
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Andreas Kirstädter

Copyright Notice

© 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright

and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author's copyright. In

most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany

Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Empirical Investigation of Offloading Decision
Making in Industrial Edge Computing Scenarios

Alexander Artemenko∗, Ismail Mehrez†, Keerthana Govindaraj∗†, Andreas Kirstaedter† and Mykola Kuznietsov‡
∗Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Renningen, Germany

{alexander.artemenko, keerthana.govindaraj}@de.bosch.com
†University of Stuttgart, Institute of Communication Networks and Computer Engineering, Stuttgart, Germany

andreas.kirstaedter@ikr.uni-stuttgart.de
‡Institute of Computer Systems, Odessa National Polytechnic University, Odessa, Ukraine, kuznietsov@opu.ua

Abstract—Edge Computing (EC) is a paradigm introduced
to support the end devices with the execution of computation
intensive tasks while maintaining their intended Quality of
Service (QoS). To achieve this, one or more Edge Servers (ES)
with powerful capabilities are placed in a close proximity to the
edge devices to provide the assistance needed. In order to do that,
EC utilizes the concept of application offloading, which is the idea
of moving the computation intensive tasks to be computed on a
more powerful server.

The act of offloading is not always a beneficial choice due to the
aspect of availability of involved resources and data communica-
tion between devices. Therefore, to achieve a successful offloading
process, the offloading decision making needs to answer the four
questions of when, what, where and how to offload. In this
paper, we investigate the ”When to offload?” question, which is
concerned with whether the offloading process results in a positive
gain in performance or not. To strengthen our conclusions, we use
empirical observations in a real setup running a set of emulated
applications.

Index Terms—Edge Computing, Application Offloading, Task
Complexity, Offloading Gain

I. INTRODUCTION

In the recent years, the Edge Computing (EC) paradigm has
emerged as an extension to the Cloud Computing (CC) and
is also sometimes referred to as fog computing [1], [2]. The
main goal behind EC is to provide powerful services with high
availability and reliability while maintaining a minimum delay
for latency critical and control applications for the end devices.
In order to achieve this desired goal, the concept of application
offloading is utilized and is defined as moving the computation
intensive tasks away from the local device to be processed
on a more powerful server [3], [4]. Such Edge Servers (ES)
are often supported with an enormous amount of processing
capabilities such as Central Processing Units (CPU), Graphical
Processing Units (GPU) as well as Random Access Memories
(RAM) [5] and are placed in a close proximity to the end
devices. Not only that, but these servers are supported with a
constant power supply in most of the cases and thus energy
consumption is not a concern. On the contrary, the end devices
are often restricted by a limited amount of processing power
and in a lot of cases are mobile and are connected to a mobile
power sources [6], therefore introducing a major concern of
energy consumption.

Although application offloading is expected to save compu-
tation time and energy by moving the complex tasks to other
servers, it also introduces a new overhead on the network
due to the transfer of data to be processed. This results in
increase of time and energy costs [4]. As a result, in case if
the computation effort saved is more than the one lost due to
communication, then a gain state is achieved which is the goal
of offloading. Otherwise, an offloading of this particular task
will lead to a degraded performance. Moreover, the decision
of offloading is always environment dependent. For instance,
a certain low-end device might not be able to handle a specific
task, therefore offloading is a reasonable choice, while on the
other hand, a high end device can process it successfully and
might even lose performance if offloading is done due to the
extra unnecessary communication overhead. This introduces
the challenge of choosing the appropriate task in a given
application and deciding whether it would provide a gain or
loss in the performance when offloaded to a certain cloud or
edge server available in the network [2].

An optimal solution to the offloading decision problem
is the one that achieves the best performance possible at
a given cost, but unfortunately it does not have a straight
forward solution. It rather needs the answer to four critical
sub-questions: When, What, Where and How to offload [7].
The ”When to offload?” question has to decide when should
the application be offloaded. In other words, it states whether
it is better to proceed with the offloading process or settle for
the local execution option under the current circumstances.
Moreover, many applications could be divided into more than
two modules and therefore, a successful offloading mechanism
has to decide ”What to offload” [8]–[10]. Another aspect is
”Where to offload”. The answer to this question decides the
destination on which the selected tasks should be offloaded
to and that achieves the highest gain [11]. Finally, the ”How
to offload?” question is concerned by the means of offloading
including the offloading channel and mechanism [12].

Multiple research works, which we present in Section II,
made a considerable effort in solving the offloading decision
problem and came up with a closed-form expression that
would assist in making such decisions. As a result, the goal
of this paper is to investigate the reliability of this expression
and to validate that it works when tested in real-life conditions

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

978-1-6654-1526-2/21/$31.00 ©2021 IEEE 311

20
21

 Jo
in

t E
ur

op
ea

n
Co

nf
er

en
ce

 o
n

N
et

w
or

ks
 a

nd
 C

om
m

un
ic

at
io

ns
 &

 6
G

Su
m

m
it

(E
uC

N
C/

6G
 S

um
m

it)
 |

 9
78

-1
-6

65
4-

15
26

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

CN
C/

6G
SU

M
M

IT
51

10
4.

20
21

.9
48

25
56

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

using practical methods as expected from the theory. Another
goal of this work is to do a sensitivity analysis to find out how
the decision making is affected by a dynamic environment.

The remainder of this paper is organized as follows. In
Section II, we introduce the related work and the state of
the art related to the topic of application offloading. We then
present our work concerning the offloading decision making in
Section III describing the emulation and offloading processes
and then evaluate our work in both static and dynamic envi-
ronments in Section IV. Finally in Section V, we conclude
our work and suggest some future steps.

II. RELATED WORK

The offloading decision can be intuitive in cases with
extremely complex tasks that require intensive processing and
at the same time have a very limited amount of input data
to be transmitted. In such scenarios, offloading would result
in a gain in performance since a lot of computation effort is
saved while a relatively small communication effort is added.
On the other hand, offloading a task with a huge amount of
transmission load will cause a degraded performance.

