links it is larger than any of the other layer-3 topologies given in Section 2.2.2.
The locations, as well as the connecting fiber infrastructure are based on the same public data set
as the CL–DC, such that the 19 data center locations are included in CL–Max as well. Additional
information on how this topology was derived from the data set, can be found in Section B.3
of the appendix. The topology is shown in Figure 5.26 and relevant parameters are given in
Table 5.14, where fractional values are rounded.

In the table are also three intermediate versions of this network, which we have obtained by
limiting our TXP model as follows. The small version contains all virtual links, which can be
created using only the 200 and 250 Gbit/s modes, while the medium version additionally uses
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Figure 5.26: Physical topology of the CL–Max network

Table 5.14: Parameters of the CL–Max topology

Topology Nodes Links Density Degree Closeness Betweenness
Max. Avg. Max. Avg. Max. Avg.

Physical

149

206 0.0187 8 2.77 0.182 0.129 7061.9 1037.7
Small 1755 0.159 42 23.6 0.427 0.316 5110 319
Medium 4725 0.429 102 63.4 0.722 0.559 2995 110
Large 9345 0.848 148 125 1 0.879 313 22.6
Full 11026 1 148 148 1 1 0 0

the 150 Gbit/s mode and the large topology also includes the 100 Gbit/s mode. The different
versions provide a more gradual approach towards the full topology and furthermore highlight
the increase in topological density.

With a dauntingly large number of 11 026 bidirectional links in the full virtual topology, the
computational complexity of the state space suggests that it is most likely not only intractable
for most optimization approaches, but also that finding an acceptable local optimum may prove
difficult even for metaheuristic approaches.

5.5.1.2 Physical Parameters
The physical parameters regarding latency per distance, availability per distance and hardware
are identical to the ones given in Section 5.4.1.2. Once more, the proposed flexrate device is
able to realize a circuit on the longest of all shortest paths, permitting a full graph as the virtual
topology. Table 5.15 shows the same data rate and reach values, but the connection ratios are
updated for CL–Max. Due to the reduced length of the physical links, caused by lower average
node distances compared to CL–DC, the overwhelming majority can now utilize the fastest
transmission mode. This also means that virtual links between nodes that are far apart from
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each other now need to traverse more fiber links with small detours. This increase in virtual link
length therefore also increases the share for the slowest mode.

Table 5.15: Flexrate modes and feasible circuits for CL–Max

Data Rate in Gbit/s 50 100 150 200 250
Transparent Reach in km 8000 4000 2000 1000 500

Active for % of Virt. Links 15.3 41.9 26.9 10.0 5.9
Active for % of Phy. Links – – 1.5 5.8 92.7

5.5.1.3 Traffic Demands
We have generated a traffic demand matrix following the same procedure as outlined in Sec-
tion 5.4.1.3, based on the same Cisco, DISCUS and population data. We also use the same
three QoS-classes, i. e., a latency class with a constraint of 10 ms, an availability class with
a constraint of 0.9 and a best-effort class. For the present network, the generation resulted in
47 094 unidirectional traffic demands, where for each demand there exists a demand in reverse
direction of non-symmetrical data rate. Splitting of demands to ease the routing process is not
allowed. The sum of all traffic demands amounts to 44.8 Tbit/s, where best-effort traffic again
occupies the largest share with 57.9 %, followed by the latency class traffic with 22.9 % and
19.2 % remaining for the availability class. More details can be found in Section B.4 of the
appendix.

5.5.1.4 Optimization Goal
Since the physical parameters and traffic demands follow the same parameters as for the CL–DC
network, we use the same objective function for CL–Max, i. e., FQoS defined in Equation (5.2).
Due to the drastic increase in size of most aspects, the values can be expected to be much higher
than for the previous network. While the sums of the traffic demand capacities are comparable,
there are also more nodes that require connectivity.

5.5.1.5 Algorithmic Parameters
For each of the virtual topology encodings, we use one of the combinations of components which
has turned out to be the most successful in the analysis based on CL–DC. We use a time limit of
3 hours given the drastic increase in complexity and aggressively tune the parameters towards
quick convergence. As reference method, we use the shortest path solution based on the physical
topology and for Simulated Annealing, we will also use this as the initial solution. Furthermore,
we will use the same cooling schedule, but we only use the faster SVTR version. For the GA-
based methods, we reduce the population size to a mere 10 and the offspring per generation to
20 individuals. Consequently, we reduce the number of contenders for the tournament-based
parent and survivor selection to 3.

For VTB we do not make use of the hybrid initialization mixing APTI and ASTI, but instead
we rely solely on APTI, as it is more computationally efficient. We will also deactivate the repair
function to further focus the available runtime on developing new individuals as quickly as
possible. For VTCS there is inherently no performance impact from a spanning tree initialization
and the cost of using APTI, such that the hybrid initialization is used for this approach.
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Figure 5.27: Average generation and evaluation time for different transparent reaches

Furthermore, we also change aspects of ancillary algorithmic components in the framework
for both metaheuristics providing a problem relaxation in order to speed up the computation,
which will be explained in the following section.

5.5.2 Evaluation
In order to allow for any improvement over the reference solution, any iterative optimization
approach needs to explore as many solution candidates as possible. There are three important
factors limiting scalability. The exponential increase in search space size for increasing problem
sizes, as explored in Section 4.5.2.1, means that the number of evaluations required for a mean-
ingful improvement increases accordingly. The second factor is the performance of the genetic
encodings and operators, as evaluated in the last section. The final factor is the performance of
the overall framework.

To investigate the limits of the framework, we artificially scaled the maximum transparent
reach between 800 km and 2200 km in increments of 200, which explores the topology expansion
between the small and medium virtual topologies. We randomly generated individuals based on
the VTB encoding using the APTI initialization and we measured the time to create and evaluate
an individual using different ancillary algorithms, repeating the process for each combination
100 times. Figure 5.27 shows the average times obtained. For traffic routing, “S” denotes a
standard shortest path algorithm, while “Q” is a QoS-aware algorithm. “I” represents ICR
without WA and “R” is a full RWA, such that we obtain the four combinations “S/I”, “S/R”,
“Q/I” and “Q/R”.

The inset shows that the traffic routing is mostly the dominant contributor to the overall
time due to the quadratic worst case scaling behavior of routing algorithms. QoS-aware routing
requires almost twice the time of the shortest path routing, because it iteratively needs to consider
more alternative path candidates whenever the initial ones fail to meet the QoS requirements.
However, beyond 1400 km RWA becomes the dominant share and the algorithm’s performance
degrades so quickly, that it becomes prohibitive to solving larger problem instances. Since we are
interested in determining, when the combinatorial complexity becomes too large for the topology
encodings, we have decided to use ICR without WA in the remainder of this evaluation. This
effectively means disregarding the wavelength continuity constraint, which reduces the realism
of the scenario. However, we are confident that a more efficient RWA implementation could
easily replace the present component and prevent this algorithm from becoming the performance
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Figure 5.28: Final cost values for selected GA and Simulated Annealing methods

bottleneck early on. Note, that the actual VTB decoding procedure is so efficient that its runtime
is dwarfed1 by all other time shares.

Moving on to the actual configuration optimization, our shortest path reference approach
resulted in a cost function value of 644, which is represented as the red line “SP Ref” in
Figure 5.28. Since the physical links are included in all other scenarios, we will retain this as a
reference for all of the four network problems from small2 to full. At this point, the Simulated
Annealing-based SVTR is unable to provide any improvement beyond its initial value of 644.

Both, the VTB and VTCS encodings were able to achieve significant improvements, with
VTCS consistently showing better median cost value than the simple VTB encoding, which is
in line with the observation from the previous section, that VTCS is more efficient during the
initial stages of the runtime. For the small topology, VTCS achieved an average improvement of
8.7 %, whereas VTB could only achieve 6.55 % improvement. This corresponds to an average
reduction of at least 40 TXPs and 12 line cards. However, as the network density increases from
the small to the full topology, the reduction decreases down to an average 2.89 % for VTCS and
1.96 % for VTB, finally approaching the limits of scalability due to the increased search space.

