
Implementation of Resilient Packet Ring Nodes Using Network Processors

Andreas Kirstädter, Member, IEEE, Axel Hof, Siemens AG, Corporate Technology
Walter Meyer, Erwin Wolf, Siemens AG, ICN

Axel.Hof@siemens.com
Siemens AG, Corporate Technology
Information and Communications

Otto-Hahn-Ring 6
81730 München, Germany

Abstract

Network processors offer a new flexibility for network
applications and reduce the time to market for data
processing systems. In this paper, we describe the
changed development process of the data plane using the
Motorola C-5 Network Processor. We implemented a
Resilient Packet Ring line card for a SDH cross connect.
We show a solution for the support of different Quality of
Service classes with a Network Processor and to achieve
the necessary system stability. Additionally we carried out
some simulations to verify the performance of a fairness
algorithm over the ring and the system behavior.

Keywords—Network processors, High-speed LAN,
Quality of Service, Simulation

1. Introduction

The Resilient Packet Ring (RPR) is a draft standard to
transport data traffic over a ring-based media with data
rates scalable to many gigabits per second in Local or
Wide Area Networks [1,2]. Two counter-rotating buffer-
insertion rings constitute a RPR, as shown in Figure 1.

Figure 1: RPR topology on the basis of SDH links.

The Institute of Electrical and Electronic Engineers
(IEEE) began the RPR standards (IEEE 802.17)
development project in December 2000 with the intention
to create a new Media Access Control layer for RPR.

 A RPR is a ring architecture that consists of packet-
switching nodes connected to adjacent nodes via a fiber
pair. The link bit-rate of an RPR can take values in the
range from 155 Mbit/s up to 10 Gbit/s [2].

Among many deployment areas RPRs are especially
attractive for the use within (optical) SDH Add-Drop
Multiplexer in Metropolitan Area networks. SDH paths
constitute the links between the RPR nodes. Our
implementation of RPR is located on a line card within an
Add-Drop Multiplexer allowing the transparent transport
of Ethernet Packets over the SDH ring.

The operator may run this card using four different
configurations. On the tributary interface side the card
offers the choice between 10/100Mbps and 1 Gbbps
Ethernet. On the (SDH) ring side either VC-4 paths or
VC-4-4v paths can be supported. To achieve this
flexibility, a network processor (NP) was selected for the
task of data processing [3]: The single link options can be
activated via simple software download on the basis of the
same hardware Another reason for the use of a network
processor is the still open standard and any changes can
be easily adapted in a following release by changing only
the SW but using the same hardware platform

The development of the RPR card was our first project
with a network processor. Before the start of the card
development we investigated different implementation
options wthin a small evaluation project. After a
technology scan of the available network processor the C-
5 from C-Port/Motorola seemed to be appropriate for this
kind of application [4]. The use of network processor
made changes in the development process necessary.

The rest of the paper is organized as follows: Chapter 2
describes the architecture of the RPR card and the SDH
Add Drop Multiplexer it is connected to. Chapter 3 gives
a small overview of the C-5 network processor and the
main features of the processor. The changes in the
development process and the problems overcome with the
network processor are presented in chapter 4.

Additionally, we carried out some system simulations of
the RPR ring. Chapter 5 describes the simulator and
presents various results of the system simulation.

2. RPR card and the SDH multiplexer

The SDH Add Drop Multiplexer is a multi service
system and is configured in a rack with multiple flavors of
line cards. A SDH back plane provides the interworking
among the cards across a switch fabric and a control
processor card manages the operation of the system. The
line cards of the system run with OC-3, OC-12 and OC-
48.

A host processor controls the network processor. It
consists of a Power PC processor connected via a PCI
bridge to the network processor. The host processor takes
care about the generation of the routing table, the alarm
handling and bandwidth reservation. Via the PCI bridge
the host processor can access a part of the data memory of
the NP, e.g. for downloading routing tables to the NP or
reading of some statistical data. A control processor core
(XP) within the NP handles the access of the host
processor to the data memory.

