
Copyright Notice
c© 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Smart Resource Planning for Live Migration in
Edge Computing for Industrial Scenario

Keerthana Govindaraj∗, Jibin P John†∗, Alexander Artemenko∗, Andreas Kirstaedter‡
∗Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Renningen, Germany

{keerthana.govindaraj, alexander.artemenko}@de.bosch.com
†University of Bremen, Institute of Communication Networks and Computer Engineering, Bremen, Germany

{jibin.john}@uni-bremen.de
‡University of Stuttgart, Institute of Communication Networks and Computer Engineering, Stuttgart, Germany

{andreas.kirstaedter}@ikr.uni-stuttgart.de

Abstract—Future factory automation systems are expected to
process vast amounts of data and orchestrate complex cyber-
physical components. This involves devices such as autonomous
guided vehicles and augmented reality glasses that are inherently
mobile. Edge Computing (EC) is a promising approach to address
the requirements set by upcoming industrial systems. However,
the combination of distributed edge network and multiple mobile
devices gives rise to the need for live migration. Migration of
multiple services in parallel demands for an intelligent allocation
of network resources. This paper describes a dynamic algorithm
to perform smart allocation of resources for live migration
on demand. In addition to maintaining the Quality of Service
requirements of the end devices, it also maintains the network
overhead due to live migration low. We evaluate the performance
of our algorithm using a discrete-event network simulator.

Index Terms—factory automation, edge computing, live migra-
tion, scheduling

I. INTRODUCTION

In the scope of Industry 4.0, the demand to interconnect

millions of sensors and actuators is increasing. The ultimate

goal is to automate the factories and make it reconfigurable on-

demand by linking multiple entities on the factory floor. How-

ever, the devices involved in factory automation have unique

requirements such as low end-to-end latencies, processing of

huge data, coordination of various cyber-physical systems, etc.

Most of the existing devices are equipped with a dedicated

hardware that experiences constraints on the battery capacity

and the processing power. They are also inflexible and cannot

react to varying demands. Thus, offloading the applications

of these devices to a virtualized environment on a powerful

server resolves these problems [1].

Edge Computing paradigm has already paved its way into

factories to address the stringent requirements of applications

such as smart analytics, big data, augmented reality, etc. [2].

According to this paradigm, these powerful computational

entities known as Edge Servers (ESs) are placed close to the

devices. Thus, the resource constrained end devices can profit

by offloading their applications to these ESs and experience

the round trip time (RTT) within the critical limit.

Fig. 1 shows an exemplary use case in which the factory

automation system involves various static and mobile devices

(MDs). Devices such as cameras and LIDARs continuously

Fig. 1. Illustration of a factory automation use case with static and mobile
devices in an edge computing infrastructure.

generate huge amount of data that need to be processed in

order to coordinate the functioning of different devices. MDs

such as autonomous guided vehicles [3] are also becoming

popular in automating transportation tasks and are inherently

mobile, however, in a planned route. Additionally, humans

using augmented reality glasses [4] and mobile control pan-

els [5] move around in a random fashion. All these devices

have different kinds of applications, memory or computation

intensive, varying mobility-speed as well as different soft and

hard RTT thresholds.

We consider that with the advent of 5G technology in the

industrial environment, many of these end devices, mainly

the MDs will be connected in a wireless fashion to the

backend network [6]. This provides huge data throughput, low

communication latencies as well as high flexibility to the end

devices. Thus, with the increasing number of end devices,

the factory backbone network with the existing capacity will

become the actual bottleneck.

Therefore, as shown in Fig. 2 it is ideal to place the ESs

on different levels of tree topology of the factory network. We

term the ESs that co-exist with access points as ESlevel1, the

ones with access switches as ESlevel2, the ones with distribution

switches as ESlevel3 and finally the ones with core switches as

ESlevel4. ESs on different levels cater to various RTT depending

on the load on network and ES.