5.5.3 Summary of Results
Increasing the number of nodes while considering the capabilities of flexrate devices, rapidly
increases the combinatorial complexity of multi-layer networking problems beyond the point,
where significant cost savings can be achieved within small time frames. Our relatively simple
RWA implementation became the performance bottleneck when increasing the number of links
to upwards of 3000, such that we decided to discard the wavelength continuity constraint in order
to focus on effects on our GA approaches for the largest of topologies. Under these circumstances
we found that for the small topology with 1755 links, the proposed GA-based algorithms were
able to achieve a reduction in cost value between 5.28 and 10.2 %. These values diminished

1The VTB decoding procedure requires so little time, that it is not even visible in the plot in Figure 5.27.
2While 1.5 % of the physical links are normally infeasible in the small virtual topology, we added an exception

applying to the purely physical links to prevent a split into unconnected eastern and western networks, because the
few long links in CL–Max happen to be the ones exclusively connecting the east to the west.
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to between 0.93 and 3.73 % for the full topology with 11 026 links. Given sufficiently potent
ancillary algorithms, our approach is therefore efficient even for very large networks, given a
runtime of several hours.

5.6 Discussion

Summarizing the results of the previous sections, it can be stated that the developed approaches
definitely show potential for application in multi-layer problems as they show considerable
improvements even compared to other metaheuristics. However, the presented scenarios are
limited in scope and a generalized statement regarding arbitrary problems is difficult at best.

5.6.1 Scenario Aspects
While the evaluation has addressed combinatorial complexity as the primary influence in network
optimization, there are numerous other aspects which can change the nature of the problem and
impact solubility. The traffic distribution and magnitude exert a certain influence on the routing
algorithms, since larger demands can require routing more circuits and thereby add to the overall
complexity. The effect is lessened in our approach by including path caching, but once the limits
of fiber capacity are approached, the performance will degrade substantially. However, it can
be argued that optimizing such a network without any spare fiber capacity is not a realistic use
case.

The composition and number of QoS classes also has an influence, which is especially large
for the DCPE encoding, since it immediately increases the input space. A very high number of
classes may therefore be prohibitive to the use of DCPE. The other approaches are less sensitive
to the number of classes, but the underlying latency and availability models may increase the
runtime of auxiliary algorithms such as QoS-aware routing approaches. If, e. g., node delay
values are within similar numeric ranges as transmissions delays and even vary non-uniformly
in the same network, path searches increase in complexity, because delay accumulation may
not scale proportional to the distance and number of hops. In extreme cases, this may even lead
to situations, where the VTCS encoding may focus on problematic configurations, because its
suggested order relation is oblivious to the varying QoS figures and may misguide link selection.

More complex hardware models including choices between heterogeneous devices may not
be efficiently integratable into the present approach. E. g., including TXPs of differing capacity,
cost and rack space requirements can become problematic when using many low-rate devices
is much cheaper than a single piece of equipment, since a local auxiliary algorithm may not
be able to deterministically find a hardware composition, that is optimal for the network, since
many low-rate devices occupy far more spectrum. Since these local choices can have a large
impact, they would have to be included in the encoding such that this impact can be actively
controlled by the optimization.

5.6.2 Algorithmic Parameter Dependence
A general problem for many metaheuristic frameworks is their large number of parameters and
the difficulty of finding meaningful sets of values for them. For any GA the population size,
number of offspring per generation and termination condition need to be determined relative to
the problem. Long and complex chromosomes generally require larger populations to ensure
sufficient diversity to explore the search space. However, it is generally impossible to determine
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what the best set of parameter values is for a given problem, other than through experimental
exploration.

We chose large populations and numbers of offspring on the order of thousands or higher
whenever runtime was not an issue and solution quality was the objective. For short runtimes we
had to limit both, such that a reasonable number of generations could emerge within the given
time limit. Based on tests, varying the parameters between those for the france, CL–DC and
CL–Max problems, the solution quality was gradually affected, such that even for less-than-ideal
parameter sets, an improvement beyond the reference solution was possible in most cases.

For mutation operators, small step sizes generally resulted in better results than large step
sizes, most likely due to the limited locality of the encodings in the multi-layer context, which
warrants a fine-granular exploration. Drastically increasing step sizes, especially beyond half
of a gene’s domain, has resulted in degraded performance in all previous tests. For recombi-
nation, however, the choice is more difficult. While preserving larger subsequences by using
few crossover points has generally led to better results, this can also be taken to the extreme by
choosing almost all genes from a single parent and applying them to both offspring. Being too
aggressive at this point results in a very high probability for premature convergence.

Overall, we expect the chosen parameters to work reasonably well for similar problems, but
it is possible that combinations of scenarios and genetic operators with specific parameters exist,
that can result in different relative operator performance, than what has been presented in this
evaluation.

5.6.3 Limits of Applicability

The performance of the presented algorithms and approaches largely hinges on the combinatorial
complexity of the problem. Even relatively small networks can exhibit prohibitive levels of
complexity in the presence of flexrate devices and complex QoS models. While the evaluation
has shown that networks of over 10 000 usable links still have some potential to be optimized,
the time frame needed to obtain a reasonably good result has also significantly increased. Such
detailed large-scale scenarios are therefore only addressable in long-term planning tasks, where
at least some level of parameter tuning and ample runtime are available. When solution quality
is required and a sufficient number of paths can be generated, the RCPE or DCPE encodings
can be expected to deliver the best results.

Given a sufficiently small problem, either through a limited level of detail or a limited
network complexity, a configuration can be optimized in relatively short time frames of about 15
minutes, which is within the realm of network operation tasks, which also makes this approach
viable for network reconfiguration. However, a real-world network might require a much finer
level of detail or must be augmented by a more problem-specific framework, which deals with its
specific idiosyncrasies. Path enumeration-based encodings are not readily applicable to typical
problem scenarios.

5.6.4 Shortfalls and Extensions

For the present framework implementation, the factors limiting scalability are the QoS-aware
routing algorithm and the RWA algorithm. Both are based on not overly efficient library imple-
mentations of a simple k-shortest path algorithm. Replacing these by more efficient algorithms,
augmented by caching and lookup tables is expected to significantly improve the scalability of
the overall framework, although not by several orders of magnitude.
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Scaling the approach to even larger problems, the framework could also be extended from a
multi-threaded parallelization approach to a multi-computer approach, such that it can be run on
a large cluster. There are several approaches, how different populations can be maintained and
managed in parallel to further enhance the performance [69, pp. 95–97].

5.6.5 Applicability to other Problems
The present evaluation and framework design are geared towards (re)configuration of multi-layer
networks using a packet-routed over a circuit-switched technology, but most of the basic aspects
of the encodings and operators are in fact applicable to other problems in networking as well.
E. g., 5G Cloud-RAN systems [35] or novel reconfigurable microwave access networks [179] are
also a good fit for the presented framework, since they regularly need to adapt their topologies
and routing to the changing conditions and demands. Similarly, reconfigurable data centers [83]
need to manage their resources and interconnects, which could also present a use case for our
approaches.

The overlay graph structure present in our approaches can also be entirely removed from
computer networking and applied to other areas, where an interconnection topology and traffic
flows are important. This may include tasks as diverse as dynamic road traffic routing, planning
extensions to railway networks, or optimizing logistics.
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Chapter Summary
The objective of this chapter is the evaluation of the integrated multi-layer network configuration
approaches along with their GA components. It contains explanations regarding the methodology
of the evaluation and the design goals for the scenarios employed in the performance analysis.
Furthermore, the reference methods, which represent a basic legacy approach and Simulated
Annealing as a competitive metaheuristic, are motivated and their relevance for the present
endeavor is explained.

We use four evaluation scenarios, each serving a different purpose. The first is a basic
function validation on a small-scale model topology. It shows the ability of the developed
approaches to exploit simple concepts such as finding shortest paths, performing grooming and
providing QoS-compliant routing. It also highlights important design-inherent tradeoffs.

The second scenario is a basic reference network design problem from the SNDlib database,
for which a lower bound to the optimal solution is known. Therefore, we can determine whether
the proposed encodings can represent the solution space reasonably well, such that their solutions
can compete with those of established approaches. Due to the focus on quality rather than speed,
the algorithms were provided with a 12-hour runtime. All metaheuristics consistently outperform
the legacy approach. The GA-based methods are either on par with the Simulated Annealing
methods or yield even better solutions.

The third scenario presents a realistic network with QoS-enabled traffic, where the usage of
flexrate devices increases the combinatorial complexity significantly. This evaluation provides
details on the performance of different GA components and enhanced versions. Results show
that our adaptions are able to considerably improve solution quality, especially when short
runtimes on the order of 15 minutes are mandatory. The enhanced versions not only improve
upon the legacy approach’s solution by 5 % to 11 %, but they also outperform the reference
metaheuristic, which only achieves a 1.2 % improvement at best.