Figure 2: Architecture of RPR line line

3. Network Processor

The C-5 network processor from Motorola contains 16
parallel channel processors. They consist of a RISC core
together with a Serial Data Processor SDP) for the bit and
byte processing [5]. Additionally there are 5 special units
on the C-5 for the buffering and queuing, , another unit for
table lookups (TLU), a fabric processor (FP) and a control
processor (XP), see Figure 3.

The 16 parallel channel processors (CP) are ordered
into 4 clusters of 4 processors each. The 4 processors in
one cluster can run the same application and share an

instruction memory of 24 kByte that also can be divided
so that each CP gets a dedicated 6kByte sub-array.

The C-5 NP contains three independent data buses that
provide internal communication paths between the C-5
NP’s eighteen processors. The Payload Bus uses a 128bit
wide data path in four-cycle bursts to transfer up to 64
Bytes of payload data. The C-5 NP implements a ring-
topology bus for communication between the TLU and the
eighteen processors The Global Bus provides direct
access to most C-5 NP memory space.

Figure 3: C-5 NP architecture

Each of the sixteen CPs contains a Reduced Instruction
Set Computer (RISC) Core. The dedicated RISC Core in
each channel controls cell and packet processing and
executes a MIPS TM 1 instruction set (excluding multiply,
divide, floating point).

Two extra units of the C-5 NP manage packet buffering
and queuing.. The payload of the incoming packet is
stored in the external memory, which is controlled by the
Buffer Management Unit (BMU). The BMU controls the
storage of the payload and returns a descriptor of the
memory block for the payload storage to the CP. After the
lookup at the Table Lookup Unit (TLU) the CP sends the
descriptor of the payload buffer to the Queue Management
Unit (QMU) and enqueues it into the queue of the
transmitting CP.

For the communication with the QMU, BMU and TLU
exists a library of service functions [6] that is used by the
code running on the CPs. The library functions, example
applications, and the complete tool environment are part
of the C-Ware Software Toolset (CST). There exist
different releases of the CST and the code can be ported
from one release to the other.

The Executive Processor (XP) also executes the library
functions. The XP, being the only processor with no
linkage to the data path, controls the operation of the other
processors and downloads the configuration onto them
and the special units. During runtime the XP generates
control messages or table entries within the TLU.

3.1. Aggregation Mode

For higher data rates the channel processors of one
cluster on the C-5 NP may run in an aggregated mode:
The channel processors work in parallel on the same data
interface and the data stream of one input is multiplexed
on the four channels in a round robin fashion. The CPs
work in a pipelined manner. To guarantee the correct
order of the packets the processors are synchronized by
hardware tokens (see Figure 4).

Figure 4: 4 SDPs of one cluster in aggregation mode

The parallel working CPs share common resources like
queues and variables. If the processor accesses a variable
only once and in a synchronized order, the access can be
controlled with a hardware token. The exchange with the
QMU (add or remove descriptor from a queue) is also
synchronized by the token to avoid packet reordering.

The access time to some of the internal variables is not
predictable. Therefore the access to these variables has to
be checked with a semaphore that at the same time slows
down the access time to the variable. Thus it is desirable
to limit the number of semaphores used.

The support of Quality of Service (QoS, in the sense of
packet stream transmission orders at the output ports of
the NP) gets more time critical in the aggregated mode.
For QoS the processor has to serve a number of queues
having different priorities. The RPR application manages
up to 11 queues in a top-down priority and round robin
scheme. To decide, which queue has to be served next the
channel processor needs status information about all
queues. In the aggregated mode the following
synchronized steps have to be performed at the
transmission context for the selection of a packet :

− The processor has to decide from which queue it
takes the next packet descriptor.

− The processor initiates the transfer of the packet
descriptor from the QMU to the CP.