30

2019 7th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)

2573-7562/19/$31.00 ©2019 IEEE
DOI 10.1109/MobileCloud.2019.00012

Fig. 2. Exemplary illustration of the industrial network topology and
placement of edge servers in the network.

However, a Mobile Device Application (MDA) offloaded

on ESlevel1 experiences frequent handovers depending on its

mobility, whereas on ESlevel4 it may experience increased

RTT depending on the number of end devices communicating

with ESlevel4. Thus, it is ideal to offload an MDA either

on ESlevel2 or ESlevel3 depending on the latency requirement.

Nevertheless, with the mobility, the MDA has to communicate

with the ES over multiple hops which again leads to increased

RTT. Therefore, the MDA must be migrated to an ES in

its vicinity to maintain the expected RTT. Furthermore, the

service downtime of the MDA need to be within the critical

limits also to maintain the expected RTT and to avoid any

disruption in the system.

In our previous work, we proposed a novel live migration

scheme known as redundancy migration [7], that on one

hand reduces the downtime but on the other hand leads to

increased migration time. Increased migration time implies

redundant use of resources for a longer time which in turn

makes the migration process expensive. Eventually, increasing

number of MDAs will lead to parallel migrations which in

turn further overloads the backend network. Hence, we need

to schedule these parallel migrations such that the devices do

not experience increased RTT, do not overload the network,

and maintain the redundant usage of ES resources as low as

possible. Furthermore, the number of migrations need to be

kept low as it is an expensive process.

To achieve this, we firstly examine the various requirements

of live migration process and MDAs to characterize them.

Then, by combining the well known techniques in a novel

manner, we achieve an optimized scheduling scheme for

service live migration of MDAs. We validate our algorithm

for its performance and quality using the NS3 simulation

environment.

II. RELATED WORK

A. Live Migration

Live migration is the process of moving an environment

from one server to another without losing the state of the

application running, independent of the virtualization environ-

ment. The execution environments can be a Virtual Machine

(VM) [8], a container [7], or a process [9]. This involves

migration of CPU state, memory state, and network state. On

the destination server, the CPU, memory, and network states

are required in order to restore the service correctly.

CPU and Memory State Migration: Different live migration

schemes exist in the literature, pre-copy [10], post-copy [11]

and hybrid [12]. The process of live migration is measured

by two important metrics, namely downtime and migration

time. Downtime corresponds to the duration in the migration

process during which the service is unavailable to the device.

During this period, the user can sense the interruption in

service if the downtime is greater than the Quality of Service

(QoS) requirement of the application. Therefore, downtime is

an important metric as it influences the service availability

factor and Service Level Agreement (SLA). Migration time

corresponds to the complete duration since the trigger of

migration until the service is restored on the destination server

and resumed. At this point the source server can shut down

the service and no further actions need to be taken place.

During this period, the resources are occupied on both the

hosts along with network resources and thus the migration

trigger needs to be planned and scheduled. Clark et al. [8]

show that live migration consumes significant bandwidth for

several seconds. The relevant work includes many proposals

to optimize the existing migration schemes to either improve

the downtime or the migration time [13]–[16]. Nevertheless,

none of the existing migration schemes fulfil the downtime

requirements of the industrial applications [2].

Network management: Most of the work on live migration

concentrate on CPU and memory state migration. However,

when the service needs to be migrated between different

subnets, layer 3 network protocol causes the connection be-

tween the device and the server to fail. The service initiation

time on the new device-server leads to downtime in the

service. Especially, in a distributed edge network as shown

in Fig. 2, an MD experiences a poor QoS due to multiple

migrations when changing location. NiranjanMysore et al. [17]

extend the layer 2 routing and forwarding protocol for data

center environments. However with the increasing size of

the topology and the number of server, this method is not

viable. Other popular methods are Virtual Private Network

(VPN) [18], Multipath TCP [19], mobile IP [20] and IP

tunnels [21]. However, all these methods add an additional

layer of management for a seamless connection migration.