The final scenario demonstrates scalability and shows where tradeoffs emerge for problems
of increasing complexity. We scale a network topology of 149 nodes to between 1755 and
11 026 potential links, which is more complex than any of the investigated reference networks,
and combine it with over 20 000 simultaneous traffic demands. While this is by all accounts
a largely intractable problem, our topology-based GA approaches were still able to achieve
improvements compared to the legacy approaches in a 3 hour time frame when relaxing the
wavelength continuity constraint.

Finally, we presented a discussion about the limits of the evaluation and the algorithms’
scalability and applicability to other problems.



6 Conclusion and Outlook

The topic of this monograph was motivated by observing four current trends in networking and
their implications for network operation and planning as outlined in Chapter 1. First, emerg-
ing novel applications and services around 5G and the tactile internet will more often require
QoS guarantees. Second, businesses increasingly rely on cloud-based services. Given the first
two observations, SLA-based services will be of growing importance to NSPs and ISPs. Third,
new degrees of flexibility in multi-layered transport networks become available through novel
hardware and control planes. Fourth, NSPs and ISPs follow the global trend of virtualization,
considering more flexible and short-term deployments of services and capacity. The implica-
tion of the latter two observations is that complexity in network operation and planning tasks
increases, while lead times decrease.

We have explored the details of multi-layer networks, including legacy and new technolo-
gies, as well as common networking problems in Chapter 2. It was established, that creating a
configuration for such a network, i. e., determining the required NEs and their configurations
and interconnections, is a complex problem consisting of solving VTD, TDR, RWA and their de-
pendencies. Further investigations showed, that known transport networks have a relatively low
density, which might substantially increase in the near future, especially due to the adoption of
flexrate TXPs, which can lead to a significant increase in complexity for each of these subprob-
lems. Dealing with this increase therefore requires scalable algorithms to solve the multi-layer
configuration problem considering QoS and flexrate devices.

In Chapter 3 we have analyzed the theoretical properties of topology design and network
routing optimization problems and explored possible solution methods and their applicability to
these problems. We have reasoned that exact algorithms such as mathematical optimization are
not sufficiently scalable, such that metaheuristic approaches are the most promising candidates.
The principles and components of GAs, as well as Simulated Annealing were introduced, since
the latter is applicable as a reference method. The chapter concludes by providing an overview
on related research regarding network optimization approaches, in which we find that there
are several works dealing with multi-layer networks using metaheuristics, but none of them
addresses the present combination of factors including QoS and flexrate devices.

We chose GAs as our approach, since they provide a flexible and inherently parallel frame-
work. Based on the prior problem analysis from Chapter 2, we determined that the complexity
of a holistic optimization including all parameters from VTD, TDR and RWA does not scale to
larger networks and therefore we chose to apply optimization only to a single subproblem and
derive the remaining configuration deterministically from the results of the optimization as a
more viable alternative. Research by Idzikowski et al. [129] suggests, that optimizing the upper
layer yields a larger impact on resource requirements, such that we focus on VTD and TDR.

We have developed two genetic encodings for each of these subproblems, which are de-
scribed in detail within Chapter 4. VTB uses a simple and efficient binary encoding of virtual
links, but it is also capable of representing undesirable solutions, such as unconnected topologies.
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The more advanced VTCS avoids this by creating topology solutions around spanning trees of
links connecting to nodes of high betweenness centrality within the graph formed by the phys-
ical layer. The TDR approaches both use a path enumeration encoding. RCPE encodes paths
between all node pairs, such that each gene can take an index value corresponding to a specific
path. After establishing these paths, the approach checks all demands for QoS compliance and
selectively reroutes demands of violated constraints onto compliant paths using a shortest path
algorithm on the topology implied by the established paths. DCPE uses path genes for each
demand, thereby gaining the advantage of grooming all traffic, while incurring the drawback of
an increased search space.

Furthermore, we have developed several techniques and genetic operators to enhance the
performance of the developed encodings. We have implemented a system of advance checks
and repair functions to eliminate undesirable solutions for VTB, designed encoding-specific
mutation and crossover operators for VTCS, as well as problem-specific initialization and muta-
tion techniques for RCPE and DCPE. We have integrated these encodings and operators into a
larger multi-threaded solution framework, combining it with ancillary heuristics to derive two
integrated solution approaches for multi-layer network configuration.

We have evaluated the proposed genetic approaches and the surrounding framework regard-
ing its properties in four different stages. An initial basic function test used small-scale problems,
each engineered to demonstrate a different effect, where all approaches behaved exactly as ex-
pected. The second stage was built around a known reference problem from the SNDlib database,
for which a dual bound is known. A regular shortest path algorithm was used to determine an
upper bound, such that it can be tested if the encodings are able achieve meaningful results
between these bounds. Furthermore, results from the Simulated Annealing approaches were also
given as a reference. During the 12-hour runtime all encodings went below the upper bound
and the topology-based approaches were on par with the more advanced Simulated Annealing
method, while the routing-based approaches obtained even better results.

In the third stage we have tested the performance using a strict time limit of only 1000
seconds or roughly 15 minutes for a smaller, but more complex scenario including QoS traffic
and flexrate devices. We had consciously chosen the time limit to be very low in order to
investigate if the proposed acceleration techniques and operators could lead to a meaningful
improvement even for shorter network operation time scales. The increased problem complexity
allowed the simpler virtual topology approaches to outperform the RCPE and DCPE. In fact, the
routing approaches were unable to compete with the shortest path reference, unless our APTI
initialization scheme was used. Similarly, the Simulated Annealing approaches could only beat
the reference solution, when they used it as a starting point and even then, only little improvement
was possible, while VTB and VTCS were able to reduce the number of required TXPs by up to
10 %. For all algorithms, a good starting solution/population was the most important influence.
We also showed that the superior performance of the GA methods is not solely the result of
parallelism, by showing the improvement over the number of evaluations for each algorithm.

The fourth and final stage used a large, realistic network including all constraints and fea-
turing more nodes and links than any of the transport networks investigated in Chapter 2. The
objective was to highlight the limits of scalability of our present implementation. We found
that our framework is primarily limited due to the ancillary algorithms, such that we applied a
number of relaxations to them, in order to see how long the GA approach could improve upon
the reference solution. While the problems quickly became intractable to the routing approaches,
the VTB and VTCS encodings augmented by our customized operators were able to achieve
improvements up to the maximum network size.
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Finding good parameters is still an issue, but our investigations have shown that the range
of reasonably good parameters is relatively wide and that the whole framework is surprisingly
robust against minor deviations. However, all configuration should be made with the problem
complexity, goal and time frame in mind. Short time frames only allow for limited improvement
and necessitate a good initialization at the risk of missing global optima by a wide margin. Using
the topology-based approaches is also helpful in these situations, since their lower combinatorial
complexity can lead to larger improvements more quickly. If solution quality is paramount and
time irrelevant, routing approaches and large populations, number of offspring and time frames
should be considered.

However, while the evaluation within a monograph can only cover so much, we still feel
that our scenarios and choices are diverse, yet sufficiently representative for common cases
to state that we have successfully demonstrated functionality, quality and scalability of our
proposed encodings, operator approaches and their surrounding framework. They were able to
compete with an established metaheuristic like Simulated Annealing and even surpass its results
considerably in complex and realistic multi-layer network scenarios.

Regardless, there are still many areas in which the existing methods could be improved
even further. The most limiting aspect are certainly the traffic routing and RWA algorithms we
have used. More memory-efficient path storage, more intelligent caching and generally faster
algorithms, would certainly improve scalability and solution quality through an elevated evalua-
tion rate. Especially highly scalable routing algorithms, which allow to offload calculations to a
preprocessing step are an interesting aspect, since this basic path data can be made available to
genetic encodings for optimization as well.

Another interesting research question is concerned with the limits of parallel execution.
Our implementation is not designed to run distributed on a cluster system, but it can easily be
extended in this way. This is especially interesting for a branch of genetic algorithms, that run
multiple populations in parallel and exchange individuals after a certain number of generations,
which can be more efficient than managing a single large population. Another interesting aspect
to consider are self-adaptive operators, which can vary their parameters according to the current
results. While our EBXO and VSXO approaches scale the number of genes to be exchanged
according to cost difference, this is a rather limited approach. More advanced operators might
consider the remaining time, present population diversity or time since last improvement to scale
their aggressiveness.

