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Abstract—The vision of Industry 4.0 is to enable a highly
dynamic and flexible manufacturing system. Nevertheless, an
uninterrupted and reliable service needs to be ensured to fulfill
the safety requirements of the industrial applications. The lat-
est advancements in technologies such as wireless connectivity,
hardware virtualization, application offloading, etc. aims to cater
to most of these requirements. Moreover, a new paradigm
called Edge Computing is becoming a preferred solution to fulfil
the latency and availability requirements of the Industry 4.0
applications. However, the dynamic resource management and
automated service provisioning remains to be an open challenge
in an environment with constantly varying requirements.

Service migration is a part of dynamic resource management
that enables repositioning of a service from one computation
entity, which is e.g., overloaded and cannot satisfy the user
requirements, to another computation entity. An uninterrupted
service live migration is necessary to satisfy the low latency and
high availability requirements of mobile devices on the factory
floor. In this paper we introduce and investigate a new approach
for an uninterrupted service live migration.

Index Terms—zero downtime, live migration, SDN, Edge Com-
puting

I. INTRODUCTION

Smart factories [1] or Industry 4.0 reflects a cost-effective
manufacturing set-up with fast and flexible reconfiguration of
production processes. This new level of automation requires
applications such as augmented reality, collaborative robotics,
automated transportation, etc. However, these applications
depend on processing of large amount of data generated by
sensors (e.g., laser, video, etc.) [2]. Either due to constraints
of computation and battery resources on the end devices or
due to coordination requirements, the corresponding sensor
data is transmitted to a powerful server for processing in
order to meet the short response time requirements [3]. Edge
Computing (EC) [4], [5] is meant to cater to these response
times as the processing units, known as Edge Servers (ESs),
are placed close to end devices. These servers have huge
processing capacity compared to the end devices and thus
offer reduced computation time. Moreover, due its proximity
the communication time remains low. Depending on the size
of the factories and the number of applications, many ESs are
distributed and orchestrated within the factory [6]. Therefore,
due to the mobility of the devices involved in the production
process (e.g., milkruns, automated guided vehicles, etc.), the
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corresponding application running on an ES needs to be
migrated along with the mobile device (MD) to an ES in
its proximity. As described by Govindaraj et al. in [2] it is
important to avoid any disruptions in the production process.
Thus the service corresponding to the MD needs to be migrated
live such that the MD cannot perceive any interruption.

Live migration is a process of moving application or an
execution environment between different hosts without loss
of their runtime state. The execution environment can be a
process running on the bare metal [7], a Virtual Machine
(VMs) [8] or a container [9]. To improve the understandability,
we address the execution environment as application through-
out the paper. We aim to support uninterrupted functioning
of MDs in a distributed EC infrastructure with the help of
live migration. However, all the state-of-the-art live migration
mechanisms involve a client-perceptible service unavailability
which is commonly known as downtime. Hence, these migra-
tion schemes are not suitable for Industry 4.0 applications with
real-time requirements.

Thus, the goal of this work is to design and investigate a
live migration scheme with zero downtime, i.e no interruption
perceivable by the client. We propose a new migration scheme
which combines currently available migration scheme with the
concept of hot-standby redundancy. To achieve uninterrupted
service live migration, we exploit the redundant back-up
infrastructure used in the industry for safety and reliability pur-
pose [10]. Redundancy is a common failsafe mechanism used
in safety critical applications (e.g., airplane communications),
in which the secondary server takes over the operation if the
primary server has to fail [11]. A seamless migration involving
redundant servers require complicated network management,
for which we use Software-Defined Networking (SDN).

We structure this paper as follows: Section II focuses on
analyzing currently available live migration schemes. As an
improvement over the existing schemes, Section III presents
our proposed uninterrupted service live migration scheme
and the corresponding design architecture. Subsequently, Sec-
tion IV shows the evaluation of our algorithm compared to
the known best migration scheme. And finally, Section V
concludes the paper by presenting an outlook.