Unlike the traditional methods, Benet et al. [22] make use of

Software-Defined Networking (SDN) and OpenFlow methods

to achieve fast restoration of network connectivity after the

migration.

Thus, in order to meet the downtime requirements, we

consider the redundancy migration scheme proposed in [7]

to transmit the CPU and memory states and an SDN based

approach [22] for the network management.

31

Fig. 3. RTT between a mobile device and its corresponding edge server on
a circular path

B. Scheduling

Scheduling schemes are very popular in various fields. How-

ever, we focus on the schemes existing in the field of computer

and communication network theory. The most popular ones

are first come, first served; shortest job first; priority-based

scheduling; round robin; multilevel queue scheduling; earliest

deadline first; etc. Some novel approaches are proposed in the

distributed systems. Wang et al. [23] propose a utility-based

scheduling scheme that focuses on bulk data transfers between

the distributed system. They use the time-utility function to

assign the priority to the jobs. However, the algorithm works

in a greedy fashion which is not suitable for our purpose.

Similarly, Wu et a. [24] propose a scheduling scheme to

transfer data between geographically distributed data centers.

They rely on SDN to coordinate data transfers by reserving

the bandwidth for high priority jobs. But for the purpose

of live migration, multiple parameters need to be considered

simultaneously in order to fulfill the RTT requirements of

the devices. In their vision paper, Stage et al. [25] propose

a schedule-based resource provisioning for VMs. The authors

aim to reduce the overall server costs as well as avoid the

network congestion. Similarly, Balman [26] tries to resolve

the resource conflict while shifting bulk data from one data

center to another. Also here, the author aims to avoid network

sharing between two migration jobs but does not consider

the varying bandwidth. Veeraraghavan et al. [27] propose a

heuristic to address the problem due to dynamically varying

bandwidth. Nevertheless, to the best of our knowledge, none of

the existing algorithms in the literature meant for scheduling

service live migration simultaneously consider the mobility

of devices, corresponding RTT requirements, varying network

bandwidth, and priority.

III. SMART SCHEDULING ALGORITHM FOR PARALLEL

MIGRATIONS

We consider a tree topology as shown in Fig. 2 but take

only the ESslevel2 into consideration for scheduling. For the

sake of simplicity, we assume that the MDs are moving at

constant velocity, the direction of motion is predetermined,

and the MDs can be exactly localized at any given instant of

time. However, to make it more realistic, various accelerations

and directions of motion of the MD can be considered with

a slight modification in the algorithm. Each end device that

has offloaded its application to an ES experiences an RTT,

that constitutes the two way communication time and the

computation time:

RTT = tMD−ES + tESprocessing + tES−MD, (1)

here we consider tMD−ES as the time required by a packet

generated on MD to reach its ES; tESprocessing as the time

required by the ES to process this packet and generate the

corresponding response; tES−MD as the time required by this

generated packet on ES to reach the corresponding MD.

Fig. 3 shows the RTT experienced by an MD that starts to

move away from its serving ES location at time 0s and makes

a U-turn to return to the point where it started at time 780s.

The graph clearly shows that with the increasing distance, the

RTT experienced rises and decreases as the device returns.

Other MDs in the network also experience an increased RTT

due to the congestion in the network.

Thus, the goal of this algorithm is to provide a practical

and efficient scheduling of live migration processes in order

to maintain the RTT of each device within its corresponding

threshold. Since live migration is an expensive process, the

additional goal is to reduce the number of migration triggers

as well as to keep the network load due to migration low.

All the ESs are managed by a controller placed centrally

and it continuously tries to keep the network optimized by

executing the algorithm. A possible location for the controller

can be the factory cloud which has an overview of the

complete system.

The controller executes the algorithm in three phases,

namely intelligence gathering, job creation and scheduling.