Finally, while our integrated approaches are designed with multi-layer networks in mind,
the encodings and operators are in essence applicable to any scenario that can be expressed
as a graph problem, where either connections or paths are subject to optimization. This can
include classical networking problems from local networks to radio networks, but it also applies
to transportation, logistics, hardware, and mechanical design, among many other potential fields,
to which our GA-based approaches can be applied.
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A Further Details on Multi-Layer
Networks

A.1 Aspects of Layer Separation in Multi-Layer Networks

The multi-layer structure of transport networks has several reasons and implications regarding
functional, technological, and administrative aspects. From a functional perspective, a layered
architecture allows for the combination of the advantages of different communication paradigms.
E. g.,connection-oriented and connection-less approaches or routed and switched forwarding do-
mains can be employed simultaneously as needed on the same infrastructure. This also includes
layers as a means of functional adaption. E. g., allowing many low-rate client traffic flows to be
multiplexed into larger flows thereby simplifying the number of forwarding decisions. Another
example are legacy services, which can be emulated as an overlay on top of the actual network
as a means of providing a migration path to new technology.

When the technologies are vastly different, a layered architecture is typically less complex
in terms of individual NEs. Specialized NEs on each layer can focus on their own technological
requirements, rather than implement all possible peculiarities. E. g., when packet and optical
technologies are integrated into the same NE, then this device needs to simultaneously manage
aspects of optical transmission like wavelengths and amplifier settings (cf. Section 2.1.2.2) as
well as aspects of packet transmission like buffering strategies and packet classification.

Each of these technologies require their own set of specific hardware components and soft-
ware functions for forwarding, control and management, such that NSPs employ different experts
to work on their respective layers, often leading to an administrative split as well. While this
separate mode of operation leads to a reduced complexity within the layers, it also has draw-
backs for the network as a whole. Making changes that affect the whole system is cumbersome
as it requires sequential changes layer by layer where the individual heterogeneous systems are
unaware of implications beyond their interconnection points. This is especially relevant when
considering service provisioning times, as the human factor can often significantly delay a timely
deployment.

Alternatively, the layers can share a common or hierarchically overarching multi-layer con-
trol and/or management plane [148] which collects information of the NEs on all layers of the
network and can therefore establish a global network state. With such an approach, changes can
be effectuated much more rapidly and safely since cross-layer effects are inherently considered.
Furthermore, a combination of this comprehensive perspective and an SDN-based control plane
enable holistic and optimized operation and planning where services can be controlled on a
fine-grained level and margins can be tailored to a precise fit [135].
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A.2 Multi-Layer Architecture Examples

Several multi-layer architectures for transport networks have been proposed and are in use with
NSPs and ISPs. As stated in Section 2.1.1.1, most client traffic is packet-based, such that the top-
most layer is implemented using a packet-based technology, while the point-to-point transport
is handled by an optical layer providing high data rates and long-range connectivity.

The optical layer is typically based on WDM-technologies [90] which have largely replaced
SONET and Synchronous Digital Hierarchy (SDH) [95] in core networks [63, ch. 13.1.4], due to
higher capacities per fiber and better adaption to the now dominating packet- and especially IP-
based client services [201]. While Course WDM (CWDM) is a less costly technology compared
to DWDM, it offers less capacity per physical link [92, 93] and does not provide long-reach
interfaces for datarates beyond 10 Gbps [30, 94], making it unsuitable for geographically large
transport networks. Due to these considerations, we limit the scope to architectures which are
designed with a focus on packet traffic and DWDM as the optical transmission technology.

IPoDWDM is an architecture where IP traffic routing is directly coupled to DWDM-ports
on routers. This allows for a reduced number of hardware devices, since no additional and poten-
tially expensive adaption technologies and layers are required. On the other hand, the complexity
and cost of the router components is increased, since a tight integration of both technologies is
required in a single type of NE. While this allows for a fine-grained handling of packet traffic,
it also means that control, forwarding decisions and Traffic Engineering (TE) tasks become
more complex as well. This becomes apparent for leased lines, ATM and especially TDM client
services, which cannot be directly mapped to DWDM and therefore need emulation over the
IP-layer adding transmission overhead to these services. Such an emulation of a point-to-point
abstraction in a packet-switched network is called pseudowire and can, e. g., be implemented
using the Pseudo Wire Emulation Edge-to-Edge (PWE3) architecture [212]. While IPoDWDM
networks can make use of traditional control and management plane protocols such as Gen-
eralized Multi-Protocol Label Switching (GMPLS), some known real-world deployments use
proprietary SDN-controllers to manage NEs on both layers [149].

IP/MPLS [208] over DWDM is a widely deployed architecture that simplifies traffic for-
warding and improves scalability at the expense of adding a new technology. Regular IP nodes
make routing decisions at every hop along the path for every flow, potentially involving repeated
path calculations. In an IP/MPLS network, path computation is done only once by the node, that
receives IP traffic from a client outside of the transport network. The paths, which are identified
by labels and hence called Label-Switched Paths (LSPs), are communicated to all following
nodes on the LSPs and all IP packets to use the respective LSPs, will be prefixed by the ac-
cording labels. This also allows to map multiple IP traffic flows to the same LSP, effectively
aggregating them. Since MPLS is designed to forward layer-3 protocols such as IP just as well
as layer-2 protocols, client services can be transported in a uniform way. With the MPLS Traffic
Engineering (MPLS-TE) extension LSPs and pseudowires can be explicitly set up by a Network
Management System (NMS) via Resource Reservation Protocol - TE (RSVP-TE) [209] which
allows even legacy TDM services to be used.

MPLS-TP over DWDM is the most recent of the presented architectures. MPLS-TP [99, 217]
is a simplified version of MPLS, augmented by functions to improve operations, administration,
and maintenance (OAM or OA&M), as well as resiliency. While the IP/MPLS architecture was
designed to be driven by existing IP control plane protocols and provides a connection-oriented
abstraction for uni-directional flows, the present architecture is designed closer to the optical
layer, such that LSPs can be set up as bidirectional connections. It uses the GMPLS and PWE3
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control planes [220] and is intended to be managed by an external NMS, which may centrally
perform all routing and distribute the labels. The centralized approach makes this architecture
very suitable for use in an SDN-environment.

IP/MPLS over Optical Transport Network (OTN) over DWDM adds an additional layer to
the network. OTN in this architecture refers to the electrical switching part of ITU-T recommen-
dation G.709 [96], which specifies optical and electrical switching and multiplexing capabilities.
It establishes a hierarchy of optical containers which can be embedded into each other in a
TDM-fashion similar to SDH. The electrical containers are synchronized to these optical signals
and designed to accommodate various clients from Ethernet and SDH to different MPLS flavors.
The subcontainers, both electrical and optical can be multiplexed into each other according to
the hierarchy and therefore allow for an efficient adaption of packetized traffic streams to optical
connections. Since electrical containers and optical TDM-containers match each other, virtual
connections of very low jitter can be realized for a variety of client services. The drawback of
this architecture is that additional OTN-switching components are required and need to be man-
aged together with the other layers introducing additional complexity. While OTN systems often
come with their own proprietary NMS systems, they can also be controlled by GMPLS [213,
221, 223].

Many of the protocols in these architectures predate the advent of SDN and therefore were
designed with individual control planes in mind. The development of the ASON architecture [98]
and the related protocols in GMPLS [211] provide a framework allowing NEs to directly interact
with control plane functions on other NEs. This concept was further extended to support an
external system for path computation, the so-called Path Computation Element (PCE) [214].
A stateful and active PCE, which is essentially an SDN-controller, can make use of the traffic
engineering-extensions to Interior Gateway Protocols (IGPs) [210, 215, 225] to gather network
state information and control connection setup by GMPLS via the PCE Communication Protocol
(PCEP) [216].

Alternatively, new protocols like OpenFlow [181] with its optical extensions [182] or proto-
cols using YANG1 models [218] such as Network Configuration Protocol (NETCONF) [219] or
gNMI2 can be utilized. These go beyond high-level control plane interfaces on NEs and allow a
centralized network controller to directly query and instruct NEs regarding their configuration
details and forwarding behavior in a true SDN-architecture [222]. Several multi-layer-capable
SDN-controllers, with and without GMPLS as a mediator, have been developed and deployed
in large-scale testbeds [127] showing the feasibility of the approach for various data plane
architectures.

