RD-QoS – The Integrated Provisioning of Resilience and QoS in MPLS-based Networks

IEEE International Conference on Communications (ICC)

New York, USA

May 1, 2002

Achim Autenrieth

Munich University of Technology
Institute of Communication Networks

Email: Autenrieth@ei.tum.de

Andreas Kirstädter

Siemens AG, Corporate Technology Information and Communication

Andreas.Kirstaedter@mchp.siemens.de

Outline

- Introduction
- Resilience Differentiated QoS (RD-QoS)
- RSVP / DiffServ Resilience Signaling
- Interworking with MPLS Recovery
- Case Study and Results
- Conclusion

Introduction

MPLS

supports

QoS

Resilience

Behavior under normal conditions

Resource management, traffic management (marking, shaping, queuing, metering)

Behavior under fault conditions
Fault detection, failure notification,

recovery and service restoration

MPLS offers various resilience options

Protection Switching / Restoration, Local / Global Scope, ...

Advantages of MPLS recovery are:

Resource efficiency, recovery granularity, protection flexibility

Problem Definition

- MPLS recovery must be compared to optical network recovery
 - ⇒ MPLS recovery should utilize its benefits to the most extent
- Moreover, service providers should be able to charge for higher resilience as a value-added service
 - \Rightarrow Services should be protected with the required level of resilience

But: How can this level be identified?

Resilience requirements (resilience attribute) should be included in the QoS signaling (like bandwidth and delay)

Resilience-Differentiated QoS

Extended quality-of-service definition: extend the standard QoS-metrics (bandwidth, delay, delay jitter) with resilience requirements of IP service classes

Resilience attribute

- included in QoS signaling between application and network.
- depending on QoS architecture (IntServ, DiffServ) on a per flow or on a per packet basis.
- mapped to MPLS FECs with appropriate recovery options

4 Resilience Classes proposed

mainly distinguished by recovery time requirements

RC1 - High	RC2 - Medium	RC3 - Low	RC4 - None
10 - 100ms	100ms - 1s	1s - 10s	pre-emption

RD-QoS Network Model

Access networks

DiffServ / RSVP

Resilience signaling & resource management

Core Network

MPLS / DiffServ

Resilience mechanisms & **Traffic Engineering**

MPLS: Multiprotocol **Label Switching**

RSVP: Resource Reservation Protocol

DiffServ: Differentiated

Services

FEC: Forward

RD-QoS Building Blocks

- Extended QoS architecture
 resilience signaling between application and network
- QoS Resource Management and Traffic Conditioning takes resilience attribute into account
- Recovery Mechanisms provided by MPLS
- Interworking of RD-QoS with MPLS
 direct mapping of resilience attribute to MPLS recovery options
- MPLS Traffic Engineering
 resource efficient resilience provisioning

RD-QoS Signaling

RSVP-TE

QoS request with resilience attribute is signaled through network

-> Resource Management

Protection: Signaling is done
on disjoint routes with explicit
routing

MPLS Recovery Mechanism

Interworking of RD-QoS with MPLS

Resilience classes are mapped to MPLS recovery options

Resilience Class	RC1	RC2	RC3	RC4
Resilience requirements	High	Medium	Low	None
Recovery time	10-100 ms	100ms - 1s	1s - 10s	n.a.
Resilience scheme	Protection	Restoration	Rerouting	Pre-emption
Recovery path setup	pre-established	on-demand immediate	on-demand delayed	none
Resource allocation	pre-reserved	on-demand (assured)	on-demand (if available)	none
QoS after recovery	equivalent	may be tempo- rarily reduced	may have reduced QoS	none

RD-QoS Traffic Engineering

- Offline MPLS Traffic Engineering with resilience differentiation
- Used resources (guaranteed bandwidth)
 calculated on each link for the 4 resilience classes

where:

RC1: Protection

a: active

b: backup

RC2: Restoration

a: active

b: backup

RC3: Rerouting

RC4: Pre-emption

RD-QoS Case Study

Network Scenario

- Northern Italian research network
- 16 nodes, 36 links
- Demands between a pair of nodes between 1 Gb/s and 16 Gb/s

4 Service Ratio Scenarios

- 100% Best-effort traffic (RC3)
- RD-QoS traffic with 10% RC1,
 20% RC2, 40% RC3 and 30% RC4
- 100% RC2 traffic (restoration)
- 100% RC1 traffic (protection)

3 Protection and 3 Restoration mechanisms

- P1: Path protection P2: Segment prot.
- R1: Global rest. R2: Local to egress rest.

P3: Link protection

VIC

VER

BOL

FIR

VEN

ANC

BRE

MIL₂

ALE

SAV

GEN

MIL

PIS

R3: Local rest.