Multiple efforts were done in order to formulate a closed-
form expression that facilitates making the decision of either
to offload a specific task or not under the current state of
the surrounding environment to achieve the desired offloading
gain [7], [13]–[15]. The main condition that needs to be
met for the offloading to be beneficial is that the cost of
executing a task locally Cmobile should be more than the one
when outsourcing it to a server for processing. The cost of
performing the task on the server side is represented in terms
of the cost of computation Cserver and the cost to communicate
the data between the devices Ccom. This is represented as [7]:

Cmobile > Cserver + Ccom (1)

The definition of the cost is made depending on the desired
objective. When the objective is to minimize the overall
performance time, Wu et al. [7] defined the condition for a
rewarding offloading is;

C

IPSm
>

1

F
.

C

IPSm
+

D

B
, (2)

where C is the number of instructions of the task to be
offloaded, IPSm is instructions per second capability of the
mobile client, D is the total amount of data transmitted
between the nodes and B is the available bandwidth on the
network link between them. For simplicity, a certain server s
is assumed to be F times more powerful than a certain mobile
client m.

Although the offloading expression seems straight forward,
the results of the research mentioned were only based on pure
simulations and do not take into account the dynamic nature of
the surroundings. The theoretical approach assumes an exact
knowledge of the resources state. Therefore, the work done
lacks practical verification in order to state if the inequality
holds when used in a real-life environment.

III. OFFLOADING CONCEPT

Our goal is to design an emulator that would practically
reflect the behavior of a real-life scenario, where application
offloading can be performed by a mobile device. Using the em-
ulator, a wide range of applications with different settings for
a computation complexity and a payload can be tested in a real
practical environment. To indicate a certain task complexity,
we used the Dhrystone benchmark [16]. This standard is used
as a representation of the integer performance of a general
purpose CPU in terms of VAX (Virtual Address eXtension)
Dhrystone Million Instructions per Second (DMIPS), or in
other words, by how much is this CPU more powerful than
the standard 1 MIPS VAX machine.

To emulate the input and output data transferred between
the client and server nodes, we prepare a message with a
size that ranges between 1 B and 10 MB and send it over
to the server side using TCP, where the computation would
take place. By doing this, we are able to represent a wide
range of application types starting from the ones using sensor
data with few bytes up to the ones that transfer high resolution
camera frames. Finally, we used the Linux tool iPerf3 [17] and
WonderShaper [18] to emulate different network bandwidth
availability. These tools have the ability to limit the data rate
on a specific network interface. Thus, we can emulate different
network conditions.

To observe if under a given combination of system param-
eters (Task Complexity, Message Size, Bandwidth, CPU) the
offloading process would be beneficial, we first run both scripts
on the mobile node in order to emulate the scenario when the
task is not offloaded and we would get the local performance
of the task which in our work was local completion time tlocal.
Then, we move the server script to the server side to emulate
the offloaded case and we would get an offloaded performance
time toffload. The goal of this step is to check if the cost
saved due to a more powerful computing platform is more
than the one lost due to communicating the message through
the network with a given availability. Finally, we define a gain
in performance in the form of a ratio as:

Gain =
tlocal[s]

toffload[s]
, (3)

where tlocal > 0 and toffload > 0. Hence, a gain value that
is more than one indicates that the system performed better
(faster) when an offloading took place, while a gain less than
one means a degraded outcome.

IV. EVALUATION RESULTS

For our emulation and results discussed next, we used the
devices specified in Table I. A Raspberry Pi model 3B device
with a Cortex-A53 CPU acts as a mobile device that sends data
D with sizes that range from 1 B to 10 MB to the server. On
the other hand, we used a powerful HP Z-Book 15 machine
with an Intel(R) Core(TM) i7-4810MQ CPU as the server
node. Therefore, the server processing capability is F ≈ 11
times more powerful than the client’s one (23741.92 MIPS
over 2162.82 MIPS). This server has the task of performing

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

312
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

an emulated computation complexity C that ranges from 0
to 600x106 instructions. The measured available bandwidth
between both devices was B=94 Mbps as the link between
the access point and the client used is IEEE 802.11 (5 GHz)
WiFi link and the link to the server is a 1 Gbps Ethernet
connection.

TABLE I: A summary of the devices and infrastructure used for the
emulation process.

Parameter Value
Client
Device Raspberry Pi 3B
CPU Model Cortex-A53
CPU MIPS 2162.82 MIPS
Operating System Raspbian Buster Lite
Data Range 1 B - 10 MB
Transport Protocol TCP
Infrastructure
Resultant Bandwidth 94 Mbps
WiFi Link 802.11ac (5 GHz)
Ethernet Link 1 Gbps
Server
Device HP-ZBook 15
CPU Model Intel(R) Core(TM) i7-4810MQ
CPU MIPS 23741.92 MIPS
Operating System Ubuntu 18.04
Task Complexity 0− 600x106 Instructions

A. Static Environment

In this subsection, we demonstrate our insights and ob-
servations when the offloading decision making is done in
a static environment, where the measured parameters remain
deterministic within the whole process and only minor alter-
nations from the measured mean values take place as part of
the environment, in which we observe.

Fig. 1 illustrates our initial findings when we emulated the
whole range of complexities and message sizes in our previ-
ously described lab setup. The x-axis of the figure represents
the range of task complexities used in terms of their number
of instructions. The y-axis is the range of different message
sizes that are to be transmitted between the devices and is
shown in Bytes. Moreover, the color of the grid represents the
gain we observed using Equation 3. An observed degraded
performance while offloading with a gain value between 0
and 1 is marked in red, while an enhanced performance is
marked in colors from yellow till green. The gradient of the
colors represents the value of the gain which is demonstrated
in the color scale on the right of the figure. For example, a
dark red point means an extreme loss in performance while
a light red means a slight loss, and the same applies for the
green ones.