1RFC 6020 introduces the name as is, while RFC 8328 [224] states it to mean “Yet Another Next Generation”.
2Recursive acronym for “gRPC Remote Procedure Call Network Management Interface”.
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B Networking Problems and Constraints

B.1 Other Networking Problems not explored in this Thesis

Apart from the aforementioned problems, many others exist, which we will not or at least not
explicitly tackle in this monograph. Following is a short overview of such related problems.

The problem of identifying a link cost or link weight system for an entire topology, i. e., a set
of link cost values to be used by a shortest path routing algorithm as explained in Section 2.2.3.1,
is a common problem in networking, since such systems are a typical input to non-SDN control
planes. Finding a single set of cost values such that the resulting routing implicitly fulfills the
required criteria in the face of changing network demands is a complex optimization problem.
Several versions of such problems and solution approaches can be found in Pióro and Medhi [194,
ch. 7].

Several sub-problem types are concerned with the effects of temporal variations in traffic
demands and how to address them directly as part of the optimization process. In so-called multi-
period design problems, the network’s behavior in reaction to evolving traffic demands over
longer periods is considered in the design phase [194, ch. 11.2]. Alternatively, uncertainty re-
garding future traffic behavior may also be explicitly modeled and incorporated into the planning
problem [257].

Multi-hour design problems [194, ch. 11.1] exploit predictable short-term traffic fluctuations
such as traffic peaks in geographical areas of different time zones being shifted from another.
Rather than designing the network for a combined maximum of all areas that never actually
occurs, resources are placed such that they can be re-dedicated for traffic from different areas.
This is especially relevant for reconfiguration problems, which may yield differing results for
different schedules or triggers [282].

Apart from temporal aspects there exist a number of spatial allocation problems as well.
In physical network design there are several versions of the node location problem with and
without link connectivity [194, pp. 212–230], typically constrained by the requirement of con-
necting given geographical areas. Beyond the nodes itself, there are also individual placement
problems which aim to allocate different NEs to node locations, e. g., SDN controllers [284], 3R
regenerators [171], wavelength converters [101], and virtualized network functions [48].

Service orchestration problems include the management of heterogeneous systems such as
hybrid networks or NFV requirements such as data center resources colocated with network
nodes in network planning and operation [131] and virtual network embedding [82] create
isolated customer networks on the dual-layer network infrastructure of the NSP.

For network operation, finding a sequence of transitional steps between two pre-determined
configurations under various timing and resource constraints is also a relevant problem [293],
especially in situations of resource shortage, where make-before-break is not an option. Such
serialization problems are also relevant for spectrum defragmentation representing a specialized
version of network reconfiguration with the goal of reducing stranded spectrum [260].
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Figure B.1: Example graph enumeration of paths between N1 and N4

Finally, in routing various types of grooming problems [167, chs. 13 & 14] exist. Since
traffic demands and circuit granularities rarely match, it becomes a complex task to aggregate
traffic and circuits such that demands meet capacities with the least amount of wastage. This
becomes especially challenging when considering the resource hierarchies of ports, line cards
and shelves, where wasting a little bit of capacity in a circuit can help save on line cards.

B.2 Routing Problem Example

To illustrate the occurrence of the effects mentioned in Section 3.2.3, this section will provide
a small-scale example problem. Since topology design and routing problems for multi-layer
networks share many traits, this example will focus on routing problems due to their more
intuitive relation between search space and index set. The first version of the example only
requires routing of a single traffic demand without any QoS constraints. We consider every link
to require an active circuit, i. e., no bypass circuits are allowed, and will use the number of
required circuits as the measure of resource efficiency. Given the topology in Figure B.1 and
Equation (3.2), we can determine an upper bound for the number of possible paths for a node
pair to be 5, which can easily be enumerated. Since the graph 4N5L is not a full graph there
are only 4 possible routes, denoted as pA to pD, between nodes N1 and N4 as illustrated in the
subfigures.

Furthermore, the example assumes that the entire topology in Figure B.1a is available and
that a single demand exists between N1 and N4 which requires exactly the capacity offered by a
circuit. It may therefore be considered as an uncapacitated ICR problem. A solution using either
path A or path B will then require two circuits in total, while paths C and D each require three
circuits. For a loop-free routing problem the combinatorial choice is therefore between these four
paths. In an indexed set of these paths, each can be represented by a unique integer index to this
set, such that a solution can be described by x∈ {1,2,3,4}. In this case there are 24 permutations
to assign indices to these paths, each leading to different relative gradients and number of basins.
In the following solution enumeration figures, we will indicate local gradients by connecting the
dots of individual neighboring solutions. The index order 〈pA, pC, pB, pD〉, which would assign
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Figure B.2: Search space for simple routing problem (lines indicate local gradients)
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Figure B.3: Search spaces for routing problem of 2 demands (surfaces indicate local gradients)

index 1 to pA, index 2 to pC and so on, would have a basin B1 for indices 1 and 2, as well as a
second basin B2 for indices 2, 3 and 4 as shown in the solution enumeration in Figure B.2a. In
comparison, the index order reflecting the number of hops of each path as shown in Figure B.2b
is superior, since it results in a more simple gradient approximation and a smaller number of
basins in the search space. Even if the exact objective function were unknown, knowing that it
somehow measures resources and that more hops typically require more resources, makes this
order a good choice for the index.

When adding a second demand between the same nodes, there is a second choice among
those paths for the new demand, such that combinations of the path for the first demand x1 and
the path for the second demand x2 need to be considered. This results in a drastic increase of
the input space to a total of 16 possible states, highlighting the fast growth of combinatorial
problems. A solution to this problem can therefore be represented by a tuple 〈x1,x2〉 = x with
x ∈ {1,2,3,4}×{1,2,3,4}. In Figure B.3 the horizontal axes correspond to the indices of the
two demands and the surfaces indicate local gradients. Figure B.3a shows the search space
when both demands require their own circuits and cannot be groomed into one circuit. The four
combinations where both demands use either path A or path B, which mark the corners of the
blue surface in the figure, are the optimal solutions in this case.

When the capacity required by both demands is low enough, such that their sum is less
than provided by one circuit, they can be groomed into the same circuits. This is a common
occurrence for TDR problems in multi-layer networks. Therefore, whenever the selected paths
share edges, this edge requires only one circuit and thus out of the original 4 optima, only
〈1,1〉 and 〈2,2〉 are now optimal, each requiring a total of 2 circuits instead of the original 4
as shown in Figure B.3b. Figure B.3c shows the search space for a constrained problem where
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Figure B.4: Search spaces for routing problem of 2 demands (lines indicate local gradients)

each demand requires their own circuit, but the link capacity is limited. As a result of this, any
link may only carry one circuit at a time. If more circuits are required, a penalty function will
add a value of 10 to the original resource objective function, such that the global optima are now
〈1,2〉 and 〈2,1〉.

In order to ease comparing the values of the search space, especially for higher dimensional
problems, we will use a universal search space representation, based on a single contiguous
index to enumerate the solutions. Finding a general, yet meaningful order relation to assign
a single index to all combinatorial states is difficult, since structurally similar vectors of high
dimensions cannot all be placed next to each other in a linear order. We will use an enumeration
that starts from a vector where all components are initialized to the smallest value and then
increments the vector’s components following a Gray code sequence generalized for integer
values.

The same solution spaces as in Figure B.3 are visualized using this method in Figure B.4.
The advantage of this visualization is that subsequent solutions in the index only differ by a value
of “1” in a single component of their respective vectors. This means that all solutions that are
neighbors in the index are also neighbors in search space, but not all neighbors in search space
are also neighbors in the index. This can be observed in Figure B.4a, where the four optima are
not all immediate neighbors in the index, while they are in search space as visualized by the
corners of the blue surface in Figure B.3a.

While the search space of the original version with the purely additive objective function
metric has a clear macro-structure with only a single basin in search space, adding capacity
sharing or resource limitation constraints lead to complex search spaces with additional local
minima even for this very small-scale problem. Furthermore, the effects of graph symmetries,
as introduced in Section 3.2.3, are also clearly visible around index 5 of Figure B.4a and by the
axial symmetry of Figure B.3. It is noteworthy that the global optima of the complex problems
still reside in the same area of the search space, as for the case of one demand. Both, capacity
sharing and resource constraints are the hallmarks of typical multi-layer problems, such that the
outlined effects are commonly present in large-scale problems as well.
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B.3 Reference Network Design

Searching for a representative multi-layer transport network, we analyzed several sources. The
remarkable work of the team behind the Rocketfuel Topology Engine [256] includes a dataset1

of ISP topologies. While very informative, the topologies contained are by now almost 20 years
old and mostly limited to the IP layer, since the team inferred the topologies from public IP
addresses of router interfaces. SNDlib and The Internet Topology Zoo2 provide newer data,
which has been assembled from various sources and includes fiber topologies as well as higher
layers. However, none of these sources include matching packet- and fiber-layer topologies with
representative numbers of nodes and links.