II. RELATED WORK

Live migration is a popular process in the cloud comput-
ing paradigm to move services between data centers with



minimal downtime [12]. It is mainly beneficial in failover
mechanisms. In case a hardware failure is suspected in a
server, the running execution system can be live migrated
to an alternative server before the service is disrupted [8]. It
also enables dynamic load balancing when the server resource
such as memory, storage or processing capacity is overloaded,
by transferring the execution environment to another server
with sufficient resources [13]. Furthermore, live migration can
also be helpful in improving the energy efficiency [14] of
the computing infrastructure by suspending unused hosts or
servers and migrating the running environments to a desired
server. Besides that, it improves the fault-tolerance of whole
execution environment [15]. For all the stated reasons, live
migration is becoming popular and is gaining importance in
edge computing. Nevertheless, there are very few works that
deal with live migration in the context of edge computing. We
focus on these four migration schemes: pre-copy, post-copy,
hybrid, and redundancy migration to underscore the need for
a novel migration scheme.

A. Pre-Copy Migration

Theimer et al. introduce pre-copy migration in [16] that
consists of two phases: push phase and stop-and-copy phase.
During the push phase, the source server (Sg.) iteratively
copies the memory corresponding to the service to the destina-
tion server (Spest.). Eventually Sg;.. covers the whole memory
corresponding to this application, known as Writable Working
Set (WWS) [8]. However, during this phase Sg.. continues
to run the application thus constantly modifying its memory
pages. Ssr. now copies only the delta of the memory to
Spest, iteratively. This continues until the number of altered
memory pages to be transferred reduces to a certain size or
the number of iterations exceeds a certain threshold. Now,
Ssre. briefly suspends the application, called as stop-and-copy
phase, to copy its consistent state to Spes.. On receiving
the the complete state of the application, Spey. restores the
application and resumes it successfully. During this phase the
client experiences a service downtime.

There has been many efforts to optimize the downtime and
the migration time in the past. Sharma er al. [17] introduce
a three phase optimization framework for pre-copy migration.
They propose a heuristic approach for the selection of the
memory pages to be transferred in the first phase in the
WWS. Then the migration controller executes the prediction
algorithm to classify frequently and non-frequently updated
pages in order to reduce the transfer of duplicate pages during
the second phase. Since the downtime in pre-copy depends
on the size of the consistent state to be transferred in the
last iteration, the authors try to reduce the size of the data to
be transmitted by proposing a Run-Length Encoding (RLE)
compression technique. They claim to reduce the migration
by 70% and downtime by 3% compared to traditional pre-
copy migration. However, the WWS can be sufficiently large
depending on the type of the applications running [18]. So, the
RLE compression technique can also not make much effect in
reducing the downtime for applications with large state sizes.

B. Post-Copy Migration

Unlike pre-copy migration, Zayas [19] proposes post-copy
migration as a concept of copy-on-reference. This scheme
consists of stop-and-copy phase and pull phase. During the
stop-and-copy phase, Sg;.. freezes the service to transfer only
the CPU state to Speg;. and the client experiences downtime. In
his migration scheme, Zayas reduces the data transfer during
the stop-and-copy phase to the essential CPU state as most
applications only use a little fraction of their total allocated
memory WWS. On receiving the CPU state, Speg. restores and
resumes the application. However, when it starts to serve the
client, it experiences pagefaults on every memory page request
as it is not yet transferred from Sg;. . Too many pagefaults can
lead to degraded performance of the application.

Though post-copy has a lower downtime compared to the
pre-copy scheme, the solution suffers from inconsistent perfor-
mance during the pull phase and increases the migration-time
tremendously based of the characteristics of the application
and number of pagefaults. To overcome the inconsistency
during the pull phase, Hines et al. propose an optimization
of the traditional post-copy migration [20] called pre-paging.
Pre-paging refers to a mechanism of predicting pages which
will be accessed by the destination. By predicting them in
advanced, Speg. can request them from the Sg;.. even before the
page fault occurs. However, pre-paging is not a deterministic
process, rather a stochastic approach, which can lead to some
unwanted scenarios. Thus, this scheme is also not suitable for
the Industry 4.0 applications.