The blue diagonal linear line represents the theoretical
boarder line that defines the offloading decision regions from
Expression 2. Therefore, according to this polynomial, for any
task with a given complexity in this environment, an offloading
decision would lead to a gain (enhanced performance) if a
message size to be transferred is below that line, while a loss
is to be observed otherwise.

0 1 2 3 4 5 6
Complexity (#Instructions) 1e8

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

 S
iz

e
 (

B
y
te

s
)

1e7
Application Offloading Emulation

1

2

4

6

8

10

12

O
ff

lo
a
d
in

g
 G

a
in

Fig. 1: The output of the offloading emulation process.

In our described emulation, we always offloaded the se-
lected task and compared it’s performance versus the case
when it is not offloaded. Therefore, the cases which were
successful are the ones in green and yellow while the failures
are in orange and red. We can observe that the cases with
extremely low message sizes resulted in a very high offload-
ing gain reaching over a ten times enhanced performance,
which can be explained as a result of the very low overhead
introduced by the communication. It can also be seen that
the gain value increases as the task gets more complex
due to the increase in the computation cost saving. On the
other hand, cases with very high message sizes resulted in
high loss in communication effort and therefore offloading
would not be beneficial. Furthermore, we also observed that
offloading is never good for a very simple task with a very low
complexity even if the message payload size is low because
such tasks could be easily handled by the mobile device and
any offloading would just mean an extra overhead.

The interesting region, where the offloading decision does
not have an intuitive solution, is the area in the middle of the
graph, where the values of the communication cost loss and
the computation cost saved are comparable. This area is the
one with dark yellow and light red points since the difference
in the local and offloaded performance was not significant and
therefore resulted in a gain value around one, which can be
seen from Equation 3.

Fig. 1 shows that Equation 2 is able to separate the regions
with performance loss and gain successfully. For a given
task complexity, a payload size below the theoretic blue line
practically leads to a gain in most of the cases while a value
on the other side of the line leads to a loss in performance.

We could recognize that there are some outliers in the
figure with a loss below the line and a gain above it, which
would mean that there are cases where the expression is not
reliable. By investigating this phenomenon, we suspected that
our environmental variables at these cases were fluctuating

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

313
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

around the mean value due to the practical essence of our
analysis. Such fluctuations could be a sudden drop or increase
in the bandwidth between the devices due to a congestion or
attenuation on the WiFi link. Another cause might be that the
CPU serving this task on either nodes was not dedicating all its
power to this task due to a sudden interrupt from the operating
system or it was being shared by another process.

Fig. 2: Network status monitor.

To verify our suspicion and eliminate the effect of any
sudden disruption in our environment, we monitored the
available bandwidth as a test parameter during runtime and
the result can be seen in Fig. 2. We observed a fluctuation
in the availability around the mean value. Moreover, we ran
each combination of payload and complexity five times and
took the average in performance between all five trials, which
can be seen in Fig. 3.

0 1 2 3 4 5 6
Complexity (#Instructions) 1e8

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

 S
iz

e
 (

B
y
te

s
)

1e7
Application Offloading Emulation

1

2

4

6

8

O
ff

lo
a
d
in

g
 G

a
in

Fig. 3: Offloading emulation result using the average value of five
iterations.

We observed from Fig. 3 that the offloading gain was
changing in a constant manner and that the color grid became
much smoother compared to the one in Fig. 1, where we
used the result of only a single iteration. This observation
made us realize that the outliers observed previously were
actually a result of an unexpected change in the environment
that happened at a particular moment.

It is now clear that the expression can be reliable whenever
the cost of computing the task locally is significantly larger
than the transfer cost. But we wanted to further investigate
if the expression is reliable in the scenarios, in which the
difference is small and it is not intuitive to make the offloading
decision. To do that, we identified all the cases with offloading
gain being close to one (0.98 < gain < 1.02) and marked them
with the magenta crosses seen in Fig. 3. These cases represent
the cases with a very low gain difference between local and
offloaded performance being very close to the theoretical
boarder line defined by Equation 2. We fitted a polynomial
labeled derived borderline to those points, which we will use
as our practical baseline. By comparing our derived boarder
line to the theoretical one, we can observe a slight deviation
between both lines. Since the theoretical expression is a linear
polynomial, the gradient of the line is highly dependent on
the accuracy of the parameters of our environment given,
which are the CPU capabilities of our nodes and the network
bandwidth available. As a result, we conclude that at the
cases, in which the local and offloading costs are similar, the
offloading decision making highly depends on the accuracy of
the measured parameters.

B. Dynamic Environment

In this section, we present our results and observations
when emulating different offloading examples as before but
in more dynamic environments, where a measured parameter
used in the decision making would not be the most recent
value during the actual offloading. Such environments can be
one with a mobile client device roaming around a factory
floor causing attenuations or multiple connection handovers
between access points due to the mobility aspect. Another
case could be a multi-user scenario, in which the server keeps
getting numerous requests from other devices and thus cannot
dedicate all its processing power to the specified task. Any of
the mentioned examples can result in a sudden drop of our
parameters, required for the decision making. In this work,
we focused on emulating an environment with sudden drops
of the network bandwidth that becomes non-deterministic and
analyzed its effect on the offloading decision making.

To analyze the described effect of the dynamic network
availability on the decision making, we ran our whole emu-
lation process multiple times and we changed the available
network bandwidth in each of them. Fig. 4 illustrates our
results for emulating different levels of sudden bandwidth
drops that result in unpredictable changes of the data rate
availability. While the decision making algorithm assumes the
full bandwidth (94 Mbps) to be available, we on purpose
overload the network and thus limit the bandwidth (BW)

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

314
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Emulation results for different levels of a dynamic environment.

to 75, 50, 25 and 10 Mbps correspondingly. Moreover, the
blue polynomial in each of the results is the decision maker
result from our theoretic expression in Equation 2 using the
full expected bandwidth value. By this methodology, we can
have a better understanding about what would happen if we
anticipated to have a certain bandwidth value (100% value),
but in the real case, it dropped to the availability level being
emulated.