We therefore decided to create our own reference network based on a large commercial
network and we found a provider that publishes information about their networks and capabil-
ities, including data center and peering sites, layer-2 and layer-3 capabilities, as well as fiber
connectivity, on their website [32]. While the individual maps have differing geographic scopes,
they all contain data on the continental USA, such that we decided to focus on this area and only
consider nodes and fiber links contained therein. In order to create a homogeneous transport
network, we made a number of changes to the original data.

We removed the three international fiber links to Tokyo and London and another to Honolulu
for our version of the layer-1 network. Furthermore, we realized that some fiber links seem to
end at different sites within the same metropolitan areas, that sometimes have no connections
between them in the map. We decided to merge these nodes, because it is highly unlikely that
they are not connected to each other and because optimizing traffic and optical circuits from
one side of town to the other is on a different detail level than optimizing for the same for links
between cities or states. We have therefore merged

• Burbank, Anaheim and Emeryville into Los Angeles,

• Palo Alto into San Francisco,

• Los Osos into San Luis Obispo,

• Highlands Ranch into Denver,

• Lamy into Santa Fe,

• Cermak into Chicago,

• Dublin (OH) into Columbus,

• Westfield (MA) into Springfield (MA),

• Winter Park into Orlando and

• Newark into New York City.

Consequently, we have also eliminated the four fiber links that had existed between the merged
nodes in the original data. Furthermore, we had realized that some links passed right by major
population centers, where other sites are located, such that it is unlikely, that there is no common
site. The fiber between Ft. Worth and Las Vegas in all likelihood passes Albuquerque following
Interstates 40, 27 and 20, such that we replaced it with a fiber from Ft. Worth to Albuquerque

1Accessible at https://research.cs.washington.edu/networking/rocketfuel/maps/
rocketfuel_maps_cch.tar.gz, visited on 2025-05-09

2Accessible at http://www.topology-zoo.org/dataset.html, visited on 2019-06-24

https://research.cs.washington.edu/networking/rocketfuel/maps/rocketfuel_maps_cch.tar.gz
https://research.cs.washington.edu/networking/rocketfuel/maps/rocketfuel_maps_cch.tar.gz
http://www.topology-zoo.org/dataset.html
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and another from Albuquerque to Las Vegas. We did the same for the link from Washington, DC
to Rocky Mount, NC as it passes by Richmond.

Finally, some of the sites were not biconnected, such that we chose to add an additional link
to another node, typically following large roads. These sites are

• Augusta, with a new fiber link to Atlanta,

• White Plains, with a new fiber link to Bridgeport, and

• New London (CT), with a new fiber link to Providence.

The resulting topology, which we have referred to as CL–Max, covers the entire continental USA
and consists of 149 nodes and 206 fiber links. It is shown in Figure 5.26. Using the information
about the data center locations, we derived the second topology, which we have referred to
as CL–DC, that consists of the 19 sites, which feature data centers. We created the 35 links
between them based on the shortest paths between the nodes in the CL–Max topology with some
additional manual tweaks.

Comparing CL–Max to CL–DC, it is interesting to note that not only is the average degree
lower than for CL–DC, but the density is even lower by an order of magnitude. This is a common
effect for networks with large numbers of nodes, where only a smaller number of nodes serve as
connection hubs, while the vast majority only fulfills the 2-connectedness requirement in order
to allow for a minimum of geographic diversity. This also means that having many 2-connected
nodes between these hubs, leads to a certain amount of detours resulting in increased fiber
lengths between these hubs. This also results in a reduced average fiber length due to the nodes
in-between. A prominent example for both effects is visible in the northwest of Figure 5.26,
where both cases exist in parallel: A direct fiber connects Denver in Colorado directly to Tukwila
in Washington State, while a much longer sequence of fibers between these cities serves many
smaller nodes throughout Wyoming and Montana.

B.4 Traffic Generation

The traffic demand matrices used in the evaluations for CL–DC and CL–Max were both created
using a traffic generation algorithm developed by Enderle and the author [72]. This algorithm
creates demand matrices based on a number of different values. First, it uses traffic shares, which
have been determined by Cisco and published in their VNI [40] and GCI studies [39]. This is
information about which type of applications will consume which share of bandwidth.

The second data source is population data, since larger groups of people produce more
data traffic and communicate the most with other large groups of people. We have obtained
population size information from the 2018 estimate by the U.S. Census Bureau [6] for each
city or metropolitan area, where a node is located and also data on the state population [7]. All
population numbers have been rounded to the nearest thousand figures, except for settlements
smaller than 1000 which have been rounded to 1000. We then redistributed the population of
each state proportional to the population size for each contained settlement that houses a PoP
with the rationale, that access networks will carry the traffic of the surrounding areas to these
transport network nodes.

The third data source are public results [240] of the DISCUS project [241], which resulted
in a traffic simulation model based on activity profiles of different services, we had correlated
with the Cisco data and internet exchange and data center locations, since the traffic profiles at
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Figure B.5: Capacity distribution for traffic demands of different QoS classes for CL–Max

such locations are different from regular nodes. Finally, we also included time zone information
to adjust relative activity profiles relative to their local time.

As previously stated, we chose to model three different QoS-classes. The first is a best-effort
class, the second requires a latency of at most 10 ms, and the final one requires a minimum avail-
ability requirement of 0.99. We fed the data of CL–Max and CL–DC to the generator to obtain
the traffic matrices as used in the evaluation. For the smaller topology, this resulted in 812 uni-
directional or 406 bidirectional demands, which are given as unidirectional since their required
data rates are not symmetric in both directions. The sum of all traffic reaches 47.4 Tbit/s of which
59.3 % are best-effort, 23.3 % are latency-sensitive and 17.4 % are availability constrained traffic
demands. Figure 5.18 in Section 5.4.1.3 shows the exact distribution of demands.

The demand matrix for CL–Max is obviously much larger and contains 47 094 unidirectional
traffic demands, the sum of which amounts to 44.8 Tbit/s of which 57.9 % are best-effort and
22.9 % are latency constraint demands, finally leaving 19.2 % for the availability class. The exact
demand profiles for each class are shown in Figure B.5 and listed by a connection index, where
each index represents a unique pair of source and destination nodes.

Note, that the lowest resolution for demand capacity used is 1 Mbit/s, which leads to the
staircase effect in the figures. The relatively large amount of low-speed traffic demands is caused
by the fact, that many small nodes in rural areas attract very little traffic due to the absence
of large population centers or infrastructure like internet exchanges or data centers. However,
there are some business-related activities even in rural areas, which lead to the spikes visible in
Figure B.5.
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C Further Evaluations and Results

C.1 Acceleration by Parallel Execution
As stated in Section 5.1.2 a very import factor for genetic algorithm methods is their potential
for increased runtime performance by parallel execution thanks to their inherent parallelism. In
order to quantify the attainable improvement incurred by multithreaded execution, the problem
given in Section 5.3 has been solved repeatedly with the same parameter set. However, rather
than using a runtime limit, for this experiment the algorithm is run with a fixed number of
100 generations each of which required 200 evolutions. We varied the number of threads used
for the evolution tasks and we used three different servers, each with two CPUs, as shown in
Table C.1. To control for statistical effects, each of these simulations has been performed 10
times using different sets of random numbers. Figure C.1 shows runtime and speedup, i. e., the

Table C.1: Servers used for runtime comparisons

CPU Num. Frequency Cores Cache Threads RAM
Type CPUs Turbo Base Hw Sw

Xeon E5-2630 v2 2 3.1 GHz 2.6 GHz 6 15 MB 12 24 220 GB
Xeon E5-2650 v2 2 3.4 GHz 2.6 GHz 8 20 MB 16 32 220 GB
Xeon E5-2640 v4 2 3.4 GHz 2.4 GHz 10 25 MB 20 40 378 GB

ratio of the present runtime to the runtime of the single-threaded case, for the three servers with
varying numbers of threads. The data points indicating runtime include error bars representing
the minimum and maximum values observed over the ten independent repetitions. The deviation
from the average value always remained below 5%, such that most of the error bars in this figure
are too small to be visible, except for the initial runs with few threads.