C. Hybrid Migration

Pre-copy and post-copy migration have complementing per-
formances. Combining both the schemes results in a good
trade-off and is called hybrid migration [21]. Thus, hybrid
migration consists of three phases: push phase, stop-and-copy,
and pull phase. During the push phase, Ss;.. transfers an image
of all the states to Spey. as in pre-copy migration scheme. The
duration of the push phase is also an optimization parameter
depending on the type of application. So the end time of push
phase is relative. As a next step, Ssy. executes the stop-and-
copy phase which leads to a service downtime as in previous
schemes. The resumable copy of the environment can be any
of post-copy or pre-copy variant, e.g., only a minimal state
transfer or CPU context including a consistent copy of the
working set, identified via a heuristic. Finally, Spey. restores
the application and requests the missing memory pages during
the pull phase. Depending on the amount of missing informa-
tion at the destination, the duration of pull phase varies. Hybrid
migration is basically an optimized migration scheme with a
lot of possible optimization parameters.

Hybrid migration can optimize the downtime as well as mi-
gration time since the implementation allows many parameters
for optimization [21]. Lei et al. [22] use a markov model to
predict the memory page access to reduce pagefaults in the
pull phase. The existing work shows many attempts to reduce
the downtime but does not provide a robust live migration
including fault tolerance and seamless handover.



D. Redundancy Migration

To reduce the downtime experienced due to stop-and-copy
phase in the other migration schemes that is caused by
creation, transmission, and restoration of a consistent state
image on the destination server, we propose a novel scheme
called Redundancy Migration in [23]. We have evaluated this
scheme for linux containers, but it is application agnostic
and environment independent. Migration controller and traffic
controller installed on Sgy. and Spes. assist the migration
process. When the system triggers a migration, the client
starts to communicate with Spey. and the migration controller
on Spey. starts the buffer and routing initialization phase.
During this phase Sg;.. continues to serve the client while the
traffic controller on Spes. buffers the incoming packets and
simultaneously forwards to Sg... Meanwhile, the migration
controller creates a checkpoint of the consistent state of CPU,
network, and memory on Sg;.. during which a small downtime
is observed. Speg. On receiving this checkpoint, restores and
resumes the application. However, since the client continues
to communicate with Sg., the WWS continues to change.
Thus, in order to synchronize the states, Speg. replays the
packets stored in the buffer. Spey. will eventually catch up
to the same state on Sg.. It is important to note that this
scheme works if the packet processing speed on the destination
server is faster than the packet generation rate on the client.
Nevertheless, there is a brief interruption in the checkpoint
creation time. Depending on the size of the application state,
the client experiences a brief downtime.

Thus, to the best of our knowledge, none of the existing ap-
proaches can guarantee an uninterrupted service to the clients
during live migration. Considering redundancy migration as a
benchmark, we present an uninterrupted hot-standby migration
scheme in the following section. It is important to notice here
that an interruption for our application is asssumed by a Round
Trip Time (RTT) over 10 ms.

III. UNINTERRUPTED HOT-STANDBY MIGRATION

As mentioned in Section I, the Industry 4.0 applications
require short response times and high availability. Thus, the
goal of this migration scheme is to provide a seamless service
handover and thus an uninterrupted service to the client
throughout its operation. This in turn implies that the client
does not experience an RTT more than its threshold set.

We base our scheme on the redundancy migration scheme
but combine it with the concept of redundant servers [11].
Since we propose this as a solution for live migration in edge
computing infrastructure, we consider two edge servers in the
vicinity as primary and secondary source servers (primary-
ESs,.. and secondary-ESs,.) and similarly primary and sec-
ondary destination servers (primary-ESp.s;. and secondary-
ESpes:.). Furthermore, we use SDN switches to manage the
flows between the client and the servers. An SDN controller
controls the switches and instructs them to forward, duplicate
or drop the packets based on the decisions made by the edge
controller.

Fig. 1 illustrates an exemplary setting of a client and
edge servers and controller with SDN switches and controller.
Initially the client communicates with the source edge servers,
primary-ESs,. and secondary-ESs,... We represent the SDN
controller and an edge controller as two different entities. The
edge controller decides when the client service needs to be
migrated from source to destination edge servers and the SDN
controller directs the flows accordingly. In our uninterrupted
redundancy migration scheme, we propose five phases to
achieve zero downtime as shown in Fig. 2.