A. Intelligence Gathering

At any given time, the controller has an updated information

of the network topology and it keeps refreshing every time

something changes. The ESs probe the network at regular

intervals by sending an Internet Control Message Protocol

(ICMP) packet to estimate the next RTT expected on each

link. We use an exponentially weighted moving average using

a TCP-like scheme to estimate the RTT:

RTTest. = (1−α)∗RTTavg.+α∗RTTobs., 0 ≤ α ≤ 1 (2)

where α reflects a trade-off between stability and responsive-

ness and has to be set accordingly to reduce the fluctuations

between RTTavg. and RTTobs., the average and observed

RTT. Each device has a soft and a hard threshold defined.

These can be set based on the quality of service (QoS) for each

device. The controller maintains a table with RTTs measured

between each ESlevel2 and each AP in the network. For the

sake of simplicity we consider the RTT from the access

points to the ESs since the transmission and propagation time

between the MD and AP will be comparatively negligible

due to 5G. However, 5G in industrial environment have a

limited reachability and thus the range of each AP needs to be

characterized before hand. In this work we divide the range

of each AP as rectangular areas.

32

time

re
so

ur
ce

s

0 scheduling window

1

RTT probe to
each access point

redundancy
migration

migration
time

12
3

Fig. 4. An illustration of probing, to detect RTT violation and recognize
migration jobs, and scheduling windows to sort the jobs in the given window.

The controller also maintains a table with the location of

each end device in the network and its corresponding RTT

threshold requirements. The controller does a probing in a

predefined interval as shown in Fig. 4.

B. Job Creation

The controller creates a migration job for an MDA when

it experiences RTT violation. In our algorithm, we combine

a reactive and a proactive approach to recognize the RTT

violation. And for that, firstly, we need to characterize mobility

of the MD.

We model the mobility of each device in an absolute fash-

ion. That is, we do not consider a relative motion between the

devices. Thus, an MD moves with velocity vi. Due to mobility,

the MDs constantly undergoes a communication handover.

However, we consider it critical only when the device has

to communicate over an overloaded communication link and

experiences an RTT violation. In the proactive approach, the

controller considers the mobility of all the MDs and estimates

the distance di that MDi has to move to experience an RTT

violation. Thus we obtain the time remaining for MDi when

it needs to communicate with a new ES in its vicinity, and we

call it as crucial handover point as at this time instance the

migration must be complete in order to avoid RTT violation.

thandover(i) = di/vi (3)

It is important to note that the algorithm has to be executed in

a defined scheduling windows as shown in Fig. 4, such that the

network load on the backbone network does not vary during

this window.

Secondly, we need to characterize the live migration. We

consider redundancy migration [7] as downtime experienced

by the industrial applications need to be minimal. The mi-

gration time experienced in redundancy migration scheme is

higher than in the other traditional methods and is given as:

tmigration = tsnapshot + tcopy + trestore + tsynchronize (4)

tsnapshot = statesizeCPU/speedprocessor, (5)

where CPU state size is given in Bytes and the processor

writing speed is given in Bytes per second.

tcopy = statesizeCPU+memory+network/BWSD, (6)

where BWSD is the bandwidth available between the source

and destination ES.

trestore = statesize(CPU+memory+network)/speedprocessor
(7)

tsynchronize = sizebuffer/speedprocessor, (8)

where tsynchronize is the additional time required for state

synchronization in redundancy migration. This is highly de-

pendent on how big sizebuffer is. The type of the application,

CPU or memory intensive, influences the sizebuffer and is

directly proportional to the application packet generation rate.

Thus, speedprocessor must be high enough such that the rate

at which the buffer is processed is faster that it is filled.

Else, tsynchronize will be infinity. We model the requests

arriving at the processor as a Poisson distribution to have

a realistic queuing effect experienced by the processor, thus

speedprocessor is realistic.

P (x;μ) = (exp−μ)(μx)/x!

However, we have characterized the values in redundancy

migration scheme by repeating the process several times

for different applications. Thus, for any given application

under full resource availability, the controller can estimate

tmigration.