As expected, the faster and larger CPUs outperform the slower ones in almost all cases and an
increasing number of threads significantly boosts performance. The largest speedup on the three
models is between 6.5 and 7.25. Figure C.2 shows the runtime values for larger core numbers
in more detail. With the exception of the 2x8-core machine, the best performance is reached
when the number of evolution threads is identical to the total number of cores in the system, as
indicated by the vertical bars at 12, 16 and 20 cores. Beyond that, the CPUs use multi-threading
to accommodate up to 2 threads per core which incurs a significant penalty, most likely due to
the increased number of required context switches and reduced cache locality. When operating
in this regime, there is a second local minimum for each of the machines as indicated by the
vertical bars at 24, 32 and 40 threads, which are the maximum number of threads that can be
simultaneously supported on the respective machines. After this point, performance slowly, but
continuously degrades for each of the three data sets.
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Figure C.1: Runtime and speedup over number of threads used for evolutionary operations

It should be noted that the given number of threads is not the total number of threads instanti-
ated by the software. Safe for the initial single-threaded case, there is always an additional thread
managing the population, which runs anticyclically to the evolution threads. Also, to maximize
throughput, Java’s ParallelGC has been used which creates additional threads according to an
internal heuristic. For the presented experiments, 6 to 12 threads have been observed. In the
single threaded case, the user time of the software thread has been compared to the system time
of the entire run to determine an upper bound for the time spent on garbage collection and other
system duties occurring in parallel. This time has been found to be consistently less than a few
percent of the overall runtime.

Further scenarios have been run, showing a number of secondary effects, e. g., more com-
plicated network data structures or excessively large pools of offspring showed effects which
might be attributed to reduced cache locality and memory access latencies, but two core obser-
vation held true for all experiments. One, that a significant performance increase is visible when
increasing the number of evolution threads up to a certain limit, and two, that this limit lies close
to or matches the number of CPU cores, rather than the maximum number of simultaneously
executable threads through hardware multithreading.
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Figure C.2: Runtime over number of threads used for evolutionary operations, detailed view

C.2 Mutation Operator Evaluation
In order to evaluate the performance of our LHM operator against its competing operators, we
created an individual chromosome and applied a mutation operator one billion times, recording
the resulting step size and the required time. We did this for LHM, SLGM, and SLCM on each
of three servers presented in Table C.1. Figure C.3 shows the histogram of the obtained step
sizes in a linear and a logarithmic view. The linear view shows, that LHM successfully achieves
the intended pattern of very high probabilities around 0 and slightly elevated probabilities close
to vh = 100. The comparison in the logarithmic plot shows the difference compared to SLGM,
with a relatively wide distribution.

Figure C.4 shows the time required for this computation. Our LHM operator not only
achieved the intended distribution but was also faster an all the systems under investigation.
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D Mathematical Foundations

D.1 Closeness Centrality
Closeness centrality [233] is a measure that describes, how central a given vertex s is to a given
connected graph g. It is based on the idea of considering the shortest distance from any vertex in
the graph to the vertex s. Normalized closeness centrality is the inverse of the sum of all these
distances, multiplied by the number of vertices in the graph excluding s. More formally, given
a graph g = 〈V ,E〉 with s,d ∈ V and s 6= d, the normalized closeness centrality is defined as
follows.

C(g,s) =
|V |−1

∑d∈(V\{s}) fdist(g,s,d)
(D.1)

Here, fdist is the length of the shortest path between s and d in graph g. Furthermore, we
determine the average closeness centrality of the entire graph g according to Equation (D.2)

C(g) =
∑s∈V C(g,s)
|V |

= ∑
s∈V

∑
d∈(V\{s})

1
fdist(g,s,d)

. (D.2)

Note, that centrality values depend on the number of nodes as well as the structure of the graph,
such that the average closeness centrality of a ring topology decreases with an increasing number
of nodes. For |V | →∞, a line graph will converge to 0, a star graph converges to 0.5, while a full
mesh converges to 1.
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D.2 Number of loop-free Paths in a complete, bidirectional Graph
Given a bidirectional, complete simple graph G of n nodes, i. e., a loop-free graph where any
node s has exactly one bidirectional link to any other node t, the number of all possible paths
cpaths(n) between any node s and any node t with t 6= s can be calculated by Equation (D.3).

cpaths(n) =
n−2

∑
i=0

(n−2)!
i!

(D.3)

Proof
A graph with at least two distinct nodes s and t has at least two nodes. Since we consider
bidirectional simple graphs, a graph of two nodes has exactly one edge between these nodes,
such that exactly one path exists. Adding one more node a to the graph, allows for a single
alternative path via the added node. Adding a fourth node b, however, adds several new paths.
There is the choice of using none, one or both of the added nodes as intermediate hops. In case
of one intermediate hop, this can either be a or b. For two intermediate hops, the paths are either
first via a, then b or first via b, then a. This results in a total of 5 paths. Further investigating the
smallest four graphs, yields the following values.

cpaths(2) = 1 =1
cpaths(3) = 1+1 =2
cpaths(4) = 1+2+2 =5
cpaths(5) = 1+3+6+6 =16

Therefore, adding an extra node results in two things. First, it increases the maximum length of
a single path by one more node, adding all possible choices for a path of this length. Second, it
presents itself as an additional choice in all shorter paths, except for the direct path. The choice
for a given path length is among all the nodes that are neither s, nor t. These are n−2 distinct
nodes. Since we require loop-free paths, every node can appear at most once in a path. The first
choice is among all n−2 nodes. If a second hop is taken in a path, this leaves n−3 choices and
so on. Therefore, we can reformulate the initial observations as follows.

cpaths(2) = 1
cpaths(3) = 1+(3−2)
cpaths(4) = 1+(4−2) +(4−2)(4−3)
cpaths(5) = 1+(5−2) +(5−2)(5−3)+(5−2)(5−3)(5−4)

Consequently, we can infer the following for the general case of n nodes.

cpaths(n) = 1+
2

∏
j=2

(n− j)+
3

∏
j=2

(n− j)+
4

∏
j=2

(n− j)+ · · ·

= 1+
(n−2)!
(n−3)!

+
(n−2)!
(n−4)!

+
(n−2)!
(n−5)!

+ · · ·

=
(n−2)!
(n−2)!

+
(n−2)!
(n−3)!

+
(n−2)!
(n−4)!

+
(n−2)!
(n−5)!

+ · · ·

=
n−2

∑
i=0

(n−2)!
i!



D.3 Box Plots 187

−4σ −3σ −2σ −1σ 0 1σ 2σ 3σ 4σ

0.1

0.2

0.3

0.4

1st Quartile Median 3rd Quartile

IQR 1.5 IQR

50% 24.65%24.65%

Figure D.1: Box plot of the Gaussian distribution N (0,σ).

D.3 Box Plots
The box plot, or in this case more precisely the box-and-whisker plot as originally developed
by Tukey [267], is a visualization method from descriptive statistics, which provides a fast, but
detailed overview on the distribution within a numerical data set. Unlike other statistical tools
the box plot is non-parametric, i. e., it does not require any assumptions on the actual distribution
behind the investigated data set, nor is it dependent on the correct choice of other parameters
like bin sizes.

It uses the following characteristic figures to describe a data set. The first quartile and the
third quartile form the bounds of the central box as shown in Figure D.1. The line within the box
marks the median value and allows to judge the skewness of the data. The whiskers either stop at
the largest value or represent at most 1.5 times the inter-quartile range. Figure D.2 illustrates this
for a set of random data set indicated by red triangles, where the samples between 8 and 10 have
values larger than 3Q+1.5 · IQR and therefore they are represented by separate dots, since they
may be considered as outliers. In this case, the whisker on the right side extends to its maximum
size of 1.5 · IQR. The left whisker is shorter than the right, since the smallest sample value is
larger than 1Q−1.5 · IQR and therefore the whisker only extends to the smallest sample value.
We generate our box plots using PGFPLOTS and compute the quartiles for discrete samples
using method “R7” [81, p. 502].
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Figure D.2: Example box plot and histogram of 20 samples between 0 and 10
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D.4 Simulated Annealing in Detail

In addition to the short introduction and example in Section 3.3.4, the following sections will
provide a more detailed explanation of Simulated Annealing. It is a probabilistic metaheuristic
approach pioneered by Kirkpatrick et al. in 1983 [136] that is related to Stochastic Hill Climbing
and ILS. Their approach is inspired by the annealing process from metallurgy in which metal
is heated and slowly cooled according to a pre-defined schedule in order to support the crystal-
lization processes which helps reduce defects in the material. At high temperatures atoms can
reposition themselves more freely in the material. If cooled quickly, they will settle in a locally
optimal position, but if cooled slowly they will gradually position themselves in equilibrium
states, ultimately resulting in a globally homogeneous crystalline structure.