Initial phase: Initially the MD is connected to primary-ESs,..
and secondary-ESy,.. simultaneously over an infrastructure as
shown in Fig. 1. Same application runs on both primary-ESs,..
and secondary-ESgs,.. in a hot-standby redundancy manner. MD
initially tries to communicate with primary-ESs,. via SDN-
switch;. However, on receiving the packet from MD, SDN-
switch; queries SDN controller for the action that it needs
to follow. Based on the command of SDN controller, SDN-
switch; replicates the packet to secondary-ESs,.. primary-
ESs,.. and secondary-ESs,.. process the packets independently
and reply via SDN-switch;. By default, SDN-switch; forwards
the reply sent by primary-ESs,. unless until specified other-
wise.

Handover phase: We consider here an MD moves across
the factory floor in a predefined route. Based on the coverage
area of a serving an access point (AP), the client undergoes a
communication handover to a neighboring AP. We consider
this as a trigger for migration. The client now starts to
communicate via SDN-switch, via AP3. SDN-switch, forwards
the first packet to SDN controller for the routing decision.
Since primary-ESs,.. and secondary-ESs,. are still serving,
SDN controller instructs SDN-switch, to forward the packets
accordingly. As edge controller has triggered the migration, it
initiates the migration phase.

Migration phase: Simultaneously the edge controller in-
structs a snapshot creation on secondary-ESs,. of the appli-
cation which constitutes a consistent state of CPU, network,
and memory. Meanwhile, primary-ESs,. continues to serve
the MD uninterruptedly. On receiving the state, the desti-
nation servers primary-ESp.s;. and secondary-ESp.g. testores
the execution environment. Meanwhile, from the instance of
snapshot creation, the incoming packets from the MD are
continuously buffered on SDN-switch,. Once the applications
are resumed on primary-ESp.s. and secondary-ESp.s., they
replay the buffered packets in order to catch up the current
state on primary-ESs,... However, we assume that the rate of
processing the packets from the buffer is faster than the rate
at which it is filled, i.e., the packet generation rate of the MD.

Review phase: At this instance, the buffer is empty and
both primary-ESp.s. and secondary-ESp.s should have the
same application state as primary-ESs,. and primary-ESpey..
However, we review that by comparing the output. Edge con-
troller instructs the SDN controller to forward the responses
from all the four servers to it to verify the state consistency.
Until the decision is made primary-ESs,. continues to serve
the client. edge controller initiates a counter for N consecutive
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TABLE I: Simulation campaign for the NS-3 evaluation setup

Parameter Name

[ Values |

Model Parameter
Tx Interval
Snapshot time
Restoration time
Replay time

f(x) = NormalRandomVariable (,0)
f(x) = NormalRandomVariable (u,0)
f(x) = NormalRandomVariable (u,0)
f(x) = NormalRandomVariable (,0)

Fixed Parameter
Wireless channel

5 GHz (IEEE 802.11la)

Ethernet channel 1 Gbps
Delay 0.2 pus
Packet size 624 bytes
Server processing delay | 1 ms
client mobility Linear

timg

migration time
Fig. 2: Uninterrupted hot-standby migration phases: Our setup con-
sists of identical MEC applications running on redundant source Edge
Servers. MD communicates to the primary-ESs.. via SDN-switch; and
the SDN-switch; replicates the packets to secondary-ESs,.. as well.
After the live migration, the MD connects to two new redundant edge
servers, primary-ESpes. and primary-ESpes: .

matches of the responses from primary-ESs,.., primary-ESpes:.
and secondary-ESp,s.. The process repeats until the condition
is met.

Switch phase: On verifying N matches, edge controller con-
firms that primary-ESp.s; and secondary-ESp.;. are synchro-
nized with primary-ESs,. and can now take over the service.
At this instance, the SDN controller instructs SDN-switch, to
forwards the incoming packets from MD only to primary-
ESpes. and primary-ESp.s.. This marks the completion of
migration process.