We also defined a metric called Offloading Reliability,
which is the percentage of correct decisions that the offloading
decision maker would have made when used on all the range
of application types we emulate. Although this value is relative
to the range of complexities and payloads defined, we just use
it as an assistance guide to help evaluate the correctness of our
decision making not as a direct reference. To identify a correct
decision, we contrasted the result from our theoretic decision
maker in Equation 2 to the actual gain we practically observed.
So if the expression anticipated a gain in performance and our
emulated run showed a gain value more than one, then it is
considered a correct decision. Similarly, an experienced gain
value less than one and an anticipated loss in performance is
also a correct decision because in that case offloading will not
take place and therefore the system performance will not be
degraded. On the other hand, if the results were different, this
would be considered a false decision because when relying
on the expression in such cases, we might offload and lose

performance or even in some cases choose to perform the
task locally when a positive gain from offloading could be
achieved. We illustrated these wrong decisions by the cyan
crosses on the figures.

Subplot (a) in Fig. 4 represents a scenario without band-
width drops and hence a maximum reliability with a very
little number of wrong decisions observed. Similarly, as the
observation from Section IV-A, we got a number of wrong
decisions around the boarder line defined by the theoretic
expression that represent 3.9% of all our cases and therefore
the expression is reliable in 96.1% of our test cases.

In subplots (b), (c), (d) and (e), we show the results of
our emulation when we limited the available bandwidth to 75,
50, 25 and 10 Mbps respectively. We can clearly observe that
the region of wrong decisions increases with the decrease of
the network availability. Moreover, the wrong decisions are
clearly concentrated below the theoretical boarder line since
the bandwidth available is always less than expected and the
offloading cost got higher thus affecting the cases with a
decision to offload.

The main contribution of this subsection is that we were
able to illustrate the range of applications (marked in cyan in
Fig. 4) that would experience a false offloading decision when
a certain level of network dynamics is present. Therefore,
application and system architects can use diagrams like Fig. 4
as a heuristic guide to decide when to offload using the range

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

315
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

of complexities that the task under inspection is expected to
perform and range of data sizes used for communication while
considering the level of network dynamics it is expected to
encounter during runtime. Thus, we propose using a gain error
margin for offloading, meaning that the offloading decision is
to be made when the expected gain value is greater than a
value, which is more than one depending on the level of the
environmental dynamics.

V. CONCLUSION AND OUTLOOK

This paper presented the effect of practical environments
on the application offloading decision making that aims to
support the end devices with the computation intensive tasks.
We utilized an emulated approach in order to be able to
investigate a wide range of application types and environ-
mental conditions. In a static environment, the theoretical
offloading expression was able to estimate a correct decision
whenever the environmental parameters are deterministic and
accurately measured. As a result, it was not successful when
the computation gain and communication losses were almost
equal and the slightest change in the values mattered. We also
investigated the effect of more dynamic environment and were
able to indicated the application types that would experience
a wrong offloading decision in each scenario.

In the future, we aim to extend the work presented here
by considering more parameters like the effect of RAM and
GPU units on offloading. We would also want to look into the
process of selecting a gain error margin for offloading. More-
over, we aim to investigate the use of artificial intelligence to
overcome the effect of dynamic environment.

ACKNOWLEDGMENT

This work has been supported by the Federal Ministry for
Economic Affairs and Energy of the Federal Republic of Ger-
many (Foerderkennzeichen 01MT20001G, pfp GEMIMEG-
II). The authors alone are responsible for the content of the
paper.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 workshop on mobile
big data. ACM, 2015, pp. 37–42.

[3] N. I. M. Enzai and M. Tang, “A taxonomy of computation offloading in
mobile cloud computing,” in 2014 2nd IEEE international conference
on mobile cloud computing, services, and engineering. IEEE, 2014,
pp. 19–28.

[4] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2014.

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[6] N. Kiran, C. Pan, S. Wang, and C. Yin, “Joint resource allocation and
computation offloading in mobile edge computing for sdn based wireless
networks,” Journal of Communications and Networks, 2019.

[7] H. Wu, “Multi-objective decision-making for mobile cloud offloading:
A survey,” IEEE Access, vol. 6, pp. 3962–3976, 2018.

[8] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application par-
titioning algorithm in mobile environments,” IEEE Transactions on
Parallel and Distributed Systems, 2019.

[9] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: An
efficient code partition algorithm for mobile cloud computing,” in 2012
IEEE 1st International Conference on Cloud Networking (CLOUDNET).
IEEE, 2012, pp. 80–86.

[10] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–23, 2019.

[11] M. Whaiduzzaman, A. Gani, N. B. Anuar, M. Shiraz, M. N. Haque,
and I. T. Haque, “Cloud service selection using multicriteria decision
analysis,” The Scientific World Journal, vol. 2014, 2014.

[12] M. R. Mallick, “A comparative study of wireless protocols with li-
fi technology: A survey,” in Proceedings of 43rd IRF International
Conference, 2016, pp. 8–12.

[13] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, no. 4, pp. 51–56, 2010.

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[15] S. Melendez and M. P. McGarry, “Computation offloading decisions
for reducing completion time,” in 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 2017, pp.
160–164.

[16] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
1984.

[17] L. B. N. Laboratory, “iperf3,” https://iperf.fr/iperf-download.php, ac-
cessed: 2020-03-16.

[18] S. S. Bert Hubert, Jacco Geul, “Wondershaper,”
https://www.tecmint.com/wondershaper-limit-network-bandwidth-
in-linux/, accessed: 2020-03-16.