Based on thandover and tmigration, the controller calculates

the Tstart for a particular MD. Here, Tstart is the latest

start time at which the migration must be scheduled, or else

the device cannot complete its migration before the critical

handover occurs and the MD experiences RTT violation.

Tstart is the absolute time calculated by

Tstart = Tcurrent + thandover − tmigration. (9)

Fig. 6 clearly illustrates the scenario when the MD experi-

ences the latest start time. Depending on reactive or proactive

approach, the controller recognizes RTT violation and creates

a migration job between the source edge server ESS and the

destination edge server ESD with following attributes

Job
{
ESS , ESD, BWSD, thandover, tmigration, tstart

}
. (10)

C. Scheduling

As mentioned in Section I, the factory automation use case

consists of several MDs and thus multiple migration jobs will

be created. Thus, we schedule the jobs intelligently ensuring

that the network is not overloaded. To deal with various

scenarios leading to RTT violation, we propose a combination

of reactive and proactive approach.

Reactive approach: In this approach, controller creates a job

when an MD experiences RTT soft threshold violation. The

controller repeats this for all the MDs and creates a list of jobs.

For a given application under given conditions, the controller

estimates the migration time required based on the history.

Next, the controller sorts the jobs in the order of priority.

Shortest job gets the highest priority to relieve the congested

link at the fastest. Additionally, the controller tries to avoid

the resource conflict. Fig. 5 illustrates an exemplary scenario

33

migration job1

migration job2

migration job3

migration job4

migration job5

migration job6

edge controller

edge server

core switch

access switcht

access point

mobile devices

Fig. 5. An exemplary illustration of the jobs arising in the topology on different network links leading to resource sharing.

in which the controller recognizes six jobs with different

source and destination ESs. It is obvious that if all six jobs

are initiated simultaneously, job1, job5 and job6 share the

link thus extending the migration time. Since, in redundancy

migration, both source and destination servers need to be kept

active throughout the migration time, longer migration time

leads to wastage of resources. However, the jobs that do not

share the resources are placed simultaneously. Eventually, the

controller places the jobs as shown in Fig. 6. All the jobs that

do not fit into the window are discarded and controller starts

again with the intelligence gathering phase.
Proactive Approach: Unlike the reactive approach, in proac-

tive approach the controller estimates the RTT soft threshold

violation in advance based on the mobility of all the MDs and

creates a list of jobs. It then uses the information collected for

each job in Eq. 10 to sort the jobs in the order of priority.

The job with the earliest latest start time Tstart gets the

highest priority. Similar to reactive approach, the controller in

proactive approach also tries to avoid the resource conflict as

shown in Fig. 5 in order to keep tmigration low for all the jobs

as shown in. The jobs after schedule are arranged as shown in

Fig. 4. However, the window size has to be kept small to avoid

jobs targeting to resolve congestion on the same link. Again,

all the jobs that do not fit into the window are discarded and

controller starts again with the intelligence gathering phase.

In this novel scheduling algorithm, we consider that all

the jobs are non-preemptive. This implies that, once the

migration is triggered the job cannot be interrupted until its

completion. In a given window, we run both reactive and

proactive approaches to address various scenarios. If there are

n jobs to be scheduled, the algorithm requires two iterations

to schedule jobs. One iteration is to place the jobs based on

the priority and next is to detect any resource conflict. So the

complexity of the algorithm is O(n2).