During the whole process of migration the client was always
served by the primary-ESs,.. until the switch-over happened to
primary-ESp.s; and primary-ESp.s.. With redundant servers,
though the resource overhead is high, it provides an uninter-
rupted service to MD thus ensuring low response time and

Ranges Parameter
Application size

[ x = {4, 20, 40, 2000} MB

Repetition
Simulation number

[ 100 times

high availability requirements of Industry 4.0 applications.

We implement this migration scheme as described above
using NS-3 simulator to verify its performance and compare
it against redundancy migration.

IV. EVALUATION RESULTS

We have made a realistic implementation of the factory
network using NS-3 simulator. It consists of a tree topology
with realistic link and edge server capacities as well as
mobile devices with realistic application behavior. Table I
shows the simulation campaign or the parameter values we
have considered for our simulation setup. Since redundancy
migration is considered to be the best method to reduce the
downtime to its lowest possible, we compare our algorithm
with it.
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Fig. 3: Comparison of downtime between redundancy migration and
uninterrupted migration. The plots are provided for migration of
different application size.

As shown in Table I, the packet generation rate of
an application is realized as a normal distribution model
NormalRandomVariable with mean value 4 = 10 ms and
variance o = 0.2 ms. However, as mentioned in Section III,
the buffer processing rate has to be maintained faster than
the packet generation rate. Hence, we model this replay time
as a Normal distribution model NormalRandomVariable
with mean time p = 18 us and variance ¢ = 40 us. Other
model parameters are snapshot creation time and restoration
time. However, these values are application specific depending
on if it is CPU intensive or memory intensive. As described
in Section III, we model the application snapshot creation
at primary-ESs,. and the restoration on primary-ESp.s and
secondary-ESp... To ensure a realistic behavior, we consider
the container snapshot and restoration values presented in our
earlier work [23]. The application state size simulated ranges
from 4 MB, that may correspond to a sensor data processing
application, to 2 GB, that may correspond to an augmented
reality application.

With an objective to keep the RTT experienced by an MD
low, we trigger the migration as and when the RTT goes
below the set threshold value. Fig. 3 shows a comparison
of the resulting downtime in redundancy migration and our
uninterrupted migration scheme represented in logarithmic
scale for different application state size.

It clearly shows that, the downtime in redundancy migration
increases with the increasing state size whereas, in uninter-
rupted migration the MD experiences a constant downtime
of approx. 4.6 ms irrespective of the application state size.
Therefore, the MD experiences the same downtime for any
application. This downtime in uninterrupted migration is due
to the time involved in decision making process in the SDN
controller.

On the other hand, Fig. 4 shows the comparison of migration
times represented in logarithmic scale for different application
state size. It clearly indicates that the migration time increases
with increasing state size, which is due to the longer packet
replay time involved in the review phase. Though the migration
time experienced by the MD is similar in both the schemes,
it is worth noting that the uninterrupted migration requires
additional resources and causes additional overhead. Never-

M redundancy M uninterrupted
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@
©
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=
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0.1

4 MB

20 MB 40 MB 2GB

Application size
Fig. 4: Comparison of overall migration time between redundancy
migration and uninterrupted migration. The plots are provided for
migration of different application size.

theless, the extra price is to achieve a robust, fault-tolerant,
and seamless live migration.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a novel live migration scheme
called uninterrupted hot-standby migration that ensures an
uninterrupted service to the mobile devices in Industry 4.0
scenario. We exploit the redundant back-up infrastructure used
in the industry for safety and reliability purposes in order to
achieve a robust migration. Irrespective of the application size,
the downtime remains constant (few ms) thus supporting a
seamless migration. On the downside, our approach introduces
network overhead and redundant use of multiple servers.
However, this is limited to a short duration of the migration.
Also, it is worth noting that our migration is rather relevant
for applications that can tolerate downtime in milliseconds.

As an extension of this work, we want to explore the
limitations of our approach in the real world implementations
using off-the-shelf SDN and Edge Computing infrastructure.
This involves challenges such as virtualization of an indus-
trial application, enabling seamless communication handover,
provisioning of edge resources and many more. We aim
to investigate the overall quality of service experienced by
various devices on the factory floor during the process of
migration.
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