− The CP reads out the status information of the
received message from the QMU via the
descriptor and updates the status information of
the served queue.

For the decision about the next packet the CP needs the
current status information of the queue. Another processor
is reading out a descriptor from the queue in parallel.
Therefore the access to the queue status information has to
be synchronized. The service library of the QMU provides
two possibilities for obtaining queue status information.
One function delivers the number of descriptors in the
queue and the other gives back a bit vector with
information of all queues of a CP. The 0 symbolizes an
empty queue and a 1 a filled queue. With the information
of the exact fill level of the queue the CP has to check for
an increasing number of queues (in the worst case a lot of
queues) until it knows from which queue to take the next
descriptor.

Therefore, the CP consumes less clock cycles with the
bit vector of the information about all queues because the
CP has to access the QMU only once. But the CP gets the
right fill level of the queue not until it receives the
message with the descriptor of the payload. Therefore the
bookkeeping with the number of descriptors within a
queue has to take the parallel access of the other CPs into
account. We found an algorithm with an equal execution
time of the three synchronized code blocks.

3.2. Performance Estimation and Processor
Limitations

The C-5 tool environment includes a cycle-accurate
simulator together with a performance analyzer. For
performance analyzing trace points have to be inserted
into the code. Time consuming code segments can be
detected easily by measuring clock cycles between these
trace points.. For each of them it stores the cycle count
and the passed trace points in a data file. With this tool we
made a first rough estimation of the workload on the
processor.

The main problem for the building of the application
was the limited instruction memory (IMEM). Each CP
provides an IMEM of 6 kByte. In a cluster of 4 CPs,
where each CP runs the same task, the CPs can share their
IMEMs. So there are 24 kByte available for the
application.. In an early stage of the development process
we reached the limit of the IMEM. Limitation of
instruction memory space was one of the major challenges
of the project. Code reduction was a solution:.

The compiler links unused library service functions to
the execution code. By stripping off unused library
functions we were able to free 1 kByte of IMEM.

Unfortunately the absence of library functions may cause
unpredictable behavior of the application.

Performance is another crucial point in a network
processor environment. We found different means for
tuning the code. With the help of the performance
analyzer we investigated the time budget for every code
segment. The optimization experiences can be
summarized in the following hints:

− avoid “FOR”-loops
− use a pointer instead of an array index if the

same index is used more than one time
− use hardware semaphores (ksToken) instead

of software semaphores (ksMutex)
− use inline functions
− use branches (goto) to jump over

unnecessary statements
− substitute library function calls with direct

register access (not portable!)
Some of the optimization steps consumes more IMEM

like the use of inline functions or makes the code “difficult
to read”. Additional you have to keep in mind that
modification of the library code will generate problems
with each new CST release.

3.3. Queue Overflows

A serious problem for the network processor is a queue
overflow or if a channel processor accesses an empty
queue. In both cases the QMU sends an interrupt towards
the accessing channel processor. The channel processor
has to handle this interrupt. For every registered interrupt
exists an interrupt routine to clean up all allocated
resources that are no longer needed because of the failure.

An interrupt is very time critical for the channel
processor. Each interrupt means a context switch and the
processor first has to store the context, before the
processor can access variables, which are used in the
previous context. Save and restore of a context is very
time consuming. The processor needs about 300 to 400
cycles for these two operations in the reference code.
Therefore it is more efficient to have very simple interrupt
routines. One solution is just to signal by an indicator, that
the interrupt has occurred. The indicator can be checked
in any active context in a polling manner.