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

316
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

Empirical Investigation of Offloading Decision
Making in Industrial Edge Computing Scenarios

Alexander Artemenko∗, Ismail Mehrez†, Keerthana Govindaraj∗†, Andreas Kirstaedter† and Mykola Kuznietsov‡
∗Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Renningen, Germany

{alexander.artemenko, keerthana.govindaraj}@de.bosch.com
†University of Stuttgart, Institute of Communication Networks and Computer Engineering, Stuttgart, Germany

andreas.kirstaedter@ikr.uni-stuttgart.de
‡Institute of Computer Systems, Odessa National Polytechnic University, Odessa, Ukraine, kuznietsov@opu.ua

Abstract—Edge Computing (EC) is a paradigm introduced
to support the end devices with the execution of computation
intensive tasks while maintaining their intended Quality of
Service (QoS). To achieve this, one or more Edge Servers (ES)
with powerful capabilities are placed in a close proximity to the
edge devices to provide the assistance needed. In order to do that,
EC utilizes the concept of application offloading, which is the idea
of moving the computation intensive tasks to be computed on a
more powerful server.

The act of offloading is not always a beneficial choice due to the
aspect of availability of involved resources and data communica-
tion between devices. Therefore, to achieve a successful offloading
process, the offloading decision making needs to answer the four
questions of when, what, where and how to offload. In this
paper, we investigate the ”When to offload?” question, which is
concerned with whether the offloading process results in a positive
gain in performance or not. To strengthen our conclusions, we use
empirical observations in a real setup running a set of emulated
applications.

Index Terms—Edge Computing, Application Offloading, Task
Complexity, Offloading Gain

I. INTRODUCTION

In the recent years, the Edge Computing (EC) paradigm has
emerged as an extension to the Cloud Computing (CC) and
is also sometimes referred to as fog computing [1], [2]. The
main goal behind EC is to provide powerful services with high
availability and reliability while maintaining a minimum delay
for latency critical and control applications for the end devices.
In order to achieve this desired goal, the concept of application
offloading is utilized and is defined as moving the computation
intensive tasks away from the local device to be processed
on a more powerful server [3], [4]. Such Edge Servers (ES)
are often supported with an enormous amount of processing
capabilities such as Central Processing Units (CPU), Graphical
Processing Units (GPU) as well as Random Access Memories
(RAM) [5] and are placed in a close proximity to the end
devices. Not only that, but these servers are supported with a
constant power supply in most of the cases and thus energy
consumption is not a concern. On the contrary, the end devices
are often restricted by a limited amount of processing power
and in a lot of cases are mobile and are connected to a mobile
power sources [6], therefore introducing a major concern of
energy consumption.

Although application offloading is expected to save compu-
tation time and energy by moving the complex tasks to other
servers, it also introduces a new overhead on the network
due to the transfer of data to be processed. This results in
increase of time and energy costs [4]. As a result, in case if
the computation effort saved is more than the one lost due to
communication, then a gain state is achieved which is the goal
of offloading. Otherwise, an offloading of this particular task
will lead to a degraded performance. Moreover, the decision
of offloading is always environment dependent. For instance,
a certain low-end device might not be able to handle a specific
task, therefore offloading is a reasonable choice, while on the
other hand, a high end device can process it successfully and
might even lose performance if offloading is done due to the
extra unnecessary communication overhead. This introduces
the challenge of choosing the appropriate task in a given
application and deciding whether it would provide a gain or
loss in the performance when offloaded to a certain cloud or
edge server available in the network [2].

An optimal solution to the offloading decision problem
is the one that achieves the best performance possible at
a given cost, but unfortunately it does not have a straight
forward solution. It rather needs the answer to four critical
sub-questions: When, What, Where and How to offload [7].
The ”When to offload?” question has to decide when should
the application be offloaded. In other words, it states whether
it is better to proceed with the offloading process or settle for
the local execution option under the current circumstances.
Moreover, many applications could be divided into more than
two modules and therefore, a successful offloading mechanism
has to decide ”What to offload” [8]–[10]. Another aspect is
”Where to offload”. The answer to this question decides the
destination on which the selected tasks should be offloaded
to and that achieves the highest gain [11]. Finally, the ”How
to offload?” question is concerned by the means of offloading
including the offloading channel and mechanism [12].

Multiple research works, which we present in Section II,
made a considerable effort in solving the offloading decision
problem and came up with a closed-form expression that
would assist in making such decisions. As a result, the goal
of this paper is to investigate the reliability of this expression
and to validate that it works when tested in real-life conditions

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

978-1-6654-1526-2/21/$31.00 ©2021 IEEE 311

20
21

 Jo
in

t E
ur

op
ea

n
Co

nf
er

en
ce

 o
n

N
et

w
or

ks
 a

nd
 C

om
m

un
ic

at
io

ns
 &

 6
G

Su
m

m
it

(E
uC

N
C/

6G
 S

um
m

it)
 |

 9
78

-1
-6

65
4-

15
26

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

CN
C/

6G
SU

M
M

IT
51

10
4.

20
21

.9
48

25
56

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

using practical methods as expected from the theory. Another
goal of this work is to do a sensitivity analysis to find out how
the decision making is affected by a dynamic environment.

The remainder of this paper is organized as follows. In
Section II, we introduce the related work and the state of
the art related to the topic of application offloading. We then
present our work concerning the offloading decision making in
Section III describing the emulation and offloading processes
and then evaluate our work in both static and dynamic envi-
ronments in Section IV. Finally in Section V, we conclude
our work and suggest some future steps.

II. RELATED WORK

The offloading decision can be intuitive in cases with
extremely complex tasks that require intensive processing and
at the same time have a very limited amount of input data
to be transmitted. In such scenarios, offloading would result
in a gain in performance since a lot of computation effort is
saved while a relatively small communication effort is added.
On the other hand, offloading a task with a huge amount of
transmission load will cause a degraded performance.