IV. SIMULATION SETUP

We use NS3 simulation environment to set up a tree topol-

ogy as shown in the Fig 2. Table I shows the parameters chosen

to design the evaluation setup. Since, a complete model of

5G simulation environment is not available, we use the stable

time

migration time

current
time

latest start
time

trigger to
handover

snap shot creation
state transmission over LAN
restoration and replay

Fig. 6. An illustration of the live migration trigger based on the latest start
time to ensure QoS of the mobile device.

model of IEEE 802.11a for the wireless communication. We

ensure that the link is not overloaded at any given time such

that the bottleneck never arises at the wireless communication

link. Certain LAN links are loaded due to the static devices

connected at different points. In the initial condition, we have

ensured that none of the links are fully loaded. However,

since the migration traffic is bursty, it could strongly affect

the QoS of all devices in the network. Thus, we consider

a dedicated link only for migration data. An equivalent of

that can be achieved in real world with the help Virtual

Local Area Network (VLAN) [28]. The experiment consists

of three different application classes. These applications differ

by: packet inter-arrival time; mobility; application state size.

Table I provides the details of various applications running in

the system.

Most importantly, we consider only the ESslevel2 that co-

exist with access switches. All the APs connected as leaflets

belong to this ES cluster.

34

TABLE I
SIMULATION PARAMETERS FOR THE NS-3 EVALUATION SETUP

Parameter Values
Wireless network

Protocol IEEE 802.11a (54Mbps)
Range 12 m

Wired network IEEE 802.3 Ethernet (100Mbps)
Simulation time 780 s
No. of repetitions 18
Mobile device 24
Packet size 536 Bytes
Application class A

mobility linear; constant speeds (0.5 m/s)
total state size 1000 pages
CPU state size 100 pages
page size 4 KB
packet inter-arrival time 10 ms
soft threshold 15 ms
hard threshold 55 ms

Application class B
mobility linear; constant speeds (1 m/s)
total state size 1500 pages
CPU state size 150 pages
page size 4 KB
packet inter-arrival time 5 ms
soft threshold 20 ms
hard threshold 70 ms

Application class C
mobility linear; constant speeds (2 m/s)
total state size 1000 pages
CPU state size 100 pages
page size 4 KB
packet inter-arrival time 5 ms
soft threshold 15 ms
hard threshold 55 ms

V. EVALUATIONS AND RESULTS

Using the above mentioned experimental setup we test the

performance of our scheduling algorithm. Since the main goal

is to ensure the QoS requirements of the devices and the

overhead due to migration, it is interesting to compare against

a no migration scenario and a location-based migration sce-

nario. The controller in the location-based migration scenario

triggers a migration, each time an MD crosses over the cluster

boundary. 24 MDs are randomly distributed on the factory

floor with each 1/3rd of the MDs belonging to a different

application class. We repeat the experiment multiple times

changing the position of the MDs thus inducing randomness

in point of trigger for migration. It is interesting to observe

the following effects of using scheduling:

• RTT experienced by all the MDs

• Comparison of number of migration triggers

• Comparison of migrated state size

A. RTT comparison

Fig. 7 shows that the RTT of the MD increases as it

moves away from their corresponding edge servers. Thus it

is obvious that migration is necessary. It is important to note

that the RTT is represented over a logarithmic scale in order to

cover the large range. The location based migration however

reduces the RTT far below the RTT soft threshold, since the

jobs corresponding to all the MDs that cross the ES cluster

boundary are blindly migrated. And we notice that the RTT

Fig. 7. Comparison of RTT experienced by a mobile device throughout its
operation when the application is not migrated at all, when the application is
migrated every time the device crosses its location and when the application
is migrated based on scheduling

experienced by the MD under our algorithm is higher than in

location based migration but still below the RTT soft threshold.

Thus we prove that our algorithm is successful in ensuring the

QoS requirements expected.

Fig. 8. Comparison of migration triggers in location based migration vs.
scheduling algorithm based migration

B. Migration Count

Since resources in the network are limited, migration trig-

gers must be kept very low. Thus we evaluate the perfor-

mance of our algorithm based on how often the migration

was triggered for all the 24 MDAs during 400 repetitions.

Fig. 8 shows the number of times the migration triggered

for each application class. In the location based migration,

since the applications are blindly migrated, there is no priority

given to any application. Since our algorithm triggers the

migration only when it is required, the number of migrations

is comparatively low. We have reduced the migration triggers

by 57%.