D.4.1 Algorithmic Approach
As stated in Section 3.3.4, the approach to realize this is based on the Metropolis-Hastings
algorithm [120, 161]. This is a Markov Chain Monte Carlo method used to create a sequence
of samples which approximate an unknown distribution. Metropolis had originally used the
Boltzmann distribution as a proxy for the distribution to be sampled when investigating the
interaction of molecules, since it states that in a system of temperature T the probability ps of
encountering a state s of energy E(s) follows

ps ∝ e−
−E(s)

k·T

with k being the Boltzmann constant. Metropolis’ algorithm therefore selects a candidate state xc
from the neighborhood of the previous state xi in the Markov Chain according to the acceptance
probability

p = min
(

1,e−
E(xc)−E(xi)

k·T

)
such that it accepts if either xc has a smaller energy value than xi or their difference in energy
values is likely to be encountered at the system’s temperature given the Boltzmann constant.
When applying this to the annealing context, a large system temperature translates to a high
acceptance probability since atoms move more freely, while lowering the temperatures reduces
this probability, until for T = 0, the candidate solution xc will only be accepted if it is in a less
energetic state.

Kirkpatrick et al. therefore adapted this equation as the acceptance probability akin to its
usage in Stochastic Hill Climbing, but using an abstract perturbation operation while also chang-
ing the simulated temperature of the system according to a cooling schedule of monotonically
decreasing temperature values. This allows for a broad exploration of the search space at high
initial temperatures and gradually translates to a more localized search for low temperatures.
The basic Simulated Annealing procedure is shown as Algorithm 1 in Section 3.3.4.

D.4.2 Theoretical Behavior
An important aspect of Simulated Annealing is the cooling schedule. The cooling schedules in
metallurgy are precisely defined for a number of materials and other parameters which influence
the crystallization process. For Simulated Annealing, such pre-defined schedules do not exist,
since they would depend heavily on the unknown behavior of the black box objective function
and also the perturbation procedure.
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The initial temperature has to be sufficiently high and remain so for a sufficiently long num-
ber of iterations to allow for a meaningful coverage of the search space. Subsequent reductions
in temperature should not be too rapid to avoid missing small basins, but not too slow to avoid
excessively long runtimes. While Simulated Annealing has theoretically been proven to con-
verge to the global optimum under a number of conditions [110], it is often difficult to guarantee
these and identify an efficient cooling schedule without experimentation for the specific problem
to be solved.

The method works best, when there is a macro-structure to the search space, such that
reduction in temperature can match this macro-slope. On the contrary, search spaces with many
small, but deep basins are difficult to navigate, because they are hard to differentiate early on, but
difficult to escape from in later iterations. It is unsurprising that there exists a vast multitude of
cooling schedules in literature including linear, logarithmic, exponential and other versions [180].
An idealized illustration of how a solution space may be sampled is presented in Figure 3.4,
where the color of the arrows indicates the virtual temperature.

D.4.3 Problem Adaption

Simulated Annealing requires a starting solution and a perturbation procedure. The starting
solution does not need to have any specific form and the only requirement is that the perturbation
procedure can accept it as an argument and create a solution of the same form. This makes
Simulated Annealing very easy and straightforward to adapt to specific problems, especially in
computer software, since it can directly act on any data structure.

The perturbation is therefore the essential part of the problem adaption. For the optimization
of integer vectors the perturbation can be identical to the selection process in Stochastic Hill
Climbing, such that it iterates through the solutions in the immediate neighborhood N1 sequen-
tially until an acceptable candidate has been found. For arbitrary structures, however, this can be
more difficult to define. It is essential that the perturbation can, possibly through an arbitrarily
long sequence of applications, transform any solution to any other possible solution of the search
space.

D.4.4 Hyperparameters

Apart from potential perturbator-specific parameters, Simulated Annealing only requires a termi-
nation condition and a cooling schedule. The initial temperature needs to be selected according
to the expected differences in the objective function values. This can be determined by choosing
a temperature and drawing a number of samples and comparing the prospective probabilities for
acceptance. Initially the probability should be close to 1.

The length of the cooling schedule should be designed according to the tolerable runtime
duration, but its exact cooling rate is harder to determine. If local minima are good enough, the
temperature can be decreased very slowly in the beginning, but rapidly in the end. If the goal
is to match a global optimum as close as possible in a flat search space, a very slow cooling
schedule is advisable.

Algorithm-specific termination conditions are often tied to the number of iterations, such that
the algorithm terminates after a given number of steps. Another option is linking the termination
to the temperature value. Once this value reaches 0, it is no better than a local search and may
therefore not be able to improve the best solution any further.
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D.4.5 Aspects of Implementation
The memory footprint of Simulated Annealing is typically very low, since it only needs to store
the best known solution, the current solution and the candidate solution. The fact that it is a
trajectory-based method means that it sequentially generates and analyzes candidate solutions.
The basic approach therefore offers little potential for parallelization.

The computational complexity of all operations is fairly low, except for the perturbation,
where it varies with the exact implementation. As stated for the Hill Climbing methods, up to
2n solutions may be probed for acceptance at low temperatures when the algorithm operates on
n-dimensional integer vectors. However, for many combinatorial optimizations a permutation of
a structure needs to be generated, which can be done by a simple swapping operation in constant
time.

In Algorithm 1 a total of 4 evaluations of the objective function is required in every iteration.
However, in situations where this evaluation is computationally complex, the already determined
values can be stored and only the evaluation for the candidate solution has to be performed for
each iteration.

D.5 Ancillary Algorithms
For the sake of completeness, a number of mostly primitive ancillary algorithms used as part of
the other algorithms are presented in this section.

Dijkstra’s Algorithm
We did not implement Dijkstra’s algorithm ourselves, but rather used a library function in
JGraphT [162], which uses an implementation based on Fibonacci Heaps. For more information
on Dijkstra’s algorithm and related algorithms, cf. Grover [115, pp. 189–192]. The signature of
the algorithm as it appears in our pseudocode is shown in Algorithm 11

Algorithm 11 Dijkstra’s algorithm to find a shortest path in a graph

Require: 〈V ,E〉 is a graph
Require: s,d ∈V

function D I J K S T R A(〈V ,E〉,s,d)
let pathArr : {0..n}→ E
· · · . Library implementation
return pathArr

end function

K-Shortest Path algorithm
Just like with Dijkstra’s algorithm, we did not implement a K-Shortest Path algorithm ourselves,
but rather relied on the implementations in JGraphT [162]. For more information on K-Shortest
Path algorithms, cf. Grover [115, pp. 195–199] or Pióro [194, sect. C.3]. The signature of the
algorithm as it appears in our pseudocode is shown in Algorithm 12

Other Algorithms
Algorithm 13, which finds the node of largest degree in a given graph, and Algorithm 14, which
implements the argmax function, are used within some of the other algorithms in this thesis.
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Algorithm 12 K-Shortest Path algorithm to find the k shortest paths in a graph

Require: 〈V ,E〉 is a graph
Require: s,d ∈V

function K S H O R T E S T PAT H(〈V ,E〉,s,d,k)
let pathArrArr : {0..n}→ {0..n}→ E
· · · . Library implementation
return pathArrArr

end function

Algorithm 13 Find a vertex of maximum degree degmax in a given graph

Require: 〈V ,E〉 is a connected, non-empty graph
function M A X D E G R E E N O D E(V ,E)

let nodeMap : V → N0
for all 〈s,d〉 ∈ E do

nodeMap[s]← nodeMap[s]+1
nodeMap[d]← nodeMap[d]+1

end for
node← A R G M A X(nodeMap,V ) . See Algorithm 14

return node
end function

Algorithm 14 Determine argmaxx∈X f (x) for finite mappings to natural numbers

Require: map is a mapping of a finite set X to N0
function A R G M A X(map,X)

let n← 0
let m←⊥
for all x ∈ X do

if map[x]≥ n then
n← map[x]
m← x

end if
end for
return m

end function
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