Case Study Results

Conclusions

- ◆ RD-QoS architecture extends QoS signaling with resilience requirements of IP services to achieve flexible resilience provisioning
- ◆ 4 Resilience Classes proposed, primarily distinguished by recovery time requirements
- ◆ RD-QoS achieves high resource efficiency for the cost of increased complexity (additional resilience attribute)

The current trend is clearly towards a service-driven transport architecture. The resilience requirements should therefore be included in the QoS signaling like bandwidth and delay

Resilience Requirements of IP Services

 Resilience requirements of IP services are orthogonal to their "classical" quality-of-service requirements (bandwidth, delay, delay jitter)

		Resilience requirements		
		low	high	
QoS Require- ments	low	e-mail, FTP, standard WWW	database transactions, mission-critical control terminals, e-commerce applications	
	high	standard VoIP and multimedia services	mission-critical VoIP and multimedia services	

Resilience Classes

Proposed Resilience Classes RC1 - RC4:

RC1: High Resilience Requirements: 10 – 100ms recovery time

Use of MPLS protection switching or Fast Reroute

RC2: Medium Resilience Requirements: 100ms – 1s recovery time

MPLS Restoration with on-demand backup path establishment

RC3: Low Resilience Requirements: 1s – 10 s recovery time No resources are reserved / allocated in advance. Traffic recovery requires rerouting and resource reservation.

RC4: No Resilience Requirements: pre-emption

Corresponding to low-priority, pre-emptible traffic. Packets may be discarded in case of failures.

Multiprotocol Label Switching (MPLS)

◆ MPLS integrates Layer 3 Routing with Layer 2 Switching

◆ Connection-oriented characteristic: hop-by-hop IP routing replaced by label switching

◆ Packets are assigned to Forward Equivalence Classes (FEC) only

once at the network ingress

 Packets follow a pre-defined Label Switched Path (LSP)

 Signaling protocols for path setup:
 CR-LDP & RSVP-TE

Assignment of different paths for flows with same source and destination address

MPLS Recovery

- ◆ MPLS Recovery is currently a key research issue in the IETF
- Several drafts are published which present recovery mechanisms
- "Framework for MPLS-based Recovery" defined in [draft-ietf-mpls-recovery-frmwrk-03.txt]
- Well known resilience concepts from SDH and ATM Recovery are mapped to MPLS

Benefits from MPLS Recovery

- Finer recovery granularity (compared to Layer 1 recovery)
- Protection Selectivity based on Service Requirements possible
- Efficient and flexible resource usage (e.g., recovery path may have reduced performance requirements)
- Allows end-to-end protection of IP services

MPLS Recovery Options

Recovery models						
Protection Switching		Restoration (MPLS Rerouting)				
Resource Allocation						
Pre-reserved		Reserved-on-demand				
Resource Use						
Dedicated resources	Shared resources		Extra-traffic allowed			
Path Setup						
Pre-established	Pre-Qu	ualified	Established- on-demand			
Recovery Scope						
Global Repair	Local Repair		Segment Repair			
Recovery Trigger						
Automatic Inp (internal signa		External commands (OAM signaling)				

Path Protection

Protection switching, pre-established, global scope, pre-reserved

- + Single backup LSP per working LSP
- Failure signaling required
- + Node failures covered

Fast Reroute [Haskin]

Protection switching, pre-established, pre-reserved, local switching, global recovery

◆ Alternative recovery LSP set up from the last-hop LSR in reverse direction to the ingress

LSP and along a node-disjoint path

to the egress LSP

- + Single backup LSP per working LSP
- No failure signaling required

- + Node failures covered
- High spare capacity requirement

Link Protection

Protection switching, pre-established, local scope, pre-reserved

- Multiple backup LSPs per working LSP
- + No failure signaling required
- Node failures not covered

Path Restoration

Restoration, established on-demand, reserved on-demand, global scope

- Failure signaling required
- + Node failures covered

+ Alternative LSPs distributed over network => high spare capacity efficiency

Failure to Egress Restoration

Restoration, pre-established, pre-reserved, local switching, global recovery

- + No failure signaling required
- + Node failures covered

o Between local and global routing=> average spare capacity efficiency

Link Restoration

Restoration, established on-demand, reserved on-demand, local scope

- + No failure signaling required
- Node failures difficult to cope with
- Alternative LSPs locally routed
 - => lower spare capacity efficiency

RSVP-TE RC1 Protection Signaling

RSVP-TE signals LSP setup for RC1 through network 1+1, 1:1 protection: Signaling is done on disjoint routes

PANEL Case Study Results

COST Case Study Results

Benefits

Interworking of RD-QoS with MPLS allows a direct mapping of RD-QoS classes to MPLS LSPs with different protection levels according to the negotiated resilience requirements

- RD-QoS as an integrated approach for the provisioning of end-to-end QoS and Resilience
- Direct mapping of Resilience Classes to MPLS recovery options possible
- Applications define their resilience requirements
 - ⇒ protection flexibility
 - ⇒ efficient resource usage
- QoS requirements of high resilience traffic can be met in case of network failures