For the RPR we have two types of packets transmitted
over the ring. Data packets, which are the majority, and
control packets for the generation of the routing table, for
alarming and control and distribution of the available ring
bandwidth. If a queue overflow in system occurs very
rarely the interrupt can be handled with an interrupt
routine. Within the interrupt routine the processor has to
free the allocated buffer and to prepare all variables for
the arrival of the next packet. If overflows are very likely
and the system has different kind of packets, the interrupt

routine gets more complex and insecure. Insecure
moments may arise when the processor is already
processing the next packet and receives the interrupt from
the last packet. The processor frees the previous buffer
and the previous buffer is ignored. This leads to a memory
leak and after a number of queue overflow the system runs
out of buffer descriptors.

For a large rate of queue overflows the system becomes
more stable when the processor counts the number of
enqueued packets or even better gets the fill level of the
queue. If the queue becomes nearly full the processor
stops to enqueue the packets and drops them.

Checking the queue fill level costs some extra clock
cycles for each packet and decreases the system
performance. If the queue belongs to another CP the CP
has to communicate with QMU to get the fill level costing
some additional clock cycles. But the CP only has to
check the fill level when the number of enqueued packets
gets close to queue limit and can update the local variable
with the number of packets in the queue.

4. System test

In an NP based system test and also development
process of the application differs from previous projects.

The target hardware was already available in an early
state of the implementation process. In a first step we had
to test the correct behavior of all interfaces to the network
processor. At this time the final application software for
the NP and the host processor was not available. We
therefore used a simple application software on the NP for
each interface which was only able to loop back the
incoming traffic to itself (either in the SDP or in the CPs).
For the test of the special units some diagnostic software
is part of the C-5 environment.

In parallel to the implementation of the application
software we ran some tests on the simulator and the target
hardware. The C-5 NP simulator within the development
environment uses Perl scripts to generate traffic patterns.
These traffic patterns stimulate the simulator. With this
traffic patterns we were able to simulate the principal
behavior of the system using only few packets (some 100
to 1000 packets). In parallel we made some similar tests
with the target hardware stimulated by a traffic generator
(millions of packets). Typical misbehavior of the system
was:

− Loss of traffic flow
− Shut down of a CP

The loss of traffic flow indicates the absence of a
system resource like a descriptor of a packet or a buffer
block for the payload. The trace functions of the C-5 NP
simulator show such a kind of memory leak but sometimes
this occurs after a few thousands of packets. Therefore we
changed the interrupt routine for the absence of system
resources and just signaled the occurrence of such an

error. The system is not able to handle this error and for
long time stability these kind of error is unacceptable.

Writing out information to a console window during
packet processing is not practical, because the print
function itself consumes performance of the processor and
packet processing is no longer possible with line speed.
The only way to get some information from the processor
during data processing with line speed is the insertion of
some additional variables. These variables can be
accessed from the host processor via the PCI bridge.

Due to the nature of the packet processing the
processor does busy waiting for the next packet and then
performs same routines for each packet. Therefore the
application code includes often while loops. These while
loops are a second reason for a deadlock of the CP and a
loss of traffic flows. E.g. if the CP misses a response of
the TLU the processor stops and waits for the response. A
timeout function in every while loop or the attaching with
the debugger of the C-5 development environment helped
us to find a stop of the program due to that kind of error.

If the CP gets an unregistered interrupt or has no
interrupt routine the processor ends up in a panic mode
and stops working. But every interrupt has information
about the sending device and the kind of error occurred.
The print out of all the available information of the
interrupt indicates the reason for the error.

Due to the limited instruction memory we encountered
problems in adding additional code like the timeout
functions to the application. Therefore, we had to skip a
part of the code for the tests or we had to change the code.
The NP code for the RPR application is not complex and
has about 10000 lines of code. The dependencies between
different parts of the code are the challenge during the
system test.

A change in one part of the code can have a side effect
to other parts of the code. Therefore a lot of reiterations
were necessary. During the system test various changes in
the design - like the handling of a queue overflow - were
required. These changes always bear a high risk for new
errors with them.

System simulations are very helpful for the verification
of the fairness algorithm. With a simulator it is easy to
observe single variables and the whole system behavior
can be optimized. It is more easy to find and locate errors
during simulation than in the real system and a set of
different parameters can be simulated within a short
period of time.