Multiple efforts were done in order to formulate a closed-
form expression that facilitates making the decision of either
to offload a specific task or not under the current state of
the surrounding environment to achieve the desired offloading
gain [7], [13]–[15]. The main condition that needs to be
met for the offloading to be beneficial is that the cost of
executing a task locally Cmobile should be more than the one
when outsourcing it to a server for processing. The cost of
performing the task on the server side is represented in terms
of the cost of computation Cserver and the cost to communicate
the data between the devices Ccom. This is represented as [7]:

Cmobile > Cserver + Ccom (1)

The definition of the cost is made depending on the desired
objective. When the objective is to minimize the overall
performance time, Wu et al. [7] defined the condition for a
rewarding offloading is;

C

IPSm
>

1

F
.

C

IPSm
+

D

B
, (2)

where C is the number of instructions of the task to be
offloaded, IPSm is instructions per second capability of the
mobile client, D is the total amount of data transmitted
between the nodes and B is the available bandwidth on the
network link between them. For simplicity, a certain server s
is assumed to be F times more powerful than a certain mobile
client m.

Although the offloading expression seems straight forward,
the results of the research mentioned were only based on pure
simulations and do not take into account the dynamic nature of
the surroundings. The theoretical approach assumes an exact
knowledge of the resources state. Therefore, the work done
lacks practical verification in order to state if the inequality
holds when used in a real-life environment.

III. OFFLOADING CONCEPT

Our goal is to design an emulator that would practically
reflect the behavior of a real-life scenario, where application
offloading can be performed by a mobile device. Using the em-
ulator, a wide range of applications with different settings for
a computation complexity and a payload can be tested in a real
practical environment. To indicate a certain task complexity,
we used the Dhrystone benchmark [16]. This standard is used
as a representation of the integer performance of a general
purpose CPU in terms of VAX (Virtual Address eXtension)
Dhrystone Million Instructions per Second (DMIPS), or in
other words, by how much is this CPU more powerful than
the standard 1 MIPS VAX machine.

To emulate the input and output data transferred between
the client and server nodes, we prepare a message with a
size that ranges between 1 B and 10 MB and send it over
to the server side using TCP, where the computation would
take place. By doing this, we are able to represent a wide
range of application types starting from the ones using sensor
data with few bytes up to the ones that transfer high resolution
camera frames. Finally, we used the Linux tool iPerf3 [17] and
WonderShaper [18] to emulate different network bandwidth
availability. These tools have the ability to limit the data rate
on a specific network interface. Thus, we can emulate different
network conditions.

To observe if under a given combination of system param-
eters (Task Complexity, Message Size, Bandwidth, CPU) the
offloading process would be beneficial, we first run both scripts
on the mobile node in order to emulate the scenario when the
task is not offloaded and we would get the local performance
of the task which in our work was local completion time tlocal.
Then, we move the server script to the server side to emulate
the offloaded case and we would get an offloaded performance
time toffload. The goal of this step is to check if the cost
saved due to a more powerful computing platform is more
than the one lost due to communicating the message through
the network with a given availability. Finally, we define a gain
in performance in the form of a ratio as:

Gain =
tlocal[s]

toffload[s]
, (3)

where tlocal > 0 and toffload > 0. Hence, a gain value that
is more than one indicates that the system performed better
(faster) when an offloading took place, while a gain less than
one means a degraded outcome.

IV. EVALUATION RESULTS

For our emulation and results discussed next, we used the
devices specified in Table I. A Raspberry Pi model 3B device
with a Cortex-A53 CPU acts as a mobile device that sends data
D with sizes that range from 1 B to 10 MB to the server. On
the other hand, we used a powerful HP Z-Book 15 machine
with an Intel(R) Core(TM) i7-4810MQ CPU as the server
node. Therefore, the server processing capability is F ≈ 11
times more powerful than the client’s one (23741.92 MIPS
over 2162.82 MIPS). This server has the task of performing

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

312
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

an emulated computation complexity C that ranges from 0
to 600x106 instructions. The measured available bandwidth
between both devices was B=94 Mbps as the link between
the access point and the client used is IEEE 802.11 (5 GHz)
WiFi link and the link to the server is a 1 Gbps Ethernet
connection.

TABLE I: A summary of the devices and infrastructure used for the
emulation process.

Parameter Value
Client
Device Raspberry Pi 3B
CPU Model Cortex-A53
CPU MIPS 2162.82 MIPS
Operating System Raspbian Buster Lite
Data Range 1 B - 10 MB
Transport Protocol TCP
Infrastructure
Resultant Bandwidth 94 Mbps
WiFi Link 802.11ac (5 GHz)
Ethernet Link 1 Gbps
Server
Device HP-ZBook 15
CPU Model Intel(R) Core(TM) i7-4810MQ
CPU MIPS 23741.92 MIPS
Operating System Ubuntu 18.04
Task Complexity 0− 600x106 Instructions

A. Static Environment

In this subsection, we demonstrate our insights and ob-
servations when the offloading decision making is done in
a static environment, where the measured parameters remain
deterministic within the whole process and only minor alter-
nations from the measured mean values take place as part of
the environment, in which we observe.

Fig. 1 illustrates our initial findings when we emulated the
whole range of complexities and message sizes in our previ-
ously described lab setup. The x-axis of the figure represents
the range of task complexities used in terms of their number
of instructions. The y-axis is the range of different message
sizes that are to be transmitted between the devices and is
shown in Bytes. Moreover, the color of the grid represents the
gain we observed using Equation 3. An observed degraded
performance while offloading with a gain value between 0
and 1 is marked in red, while an enhanced performance is
marked in colors from yellow till green. The gradient of the
colors represents the value of the gain which is demonstrated
in the color scale on the right of the figure. For example, a
dark red point means an extreme loss in performance while
a light red means a slight loss, and the same applies for the
green ones.