1) State Size: Similarly, Fig. 9 shows the total state size

that has been migrated during the whole simulation for all the

24 MDs in. Since our algorithm prefers the jobs with shorter

migration times over the others, the total state size remains

low. As seen in Table I, application type 2 has higher state size

compared to application type 1 and 3. Therefore, our algorithm

chooses application type 2 less often than required. Thus, we

successfully reduce the load transmitted by 63%.

35

Fig. 9. Comparison of total state size transmitted in location based migration
vs. scheduling algorithm based migration

2) Network Overhead: The results clearly show that with

our algorithm we can reduce the number of migrations

triggered as well as the total state information transmitted.

However, it comes at a cost of probing in the network. At the

beginning of each scheduling window, every ESlevel2 sends 20

ICMP packets of size 64 bytes each. Thus, 14 kB of ICMP data

is sent from a single ES to an AP during the probing interval.

The window size here is set to 8 seconds and the algorithm

is repeated up to 100 times during this simulation and for all

the ESslevel2. Hence, probing due to our algorithm leads to

data exchange of up to 1.2 MB during the simulation time of

780 s which is considerably low compared to the overall data

transmitted in the system.

VI. CONCLUSION AND OUTLOOK

This paper has shown why edge computing is relevant for

factory automation and has introduced a use-case with multiple

mobile devices with different requirements. The combination

of distributed edge computing and mobility gives rise to the

need for live migration. Though it reduces the downtime

experienced by the system, it is an expensive process in terms

of resources utilized. Multiple mobile devices lead to parallel

migrations on the same pair of edge servers and the same link.

Thus, there is a need for an intelligent algorithm to schedule

parallel migration requests such that the round trip times

experienced by the devices are always within the expected

limits and simultaneously the network load due to migration

is kept low. Our algorithm intelligently schedules the migration

jobs satisfying all the criteria.

The future work focuses on refining the migration job

creation step that can be optimized by improving the job

prediction. Also our algorithm relies on the history to estimate

the migration time. This can also be further improved by

integrating reinforcement learning methods.

ACKNOWLEDGMENT

This work has been supported by the Federal Ministry

for Economic Affairs and Energy of the Federal Republic

of Germany (Foerderkennzeichen 01MA17008D, IC4F). The

authors alone are responsible for the content of the paper.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
Oct 2009.

[2] K. Govindaraj, D. Grewe, A. Artemenko, and A. Kirstaedter, “Towards
zero factory downtime: Edge computing and SDN as enabling technolo-
gies,” in International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Oct 2018, pp. 285–290.

[3] G. Ullrich, Automated Guided Vehicle Systems: A Primer with Practical
Applications. Springer Publishing Company, Incorporated, 2014.

[4] J. Rambach, A. Pagani, M. Schneider, O. Artemenko, and D. Stricker,
“6DoF object tracking based on 3D scans for augmented reality remote
live support,” Computers, Jan 2018.

[5] L. Wang and A. Canedo, “Offloading industrial human-machine interac-
tion tasks to mobile devices and the cloud,” in Proceedings of the IEEE
Emerging Technology and Factory Automation (ETFA), Sep. 2014, pp.
1–4.

[6] S. E. Elayoubi, M. Fallgren, P. Spapis, G. Zimmermann, D. Martn-
Sacristn, C. Yang, S. Jeux, P. Agyapong, L. Campoy, Y. Qi, and
S. Singh, “5G service requirements and operational use cases: Analysis
and METIS ii vision,” in European Conference on Networks and
Communications (EuCNC), June 2016, pp. 158–162.

[7] K. Govindaraj and A. Artemenko, “Container live migration for latency
critical industrial applications on edge computing,” in IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), Sept 2018.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the Conference on Symposium on Networked Systems Design &
Implementation - Volume 2, ser. NSDI’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 273–286.

[9] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,
“Process migration,” ACM Comput. Surv., vol. 32, no. 3, pp. 241–299,
Sep. 2000.