5. System Simulations

For the RPR card a simulator was developed to model
the protocol running on the ring. With this simulator the
behavior and most diverse performance investigations can
be accomplished.

The simulator is programmed in C++; the libraries of
CNCL (Communication Networks Class Library [8]) were
used. It works event based and is built in a very modular
manner.

The protocol and also the simulator are specially
adapted to the behavior of the C-5- NP.

To simulate different scenarios it is possible to use
different sources with different distributions of packet
length and destination addresses. To accomplish the
behavior and performance investigations of the protocol,
meters can be attached to points of interest in the
investigated network. They collect data while the
simulation is running.

As an example the following drawings show the
priority handling in an eight-node topology where first
node #4 at time=0sec sources 100 Mbps of low-priority
traffic onto the ring (link capacity: 150 Mbps) for
forwarding further downstream towards node #6 (see
Figure 5). At the time=0.5sec node #5 sources 100 Mbps
of high-priority traffic also destined to node #6.

Figure 5: Eight node network with traffic meter

Figure 6shows the resulting throughput in the form of
forwarded low-priority traffic originated by node #4. And
Figure 7shows the amount of traffic sourced by node#5.

Figure 6: Throughput from node #4 over time

Figure 7: Throughput from node #5 over time

As it can be seen from the diagrams above the ring
fairness protocol preserves the strict priority between high
and low-priority traffic. Exactly the same result was also
measured in the experimental setup.

6. Conclusion

Despite of many problems during implementation, we
successfully finished the project and since some month the
system is delivered to customers. We gained a lot of
experience in programming network processors and to
summarize it up: the team enjoyed the work in this
project.

7. References

[1] IEEE 802.17 Resilient Packet Ring Working Group
Website, http://www.ieee802.org/rprsg/.

[2] H.R. van As, “Overview of the Evolving Standard
IEEE 802.17 Resilient Packet Ring,” 7th European
Conference on Networks & Optical Communications
(NOC), Darmstadt, Germany, June 18-21, 2002.

[3] T. Wolf, “Design of an Instruction Set for Modular
Network Processors,” IBM Research Report, RC 21865,
October 27, 2000

[4] N. Shah, “Understanding Network Processors,”
Master’s Thesis, Dept of Electrical Engineering and
Computer Science, Univ. of California, Berkeley, 2001

[5] C-5e Network Processor Architecture Guide
Silicon Revision A0, Motorola, http://e-
www.motorola.com/brdata/PDFDB/docs/C5EC3EARCH-
RM.pdf

[6] C-5e Application Documentation, Motorola,
http://e-
www.motorola.com/webapp/sps/site/prod_summary.jsp?c
ode=C-5E#applications

[7] QMU Configuration and RC Support, Motorola,
http://e-
www.motorola.com/brdata/PDFDB/docs/CSTCQRC
S-UG.pdf

[8] RWTH Aachen, http://www.comnets.rwth-
aachen.de/doc/cncl/

http://e-www.motorola.com/brdata/PDFDB/docs/C5EC3EARCH-RM.pdf
http://e-www.motorola.com/brdata/PDFDB/docs/C5EC3EARCH-RM.pdf
http://e-www.motorola.com/brdata/PDFDB/docs/C5EC3EARCH-RM.pdf
http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?code=C-5E#applications
http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?code=C-5E#applications
http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?code=C-5E#applications
http://e-www.motorola.com/brdata/PDFDB/docs/CSTCQRCS-UG.pdf
http://e-www.motorola.com/brdata/PDFDB/docs/CSTCQRCS-UG.pdf
http://e-www.motorola.com/brdata/PDFDB/docs/CSTCQRCS-UG.pdf
http://www.comnets.rwth-aachen.de/doc/cncl/
http://www.comnets.rwth-aachen.de/doc/cncl/