The blue diagonal linear line represents the theoretical
boarder line that defines the offloading decision regions from
Expression 2. Therefore, according to this polynomial, for any
task with a given complexity in this environment, an offloading
decision would lead to a gain (enhanced performance) if a
message size to be transferred is below that line, while a loss
is to be observed otherwise.

0 1 2 3 4 5 6
Complexity (#Instructions) 1e8

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

 S
iz

e
 (

B
y
te

s
)

1e7
Application Offloading Emulation

1

2

4

6

8

10

12

O
ff

lo
a
d
in

g
 G

a
in

Fig. 1: The output of the offloading emulation process.

In our described emulation, we always offloaded the se-
lected task and compared it’s performance versus the case
when it is not offloaded. Therefore, the cases which were
successful are the ones in green and yellow while the failures
are in orange and red. We can observe that the cases with
extremely low message sizes resulted in a very high offload-
ing gain reaching over a ten times enhanced performance,
which can be explained as a result of the very low overhead
introduced by the communication. It can also be seen that
the gain value increases as the task gets more complex
due to the increase in the computation cost saving. On the
other hand, cases with very high message sizes resulted in
high loss in communication effort and therefore offloading
would not be beneficial. Furthermore, we also observed that
offloading is never good for a very simple task with a very low
complexity even if the message payload size is low because
such tasks could be easily handled by the mobile device and
any offloading would just mean an extra overhead.

The interesting region, where the offloading decision does
not have an intuitive solution, is the area in the middle of the
graph, where the values of the communication cost loss and
the computation cost saved are comparable. This area is the
one with dark yellow and light red points since the difference
in the local and offloaded performance was not significant and
therefore resulted in a gain value around one, which can be
seen from Equation 3.

Fig. 1 shows that Equation 2 is able to separate the regions
with performance loss and gain successfully. For a given
task complexity, a payload size below the theoretic blue line
practically leads to a gain in most of the cases while a value
on the other side of the line leads to a loss in performance.

We could recognize that there are some outliers in the
figure with a loss below the line and a gain above it, which
would mean that there are cases where the expression is not
reliable. By investigating this phenomenon, we suspected that
our environmental variables at these cases were fluctuating

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

313
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

around the mean value due to the practical essence of our
analysis. Such fluctuations could be a sudden drop or increase
in the bandwidth between the devices due to a congestion or
attenuation on the WiFi link. Another cause might be that the
CPU serving this task on either nodes was not dedicating all its
power to this task due to a sudden interrupt from the operating
system or it was being shared by another process.

Fig. 2: Network status monitor.

To verify our suspicion and eliminate the effect of any
sudden disruption in our environment, we monitored the
available bandwidth as a test parameter during runtime and
the result can be seen in Fig. 2. We observed a fluctuation
in the availability around the mean value. Moreover, we ran
each combination of payload and complexity five times and
took the average in performance between all five trials, which
can be seen in Fig. 3.

0 1 2 3 4 5 6
Complexity (#Instructions) 1e8

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

 S
iz

e
 (

B
y
te

s
)

1e7
Application Offloading Emulation

1

2

4

6

8

O
ff

lo
a
d
in

g
 G

a
in

Fig. 3: Offloading emulation result using the average value of five
iterations.

We observed from Fig. 3 that the offloading gain was
changing in a constant manner and that the color grid became
much smoother compared to the one in Fig. 1, where we
used the result of only a single iteration. This observation
made us realize that the outliers observed previously were
actually a result of an unexpected change in the environment
that happened at a particular moment.

It is now clear that the expression can be reliable whenever
the cost of computing the task locally is significantly larger
than the transfer cost. But we wanted to further investigate
if the expression is reliable in the scenarios, in which the
difference is small and it is not intuitive to make the offloading
decision. To do that, we identified all the cases with offloading
gain being close to one (0.98 < gain < 1.02) and marked them
with the magenta crosses seen in Fig. 3. These cases represent
the cases with a very low gain difference between local and
offloaded performance being very close to the theoretical
boarder line defined by Equation 2. We fitted a polynomial
labeled derived borderline to those points, which we will use
as our practical baseline. By comparing our derived boarder
line to the theoretical one, we can observe a slight deviation
between both lines. Since the theoretical expression is a linear
polynomial, the gradient of the line is highly dependent on
the accuracy of the parameters of our environment given,
which are the CPU capabilities of our nodes and the network
bandwidth available. As a result, we conclude that at the
cases, in which the local and offloading costs are similar, the
offloading decision making highly depends on the accuracy of
the measured parameters.

B. Dynamic Environment

In this section, we present our results and observations
when emulating different offloading examples as before but
in more dynamic environments, where a measured parameter
used in the decision making would not be the most recent
value during the actual offloading. Such environments can be
one with a mobile client device roaming around a factory
floor causing attenuations or multiple connection handovers
between access points due to the mobility aspect. Another
case could be a multi-user scenario, in which the server keeps
getting numerous requests from other devices and thus cannot
dedicate all its processing power to the specified task. Any of
the mentioned examples can result in a sudden drop of our
parameters, required for the decision making. In this work,
we focused on emulating an environment with sudden drops
of the network bandwidth that becomes non-deterministic and
analyzed its effect on the offloading decision making.

To analyze the described effect of the dynamic network
availability on the decision making, we ran our whole emu-
lation process multiple times and we changed the available
network bandwidth in each of them. Fig. 4 illustrates our
results for emulating different levels of sudden bandwidth
drops that result in unpredictable changes of the data rate
availability. While the decision making algorithm assumes the
full bandwidth (94 Mbps) to be available, we on purpose
overload the network and thus limit the bandwidth (BW)

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

314
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Emulation results for different levels of a dynamic environment.

to 75, 50, 25 and 10 Mbps correspondingly. Moreover, the
blue polynomial in each of the results is the decision maker
result from our theoretic expression in Equation 2 using the
full expected bandwidth value. By this methodology, we can
have a better understanding about what would happen if we
anticipated to have a certain bandwidth value (100% value),
but in the real case, it dropped to the availability level being
emulated.