[10] M. M. Theimer, K. A. Lantz, and D. R. Cheriton, “Preemptable remote
execution facilities for the V-system,” SIGOPS Oper. Syst. Rev., vol. 19,
no. 5, pp. 2–12, Dec. 1985.

[11] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 14–26,
Jul. 2009.

[12] Z. Lei, E. Sun, S. Chen, J. Wu, and W. Shen, “A novel hybrid-copy
algorithm for live migration of virtual machine,” Future Internet, vol. 9,
no. 3, 2017.

[13] S. Sharma and M. Chawla, “A three phase optimization method for
precopy based VM.”

[14] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proceedings of
the ACM International Symposium on High Performance Distributed
Computing, ser. HPDC ’09. ACM, 2009, pp. 101–110.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 211–224,
Dec. 2002.

[16] B. Jiang, B. Ravindran, and C. Kim, Lightweight Live Migration for
High Availability Cluster Service. Springer Berlin Heidelberg, 2010,
pp. 420–434.

[17] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” in Proceedings of the
ACM SIGCOMM Conference on Data Communication, ser. SIGCOMM
’09. New York, NY, USA: ACM, 2009, pp. 39–50.

[18] T. Wood, K. K. Ramakrishnan, P. Shenoy, J. V. der Merwe, J. Hwang,
G. Liu, and L. Chaufournier, “CloudNet: Dynamic pooling of cloud
resources by live WAN migration of virtual machines,” IEEE/ACM
Transactions on Networking, vol. 23, no. 5, pp. 1568–1583, Oct 2015.

[19] F. Teka, C. Lung, and S. Ajila, “Seamless live virtual machine migration
with cloudlets and multipath TCP,” in IEEE Annual Computer Software
and Applications Conference, vol. 2, July 2015, pp. 607–616.

[20] S. Kassahun, A. Demessie, and D. Ilie, “A PMIPv6 approach to maintain
network connectivity during VM live migration over the internet,” in
IEEE International Conference on Cloud Networking (CloudNet), Oct
2014, pp. 64–69.

[21] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
wide-area migration of virtual machines including local persistent state,”
in Proceedings of the International Conference on Virtual Execution
Environments, ser. VEE ’07. New York, NY, USA: ACM, 2007, pp.
169–179.

36

[22] C. H. Benet, K. A. Noghani, and A. J. Kassler, “Minimizing live VM
migration downtime using openflow based resiliency mechanisms,” in
IEEE International Conference on Cloud Networking (Cloudnet), Oct
2016, pp. 27–32.

[23] X. Wang, W. Tang, R. Kettimuttu, and Z. Lan, “Utility-based scheduling
for bulk data transfers between distributed computing facilities,” in
International Conference on Parallel Processing Workshops, Sep. 2015,
pp. 175–183.

[24] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. C. M. Lau, “Orchestrating
bulk data transfers across geo-distributed datacenters,” IEEE Transac-
tions on Cloud Computing, vol. 5, no. 1, pp. 112–125, Jan 2017.

[25] A. Stage and T. Setzer, “Network-aware migration control and schedul-
ing of differentiated virtual machine workloads,” in Proceedings of

the ICSE Workshop on Software Engineering Challenges of Cloud
Computing, ser. CLOUD ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 9–14.

[26] M. Balman, “Advance resource provisioning in bulk data scheduling,”
in IEEE International Conference on Advanced Information Networking
and Applications (AINA), March 2013, pp. 984–992.

[27] M. Veeraraghavan, H. Lee, E. K. P. Chong, and H. Li, “A varying-
bandwidth list scheduling heuristic for file transfers,” in IEEE Interna-
tional Conference on Communications, vol. 2, June 2004, pp. 1050–1054
Vol.2.

[28] IEEE 802.1q: VLAN, IEEE, http://www.ieee802.org/1/pages/802.1Q.html,
2005.

37