We also defined a metric called Offloading Reliability,
which is the percentage of correct decisions that the offloading
decision maker would have made when used on all the range
of application types we emulate. Although this value is relative
to the range of complexities and payloads defined, we just use
it as an assistance guide to help evaluate the correctness of our
decision making not as a direct reference. To identify a correct
decision, we contrasted the result from our theoretic decision
maker in Equation 2 to the actual gain we practically observed.
So if the expression anticipated a gain in performance and our
emulated run showed a gain value more than one, then it is
considered a correct decision. Similarly, an experienced gain
value less than one and an anticipated loss in performance is
also a correct decision because in that case offloading will not
take place and therefore the system performance will not be
degraded. On the other hand, if the results were different, this
would be considered a false decision because when relying
on the expression in such cases, we might offload and lose

performance or even in some cases choose to perform the
task locally when a positive gain from offloading could be
achieved. We illustrated these wrong decisions by the cyan
crosses on the figures.

Subplot (a) in Fig. 4 represents a scenario without band-
width drops and hence a maximum reliability with a very
little number of wrong decisions observed. Similarly, as the
observation from Section IV-A, we got a number of wrong
decisions around the boarder line defined by the theoretic
expression that represent 3.9% of all our cases and therefore
the expression is reliable in 96.1% of our test cases.

In subplots (b), (c), (d) and (e), we show the results of
our emulation when we limited the available bandwidth to 75,
50, 25 and 10 Mbps respectively. We can clearly observe that
the region of wrong decisions increases with the decrease of
the network availability. Moreover, the wrong decisions are
clearly concentrated below the theoretical boarder line since
the bandwidth available is always less than expected and the
offloading cost got higher thus affecting the cases with a
decision to offload.

The main contribution of this subsection is that we were
able to illustrate the range of applications (marked in cyan in
Fig. 4) that would experience a false offloading decision when
a certain level of network dynamics is present. Therefore,
application and system architects can use diagrams like Fig. 4
as a heuristic guide to decide when to offload using the range

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

315
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

of complexities that the task under inspection is expected to
perform and range of data sizes used for communication while
considering the level of network dynamics it is expected to
encounter during runtime. Thus, we propose using a gain error
margin for offloading, meaning that the offloading decision is
to be made when the expected gain value is greater than a
value, which is more than one depending on the level of the
environmental dynamics.

V. CONCLUSION AND OUTLOOK

This paper presented the effect of practical environments
on the application offloading decision making that aims to
support the end devices with the computation intensive tasks.
We utilized an emulated approach in order to be able to
investigate a wide range of application types and environ-
mental conditions. In a static environment, the theoretical
offloading expression was able to estimate a correct decision
whenever the environmental parameters are deterministic and
accurately measured. As a result, it was not successful when
the computation gain and communication losses were almost
equal and the slightest change in the values mattered. We also
investigated the effect of more dynamic environment and were
able to indicated the application types that would experience
a wrong offloading decision in each scenario.

In the future, we aim to extend the work presented here
by considering more parameters like the effect of RAM and
GPU units on offloading. We would also want to look into the
process of selecting a gain error margin for offloading. More-
over, we aim to investigate the use of artificial intelligence to
overcome the effect of dynamic environment.

ACKNOWLEDGMENT

This work has been supported by the Federal Ministry for
Economic Affairs and Energy of the Federal Republic of Ger-
many (Foerderkennzeichen 01MT20001G, pfp GEMIMEG-
II). The authors alone are responsible for the content of the
paper.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the 2015 workshop on mobile
big data. ACM, 2015, pp. 37–42.

[3] N. I. M. Enzai and M. Tang, “A taxonomy of computation offloading in
mobile cloud computing,” in 2014 2nd IEEE international conference
on mobile cloud computing, services, and engineering. IEEE, 2014,
pp. 19–28.

[4] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, 2014.

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[6] N. Kiran, C. Pan, S. Wang, and C. Yin, “Joint resource allocation and
computation offloading in mobile edge computing for sdn based wireless
networks,” Journal of Communications and Networks, 2019.

[7] H. Wu, “Multi-objective decision-making for mobile cloud offloading:
A survey,” IEEE Access, vol. 6, pp. 3962–3976, 2018.

[8] H. Wu, W. Knottenbelt, and K. Wolter, “An efficient application par-
titioning algorithm in mobile environments,” IEEE Transactions on
Parallel and Distributed Systems, 2019.

[9] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: An
efficient code partition algorithm for mobile cloud computing,” in 2012
IEEE 1st International Conference on Cloud Networking (CLOUDNET).
IEEE, 2012, pp. 80–86.

[10] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–23, 2019.

[11] M. Whaiduzzaman, A. Gani, N. B. Anuar, M. Shiraz, M. N. Haque,
and I. T. Haque, “Cloud service selection using multicriteria decision
analysis,” The Scientific World Journal, vol. 2014, 2014.

[12] M. R. Mallick, “A comparative study of wireless protocols with li-
fi technology: A survey,” in Proceedings of 43rd IRF International
Conference, 2016, pp. 8–12.

[13] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, no. 4, pp. 51–56, 2010.

[14] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[15] S. Melendez and M. P. McGarry, “Computation offloading decisions
for reducing completion time,” in 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 2017, pp.
160–164.

[16] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
1984.

[17] L. B. N. Laboratory, “iperf3,” https://iperf.fr/iperf-download.php, ac-
cessed: 2020-03-16.

[18] S. S. Bert Hubert, Jacco Geul, “Wondershaper,”
https://www.tecmint.com/wondershaper-limit-network-bandwidth-
in-linux/, accessed: 2020-03-16.

2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Vertical Applications and
Internet of Things (VAP)

316
Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on May 30,2022 at 15:26:58 UTC from IEEE Xplore. Restrictions apply.

